JP5594302B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5594302B2
JP5594302B2 JP2012025231A JP2012025231A JP5594302B2 JP 5594302 B2 JP5594302 B2 JP 5594302B2 JP 2012025231 A JP2012025231 A JP 2012025231A JP 2012025231 A JP2012025231 A JP 2012025231A JP 5594302 B2 JP5594302 B2 JP 5594302B2
Authority
JP
Japan
Prior art keywords
electron beam
steel sheet
irradiation
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012025231A
Other languages
Japanese (ja)
Other versions
JP2013159845A (en
Inventor
山口  広
重宏 ▲高▼城
誠司 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012025231A priority Critical patent/JP5594302B2/en
Publication of JP2013159845A publication Critical patent/JP2013159845A/en
Application granted granted Critical
Publication of JP5594302B2 publication Critical patent/JP5594302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、変圧器などの鉄心材料に用いる方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet used for a core material such as a transformer.

方向性電磁鋼板は、主にトランスの鉄心として利用される材料である。トランスの高効率化、低騒音化の観点から、方向性電磁綱板の材料特性としては、低鉄損、低磁歪といった特性が求められている。   A grain-oriented electrical steel sheet is a material mainly used as an iron core of a transformer. From the viewpoint of increasing the efficiency and reducing the noise of the transformer, the material characteristics of the directional electromagnetic steel sheet are required to have characteristics such as low iron loss and low magnetostriction.

そのためには、鋼板中の二次再結晶粒を、{110}<001>方位(いわゆる、ゴス方位)に高度に揃えることが重要である。しかし、配向性が高すぎると、逆に鉄損が増加してしまうことも同時に知られている。
そこで、この欠点を解消するために、鋼板の表面に歪や溝を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
For this purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the {110} <001> orientation (so-called Goth orientation). However, it is also known that if the orientation is too high, the iron loss increases.
Therefore, in order to eliminate this drawback, a technique for introducing a strain or a groove on the surface of the steel sheet to subdivide the magnetic domain width to reduce the iron loss, that is, a magnetic domain subdivision technique has been developed.

たとえば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に線状の高転位密度領域を導入することにより、磁区幅を狭くして鉄損を低減する技術が提案されている。
また、特許文献2には、電子ビーム(電子線)の照射により磁区幅を制御する技術が提案されている。この電子ビーム照射によって鉄損を低減する方法を用いると、磁場制御によって、電子ビームの走査を高速に行うことが可能である。
さらに、電子ビーム照射は、レーザーの光学的走査機構に見られるような機械的な可動部が必要ないため、特に1m以上の広幅の連続したストリップに対して、連続かつ高速で磁区細分化処理を施す場合に有利である。
For example, Patent Document 1 proposes a technique for reducing the iron loss by narrowing the magnetic domain width by irradiating the final product plate with laser and introducing a linear high dislocation density region into the steel sheet surface layer. .
Patent Document 2 proposes a technique for controlling the magnetic domain width by irradiation with an electron beam (electron beam). If this method of reducing iron loss by electron beam irradiation is used, electron beam scanning can be performed at high speed by magnetic field control.
Furthermore, since the electron beam irradiation does not require a mechanical moving part as seen in an optical scanning mechanism of a laser, the magnetic domain fragmentation process is performed continuously and at a high speed, particularly for a wide continuous strip of 1 m or more. This is advantageous when applied.

特公昭57−2252号公報Japanese Patent Publication No.57-2252 特公平6−072266号公報Japanese Patent Publication No. 6-072266

上述したように、電子線照射を利用して磁区細分化処理を施す場合、電子線を連続かつ安定的に照射し続けるためには、処理を行う加工室内を真空にすることが重要である。しかしながら、工業的な生産を行なう場合、鋼帯を通板して連続的に電子線照射処理する際の加工室は広くなるため、その加工室の真空度はできる限り到達が容易な低位であることが望ましい。   As described above, when the magnetic domain subdivision process is performed using electron beam irradiation, it is important to evacuate the processing chamber in which the process is performed in order to continuously and stably irradiate the electron beam. However, when industrial production is performed, the processing chamber for continuous electron beam irradiation treatment through a steel strip is widened, so that the degree of vacuum in the processing chamber is as low as possible. It is desirable.

