JPH02118022A - Manufacture of grain oriented silicon steel sheet reduced in iron loss - Google Patents

Manufacture of grain oriented silicon steel sheet reduced in iron loss

Info

Publication number
JPH02118022A
JPH02118022A JP63268316A JP26831688A JPH02118022A JP H02118022 A JPH02118022 A JP H02118022A JP 63268316 A JP63268316 A JP 63268316A JP 26831688 A JP26831688 A JP 26831688A JP H02118022 A JPH02118022 A JP H02118022A
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
iron loss
sheet
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63268316A
Other languages
Japanese (ja)
Other versions
JPH0765106B2 (en
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63268316A priority Critical patent/JPH0765106B2/en
Priority to US07/423,851 priority patent/US5146063A/en
Priority to EP89310893A priority patent/EP0367467B1/en
Priority to CA002001213A priority patent/CA2001213C/en
Priority to DE89310893T priority patent/DE68909000T2/en
Priority to KR1019890015458A priority patent/KR0134088B1/en
Publication of JPH02118022A publication Critical patent/JPH02118022A/en
Priority to US07/636,913 priority patent/US5223048A/en
Publication of JPH0765106B2 publication Critical patent/JPH0765106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To make uniform and reduce iron losses in respective positions at a sheet surface by irradiating the surface of a finish-annealed grain-oriented silicon steel sheet with an electron beam having an intensity distribution uniform in a width direction so that the electron beam is scanned across the above sheet surface in a direction across the rolling direction of the sheet. CONSTITUTION:A finish-annealed grain-oriented silicon steel sheet 8 is irradiated with an EB(electron beam) 7 from an EB gun 2 having a high voltage insulator 1 via an anode 3 and a column valve 4, and the electron beam 7 is scanned across the surface in a direction across the rolling direction of the above steel. By the above procedure, local microstrain nearly perpendicular to the rolling direction is introduced into the surface of the above silicon steel sheet 8, by which a grain-oriented silicon steel sheet reduced in iron loss is obtained. At this time, by dynamically controlling the above EB 7 by means of an electric current from an electromagnetic lens 5 and an electric current from a deflection coil 6, respective focal distances toward focuses 7-1, 7-2, 7-3 in the width-direction central part and both edge parts of the above silicon steel sheet 8 can be properly corrected. By this method, the uniformization and reduction of iron loss mentioned above can be attained and, as a result, the low-iron-loss grain-oriented silicon steel sheet in which iron loss is uniformly reduced in respective positions at the sheet surface can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、一方向性けい素鋼板の製造方法に関し、と
くに仕上げ焼鈍後の鋼板表面にその圧延方向を横切る向
きにエレクトロンビーム(EB)照射を施す際のEBの
照射方法に工夫を加えることによって、効果的な磁区の
細分化ひいては鉄損特性の有利な改善を図ろうとするも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet, and in particular to irradiating the surface of the steel sheet after finish annealing with an electron beam (EB) in a direction transverse to the rolling direction. By adding innovations to the EB irradiation method used in the EB process, the aim is to achieve effective subdivision of magnetic domains and, in turn, to advantageously improve iron loss characteristics.

一方向性けい素鋼板は、一般に熱間圧延と冷間圧延を経
た冷延薄板の2次再結晶粒を、(110)(001)方
位(すなわちゴス方位)に高度に集積させて所望の磁気
的性質を具備させ、主に変圧器その他の電気機器類の鉄
心に使用され、ここに(n束密度(Boo値で代表され
る)が高くしかも鉄損(W+、zs。値で代表される)
の低いことが要求されるが、これまでの研究努力により
当今は、板厚0.3mmでBoo : 1.90T以上
、W+tzso : 1.05 W/kg以下また、板
厚0.23mmではB1゜: 1.89T以上、WI?
15゜: 0.90 W/kg以下のような低鉄損一方
向性けい素鋼板も製造され得るようになった。
Unidirectional silicon steel sheets are generally made by highly accumulating secondary recrystallized grains of cold-rolled sheets that have undergone hot rolling and cold rolling in the (110) (001) orientation (i.e., Goss orientation) to achieve the desired magnetic properties. It is mainly used in the iron cores of transformers and other electrical equipment, and has a high n flux density (represented by the Boo value) and iron loss (represented by the W+, zs value). )
However, due to past research efforts, we have now achieved Boo: 1.90T or more, W+tzso: 1.05 W/kg or less for a plate thickness of 0.3 mm, and B1° for a plate thickness of 0.23 mm. : 1.89T or more, WI?
15°: Unidirectional silicon steel sheets with low iron loss of 0.90 W/kg or less can now be manufactured.

