JPH02138421A - Production of low-iron loss unidirectional silicon steel sheet - Google Patents

Production of low-iron loss unidirectional silicon steel sheet

Info

Publication number
JPH02138421A
JPH02138421A JP29039588A JP29039588A JPH02138421A JP H02138421 A JPH02138421 A JP H02138421A JP 29039588 A JP29039588 A JP 29039588A JP 29039588 A JP29039588 A JP 29039588A JP H02138421 A JPH02138421 A JP H02138421A
Authority
JP
Japan
Prior art keywords
steel sheet
sheet
plasma
unidirectional silicon
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29039588A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Yasuhiro Kobayashi
康宏 小林
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29039588A priority Critical patent/JPH02138421A/en
Publication of JPH02138421A publication Critical patent/JPH02138421A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably produce the low-iron loss unidirectional silicon steel sheet having uniform magnetic characteristics by irradiating the surface of the unidirectional silicon steel sheet after finish annealing with sheet plasma in the direction orthogonal with the rolling direction. CONSTITUTION:Sheet plasma 6 generated by a low voltage and large current from an HCD gun 1 having a hollow cathode 2 is made into the sheet shape of the length corresponding to at least the width of the unidirectional silicon steel sheet 8 subjected to finish annealing by control of the magnetic fields of 1st, 2nd electrodes 3, 4. This sheet plasma 6 is guided into a treating chamber 10 having a discharge port 11 by an electromagnet 5 and is further introduced by a permanent magnet 9 to the steel sheet 8 so that the steel sheet is irradiated with the sheet plasma. The sheet plasma 6 is adjusted to a narrow width of 0.01 to 0.1mm and the steel sheet 8 is irradiated with this sheet plasma across the transverse direction thereof in the direction orthogonal with the rolling direction. A shutter 7 is opened and closed in this irradiation state in synchronization with the movement of the steel sheet 8, by which the steel sheet is irradiated with the plasma at prescribed intervals. Local microstrain regions are uniformly introduced onto the surface of the steel sheet 8 in this way, by which the stable formation of the finer magnetic domains is surely executed and the low-iron loss unidirectional silicon steel sheet having the uniform quality is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い一方向性珪素鋼板の製造方法に
関し、鋼板表面上に微小歪領域を導入することによって
磁区の細分化をはかり、鉄損を低減しようとするもので
ある。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a unidirectional silicon steel plate with low core loss, and involves subdividing magnetic domains by introducing minute strain regions on the surface of the steel plate. , which aims to reduce iron loss.

(従来の技術) 一方向性珪素鋼板は製品の2次再結晶粒をゴス方位に高
度に集積させ、また鋼板表面上にはフォルステライト質
被膜を形成し、さらにその上に熱膨張係数の小さい絶縁
被膜を被成したもので、厳格な制御を必要とする複雑、
多岐にわたる工程を経て製造される。
(Prior technology) Unidirectional silicon steel sheets have secondary recrystallized grains of the product highly concentrated in the Goss orientation, and a forsterite film is formed on the surface of the steel sheet, which has a small coefficient of thermal expansion. It is coated with an insulating film and is complex and requires strict control.
It is manufactured through a wide variety of processes.

このような一方向性珪素鋼板は、主として変圧器、その
他電気機器の鉄心として使用されており、磁気特性とし
て製品の磁束密1(s、。値で代表される)が高く、鉄
損(W+7/S。値で代表される)が低いこと、さらに
表面性状が良好な絶縁被膜を有することが要求されてい
る。
Such unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetic properties include high magnetic flux density 1 (s, represented by the value) and iron loss (W+7). /S (represented by the value) and an insulating film with good surface properties.

とくにエネルギー危機を境にして電力用失の低減を特徴
とする請が著しく強まり、変圧器用鉄心材料としての鉄
損のより低い一方向性珪素鋼板の必要性は増々重要なも
のとなってきている。
Particularly in the wake of the energy crisis, the demand for reduced power loss has increased significantly, and the need for unidirectional silicon steel sheets with lower iron loss as transformer core materials has become increasingly important. .