また、鋼帯に対して通板と直角方向に電子線を走査して照射する際に、一台の電子銃で鋼帯の全幅を照射しようとすると、鋼帯幅方向の照射品質を均質化するためには、できるだけ電子線を照射する電子銃を鋼板から離して設置し、走査した方が有利になる。すなわち、電子線を電気的に偏向走査する偏向角はできる限り小さくして、鋼板における電子銃の直下と鋼板の端部との照射品質の差違を小さくすることが望ましい。しかしながら、そのためには、電子銃を遠方に設置することになって、真空保持が必要な加工室が大きくなってしまうという問題があった。   Also, when irradiating the steel strip by scanning the electron beam in a direction perpendicular to the through plate and irradiating the full width of the steel strip with a single electron gun, the irradiation quality in the steel strip width direction is homogenized. For this purpose, it is advantageous to place an electron gun that irradiates an electron beam as far as possible from the steel plate and scan it. That is, it is desirable that the deflection angle for electrically deflecting and scanning the electron beam is made as small as possible to reduce the difference in irradiation quality between the portion immediately below the electron gun and the end of the steel plate. However, for that purpose, there has been a problem that an electron gun is installed at a distance, and a processing chamber that needs to be kept in a vacuum is enlarged.

本発明は、上記の現状に鑑み開発されたもので、低真空度でかつ電子線照射部(電子銃)と鋼板との距離が短くても、効果的な磁区細分化処理を施すことができる方向性電磁鋼板の製造方法を提案することを目的とする。   The present invention has been developed in view of the above situation, and can perform an effective magnetic domain subdivision process even when the degree of vacuum is low and the distance between the electron beam irradiation part (electron gun) and the steel sheet is short. It aims at proposing the manufacturing method of a grain-oriented electrical steel sheet.

発明者らは、低真空度であって、電子銃と鋼板との距離が短い場合であっても、方向性電磁鋼板の幅方向に対して均一な、鉄損の低減効果を得られる電子銃照射の条件につき鋭意検討を重ね、電子銃と鋼板(鋼帯)表面との距離、電子銃の偏向角度、および加工室の真空度との関係を明らかにした。
本発明は上記知見に立脚するものである。
The inventors have a low degree of vacuum, and even when the distance between the electron gun and the steel plate is short, the electron gun can obtain a uniform iron loss reduction effect in the width direction of the grain-oriented electrical steel plate We intensively investigated the irradiation conditions and clarified the relationship between the distance between the electron gun and the steel plate surface, the deflection angle of the electron gun, and the degree of vacuum in the processing chamber.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.鋼板表面にフォルステライト被膜および張力コーティングをそなえる方向性電磁鋼板に対し、電子線照射により熱歪みを導入して方向性電磁鋼板を製造するに際し、
上記電子線照射を、電子線照射部から鋼板表面までの距離をL[mm]、電子線照射を行う際の偏向角をθ[°]、さらに照射加工室の真空度をP[Pa]とした時、次式
(1−cos(θ/2))・L・log〔1000P〕≦40
(ただし、P≧0.02)
を満足する条件下で行うことを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. When producing a grain-oriented electrical steel sheet by introducing thermal strain by electron beam irradiation on a grain-oriented electrical steel sheet having a forsterite film and a tension coating on the steel sheet surface,
In the electron beam irradiation, the distance from the electron beam irradiation part to the steel sheet surface is L [mm], the deflection angle when performing electron beam irradiation is θ [°], and the vacuum degree of the irradiation processing chamber is P [Pa]. The following formula (1-cos (θ / 2)) · L·log [1000P] ≦ 40
(However, P ≧ 0.02)
A method for producing a grain-oriented electrical steel sheet, which is performed under a condition that satisfies the following conditions.

本発明によれば、電子線照射による歪み導入により鉄損を低減した方向性電磁鋼板において、鋼帯幅方向の磁気特性を効果的に均一化することができる。   ADVANTAGE OF THE INVENTION According to this invention, the magnetic property of a steel strip width direction can be equalize | homogenized effectively in the grain-oriented electrical steel sheet which reduced the iron loss by distortion introduction by electron beam irradiation.