しかるに省エネルギーの見地で電力損失のより厳しい低
減要求は、とくに欧米にて鉄損の減少分を換価して変圧
器価格に上積みする、ロスエバリユエーション(鉄損評
価)制度にまで発展し、それも定着するに至っている。
However, from the standpoint of energy conservation, demands for more stringent reductions in power loss have led to the development of loss evaluation systems, particularly in Europe and the United States, in which the reduction in iron loss is converted into cash and added to the transformer price. It has also become established.

(従来の技術) 特開昭57−2252号、同57−53419号、同5
8−26405号及び同58−26406号各公報には
、仕上げ焼鈍後の一方向性けい素鋼板の表面に、圧延方
向とほぼ直角な向きにレーザ照射を施すことによって局
部的微小ひずみの導入による磁区細分化をもって、鉄損
の低減を図ることが開示されているが、この場合、いわ
ゆるひずみ取り焼鈍を加えない使途では有効であっても
、該焼鈍が施されたときはせっかく導入された局部微小
ひずみが加熱保持中に解放され、磁区幅が拡大してレー
ザ照射による鉄損低減効果が喪失してしまう不利がある
(Prior art) JP-A-57-2252, JP-A-57-53419, JP-A-5
No. 8-26405 and No. 58-26406 disclose that the surface of a grain-oriented silicon steel sheet after finish annealing is irradiated with a laser in a direction substantially perpendicular to the rolling direction to introduce local minute strain. It has been disclosed that magnetic domain refining is used to reduce iron loss, but in this case, although it is effective in applications where so-called strain relief annealing is not added, when such annealing is performed, the introduced local There is a disadvantage that microstrains are released during heating and holding, the magnetic domain width expands, and the iron loss reduction effect by laser irradiation is lost.

これに対して発明者らはさきに、上記のような゛高温処
理にも拘らず特性劣化を伴うことのない低鉄損一方向性
けい素鋼板の製造に成功した。
On the other hand, the inventors have previously succeeded in producing a low core loss unidirectional silicon steel sheet that does not suffer from characteristic deterioration despite the above-mentioned high-temperature treatment.

すなわち方向性けい素鋼板の常法に従う最終仕上げ焼鈍
を施してから、りん酸塩とコロイダルシリカを主成分と
する絶縁被膜を形成させたのち、あるいは前記最終仕上
げ焼鈍工程を経て鋼板の外面に生成した酸化物を除去し
た後、表裏両面に研磨処理を施して鏡面状態に仕上げ、
ついでCVD、イオンブレーティングまたはイオンイン
プランテーションなどによりTi、 Zr、 V、 N
b、 Ta、 Cr、 Mo。
That is, after final finish annealing according to the usual method for grain-oriented silicon steel sheets, an insulating film containing phosphate and colloidal silica as the main components is formed, or after the final annealing process described above, the insulating film is formed on the outer surface of the steel sheet. After removing the oxides, the front and back surfaces are polished to a mirror finish.
Then, Ti, Zr, V, N are deposited by CVD, ion blating or ion implantation.
b, Ta, Cr, Mo.

W、 Mn、 Co、 Ni、 AI!、、 B及びS
iの窒化物及び/又は炭化物ならびにAj!、 Ni、
 Cu、 W、 Si及びZnの酸化物のうちから選ん
だ少なくとも1種からなる極薄張力被膜を形成後、りん
酸塩とコロイダルシリカを主成分とする絶縁被膜を形成
させたのち、鋼板の圧延方向を横切る向きにエレクトロ
ンビームを照射することによって低鉄損を達成するもの
である。
W, Mn, Co, Ni, AI! ,, B and S
i nitride and/or carbide and Aj! , Ni,
After forming an ultra-thin tensile coating made of at least one oxide selected from Cu, W, Si, and Zn oxides, an insulating coating mainly composed of phosphate and colloidal silica is formed, and then the steel plate is rolled. Low iron loss is achieved by irradiating an electron beam in a direction that crosses the direction.