さて一方向性珪素鋼板の鉄損改善の歴史は、ゴス方位2
次再結晶集合組織の改善の歴史であると言っても過言で
はない。このような2次再結晶粒を制御する方法として
、AIN、MnS及びMnSe等の1次再結晶粒成長抑
制剤、いわゆるインヒビターを用いてゴス方位2次再結
晶粒を優先成長させる方法が実施されている。
Now, the history of iron loss improvement of unidirectional silicon steel sheets is based on Goss direction 2.
It is no exaggeration to say that this is a history of improvements in the secondary recrystallization texture. As a method for controlling such secondary recrystallized grains, a method has been implemented in which primary recrystallized grain growth inhibitors such as AIN, MnS, and MnSe are used to preferentially grow Goss-oriented secondary recrystallized grains. ing.

一方これら2次再結晶集合組織を制御する方法とは全く
異なる方法、すなわち鋼板表面にレーザー照射(土山 
正:鉄と鋼、 69(1983)、P、895、特公昭
57−2252号、同57−53419号、同5B−2
4605号、同58−24606上記公報参照)又はプ
ラズマ炎照射(特開昭62−96617号、同62−1
51511号、同62−151516号および同62−
151517上記公報参照)により局部微小歪を導入し
て磁区を細分化し、もって鉄損を低下する画期的な方法
が提案された。
On the other hand, a completely different method is used to control the secondary recrystallization texture, namely laser irradiation on the steel plate surface (Tsuchiyama
Correct: Tetsu to Hagane, 69 (1983), P, 895, Special Publication No. 57-2252, No. 57-53419, No. 5B-2
4605, 58-24606) or plasma flame irradiation (JP-A-62-96617, JP-A-62-1)
No. 51511, No. 62-151516 and No. 62-
No. 151,517 (see the above-mentioned publication) proposed an innovative method for subdividing magnetic domains by introducing local microstrain, thereby reducing iron loss.

しかしながらこれらの方法は、鋼板表面上にスポット状
のレーザー光線やプラズマ炎を複数、同時に照射して微
小歪を導入しているため、照射条件を均一にすることが
難しく、製品の磁気特性を一定に保つのは容易ではなか
った。
However, these methods introduce micro-strain by simultaneously irradiating multiple spot laser beams or plasma flames onto the surface of the steel sheet, making it difficult to make the irradiation conditions uniform, making it difficult to maintain the magnetic properties of the product at a constant level. It wasn't easy to maintain.

(発明が解決しようとする課題) この発明は、局部微小歪を均一に導入することによって
安定した磁区細分化を実現し得る低鉄損一方向性珪素鋼
板の製造方法について提案することを目的とする。
(Problems to be Solved by the Invention) The purpose of the present invention is to propose a method for manufacturing a low core loss unidirectional silicon steel sheet that can achieve stable magnetic domain refinement by uniformly introducing local microstrain. do.

(課題を解決するための手段) この発明は、仕上焼鈍を経た一方向性珪素鋼板につき、
その表面上に、ホローカソードガンにて発生させた、狭
幅で鋼板の幅方向に跨がるシート・プラズマを、圧延方
向と直交する向きに照射し、鋼板表面上に微小歪領域を
導入することを特徴とする低鉄損一方向性珪素鋼板の製
造方法である。
(Means for Solving the Problems) This invention provides a unidirectional silicon steel plate that has undergone finish annealing.
A narrow sheet plasma generated by a hollow cathode gun and extending across the width of the steel plate is irradiated onto the surface in a direction perpendicular to the rolling direction to introduce a micro-strain region on the steel plate surface. This is a method for manufacturing a low core loss unidirectional silicon steel sheet.

またこの発明において、シート・プラズマの幅は0.0
1〜0.1mmであることが有利である。
Further, in this invention, the width of the sheet plasma is 0.0
Advantageously, it is between 1 and 0.1 mm.

この発明は狭幅で鋼板の幅方向に跨がるシート・プラズ
マを、圧延方向と直交する向きに照射することに特徴が
あり、このようなシート・プラズマを発生させるには第
1図に示す装置を用いることが有利であり、この装置に
ついて以下に述べる。
This invention is characterized by irradiating a narrow sheet plasma that extends across the width of the steel plate in a direction perpendicular to the rolling direction. It is advantageous to use an apparatus, which is described below.