本発明における電子銃と鋼板との距離:L、電子線の偏向角:θとの関係を示した図である。It is the figure which showed the relationship between the distance of electron gun and steel plate in this invention: L, and the deflection angle of an electron beam: (theta). 鋼板の中央と端部における到達鉄損値の差を、log〔1000P〕と、(1−cos(θ/2))・Lとの関係で評価した図である。It is the figure which evaluated the difference of the ultimate iron loss value in the center and edge part of a steel plate by the relationship of log [1000P] and (1-cos ((theta) / 2)) * L.

以下、本発明を具体的に説明する。
はじめに、二次再結晶を伴う最終焼鈍を施した後、絶縁コーティングの形成と鋼板の平坦化を兼ねる連続焼鈍を行った0.23mm厚みの方向性電磁鋼板を、長さ:300mm、幅:300mmに剪断し、電子線照射実験に必要なサンプルを多数枚準備した。
次に、加速電圧:40kVの電子銃を持つ電子線照射装置を用いて、圧延と直角方向に電子線を走査して、300mm全幅を一度に照射した。その照射処理を、圧延方向に5mm間隔でずらして繰り返し行い、サンプル全面を処理した。その際、電子銃とサンプルとの距離:L、照射加工室の真空度:Pを種々の組合せで変更した。その後、30mm幅の評価サンプル10枚に剪断して、サンプルの磁気特性を評価した。
なお、照射加工室の真空排気システムは、油回転ポンプと油拡散ポンプを組み合わせており、真空度:Pを0.01Paから7Paまでの範囲で保持することができる。また、本発明における電子銃と鋼板との距離:L、電子線の偏向角:θとの関係を図1に示す。
Hereinafter, the present invention will be specifically described.
First, a 0.23 mm-thick directional electrical steel sheet, which has been subjected to final annealing accompanied by secondary recrystallization and then subjected to continuous annealing that serves as the formation of an insulating coating and the flattening of the steel sheet, has a length of 300 mm and a width of 300 mm. A number of samples necessary for the electron beam irradiation experiment were prepared.
Next, using an electron beam irradiation apparatus having an electron gun with an acceleration voltage of 40 kV, the electron beam was scanned in a direction perpendicular to the rolling, and the entire width of 300 mm was irradiated at once. The irradiation treatment was repeated by shifting in the rolling direction at intervals of 5 mm to process the entire sample surface. At that time, the distance between the electron gun and the sample: L, and the degree of vacuum in the irradiation processing chamber: P were changed in various combinations. Then, it sheared to 10 evaluation samples of 30 mm width, and evaluated the magnetic characteristic of the sample.
In addition, the vacuum exhaust system of the irradiation processing chamber combines an oil rotary pump and an oil diffusion pump, and can maintain a degree of vacuum: P in a range from 0.01 Pa to 7 Pa. FIG. 1 shows the relationship between the distance between the electron gun and the steel plate in the present invention: L, and the deflection angle of the electron beam: θ.

上記試験を考察した結果、照射処理後のサンプル10枚の鉄損W17/50値を測定すると、中央部に対して端部に行くほど到達鉄損値に劣化する傾向が見られた。なお、本発明では、中央部の鉄損値に対して、0.01Wkgを超える差とならないサンプル位置までを、均一な照射と評価し、そのサンプル位置から中央部までの長さを均一な照射幅とした。 As a result of considering the above test, when the iron loss W 17/50 value of 10 samples after the irradiation treatment was measured, a tendency to deteriorate to an ultimate iron loss value was observed toward the end portion with respect to the central portion. In the present invention, with respect to the iron loss value of the central part, up to a sample position where the difference does not exceed 0.01 Wkg is evaluated as uniform irradiation, and the length from the sample position to the central part is uniformly irradiated. The width.

図2に、横軸をlog〔1000P〕、縦軸を(1−cos(θ/2))・Lとして、中央と端部の到達鉄損値の差が0.01W/kg以下となる、すなわち均一照射と見なせるサンプルであった場合を○印、また0.01W/kgより大きくなったサンプルを×印としてそれぞれプロットした。
同図より、横軸、縦軸の積である(1−cos(θ/2))・L・log〔1000P〕の値が40以下(図中の実線より下部)の範囲で均一照射が可能であることがわかる。
In FIG. 2, the horizontal axis is log [1000P], the vertical axis is (1-cos (θ / 2)) · L, and the difference between the iron loss values at the center and the end is 0.01 W / kg or less. That is, the case where the sample was regarded as uniform irradiation was plotted as a mark ◯, and the sample larger than 0.01 W / kg was plotted as a mark X.
From the figure, uniform irradiation is possible in the range where the value of (1-cos (θ / 2)) · L·log [1000P], which is the product of the horizontal and vertical axes, is 40 or less (below the solid line in the figure). It can be seen that it is.