(発明が解決しようとする課題) 通常、一方向性けい素飼板表面上へのEB照射は、鋼板
の圧延方向に対し直角の向きに行うが、そのEB強度は
、電磁レンズの電流(フォーカス電流)が一定であるこ
とから、鋼板の幅方向中央部で強く、両端部で弱くなる
(Problem to be Solved by the Invention) Normally, EB irradiation on the surface of a unidirectional silicon plate is performed perpendicular to the rolling direction of the steel plate, but the EB intensity is determined by the current of the electromagnetic lens (focus Since the current (current) is constant, it is strong at the center in the width direction of the steel plate and weak at both ends.

そのためEB定走査よる鋼板の磁区細分化効果が中央部
と両端部で異なり、その結果、鋼板板面の各位置で鉄損
に違いが生じ、中央部に較べて両端部における鉄損特性
が悪いところに問題を残していた。
Therefore, the magnetic domain refining effect of the steel plate due to EB constant scanning is different between the center and both ends, resulting in a difference in iron loss at each position on the steel plate surface, and the iron loss characteristics at both ends are worse than at the center. There remained a problem.

この発明は、上記の問題を有利に解決するもので、仕上
げ焼鈍済みの一方向性けい素鋼板の表面にEBを照射し
て鉄損の低減を図るに際し、鋼板の板面各位置における
鉄損の均一低減化を導く好適なEB照射方法を与えるこ
とを目的とする。
This invention advantageously solves the above-mentioned problem, and when aiming to reduce iron loss by irradiating the surface of a finish-annealed unidirectional silicon steel sheet with EB, the iron loss at each position on the surface of the steel sheet is reduced. The object of the present invention is to provide a suitable EB irradiation method that leads to uniform reduction of .

(課題を解決するための手段) すなわちこの発明は、仕上げ焼鈍済みの一方向性けい素
鋼板の表面に、その圧延方向を横切る向きにエレクトロ
ンビームを照射して鉄損の低い一方向性けい素鋼板を製
造するに当り、 エレクトロンビームの走査に伴う綱板表面までの距離の
変化に応じ、該ビームの焦点距離を適正距離に修正して
エレクトロンビームの照射を行うことを特徴とする低鉄
損一方向性けい素鋼板の製造方法である。
(Means for Solving the Problems) That is, the present invention irradiates the surface of a finish-annealed unidirectional silicon steel sheet with an electron beam in a direction transverse to its rolling direction to produce unidirectional silicon steel with low core loss. When manufacturing steel plates, a low iron loss method characterized in that electron beam irradiation is performed by adjusting the focal length of the beam to an appropriate distance according to changes in the distance to the steel plate surface as the electron beam scans. This is a method for manufacturing a unidirectional silicon steel sheet.

以下、この発明を具体的に説明する。This invention will be specifically explained below.

第1図に、この発明の実施に用いて好適なEB照射装置
を模式で示し、図中番号1は高圧インシュレータ、2は
EBガン、3は陽極、4はコラム弁、5は電磁レンズ、
6は偏向コイル、そして7がEBであり、8は一方向性
けい素鋼板、9,10は排気口である。
FIG. 1 schematically shows an EB irradiation device suitable for carrying out the present invention, in which numeral 1 is a high-pressure insulator, 2 is an EB gun, 3 is an anode, 4 is a column valve, 5 is an electromagnetic lens,
6 is a deflection coil, 7 is an EB, 8 is a grain-oriented silicon steel plate, and 9 and 10 are exhaust ports.

通常、鋼板表面上へのEB照射は、第2図aに示すよう
に圧延方向に対し直角の向きに行うが、その際EB強度
は第2図すに示すように、電磁レンズの電流(フォーカ
ス電流)が一定であることから、鋼板の幅方向中央部(
7−2’)で強く、両端部(7−1’、7−3’ )で
弱くなり、このためEB定走査よる鋼板の磁区細分化効
果が板面各位置で異なるようになることは前述したとお
りである。
Normally, EB irradiation onto the surface of a steel plate is performed in a direction perpendicular to the rolling direction as shown in Figure 2a. Since the current (current) is constant, the central part in the width direction of the steel plate (
It is strong at 7-2') and weak at both ends (7-1', 7-3'), which is why the magnetic domain refining effect of the steel sheet due to EB constant scanning is different at each position on the sheet surface, as mentioned above. As I said.