図中lはHCDガン、2は中空陰極、3は第1電極、4
は第2電極、5は電磁石、6はシート・プラズマ、7は
シャッター 8は鋼板、9は永久磁石、10は処理槽及
び11は排気口である。この装置において、低電圧、大
電流にてHCDガン1から発生させたシート・プラズマ
6は、第1電極3および第2電極4の磁場コントロール
により、少なくとも鋼板の幅に相当する長さを有するシ
ート状のプラズマ流とする。ついでこのシート・プラズ
マを電磁石5によって処理槽10内へ、さらに永久磁石
9によって鋼板日へと導き、鋼板8上に照射する。この
照射状態において、鋼板8の移動に同調してシャッター
7を開閉し、狭幅で鋼板の幅方向に跨がるシート・プラ
ズマを所定の間隔で照射する。
In the figure, l is the HCD gun, 2 is the hollow cathode, 3 is the first electrode, and 4
5 is a second electrode, 5 is an electromagnet, 6 is a sheet plasma, 7 is a shutter, 8 is a steel plate, 9 is a permanent magnet, 10 is a processing tank, and 11 is an exhaust port. In this device, the sheet plasma 6 generated from the HCD gun 1 at low voltage and high current is generated into a sheet having a length at least equivalent to the width of the steel plate by controlling the magnetic fields of the first electrode 3 and the second electrode 4. The plasma flow is as follows. Next, this sheet plasma is guided into the processing tank 10 by the electromagnet 5 and further to the steel plate by the permanent magnet 9, and is irradiated onto the steel plate 8. In this irradiation state, the shutter 7 is opened and closed in synchronization with the movement of the steel plate 8, and a narrow sheet plasma extending across the width of the steel plate is irradiated at predetermined intervals.

(作 用) 次にこの発明について実験例に基いて詳細に述べる。(for production) Next, this invention will be described in detail based on experimental examples.

C: 0.044 wt%(以下単に%と示す)、 S
i : 3.36%、 Mn : 0.072%、 S
e : 0.021%、 Sb : 0.025%。
C: 0.044 wt% (hereinafter simply referred to as %), S
i: 3.36%, Mn: 0.072%, S
e: 0.021%, Sb: 0.025%.

Mo : 0.013%を含有する珪素鋼スラブを13
80°Cで4時間加熱後、熱間圧延して2.2mm厚の
熱延板とした後、1000°Cで120分の中間焼鈍を
はさむ2回の冷間圧延を施して0.20mm厚の最終冷
延板とした。
Mo: 13 silicon steel slabs containing 0.013%
After heating at 80°C for 4 hours, hot rolling was performed to obtain a 2.2 mm thick hot rolled plate, which was then cold rolled twice with intermediate annealing for 120 minutes at 1000°C to obtain a 0.20 mm thick sheet. The final cold-rolled sheet was obtained.

ついで820℃の湿水素中で脱炭1次再結晶焼鈍を施し
た後、■鋼板表面上にMgOを主成分とする焼鈍分離剤
又は■MgO(35%)、^]zO,(60%) 、T
i0z(2%)及びZrOg(3%)を主成分とする焼
鈍分離剤をスラリー塗布した。その後それぞれについて
850°Cで50時間の2次再結晶焼鈍を行ってゴス方
位2次再結晶粒を優先成長させた後、1200″Cの飽
水素中で5時間の純化焼鈍を施した。
Then, after decarburizing primary recrystallization annealing in wet hydrogen at 820°C, ■ an annealing separator mainly composed of MgO or ■ MgO (35%), ^]zO, (60%) was applied to the surface of the steel sheet. , T
An annealing separator mainly composed of i0z (2%) and ZrOg (3%) was applied as a slurry. Thereafter, each was subjected to secondary recrystallization annealing at 850°C for 50 hours to preferentially grow Goss-oriented secondary recrystallized grains, followed by purification annealing for 5 hours in saturated hydrogen at 1200''C.

ついで■の処理を経た鋼板はその表面上にリン酸塩とコ
ロイダルシリカを主成分とする絶縁被膜を被成し試料(
A)とし、一方■の処理を経た鋼板はその表面上の酸化
物を電解研磨により除去した後、イオンブレーティング
によりTiN膜を1μm厚で被成し試料(B) とした
Next, the steel plate that underwent the treatment in (■) was coated with an insulating film containing phosphate and colloidal silica as main components on its surface.
On the other hand, after the oxides on the surface of the steel plate treated in A) were removed by electrolytic polishing, a TiN film with a thickness of 1 μm was formed on the steel plate by ion blasting to prepare sample (B).