ここで、横軸はいわば真空度の指標であり、左側ほど真空度が高い。他方、縦軸は、中央部と鋼板端部における電子線の距離差に対応したパラメータである。すなわち、電子銃と鋼板との距離:Lあるいは偏向角:θが大きいほど、端部における電子線の真空中の飛行距離が長くなる。また、加工室は真空排気されているものの、真空度に応じて存在するわずかな残留ガス分子等に、電子線は散乱されて強度が低下するものと推定される。
したがって、電子線は、真空度が低いか、または飛行距離が長くなるほど、残留ガス分子の影響による散乱を受けやすくなるため、幅方向の電子線照射処理の効果に差違が生じるものと考えられる。
それ故に、(1−cos(θ/2))・L・log〔1000P〕の値を40以下とすることで、所望の電子線照射処理の効果が得られるものと、発明者らは考えている。
Here, the horizontal axis is a so-called index of the degree of vacuum, and the degree of vacuum is higher on the left side. On the other hand, the vertical axis is a parameter corresponding to the distance difference between the electron beams at the center and the steel plate end. That is, as the distance between the electron gun and the steel plate: L or the deflection angle: θ is larger, the flight distance of the electron beam in the end portion in the vacuum is longer. In addition, although the processing chamber is evacuated, it is presumed that the electron beam is scattered by a small amount of residual gas molecules and the like that are present depending on the degree of vacuum, and the intensity is reduced.
Therefore, the electron beam is more susceptible to scattering due to the influence of residual gas molecules as the degree of vacuum is lower or the flight distance is longer, so that it is considered that a difference occurs in the effect of the electron beam irradiation treatment in the width direction.
Therefore, the inventors consider that the desired electron beam irradiation effect can be obtained by setting the value of (1-cos (θ / 2)) · L·log [1000P] to 40 or less. Yes.

本発明において、加工室の真空度:Pの下限値には制限はないが、生産性の観点から0.005Pa以下の高真空にする必要はない。また上限値については電子線が安定的に照射できる7Pa程度以下が望ましい。   In the present invention, the lower limit of the degree of vacuum in the processing chamber: P is not limited, but it is not necessary to make a high vacuum of 0.005 Pa or less from the viewpoint of productivity. The upper limit is preferably about 7 Pa or less at which the electron beam can be stably irradiated.

電子銃と鋼板との距離:Lについても、特別の制限はないが、10cmから1m位までが好適である。10cmより小さいと1000mm以上の幅を有する鋼板全体を照射処理するためには多数台の電子銃が必要となり、逆に1mより離した場合には、真空排気の必要な空間体積が大きくなるのでいずれの場合も不経済だからである。   The distance between the electron gun and the steel plate: L is not particularly limited, but is preferably about 10 cm to 1 m. If it is smaller than 10 cm, a large number of electron guns are required to irradiate the entire steel sheet having a width of 1000 mm or more. Conversely, if it is separated from 1 m, the space volume required for evacuation becomes large. This is because it is also uneconomical.

偏向角:θは小さいほど望ましい。60°より大きい場合には、電子線が鋼板に対して斜め方向に入射するため、距離差に基づく散乱とは別に、ビームスポットが楕円形になってしまい、均一な電子線照射効果が得られないおそれがある。   The smaller the deflection angle: θ, the better. When the angle is larger than 60 °, the electron beam is incident on the steel plate in an oblique direction, so that the beam spot becomes elliptical, apart from scattering based on the distance difference, and a uniform electron beam irradiation effect is obtained. There is a risk of not.