そこでこの発明では、上記の問題を解消するために、E
Bの走査に伴う焦点位置の変化に応じてEBの焦点距離
を補正するわけであるが、かがる焦点距離の補正は、第
1図に示した電磁レンズ5の電流と偏向コイル6の電流
とのダイナミック制御を行うことによって的確に行うこ
とができ、がくして第2図Cに示すように鋼板の中央部
と両端部とを同じEB強度で走査することができるわけ
である。以下、かような処理をダイナミックフォ−カス
イングと呼ぶ。
Therefore, in this invention, in order to solve the above problem,
The focal length of EB is corrected according to the change in the focal position accompanying the scanning of B, and the correction of the focal length is performed using the current of the electromagnetic lens 5 and the current of the deflection coil 6 shown in FIG. This can be done accurately by performing dynamic control with the EB, and as a result, the center and both ends of the steel plate can be scanned with the same EB intensity, as shown in FIG. 2C. Hereinafter, such processing will be referred to as dynamic focus swing.

次に、この発明の基礎となった具体的実験結果について
説明する。
Next, specific experimental results that form the basis of this invention will be explained.

C: 0.043 wt%(以下単に%で示す) 、S
i :3.39%、 Mn : 0.066%、 Se
 : 0.020%、Sb:0.023%およびMo 
: 0.015%を含有するけい素鋼板用スラブを、1
360°Cで4時間の加熱処理後、熱間圧延によって厚
さ:2.OMの熱延板とした。ついで950°Cで3分
間の均一化焼鈍後、950°C,3分間の中間焼鈍をは
さむ2回の冷間圧延を施して0.20mm厚の最終冷延
板とした。
C: 0.043 wt% (hereinafter simply expressed as %), S
i: 3.39%, Mn: 0.066%, Se
: 0.020%, Sb: 0.023% and Mo
: A slab for silicon steel plate containing 0.015%
After heat treatment at 360°C for 4 hours, it was hot rolled to a thickness of 2. It was made into an OM hot rolled sheet. Then, after homogenization annealing at 950°C for 3 minutes, cold rolling was performed twice with intermediate annealing at 950°C for 3 minutes to obtain a final cold-rolled sheet with a thickness of 0.20 mm.

その後、820 ”Cの湿水素中で脱炭・1次再結晶焼
鈍を施したのち、鋼板表面にMgOを主成分とする焼鈍
分離剤を塗布してから、850°C150時間の2次再
結晶焼鈍、ついで乾水素中で1200°C25時間の純
化焼鈍を施した。
Then, after decarburization and primary recrystallization annealing in wet hydrogen at 820"C, an annealing separator containing MgO as a main component was applied to the surface of the steel plate, and then secondary recrystallization at 850°C for 150 hours. Annealing was performed, followed by purification annealing at 1200° C. for 25 hours in dry hydrogen.

その後、鋼板表面に、りん酸塩とコロイダルシリカを主
成分とする絶縁コーティング被膜を被成したのち、通常
のEB照射(a −1)およびこの発明に従うダイナミ
ックフォーカスイングによるEB照射(a−2)を施し
た。なお比較のためEB照射を施さない鋼板も用意した
After that, an insulating coating film mainly composed of phosphate and colloidal silica is formed on the surface of the steel sheet, and then normal EB irradiation (a-1) and EB irradiation by dynamic focusing according to the present invention (a-2) are performed. was applied. For comparison, a steel plate without EB irradiation was also prepared.

また上記の1次再結晶焼鈍板の表面に、AlzOyを主
成分とする焼鈍分離剤を塗布してから、上記と同じ条件
で2次再結晶焼鈍ついで純化焼鈍を施したのち、その表
面を軽く酸洗し、ついで電解研磨により鋼板表面を中心
線平均粗さR,で0.1 μmの鏡面に仕上げたのち、
イオンブレーティング装置(HCD法で加速電圧ニア0
■、加速電流: 1000A、真空度: 7 Xl0−
’ Torr )で1.0 、l/ m厚のTiNの薄
膜を形成し、しかるのち上記と同様の通常のEB照射(
b−1)およびこの発明に従うEBB10b−2)を行
い、その後にりん酸塩とコロイダルシリカを主成分とす
る絶縁被膜を被成した。
Furthermore, after applying an annealing separator mainly composed of AlzOy to the surface of the above-mentioned primary recrystallization annealed plate, secondary recrystallization annealing and purification annealing were performed under the same conditions as above, and then the surface was lightly annealed. After pickling and electrolytic polishing, the steel plate surface was finished to a mirror surface with a center line average roughness R of 0.1 μm.
Ion blating device (accelerating voltage near 0 using HCD method)
■, Accelerating current: 1000A, Vacuum degree: 7 Xl0-
'Torr) to form a thin film of TiN with a thickness of 1.0, l/m, followed by normal EB irradiation (
b-1) and EBB10b-2) according to the present invention were performed, and then an insulating film containing phosphate and colloidal silica as main components was formed.