その後試料(A)および(B)に、上記した第1図の装
置を用いて、圧延方向と直角方向にのびる1、幅0.5
1、長さ500 mm (鋼板幅は300mm )のシ
ート・プラズマを圧延方向へ10mm間隔で照射し、微
小歪領域を導入した。歪導入後の鋼板の磁気特性につい
て測定した結果を、シート・プラズマ照射前の磁気特性
と比較して表1に示す。
Thereafter, samples (A) and (B) were coated using the apparatus shown in FIG.
1. Sheet plasma with a length of 500 mm (width of the steel plate is 300 mm) was irradiated at intervals of 10 mm in the rolling direction to introduce microstrain regions. The results of measuring the magnetic properties of the steel plate after strain introduction are shown in Table 1 in comparison with the magnetic properties before sheet plasma irradiation.

表   1 同表から明らかなように、微小歪領域を導入した鋼板は
いずれも導入前に比し鉄損が0.07〜0.08W/k
gと大幅に上昇した。このような鉄損の大幅な向上は、
鋼板の幅方向にわたる線状の微小歪を導入することによ
って磁区の細分化が有利に達成されたためで、その効果
は絶縁被膜下の被膜がフォルステライト質又はTiNで
あっても鉄損の低下が可能であることがわかる。
Table 1 As is clear from the same table, the iron loss of all steel plates introduced with the micro-strain region is 0.07 to 0.08 W/k compared to before introduction.
g and increased significantly. This significant improvement in iron loss is due to
This is because the subdivision of magnetic domains was advantageously achieved by introducing linear microstrain across the width of the steel sheet, and the effect was that even if the film beneath the insulating film was forsterite or TiN, iron loss could be reduced. It turns out that it is possible.

次に第1図の装置を用いた場合における、シート・プラ
ズマの幅及びHCDガンの出力の好適範囲について、第
2図に示す。なお同図は上記した実験において、シート
・プラズマの幅及びHCDガンの出力を種々変化させた
ときの鉄損についてそれぞれ測定した結果をまとめて示
したものである。
Next, FIG. 2 shows the preferred range of the width of the sheet plasma and the output of the HCD gun when the apparatus shown in FIG. 1 is used. Note that this figure summarizes the results of measuring the iron loss when varying the width of the sheet plasma and the output of the HCD gun in the above-mentioned experiment.

同図から明らかなように、シート・プラズマの幅を0.
01〜1.0 mmに、HCDガンの出力を50〜30
0kwの大容量にすることが有利である。すなわちシー
ト・プラズマの幅が0.01mm未満では微小歪が小さ
すぎて磁区を分化できず、一方1.0 mmをこえると
熱歪みが加わる面積が大きくなって磁区細分化の効果が
失われる。またHCDガンの出力は50〜300に−の
大容量としないと、微小歪を導入できない。さらに微小
歪は圧延方向に5〜20mmの間隔で導入することが望
ましい。なぜなら珪素鋼板の磁区は5〜20m111間
隔で人工粒界を新たに作ることによって細分化でき、よ
って鉄損を有効に低下させることができる。
As is clear from the figure, the width of the sheet plasma is set to 0.
01-1.0 mm, HCD gun output 50-30
It is advantageous to have a large capacity of 0 kW. That is, if the width of the sheet plasma is less than 0.01 mm, the minute strain is too small to differentiate the magnetic domains, while if it exceeds 1.0 mm, the area to which thermal strain is applied becomes large and the effect of magnetic domain refining is lost. Further, unless the output of the HCD gun is set to a large capacity of 50 to 300, minute distortion cannot be introduced. Furthermore, it is desirable to introduce minute strains at intervals of 5 to 20 mm in the rolling direction. This is because the magnetic domains of a silicon steel plate can be subdivided by newly creating artificial grain boundaries at intervals of 5 to 20 m111, and therefore iron loss can be effectively reduced.

なお鋼板における絶縁被膜下の被膜は上記したフォルス
テライト質及びTiNのほか、Ti、、Zr、 Hf。
In addition to the above-mentioned forsterite and TiN, the coating under the insulating coating on the steel plate includes Ti, Zr, and Hf.

V 、 Nb、 Ta、 Cr、 MO,Ni、 Si
、 B及びAIの窒化物、炭化物及び突・窒化物であっ
ても、この発明は有利に適合する。
V, Nb, Ta, Cr, MO, Ni, Si
, B and AI nitrides, carbides and nitrides are also advantageously applicable to the present invention.