その他の電子線照射条件については、とくに限定されるものではないが、加速電圧は20kVから200kV位までが一般的である。電子線走査の方向は、鋼板の圧延方向に対して、90°から45°をなす範囲の方向であることが好ましい。なお、本発明における電子線照射は、上記した条件下で行うものであれば、連続的でなく、ドット状の照射としても、鉄損の低減効果を発現する。   Other electron beam irradiation conditions are not particularly limited, but the acceleration voltage is generally from about 20 kV to 200 kV. The direction of electron beam scanning is preferably in the range of 90 ° to 45 ° with respect to the rolling direction of the steel sheet. In addition, if the electron beam irradiation in this invention is performed on the above-mentioned conditions, it will not be continuous, but even if it is dot-shaped irradiation, the reduction effect of iron loss will be expressed.

次に、本発明に従う方向性電磁鋼板の製造条件に関して具体的に説明する。
本発明において、方向性電磁鋼板用スラブの成分組成は、特に制限はなく、二次再結晶が生じる成分組成であればよい。
また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
Next, the manufacturing conditions of the grain-oriented electrical steel sheet according to the present invention will be specifically described.
In the present invention, the component composition of the slab for grain-oriented electrical steel sheet is not particularly limited as long as it is a component composition that causes secondary recrystallization.
Also, when using an inhibitor, for example, when using an AlN-based inhibitor, Al and N should be included. When using an MnS / MnSe-based inhibitor, an appropriate amount of Mn and Se and / or S should be included. Good. Of course, both inhibitors may be used in combination. In this case, preferable contents of Al, N, S and Se are respectively Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, and S: 0.005 to 0.03. Mass%, Se: 0.005 to 0.03 mass%.

さらに、本発明は、Al、N、SおよびSeの含有量を制限した、インヒビターを使用しない方向性電磁鋼仮にも適用することができる。
この場合には、Al、N、SおよびSe量はそれぞれ、Al:100質量ppm以下、N:50質量ppm以下、S:50質量ppm以下、Se:50質量ppm以下に抑制することが好ましい。
Further, the present invention can also be applied to a directional electrical steel provisional in which the content of Al, N, S and Se is limited and an inhibitor is not used.
In this case, the amounts of Al, N, S, and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.

加えて、本発明の方向性電磁鋼板用スラブの基本成分および任意添加成分について具体的に述べると次のとおりである。
C:0.08質量%以下
Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
In addition, the basic components and optional added components of the slab for grain-oriented electrical steel sheets according to the present invention are specifically described as follows.
C: 0.08 mass% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, C is reduced to 50 massppm or less where magnetic aging does not occur during the manufacturing process. Since it becomes difficult to do, it is preferable to set it as 0.08 mass% or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できない、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
Si: 2.0-8.0 mass%
Si is an element effective for increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved. If it exceeds 0% by mass, the workability is remarkably reduced and the magnetic flux density is also reduced. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0% by mass
Mn is an element necessary for improving the hot workability, but if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate Therefore, the amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

また上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%およびMo:0.005〜0.10質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.50質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.50質量%の範囲とするのが好ましい。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.03-3.0 mass%, P: At least one selected from 0.03 to 0.50 mass% and Mo: 0.005 to 0.10 mass% Ni is an element useful for improving the hot rolled sheet structure and improving the magnetic properties It is. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 1.50% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.50 mass%.

また、Sn、Sb、Cu、PおよびMoはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Sn, Sb, Cu, P, and Mo are elements that are useful for improving the magnetic properties. However, if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small. When the upper limit amount of each component is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

次いで、上記した成分組成を有するスラブは、常法に従い加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
さらに、必要に応じて熱延板焼鈍を施す。この時、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800〜1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となる。
Next, the slab having the above-described component composition is heated and subjected to hot rolling according to a conventional method, but may be immediately hot rolled after casting without being heated. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
Furthermore, hot-rolled sheet annealing is performed as necessary. At this time, in order to develop a goth structure at a high level in the product plate, a range of 800 to 1100 ° C. is preferable as the hot-rolled sheet annealing temperature. If the hot-rolled sheet annealing temperature is less than 800 ° C., the band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallized structure and inhibiting the development of secondary recrystallization. . On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it is extremely difficult to realize a sized primary recrystallized structure.