さらにTiNの薄膜を被成した試料の一部については、
その表面にりん酸塩とコロイダルシリカを主成分とする
絶縁被膜を被成したのち、通常のEB照射(b−3)と
この発明に従うEB照射(b−4)を施した。
Furthermore, for some of the samples covered with a thin TiN film,
After an insulating film containing phosphate and colloidal silica as main components was formed on the surface, normal EB irradiation (b-3) and EB irradiation according to the present invention (b-4) were performed.

なお比較のためEB照射を施さない絶縁被膜付き鋼板も
用意した。
For comparison, a steel plate with an insulating coating that was not subjected to EB irradiation was also prepared.

かくして得られた各製品板の磁気特性について調べた結
果を表1に示す。
Table 1 shows the results of investigating the magnetic properties of each product board thus obtained.

表  1 ナミックフォーカスインクそ保 同表より明らかなように、通常のEB照射を施したもの
に較べ、この発明に従いダイナミックフォーカスイング
によるEB照射を施した場合はいずれも鉄損特性が向上
している。
Table 1: Namic Focus Ink As is clear from the table, the iron loss characteristics are improved in all cases where EB irradiation by dynamic focusing according to the present invention is applied, compared to those subjected to normal EB irradiation. .

(作 用) このように一方向性けい素鋼板の仕上げ焼鈍後、絶縁コ
ーティング処理を施した一方向性けい素鋼板にEB照射
を施す際、あるいは仕上げ焼鈍板を鏡面仕上げし、その
上にTiNの被膜をコーティング処理し、ついで絶縁コ
ーティング前後にEB照射を施す際に、板幅方向に対し
ダイナミ・ンクフォーカスイングを採用することによっ
て鉄損の低減を図ることができる。
(Function) After final annealing of a unidirectional silicon steel sheet, when applying EB irradiation to the unidirectional silicon steel sheet that has been subjected to insulation coating treatment, or after finishing the final annealing sheet to a mirror finish, TiN Iron loss can be reduced by applying dynamic focusing in the board width direction when coating the film and then applying EB irradiation before and after insulating coating.

この理由は、第2図(b)に模式的に示したところから
明らかなように、EBの走査による焦点位置の変化に応
じてビームの焦点距離を補正することにより、鋼板の板
幅方向にわたって一定の照射痕を与えることができるよ
うにしたからであり、これにより、鋼板全面にわたって
効果的には区の細分化を図ることができ、その結果、低
鉄損の鋼板が得られるのである。
The reason for this is that, as shown schematically in Fig. 2(b), by correcting the focal length of the beam according to the change in focal position due to EB scanning, This is because it is possible to give a certain irradiation mark, and as a result, it is possible to effectively subdivide sections over the entire surface of the steel plate, and as a result, a steel plate with low core loss can be obtained.

(実施例) @  C:0.040%、 Si : 3.45%、 
Mo : 0.015%。
(Example) @ C: 0.040%, Si: 3.45%,
Mo: 0.015%.

Se : 0.025%およびSb : 0.030%
の  C: 0.057  %、Si : 3.42%
、5oj2Aj2  :0.026%、  S : 0
.029%、Cu:0.1%およびSn : 0.05
% を含有するけい素鋼熱延板(厚み:2.2胴)をそれぞ
れ、1050”C12分間の中間焼鈍を挟む2回の冷間
圧延によって0.2On+n+厚の最終冷延板としてか
ら、840°Cの湿水素中で脱炭・1次再結晶焼鈍を方
缶したのち、 0Mg0を主成分とする焼鈍分離剤 ■ AlzOx  :60%、 MgO:35%、 Z
r0z : 3%。
Se: 0.025% and Sb: 0.030%
C: 0.057%, Si: 3.42%
, 5oj2Aj2: 0.026%, S: 0
.. 029%, Cu: 0.1% and Sn: 0.05
A silicon steel hot-rolled plate (thickness: 2.2 mm) containing After decarburization and primary recrystallization annealing in wet hydrogen at °C, annealing separator containing 0Mg0 as the main component AlzOx: 60%, MgO: 35%, Z
r0z: 3%.