(実施例) (A) C: 0.066%、Si : 3.39%、
Mn:0.069%、^1:0.026%、Se : 
0.028%、Cu:0.1%、Mo:0.025%又
は(B) C: 0.042%、Si : 3.41%
、Mn : 0.066%、Se : 0.021%、
Sb : 0.026%、M。
(Example) (A) C: 0.066%, Si: 3.39%,
Mn: 0.069%, ^1: 0.026%, Se:
0.028%, Cu: 0.1%, Mo: 0.025% or (B) C: 0.042%, Si: 3.41%
, Mn: 0.066%, Se: 0.021%,
Sb: 0.026%, M.

: 0.013%をそれぞれ含有した珪素熱延板に、中
間焼鈍をはさむ2回の冷間圧延を施して0 、20mm
厚の最終冷延板とし、ついで830’Cの湿水素中で脱
炭・1次再結晶焼鈍を施した後、■鋼板表面上にMgO
を主成分とする焼鈍分離剤又は■MgO(28%)、A
l2O2(70%)及びTi0z(2%)を主成分とす
る焼鈍分離剤をスラリー塗布した。
: A silicon hot-rolled plate containing 0.013%, respectively, was cold-rolled twice with intermediate annealing in between to give a thickness of 0.0 and 20 mm.
The final cold-rolled steel sheet is then decarburized and primary recrystallized annealed in wet hydrogen at 830'C.
Annealing separator mainly composed of MgO (28%), A
An annealing separator mainly composed of 12O2 (70%) and Ti0z (2%) was applied as a slurry.

その後(A)の成分になる鋼板は850°Cから105
0゛Cまで10°C/hで加熱しゴス方位2次再結晶粒
を優先成長させた後、1200’Cの軟水素中で8時間
の純化焼鈍を施し、一方(八)の成分になる鋼板は85
0°Cで50時間の2次再結晶焼鈍を行ってゴス方位2
次再結晶粒を優先成長させた後、1180’Cの軟水素
中で5時間の純化焼鈍を施した。
After that, the steel plate that becomes the component (A) is heated to 105°C from 850°C.
After heating at 10°C/h to 0°C to preferentially grow Goss-oriented secondary recrystallized grains, purification annealing was performed for 8 hours in soft hydrogen at 1200°C, resulting in one component (8). Steel plate is 85
Secondary recrystallization annealing was performed at 0°C for 50 hours to obtain Goss orientation 2.
After preferential growth of the next recrystallized grains, purification annealing was performed for 5 hours in soft hydrogen at 1180'C.

ついで■の処理を経た鋼板はフォルステラ・イ)・被膜
上にリン酸塩とコロイダルシリカを主成分とする絶縁被
膜を被成し、一方■の処理を経た鋼板はその表面上の酸
化物を除去した後電解研磨により表面粗さ0.1 μm
 Raに仕上げ、ついでイオンブレーティングによりC
rN膜を1.0 μm厚で被成し、さらにその上に同様
の絶!!被膜を被成した。
Next, the steel plate that has undergone the treatment in (■) is coated with an insulating film that is mainly composed of phosphate and colloidal silica on the Forstera I) film, while the steel plate that has undergone the treatment in (■) is coated with an insulating film that is mainly composed of phosphate and colloidal silica. After removal, the surface roughness is 0.1 μm by electrolytic polishing.
Finished to Ra, then C by ion blating
An rN film was formed to a thickness of 1.0 μm, and then a similar film was formed on top of it. ! A coating was applied.

その後上記した第1図の装置を用いて、圧延方向と直角
方向にのびる、幅0.3 mm、長さ500 mm(鋼
板幅は300mm )のシート・プラズマを圧延方向へ
10mn+間隔で照射し、微小歪領域を導入した。
Thereafter, using the apparatus shown in FIG. 1 described above, sheet plasma with a width of 0.3 mm and a length of 500 mm (the steel plate width is 300 mm) extending in a direction perpendicular to the rolling direction is irradiated at intervals of 10 mm+ in the rolling direction. A micro-strain region was introduced.

歪導入後の鋼板の磁気特性について測定した結果を、表
2に示す。表2から明らかなように、(八)。
Table 2 shows the results of measuring the magnetic properties of the steel sheet after introducing strain. As is clear from Table 2, (8).