熱延板焼鈍後は、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、再結晶焼鈍を行い、焼鈍分離剤を塗布する。焼鈍分離剤を塗布した後に、二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。   After hot-rolled sheet annealing, after performing cold rolling of 1 time or 2 times or more sandwiching intermediate annealing, recrystallization annealing is performed and an annealing separator is applied. After applying the annealing separator, a final finish annealing is performed for the purpose of secondary recrystallization and forsterite film formation.

最終仕上げ焼鈍後、平坦化焼鈍を行って鋼板の形状を矯正することが有効である。なお、鋼板を積層して使用する場合には、鉄損を改善する目的で、平坦化焼鈍前または後に、鋼板表面に張力コーティングを施すことが有効である。この張力コーティングは、リン酸塩−コロイダルシリカ系のガラスコーティングが一般的であるが、他にホウ酸アルミナ系などの低熱膨張係数を有する酸化物でも良い。また、さらなる高張力を生じる被膜として、ヤング率の大きな炭化物、窒化物等も有効である。   It is effective to correct the shape of the steel sheet by performing flattening annealing after the final finish annealing. In addition, when using it, laminating | stacking a steel plate, it is effective to give a tension coating to the steel plate surface before or after planarization annealing in order to improve an iron loss. The tension coating is generally a phosphate-colloidal silica-based glass coating, but may also be an oxide having a low thermal expansion coefficient such as alumina borate. In addition, carbides, nitrides, and the like having a large Young's modulus are also effective as coatings that generate higher tension.

本発明において張力コーティングを施す際には塗布量・焼付け条件を調整し、発生張力を十全に発揮させることが重要である。本発明では、張力コーティング付与後の時点で、鋼板表面に電子線を照射することにより磁区を細分化する。   In applying tension coating in the present invention, it is important to adjust the coating amount and baking conditions so that the generated tension is fully exhibited. In the present invention, the magnetic domain is subdivided by irradiating the surface of the steel sheet with an electron beam at the time after applying the tension coating.

なお、本発明において、上述した工程や製造条件以外については、従来公知の電子銃照射方法および方向性電磁鋼板の製造方法を適宜使用することができる。   In addition, in this invention, conventionally well-known electron gun irradiation methods and the manufacturing method of grain-oriented electrical steel sheet can be used suitably except the process and manufacturing conditions mentioned above.

〔実施例1〕
Si:3質量%を含有する最終板厚:0.23mmに圧延された冷延板を、脱炭、一次再結晶焼鈍した後、MgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、フォルステライト被膜を有する方向性電磁鋼板を得た。50%のコロイダルシリカとリン酸マグネシウムからなる張力コートを塗布、850℃にて焼付けた。その後、長さ:280mmおよび幅:30mmサイズの試料を切り出した。
なお、圧延方向と直角に電子ビームを照射することで磁区細分化処理を施した。また、加速電圧は60kVとし、電子ビームの鋼板上での走査は、偏向コイルにより行って、連続的に照射を行い、圧延方向の照射列の間隔は5mmで一定とした。
[Example 1]
Si: 3% by mass of final plate thickness: Cold-rolled sheet rolled to 0.23 mm is decarburized and subjected to primary recrystallization annealing, followed by applying an annealing separator mainly composed of MgO, A final annealing process including a crystallization process and a purification process was performed to obtain a grain-oriented electrical steel sheet having a forsterite film. A tension coat consisting of 50% colloidal silica and magnesium phosphate was applied and baked at 850 ° C. Thereafter, a sample having a length of 280 mm and a width of 30 mm was cut out.
In addition, the magnetic domain refinement process was performed by irradiating an electron beam at right angles to the rolling direction. Further, the acceleration voltage was 60 kV, the scanning of the electron beam on the steel plate was performed by a deflection coil, and irradiation was continuously performed, and the interval between irradiation rows in the rolling direction was constant at 5 mm.

電子ビーム照射時の真空度:P、電子銃と試料との距離:L、電子ビームの偏向角:θを表1に示すように変化させた。その際、Lとθにより幅方向の走査幅は一義的に決まることになる。
走査角が0°の電子銃直下と最大に偏向させた時との、両端の走査位置に試料を配置にして、両者の到達鉄損値W17/50値から、N=10で求めた鉄損差△W17/50を併せて表1に記載する。
The degree of vacuum at the time of electron beam irradiation: P, the distance between the electron gun and the sample: L, and the deflection angle of the electron beam: θ were changed as shown in Table 1. At that time, the scanning width in the width direction is uniquely determined by L and θ.
The iron was obtained at N = 10 from the reached iron loss value W 17/50 of both samples, with the samples placed at the scanning positions at both ends, just below the electron gun with a scanning angle of 0 ° and when deflected to the maximum. The loss difference ΔW 17/50 is also shown in Table 1.