Ti0z : 2%の組成になる焼鈍分離剤を塗布した
An annealing separator having a composition of TiOz: 2% was applied.

ついで■の焼鈍分離剤を用いた鋼板のうちのは、850
°C150時間の2次再結晶焼鈍後、乾H2中で120
0°C15時間の純化焼鈍を施し、一方Oは、850“
Cから1050°Cまで10°C/hの速度で昇温しで
2次再結晶させたのち、乾H2中でI220°C18時
間の純化焼鈍を施した。
Next, among the steel plates using the annealing separator (■), 850
After secondary recrystallization annealing for 150 hours at °C, 120 °C in dry H2
Purification annealing was performed at 0°C for 15 hours, while O was 850"
After secondary recrystallization by raising the temperature from C to 1050°C at a rate of 10°C/h, purification annealing was performed in dry H2 at 220°C for 18 hours.

その後、これらの鋼板についてはその表面にりん酸塩と
コロイダルシリカを主成分とする絶縁被膜を被成した。
Thereafter, an insulating coating containing phosphate and colloidal silica as main components was formed on the surface of these steel plates.

またbの焼鈍分離剤を用いた鋼板はいずれも、表面酸化
物を除去したのち、電解研磨によって鏡面状態に仕上げ
、ついでイオンブレーティング装置によって1.0μm
厚の〒iNの張力被膜を被成したのち、上記と同様の絶
縁被膜を被成した。
In addition, after removing surface oxides from the steel sheets using the annealing separator b, they were finished to a mirror-like finish by electrolytic polishing, and then polished to a 1.0 μm diameter using an ion blating device.
After a tension coating of 〒iN thickness was applied, an insulating coating similar to that described above was applied.

かくして得られた各けい素鋼板の表面に、加速電圧ニア
0にシ、試料電流: 10mA、走査問陽: 200μ
mの条件下に、圧延方向と直角の向きに8 mm間隔で
ダイナミックフォーカフィングによるEB照射を施した
のち磁気特性(板幅方向の平均値)について調べた結果
を表2に示す。
The surface of each silicon steel plate thus obtained was applied with an accelerating voltage of near 0, a sample current of 10 mA, and a scanning frequency of 200 μ.
Table 2 shows the results of examining the magnetic properties (average value in the sheet width direction) after applying EB irradiation by dynamic focusing at intervals of 8 mm perpendicular to the rolling direction under conditions of 50 m.

表  2 (発明の効果) かくしてこの発明によれば、EB照射による一方向性け
い素鋼板の鉄損改善効果を、従来に1ヒベ大幅に向上さ
せることができる。
Table 2 (Effects of the Invention) Thus, according to the present invention, the effect of improving the iron loss of a grain-oriented silicon steel sheet by EB irradiation can be significantly improved by one degree compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施に用いて好適なEB照射装置
の模式図、 第2図aは、EBの照射痕跡を示した図、同図す、cは
それぞれ、従来法およびこの発明法に従ってEBを走査
したときの板幅方向におけるEB強度を示した図である
。 1・・・高圧インシュレータ 2・・・EBガン     3・・・陽極4・・・コラ
ム弁     5・・・電子レンズ6・・・偏向コイル
    7・・・EB8・・・けい素鋼板    9.
10・・・排気口特許出願人  川崎製鉄株式会社 第1図
FIG. 1 is a schematic diagram of an EB irradiation device suitable for carrying out the present invention, FIG. 2 a is a diagram showing EB irradiation traces, and FIG. FIG. 3 is a diagram showing the EB intensity in the board width direction when the EB is scanned according to the above. 1...High pressure insulator 2...EB gun 3...Anode 4...Column valve 5...Electron lens 6...Deflection coil 7...EB8...Silicon steel plate 9.
10... Exhaust port patent applicant Kawasaki Steel Corporation Figure 1