(B)の素材共に、シー・・ト・プラズマ照射により、
鉄損WI?150が0.05−0.09W/kgと大幅
に向上しているのが注目される。
Both materials in (B) were treated by sheet plasma irradiation.
Iron loss WI? It is noteworthy that 150 has significantly improved to 0.05-0.09W/kg.

table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に使用する装置を示す模式図、第2図
はシート・プラズマの幅及びHCDガンの出力の好適範
囲を示すグラフである。 1・・・HCDガン    2 中空陰極3−第1電極
     4−第2電極 5・・・電磁石      6− シート・プラズマ7
−・シャッター    8−鋼板 9・−・永久磁石     10−・処理槽11−・・
排気口 *フォル:フォルステライト質被膜 CrN : CrN被膜 (発明の効果) この発明によれば、微小歪を圧延方向と直交する向きに
均一に導入して磁区の細分化を確実に行うことができ、
磁気特性にばらつきのない珪素鋼板を安定して製造し得
る。 特 許 出 願 人 川 崎 製 鉄 株 式 4′!4負飴り稚農 0θ05W/にシエ伏上曲上 Δ0.03W/KIMJJLh X#I上なし シート・プラス゛マめ小品 (mm)
FIG. 1 is a schematic diagram showing the apparatus used in the present invention, and FIG. 2 is a graph showing the width of the sheet plasma and the preferred range of the output of the HCD gun. 1...HCD gun 2 Hollow cathode 3-first electrode 4-second electrode 5...electromagnet 6-sheet plasma 7
-.Shutter 8-Steel plate 9--Permanent magnet 10-.Processing tank 11-.
Exhaust port*Fol: Forsterite coating CrN: CrN coating (Effects of the invention) According to this invention, it is possible to reliably subdivide the magnetic domains by uniformly introducing minute strain in a direction perpendicular to the rolling direction. ,
A silicon steel plate without variations in magnetic properties can be stably manufactured. Patent applicant Kawasaki Steel Corporation stock 4'! 4 negative candy seedlings 0θ05W/Nishie bending upward curve Δ0.03W/KIMJJLh X#I topless sheet plus small item (mm)

Claims (1)

【特許請求の範囲】 1、仕上焼鈍を経た一方向性珪素鋼板につき、その表面
上に、ホローカソードガンにて発生させた、狭幅で鋼板
の幅方向に跨がるシート・プラズマを、圧延方向と直交
する向きに照射し、鋼板表面上に微小歪領域を導入する
ことを特徴とする低鉄損一方向性珪素鋼板の製造方法。 2、シート・プラズマの幅が0.01〜0.1mmであ
る請求項1に記載の方法。
[Claims] 1. A unidirectional silicon steel plate that has undergone finish annealing is rolled with a narrow sheet plasma generated by a hollow cathode gun that spans the width direction of the steel plate on its surface. A method for producing a low core loss unidirectional silicon steel sheet, characterized by irradiating the steel sheet in a direction perpendicular to the direction and introducing a micro-strain region on the surface of the steel sheet. 2. The method according to claim 1, wherein the width of the sheet plasma is 0.01 to 0.1 mm.
JP29039588A 1988-11-18 1988-11-18 Production of low-iron loss unidirectional silicon steel sheet Pending JPH02138421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29039588A JPH02138421A (en) 1988-11-18 1988-11-18 Production of low-iron loss unidirectional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29039588A JPH02138421A (en) 1988-11-18 1988-11-18 Production of low-iron loss unidirectional silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH02138421A true JPH02138421A (en) 1990-05-28

Family

ID=17755457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29039588A Pending JPH02138421A (en) 1988-11-18 1988-11-18 Production of low-iron loss unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH02138421A (en)

Similar Documents

Publication Publication Date Title
WO2016056501A1 (en) Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
RU2610204C1 (en) Method of making plate of textured electrical steel
EP2757165A1 (en) Process for producing grain-oriented electromagnetic steel sheet with excellent core loss characteristics
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JPH05335128A (en) Manufacturing method of low iron-loss unidirectional silicon steel plate having excellent noise characteristic
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06136449A (en) Production of low iron loss grain-oriented silicon steel sheet
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JPWO2020218328A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH02118022A (en) Manufacture of grain oriented silicon steel sheet reduced in iron loss
JP2020070477A (en) Production method of oriented electromagnetic steel sheet
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
RU2744254C1 (en) Textured electrical steel sheet with low level of core losses and method of its production
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH02138421A (en) Production of low-iron loss unidirectional silicon steel sheet
KR100430601B1 (en) Method f0r manufacturing a grain-oriented electrical steel sheet with high magnetic flux density
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH03260022A (en) Method for radiating linear eb
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP2599739B2 (en) Method for producing unidirectional electromagnetic steel sheet with excellent magnetic properties
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
KR920004949B1 (en) Making process for the electic steel plate