Figure 0005594302
Figure 0005594302

同表より、本発明の電子ビーム照射条件である(1−cos(θ/2))・L・log〔1000P〕≦40の関係を満たしていない照射条件No.1、3、5および7では、中央部と端部とで到達鉄損値の差が大きくなっており、鋼板の幅方向に均一な磁区細分化処理を施せないことがわかる。一方、本発明の電子ビーム照射条件を満たすNo.2、4、6および8では、鉄損差が十分に小さく、幅方向に均一照射できることがわかる。   From the same table, in the irradiation conditions No. 1, 3, 5, and 7 that do not satisfy the relationship of (1-cos (θ / 2)) · L·log [1000P] ≦ 40, which is the electron beam irradiation condition of the present invention. It can be seen that the difference in the ultimate iron loss value is large between the central portion and the end portion, and it is not possible to perform a uniform magnetic domain refinement process in the width direction of the steel plate. On the other hand, in Nos. 2, 4, 6 and 8 satisfying the electron beam irradiation condition of the present invention, it is understood that the iron loss difference is sufficiently small and uniform irradiation can be performed in the width direction.

〔実施例2〕
Si:3質量%を含有する最終板厚:0.23mmに圧延された冷延板を、脱炭し、一次再結晶焼鈍を施した後、MgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、フォルステライト被膜を有する方向性電磁鋼板を得た。ついで、60%のコロイダルシリカとリン酸アルミニウムからなる張力コートを塗布、800℃にて焼付けた。その後、長さ:280mmおよび幅:30mmサイズの試料を切り出した。
なお、圧延方向と直角に電子ビームを照射することで磁区細分化処理を実施した。加速電圧は40kV、電子ビームの鋼板上での走査は偏向コイルにより行った。また、電子ビームは連続的に照射したのではなく、ドット状に照射し、その走査方向の点列間隔は0.2mmで一定とし、圧延方向の照射列の間隔は4mmとした。
[Example 2]
Si: Final sheet thickness containing 3% by mass: Cold-rolled sheet rolled to 0.23 mm, decarburized and subjected to primary recrystallization annealing, and then applied with an annealing separator mainly composed of MgO, Final annealing including a secondary recrystallization process and a purification process was performed to obtain a grain-oriented electrical steel sheet having a forsterite film. Next, a tension coat composed of 60% colloidal silica and aluminum phosphate was applied and baked at 800 ° C. Thereafter, a sample having a length of 280 mm and a width of 30 mm was cut out.
In addition, the magnetic domain fragmentation process was implemented by irradiating an electron beam at right angles to the rolling direction. The acceleration voltage was 40 kV, and scanning of the electron beam on the steel plate was performed by a deflection coil. Further, the electron beam was not irradiated continuously, but was irradiated in the form of dots, the interval between the dot rows in the scanning direction was constant at 0.2 mm, and the interval between the irradiation rows in the rolling direction was 4 mm.

電子ビーム照射時の真空度:P、電子銃と試料との間隔:L、電子ビームの偏向角:θを表2に示すように変化させた。その際、Lとθにより幅方向の走査幅は一義的に決まることになる。
走査角が0°の電子銃直下と最大に走査角を偏向させた位置に試料を配置にして、両者の到達鉄損値W17/50値をN=10で比較し、鉄損差△W17/50を求めて表2に併記した。
The degree of vacuum during electron beam irradiation: P, the distance between the electron gun and the sample: L, and the deflection angle of the electron beam: θ were changed as shown in Table 2. At that time, the scanning width in the width direction is uniquely determined by L and θ.
A sample is placed immediately below the electron gun with a scan angle of 0 ° and at a position where the scan angle is deflected to the maximum, and the reached iron loss values W 17/50 are compared at N = 10, and the iron loss difference ΔW 17/50 was calculated and shown in Table 2.

Figure 0005594302
Figure 0005594302

同表に示したとおり、本発明の(1−cos(θ/2))・L・log〔1000P〕≦40を満たしていない照射条件No.2、3、6および8では、中央部と端部とで到達鉄損値の差が大きくなっており、鋼板の幅方向に均一に磁区細分化処理を施せないことがわかる。一方、本発明に従う照射条件のNo.1、4、5および7では、鉄損差が十分に小さく、幅方向に均一照射できることがわかる。   As shown in the table, in the irradiation conditions No. 2, 3, 6, and 8 that do not satisfy (1-cos (θ / 2)) · L·log [1000P] ≦ 40 of the present invention, the center portion and the end portion It can be seen that the difference in the reached iron loss value is large with respect to the part, and the magnetic domain refinement treatment cannot be performed uniformly in the width direction of the steel sheet. On the other hand, in the irradiation conditions No. 1, 4, 5 and 7 according to the present invention, it can be seen that the iron loss difference is sufficiently small and uniform irradiation can be performed in the width direction.

Claims (1)

鋼板表面にフォルステライト被膜および張力コーティングをそなえる方向性電磁鋼板に対し、電子線照射により熱歪みを導入して方向性電磁鋼板を製造するに際し、
上記電子線照射を、電子線照射部から鋼板表面までの距離をL[mm]、電子線照射を行う際の偏向角をθ[°]、さらに照射加工室の真空度をP[Pa]とした時、次式
(1−cos(θ/2))・L・log〔1000P〕≦40
(ただし、P≧0.02)
を満足する条件下で行うことを特徴とする方向性電磁鋼板の製造方法。
When producing a grain-oriented electrical steel sheet by introducing thermal strain by electron beam irradiation on a grain-oriented electrical steel sheet having a forsterite film and a tension coating on the steel sheet surface,
In the electron beam irradiation, the distance from the electron beam irradiation part to the steel sheet surface is L [mm], the deflection angle when performing electron beam irradiation is θ [°], and the vacuum degree of the irradiation processing chamber is P [Pa]. The following formula (1-cos (θ / 2)) · L·log [1000P] ≦ 40
(However, P ≧ 0.02)
A method for producing a grain-oriented electrical steel sheet, which is performed under a condition that satisfies the following conditions.
JP2012025231A 2012-02-08 2012-02-08 Method for producing grain-oriented electrical steel sheet Active JP5594302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012025231A JP5594302B2 (en) 2012-02-08 2012-02-08 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025231A JP5594302B2 (en) 2012-02-08 2012-02-08 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2013159845A JP2013159845A (en) 2013-08-19
JP5594302B2 true JP5594302B2 (en) 2014-09-24

Family

ID=49172359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025231A Active JP5594302B2 (en) 2012-02-08 2012-02-08 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5594302B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298118A (en) * 1988-05-27 1989-12-01 Kawasaki Steel Corp Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH0765106B2 (en) * 1988-10-26 1995-07-12 川崎製鉄株式会社 Method for manufacturing low iron loss unidirectional silicon steel sheet
JPH0543944A (en) * 1991-08-15 1993-02-23 Kawasaki Steel Corp Manufacture of low iron loss grain-oriented silicon steel sheet
JPH0565543A (en) * 1991-09-05 1993-03-19 Kawasaki Steel Corp Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing

Also Published As

Publication number Publication date
JP2013159845A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP6157360B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5919617B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5447738B2 (en) Oriented electrical steel sheet
JP5927804B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5594437B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5532185B2 (en) Oriented electrical steel sheet and method for improving iron loss thereof
US10026533B2 (en) Grain-oriented electrical steel sheet for iron core and method of manufacturing the same
WO2012017670A1 (en) Grain-oriented magnetic steel sheet and process for producing same
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
WO2015111434A1 (en) Directional magnetic steel plate and production method therefor
US11387025B2 (en) Grain-oriented electrical steel sheet and production method therefor
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JP5953690B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
WO2012001971A1 (en) Process for producing grain-oriented magnetic steel sheet
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5594302B2 (en) Method for producing grain-oriented electrical steel sheet
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
KR102504894B1 (en) Grain-oriented electrical steel sheet and iron core using the same
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP7375670B2 (en) Grain-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250