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍済みの一方向性けい素鋼板の表面に、そ
の圧延方向を横切る向きにエレクトロンビームを照射し
て鉄損の低い一方向性けい素鋼板を製造するに当り、 エレクトロンビームの走査に伴う鋼板表面までの距離の
変化に応じ、該ビームの焦点距離を適正距離に修正して
エレクトロンビームの照射を行うことを特徴とする低鉄
損一方向性けい素鋼板の製造方法。
[Claims] 1. In manufacturing a unidirectional silicon steel plate with low iron loss by irradiating the surface of a finish annealed unidirectional silicon steel plate with an electron beam in a direction transverse to the rolling direction. , A low iron loss unidirectional silicon steel plate characterized in that the electron beam irradiation is performed by correcting the focal length of the beam to an appropriate distance according to the change in the distance to the steel plate surface as the electron beam scans. Production method.
JP63268316A 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet Expired - Lifetime JPH0765106B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63268316A JPH0765106B2 (en) 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet
US07/423,851 US5146063A (en) 1988-10-26 1989-10-18 Low iron loss grain oriented silicon steel sheets and method of producing the same
EP89310893A EP0367467B1 (en) 1988-10-26 1989-10-23 Low iron loss grain oriented silicon steel sheets and method of producing the same
CA002001213A CA2001213C (en) 1988-10-26 1989-10-23 Low iron loss grain oriented silicon steel sheets and method of producing the same
DE89310893T DE68909000T2 (en) 1988-10-26 1989-10-23 Grain-oriented silicon steel sheets with low wattage losses and method for producing the same.
KR1019890015458A KR0134088B1 (en) 1988-10-26 1989-10-26 Low iron loss grain oriented silicon steel sheets & method of producing the same
US07/636,913 US5223048A (en) 1988-10-26 1991-01-02 Low iron loss grain oriented silicon steel sheets and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268316A JPH0765106B2 (en) 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH02118022A true JPH02118022A (en) 1990-05-02
JPH0765106B2 JPH0765106B2 (en) 1995-07-12

Family

ID=17456841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268316A Expired - Lifetime JPH0765106B2 (en) 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0765106B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245239B1 (en) 1998-10-09 2001-06-12 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
CN1317402C (en) * 2000-05-12 2007-05-23 新日本制铁株式会社 Low iron loss and low noise grain oriented electrical engineering steel plate and prodn. method thereof
JP2013159845A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
JP2016046068A (en) * 2014-08-22 2016-04-04 Jfeスチール株式会社 Electron beam irradiation device and electron beam irradiation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011886B2 (en) 2011-09-28 2018-07-03 Jfe Steel Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
JP5761375B2 (en) 2011-12-22 2015-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5884165B2 (en) 2011-12-28 2016-03-15 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP6010907B2 (en) 2011-12-28 2016-10-19 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP6007501B2 (en) 2012-02-08 2016-10-12 Jfeスチール株式会社 Oriented electrical steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPS5935893A (en) * 1982-07-30 1984-02-27 アームコ、アドバンスト、マテリアルズ、コーポレーション Laser treating apparatus of material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPS5935893A (en) * 1982-07-30 1984-02-27 アームコ、アドバンスト、マテリアルズ、コーポレーション Laser treating apparatus of material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245239B1 (en) 1998-10-09 2001-06-12 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
CN1317402C (en) * 2000-05-12 2007-05-23 新日本制铁株式会社 Low iron loss and low noise grain oriented electrical engineering steel plate and prodn. method thereof
JP2013159845A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
JP2016046068A (en) * 2014-08-22 2016-04-04 Jfeスチール株式会社 Electron beam irradiation device and electron beam irradiation method

Also Published As

Publication number Publication date
JPH0765106B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
MX2013000028A (en) Oriented electromagnetic steel plate and production method for same.
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
KR20190071745A (en) Hot-rolled steel sheet for manufacturing electronic steel sheet and method for manufacturing the same
JPH02118022A (en) Manufacture of grain oriented silicon steel sheet reduced in iron loss
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets & method of producing the same
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JP2014152393A (en) Method for producing grain-oriented magnetic steel sheet
US20200325555A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
WO2019013355A9 (en) Oriented electromagnetic steel plate
JPH04362139A (en) Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH01298118A (en) Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
KR100430601B1 (en) Method f0r manufacturing a grain-oriented electrical steel sheet with high magnetic flux density
JPS63250419A (en) Manufacture of grain-oriented silicon steel sheet minimal in iron loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPH02138421A (en) Production of low-iron loss unidirectional silicon steel sheet
JPH04272166A (en) Manufacture of ultralow core loss grain-oriented silicon steel sheet
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet
JPH03260022A (en) Method for radiating linear eb
JP2762105B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with good iron loss characteristics
JPH04202627A (en) Method for irradiating electron beam
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss