JP3127262B2 - {110} <001> Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss - Google Patents

{110} <001> Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss

Info

Publication number
JP3127262B2
JP3127262B2 JP02173940A JP17394090A JP3127262B2 JP 3127262 B2 JP3127262 B2 JP 3127262B2 JP 02173940 A JP02173940 A JP 02173940A JP 17394090 A JP17394090 A JP 17394090A JP 3127262 B2 JP3127262 B2 JP 3127262B2
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
iron loss
steel strip
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02173940A
Other languages
Japanese (ja)
Other versions
JPH0463250A (en
Inventor
憲人 阿部
義行 牛神
忠生 野沢
勝 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02173940A priority Critical patent/JP3127262B2/en
Publication of JPH0463250A publication Critical patent/JPH0463250A/en
Application granted granted Critical
Publication of JP3127262B2 publication Critical patent/JP3127262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧延方向に磁化容易軸<001>方位を有
し、圧延面に{110}面が現れている(ミラー指数で{1
10}<001>と表示される)極薄電磁鋼帯およびその製
造方法に関するものである。本発明によって得られる極
薄電磁鋼帯は、薄い材料であるにも拘わらず磁束密度が
高くかつ鉄損が低いという特徴をもち、中、高周波電源
用変圧器或は制御素子に用いられる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention has an easy axis <001> orientation in the rolling direction, and a {110} plane appears on a rolling surface (a Miller index of {1}).
10 <001>) and a method for producing the same. The ultra-thin electromagnetic steel strip obtained by the present invention has a feature of high magnetic flux density and low iron loss despite being a thin material, and is used for a transformer for a medium or high frequency power supply or a control element.

(従来の技術) 方向性電磁鋼板の基本的な磁気的概念は、1926年に鉄
の単結晶の磁気異方性が発見された(K.Honda and S.Ka
ya Sci.Reps.Tohoku Imp.Univ.15,(1926),p721)こと
にその端緒がある。その後、N.P,Goss(米国特許第1,96
5,559号明細書)によって、{110}<001>方位集合組
織を有する材料の製造方法が発明されて以来、方向性電
磁鋼板の磁気特性は大きく改善されてきた。
(Prior art) The basic magnetic concept of grain-oriented electrical steel sheets was discovered in 1926 by the magnetic anisotropy of a single crystal of iron (K. Honda and S. Ka).
ya Sci.Reps.Tohoku Imp.Univ.15, (1926), p721) Thereafter, NP, Goss (U.S. Pat.
No. 5,559), the magnetic properties of grain-oriented electrical steel sheets have been greatly improved since the invention of a method for producing a material having a {110} <001> orientation texture.

電磁鋼板における、この{110}<001>方位への集積
化は、二次再結晶と呼ばれるカタストロフィックな粒成
長現象を利用することによって達成される。二次再結晶
を制御するためには、二次再結晶前の一次再結晶組織の
調整と、インヒビターと呼ばれる微細析出物若しくは粒
界偏析型の元素の調整が必須である。このインヒビター
は、一次再結晶組織の中で{110}<001>方位以外の粒
の成長を抑制し、{110}<001>方位粒のみを選択的に
成長させる機能をもつ。
The integration in the {110} <001> orientation in the electrical steel sheet is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization. In order to control the secondary recrystallization, it is essential to adjust the primary recrystallization structure before the secondary recrystallization and to adjust a fine precipitate or an element of a grain boundary segregation type called an inhibitor. This inhibitor has the function of suppressing the growth of grains other than the {110} <001> orientation in the primary recrystallized structure and selectively growing only the {110} <001> oriented grains.

現在、工業生産されている代表的な一方向性電磁鋼板
の製造技術には、3つの種類の技術がある。
Currently, there are three types of technologies for manufacturing typical grain-oriented electrical steel sheets that are industrially produced.

第一の技術は、M.F.Littmannによって特公昭30−3651
号公報に開示された、MnSをインヒビターとして機能さ
せる、2回冷延工程による製造技術である。
The first technology was developed by MFLittmann in Japanese Patent Publication No. 303651
This is a production technique based on a two-fold cold rolling process in which MnS functions as an inhibitor, which is disclosed in Japanese Unexamined Patent Publication (Kokai) Publication.

第二の技術は、田口、坂倉によって特公昭40−15644
号公報に開始された、AlN+MnSをインヒビターとして機
能させ、最終冷延における圧延率を80%を超える強圧下
とする工程を採る製造技術である。
The second technology was developed by Taguchi and Sakakura in Japanese Patent Publication No. 40-15644.
This is a production technique started in Japanese Patent Application Laid-Open Publication No. HEI 7-175, in which AlN + MnS is made to function as an inhibitor, and a rolling reduction in final cold rolling is reduced to a high pressure exceeding 80%.

第三の技術は、今中等によって特公昭51−13469号公
報に開示された、MnS(またはMnSe)+Sbをインヒビタ
ーとして機能させる、2回冷延工程による製造技術であ
る。
The third technique is a production technique by a two-fold cold rolling process in which MnS (or MnSe) + Sb functions as an inhibitor, which is disclosed in Japanese Patent Publication No. 51-13469 by Imanaka et al.

これらの技術によって、現在、磁束密度(B8値)が1.
92Tesla前後である。極めて{110}<001>方位集積度
の高い方向性電磁鋼板が製造され、市販されている。し
かしながら、インヒビターを利用するこれらの製造技術
においては、材料の板厚が薄くなると、界面を通しての
インヒビターの変化挙動が著しくなるため、板厚の薄い
ものを工業的に生産することは困難であり、現在、板厚
0.20mm以上のものが主として生産されている。
With these technologies, the magnetic flux density (B 8 value) is now 1.
It is around 92 Tesla. A grain-oriented electrical steel sheet with a very high degree of {110} <001> orientation integration has been manufactured and is commercially available. However, in these manufacturing technologies using inhibitors, when the thickness of the material is reduced, the change behavior of the inhibitor through the interface becomes remarkable, so that it is difficult to industrially produce a thinner material, Currently, plate thickness
Those with 0.20mm or more are mainly produced.

ところで、高周波数域での方向性電磁鋼板の鉄損は、
たとえばR.H.Pry,C.P.Bean(J.Appl.Phys.29(1958),
p.532)の報告にあるように、板厚の二乗に比例して大
きくなるから、鉄損の低い電磁鋼板を得るためには、板
厚を薄くすることが必須となる。
By the way, the iron loss of grain-oriented electrical steel sheets in the high frequency range is
For example, RHPry, CPBean (J.Appl.Phys.29 (1958),
As reported in p. 532), the thickness increases in proportion to the square of the thickness, so that in order to obtain an electromagnetic steel sheet with low iron loss, it is essential to reduce the thickness.

1949年に、M.F.Littmannは薄い珪素鋼板の製造方法
を、米国特許第2,473,156号明細書で開示した。この技
術は、{110}<001>方位集合組織を有する出発材を、
冷間圧延し、再結晶させるプロセスを採り、インヒビタ
ーを使用しない。この技術によって得られる製品の特性
は、1〜5mils(25.4〜127μm)の板厚で、磁束密度
(B8値)が1.600〜1.815Teslaであり、鉄損(周波数:60
Hz、最大磁束密度1.0T)は、0.26〜0.53W/1b(0.44〜0.
90W/kg)であった。現在、この方法によって、極薄電磁
鋼帯が製造されている。その特性を第6図に従来品とし
て示し、本発明品の特性と比較した。
In 1949, MFLittmann disclosed a method for producing thin silicon steel sheets in US Pat. No. 2,473,156. This technique uses a starting material with {110} <001> orientation texture,
Uses a process of cold rolling and recrystallization, and uses no inhibitors. The characteristics of the product obtained by this technology are as follows: a plate thickness of 1 to 5 mils (25.4 to 127 μm), a magnetic flux density (B 8 value) of 1.600 to 1.815 Tesla, and an iron loss (frequency: 60
Hz, maximum magnetic flux density 1.0T) is 0.26-0.53W / 1b (0.44--0.
90W / kg). At present, ultra-thin electromagnetic steel strip is manufactured by this method. The characteristics are shown in FIG. 6 as a conventional product and compared with those of the product of the present invention.

最近の電子機器の発達に伴って、中、高周波電源用変
圧器、制御素子等において、小型化、高効率化が望まれ
ていた。ところが、前記のように、従来技術によって得
られる極薄電磁鋼帯は、磁束密度が低く、設計磁束密度
を高くすることができないために機器の小型化が図れな
いこと、また、特に高励磁域での鉄損が極めて大きいと
いう問題があった。
With the recent development of electronic devices, it has been desired to reduce the size and efficiency of transformers, control elements, and the like for medium and high frequency power supplies. However, as described above, the ultra-thin electromagnetic steel strip obtained by the conventional technique has a low magnetic flux density and cannot be designed to have a high design magnetic flux density, so that the size of the device cannot be reduced. There was a problem that the iron loss at the time was extremely large.

(発明が解決しようとする課題) 本発明は、従来技術における上述の問題を解決し、磁
束密度が極めて高く、かつ高励磁域における鉄損が低い
極薄電磁鋼帯およびその製造方法を提供することを目的
としている。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems in the prior art, and provides an ultra-thin electromagnetic steel strip having extremely high magnetic flux density and low iron loss in a high excitation region, and a method for manufacturing the same. It is intended to be.

(課題を解決するための手段) 本発明者らは、鉄損(特に高励磁域での鉄損)を低く
するためには、重量で、Si≦8%、残部が実施的にFeか
らなり、平均粒径≦1.0mm、板厚≦150μmの極薄電磁鋼
帯であって、磁束密度B8/Bs>0.9(Bs:その成分系での
飽和磁束密度)であり、かつ多くの活動磁壁をもつ材料
(製品)が必須の要件であることを見出し、かかる極薄
電磁鋼帯およびその製造方法を提供しようとするもので
あり、その要旨とするところは下記のとおりである。
(Means for Solving the Problems) In order to reduce iron loss (especially iron loss in a high excitation region), the present inventors have made Si ≦ 8% by weight and the balance is made of Fe practically. An ultra-thin electromagnetic steel strip having an average particle size of ≦ 1.0 mm and a plate thickness of ≦ 150 μm, and has a magnetic flux density B 8 / B s > 0.9 (B s : saturation magnetic flux density in the component system), and It has been found that a material (product) having an active domain wall is an essential requirement, and it is an object of the present invention to provide such an ultra-thin electromagnetic steel strip and a method for producing the same, and the gist thereof is as follows.

(1) 重量で、Si≦8%、SnおよびSbの1種または2
種を0.005〜0.30%含有し、残部が実質的にFeからな
り、板厚≦150μm、平均粒径≦1.0mmで、{110}<001
>方位集合組織を有し、磁束密度B8/Bs>0.9(Bs:その
成分系での飽和磁束密度)であり、かつ地鉄(鋼板)に
比し透磁率の低い領域を鋼板表面近傍に周期的に有する
ことを特徴とする{110}<001>方位集積度が高く鉄損
の低い極薄電磁鋼帯。
(1) Si ≦ 8% by weight, one or two of Sn and Sb
Containing 0.005 to 0.30% of seed, the balance being substantially composed of Fe, having a plate thickness of ≦ 150 μm, an average particle size of ≦ 1.0 mm, and {110} <001
> Area with orientation texture, magnetic flux density B 8 / B s > 0.9 (B s : saturated magnetic flux density in its component system), and a region where the magnetic permeability is lower than that of ground iron (steel plate) An ultra-thin electromagnetic steel strip with a high degree of {110} <001> orientation accumulation and low iron loss characterized by having it periodically in the vicinity.

(2) 重量で、Si≦8%、SnおよびSbの1種または2
種を0.005〜0.30%含有し、残部が実質的にFeからな
り、{110}<001>方位集合組織を有し、磁束密度B8/B
s>0.9(Bs:その成分系での飽和磁束密度)である一方
向性電磁鋼帯に、60〜90%の圧下率を適用する少なくと
も1回の冷間圧延を施して150μm以下の最終板厚と
し、次いで一次再結晶焼鈍を施した後、鋼板表面近傍に
地鉄(鋼板)に比し透磁率の低い領域を周期的に形成す
ることを特徴とする{110}<001>方位集積度が高く鉄
損の低い極薄電磁鋼帯の製造方法。
(2) Si ≦ 8% by weight, one or two of Sn and Sb
Species containing from 0.005 to 0.30%, balance being substantially Fe, {110} have the <001> orientation texture, the magnetic flux density B 8 / B
The unidirectional electrical steel strip with s > 0.9 (B s : saturated magnetic flux density in its component system) is subjected to at least one cold rolling applying a rolling reduction of 60 to 90% to a final thickness of 150 μm or less. {110} <001> orientation accumulation, characterized by periodically forming a region with a lower magnetic permeability than that of ground iron (steel plate) near the surface of the steel plate after the thickness and then primary recrystallization annealing Manufacturing method of ultra-thin electromagnetic steel strip with high degree and low iron loss.

(3) 重量で、Si≦8%、SnおよびSbの1種または2
種を0.005〜0.30%含有し、残部が実質的にFeからな
り、{110}<001>方位集合組織を有し、磁束密度B8/B
s>0.9(Bs:その成分系での飽和磁束密度)である一方
向性電磁鋼帯に、60〜90%の圧下率を適用する少なくと
も1回の冷間圧延を施して150μm以下の最終板厚とし
た後、鋼板表面近傍に地鉄(鋼板)に比し透磁率の低い
領域を周期的に形成し、次いで一次再結晶焼鈍を施すこ
とを特徴とする{110}<001>方位集積度が高く鉄損の
低い極薄電磁鋼帯の製造方法。
(3) By weight, Si ≦ 8%, one or two of Sn and Sb
Species containing from 0.005 to 0.30%, balance being substantially Fe, {110} have the <001> orientation texture, the magnetic flux density B 8 / B
The unidirectional electrical steel strip with s > 0.9 (B s : saturated magnetic flux density in its component system) is subjected to at least one cold rolling applying a rolling reduction of 60 to 90% to a final thickness of 150 μm or less. {110} <001> orientation accumulation, characterized by periodically forming areas with low magnetic permeability in the vicinity of the steel sheet surface after the thickness, and then performing primary recrystallization annealing Manufacturing method of ultra-thin electromagnetic steel strip with high degree and low iron loss.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

珪素鋼板が、パーマロイ、センダスト等の高透磁率材
料と異なる点は、飽和時磁束密度は高いが、結晶磁気異
方性定数、磁歪定数が共に大きいことである。従って、
高周波磁化を生じ難いのが特徴である。故に、珪素鋼板
が静的にソフト磁性材料であるためには、滑かな180゜
磁壁移動のみによる磁化を理想とする。動的にソフトで
あるためには、180゜磁壁間隔を細分化し、活動磁壁を
増加することが重要である。
The silicon steel sheet is different from high-permeability materials such as permalloy and sendust in that the magnetic flux density at saturation is high, but the crystal magnetic anisotropy constant and the magnetostriction constant are both large. Therefore,
The feature is that high-frequency magnetization is hardly generated. Therefore, in order for the silicon steel sheet to be a static soft magnetic material, ideally, magnetization by only smooth 180 ° domain wall movement is ideal. For dynamic softness, it is important to subdivide the 180 ° domain wall spacing and increase the active domain wall.

180゜磁壁移動による磁化を仮定すると、鉄損Pは概
念的に次のように示すことができる。
Assuming magnetization by 180 ° domain wall motion, iron loss P can be conceptually expressed as follows.

ここで、Pclassical=K・Bm2fd2/ρc2 Bm :最大磁束密度 f :周波数 d :板厚 ρ :固有抵抗 c :光速度 L :磁壁間隔 Pi :磁壁の動きの一様性の程度を示す項であって、若
しすべての磁壁移動振幅が同じならば、Pi=0となる。
Here, P classical = K · Bm 2 fd 2 / ρc 2 Bm: maximum magnetic flux density f: frequency d: plate thickness ρ: specific resistance c: light velocity L: domain wall interval P i : uniformity of domain wall motion A term indicating the degree, and if all domain wall motion amplitudes are the same, P i = 0.

M :磁壁の易動度で、M=K・ρc2/Bs2d W :試料の幅 Δvi:short time pinningによる磁壁移動速度変化 P[001]tilt:板厚方向での磁化変化による面内渦電
流による損失に関する項 Pnucleation:磁化中のlancet domainの発生消滅による
損失に関する項。180゜磁壁移動のみで磁化する場合
は、P[001]tiltとPnucleationは零となる。
M: In mobility of magnetic domain walls, M = K · ρc 2 / Bs 2 d W: width of sample Δv i: short time pinning the magnetic domain wall movement speed change P [001] by tilt: surface by magnetization change in the thickness direction P nucleation : A term related to loss due to the occurrence and annihilation of a lancet domain in magnetization. When magnetizing only by 180 ° domain wall movement, P [001] tilt and P nucleation become zero.

ところで、実際の珪素鋼板の開発においては、P
classicalの減少はSi含有量の増加、板厚の減少、Lの
減少は180゜磁壁間隔の細分化、Pi、P[001]tiltおよ
びPnucleationの減少は、{110}<001>方位集積度の
高配向化、Δviの減少は歪、不純物除去、界面平滑化に
相当する。
By the way, in the actual development of silicon steel sheets, P
The decrease of classical is increase of Si content, decrease of thickness, decrease of L is 180 ° subdivision of domain wall spacing, decrease of P i , P [001] tilt and P nucleation is {110} <001> orientation accumulation high orientation degrees, a decrease in Delta] v i is distortion, impurity removal, corresponds to the interface smoothing.

本発明は、高い{110}<001>方位集積度を有し、か
つ磁区細分化された高珪素極薄鋼板に関するものであ
る。
The present invention relates to a high silicon ultra-thin steel sheet having a high degree of {110} <001> orientation integration and having finely divided magnetic domains.

第1図に、周波数と鉄損の関係を、本発明の極薄電磁
鋼帯(○印:素材の磁束密度B8値=1.94T)と、素材の
磁束密度が低い15μm厚さの極薄電磁鋼帯(□印:素材
の磁束密度B8値=1.55T)の対比において示す。第1図
から、高い磁束密度をもち、かつ低透磁率領域を周期的
にもつ極薄電磁鋼帯が、高周波数領域において低い鉄損
値を示すことが分る。このような磁束密度の高い極薄電
磁鋼帯は、鉄損が低いことと併せ設計磁束密度を高くす
ることができ、機器の小型化を可能ならしめるととも
に、中、高周波電源用変圧器や制御素子の特性を飛躍的
に向上させる。
FIG. 1 shows the relationship between frequency and iron loss in the ultra-thin electromagnetic steel strip of the present invention (marked with ○: magnetic flux density B 8 value of the material = 1.94T) and the ultra-thin 15 μm-thick material whose magnetic flux density is low. The values are shown in comparison with electromagnetic steel strips (□: magnetic flux density of the material B 8 value = 1.55T). From FIG. 1, it can be seen that an ultra-thin electromagnetic steel strip having a high magnetic flux density and periodically having a low magnetic permeability region exhibits a low iron loss value in a high frequency region. Such ultra-thin magnetic steel strips with high magnetic flux density, together with low iron loss, can increase the design magnetic flux density, making it possible to reduce the size of equipment, as well as transformers for medium and high frequency power supplies and control. Dramatically improve device characteristics.

次に、このような極薄電磁鋼帯の製造方法を、詳細に
説明する。
Next, a method for manufacturing such an ultra-thin electromagnetic steel strip will be described in detail.

本発明者等は、先に述べたように、電磁鋼帯の板厚が
薄くなると、インヒビター制御が困難になり二次再結晶
が不安定になると考え、インヒビターを用いない一次再
結晶により、{110}<001>方位への集積度を高める研
究を行った。その結果、極めて高い{110}<001>方位
集積度を有する一方向性電磁鋼帯を出発材とし、この材
料に冷間圧延を施して150μm以下の最終板厚とした
後、結晶粒界からの再結晶を抑制した一次再結晶焼鈍す
ることによって、鋭い{110}<001>方位集積度を有
し、かつ低い鉄損値をもつ極薄電磁鋼帯を製造できるこ
とを見出した。
The present inventors believe that, as described above, when the thickness of the electromagnetic steel strip is reduced, inhibitor control becomes difficult and secondary recrystallization becomes unstable, and the primary recrystallization without using an inhibitor causes A study was conducted to increase the degree of integration in the 110} <001> direction. As a result, a unidirectional electromagnetic steel strip having an extremely high degree of {110} <001> orientation accumulation was used as a starting material, and this material was subjected to cold rolling to a final thickness of 150 μm or less, and then from the grain boundaries. It has been found that an ultra-thin electromagnetic steel strip having a sharp degree of {110} <001> orientation and having a low iron loss value can be produced by performing primary recrystallization annealing while suppressing recrystallization of.

かかる知見は、以下の実験によって得られたものであ
る。
Such findings were obtained by the following experiments.

重量で、Si:3.3%、C:0.002%、N:0.002%、Al:0.002
%、S:0.0002%、Mn:0.13%、残部が実質的にFeからな
り{110}<001>方位集合組織を有する一方向性電磁鋼
帯(磁束密度(B8値):1.92T、平均粒径:40mm、板厚:0.
30mm)を、冷間圧延して最終板厚:0.09mm(90μm)と
し、次いで850℃で10分間焼鈍し一次再結晶を完了させ
た。
By weight, Si: 3.3%, C: 0.002%, N: 0.002%, Al: 0.002
%, S: 0.0002%, Mn: 0.13%, balance is substantially Fe and unidirectional electromagnetic steel strip having {110} <001> orientation texture (magnetic flux density (B 8 value): 1.92T, average Particle size: 40mm, thickness: 0.
30 mm) was cold-rolled to a final thickness of 0.09 mm (90 μm), and then annealed at 850 ° C. for 10 minutes to complete the primary recrystallization.

このようにして得られた製品の集合組織を、第2図に
示す。第2図から、一次再結晶粒の方位として、{11
0}<001>方位と併せて{111}<011>方位が混在して
おり、後者の方位の粒の増加が磁束密度の低下の原因と
なっていることが分る。
The texture of the product thus obtained is shown in FIG. From FIG. 2, the orientation of primary recrystallized grains is
The {111} <011> orientation is mixed with the 0} <001> orientation, and it can be seen that the increase in grains in the latter orientation causes a decrease in magnetic flux density.

この集合組織は、M.F.Littmannによって、米国特許第
2,473,156号明細書に開示された方法によって得られる
集合組織({210}<001>〜{310}<001>)とは明ら
かに異なっている。これは、M.F.Littmannの技術におけ
る出発材は、磁束密度がB10=1.74Tと低く、{110}<0
01>方位の集積度が悪いためであると考えられる。従っ
て、製品の高磁束密度化を達成するためには、出発材の
{110}<001>方位の集積度を高くするとともに、{11
1}<011>方位粒の一次再結晶を抑制することが必要で
ある。
This texture is issued by MFLittmann in U.S. Pat.
It is clearly different from the texture ({210} <001> to {310} <001>) obtained by the method disclosed in the specification of 2,473,156. This is the starting material in the art of MFLittmann the magnetic flux density B 10 = 1.74T as low as {110} <0
01> It is considered that this is because the degree of integration of the orientation is poor. Therefore, in order to achieve a high magnetic flux density of the product, it is necessary to increase the degree of integration of the {110} <001> orientation of the starting material,
It is necessary to suppress the primary recrystallization of 1} <011> oriented grains.

本発明者等は、この出発材の冷間圧延・再結晶に関す
る研究によって、{110}<001>方位粒は出発材の粒内
から、{111}<011>方位粒は主に粒界から核発生し、
成長することを解明した。この解明によって、極薄製品
の{110}<001>方位へと集積度を高めるためには、出
発材の結晶粒界面積を小さくするか、或は粒界からの核
発生を抑制すればよいことが判明した。
The present inventors have conducted a study on cold rolling and recrystallization of the starting material, and found that {110} <001> oriented grains are from inside the starting material grains and {111} <011> oriented grains are mainly from grain boundaries. Nuclear outbreak,
Clarified to grow. Based on this understanding, in order to increase the degree of integration of ultra-thin products to the {110} <001> orientation, it is necessary to reduce the grain boundary area of the starting material or suppress nucleation from the grain boundaries It has been found.

以下、具体的な工程を説明する。 Hereinafter, specific steps will be described.

本発明者等は、製品の磁束密度を高くするには、出発
材の{110}<001>方位集積度が高いことと共に、結晶
粒界からの核発生を少なくすることが重要であるという
知見に基づいて、磁束密度B8/Bs>0.9を有する種々の粒
径の一方向性電磁鋼帯を出発材として、これに60〜90%
の圧下率を適用する冷間圧延を施して150μm以下の最
終板厚とした後、700〜900℃の温度域で焼鈍し一次再結
晶させ、得られた極薄電磁鋼帯の磁気測定を行った。そ
の結果、1.85Tesla以上の磁束密度を有する極薄電磁鋼
帯を得るためには、出発材である一方向性電磁鋼帯にSn
およびSbの1種または2種を添加することにより、粒界
からの{111}<011>方位粒の核発生を抑制し、{11
0}<001>方位への集積度を高め、製品の磁束密度を向
上せしめ得ることを見出した。
The present inventors have found that in order to increase the magnetic flux density of a product, it is important that the starting material has a high degree of {110} <001> orientation integration and that nucleation from grain boundaries is reduced. Starting from a unidirectional magnetic steel strip of various grain sizes having a magnetic flux density B 8 /Bs>0.9, based on
After performing cold rolling to apply a rolling reduction of 150 μm or less to a final thickness of less than 150 μm, annealing in a temperature range of 700 to 900 ° C. and primary recrystallization, and magnetic measurement of the obtained ultrathin electromagnetic steel strip is performed. Was. As a result, in order to obtain an ultra-thin electromagnetic steel strip having a magnetic flux density of 1.85 Tesla or more, the starting unidirectional magnetic steel strip
By adding one or two of Sb and Sb, nucleation of {111} <011> oriented grains from grain boundaries is suppressed,
It has been found that the degree of integration in the 0 ° <001> direction can be increased and the magnetic flux density of the product can be improved.

かかる知見は、次の実験によって得られた。 Such findings were obtained by the following experiment.

重量で、Si:3.2%、C:0.002%、N:0.001%、Al:0.002
%、S:0.0004%、Mn:0.05%を基本成分とし、SnおよびS
bの1種または2種を0〜0.5%含有する一方向性電磁鋼
帯(磁束密度(B8値)=1.90T、平均粒径:5〜40mm、板
厚0.14mm)を、冷間圧延して30μmの最終板厚とした。
この材料を、850℃で10分間焼鈍し、一次再結晶を完了
させた。
By weight, Si: 3.2%, C: 0.002%, N: 0.001%, Al: 0.002
%, S: 0.0004%, Mn: 0.05% as basic components, Sn and S
Cold-rolled unidirectional electromagnetic steel strip (magnetic flux density (B 8 value) = 1.90 T, average grain size: 5 to 40 mm, sheet thickness 0.14 mm) containing 0 to 0.5% of one or two types of b This gave a final thickness of 30 μm.
This material was annealed at 850 ° C. for 10 minutes to complete the primary recrystallization.

Sn含有量と得られた製品の磁束密度の関係を、第3図
に示す。第3図から、Sn添加量:0.01%から結晶粒界か
らの{111}<011>方位粒の核生成を抑制し、製品の磁
束密度を向上させ得ることが分かる。Sn添加量が0.30%
を超えると磁束密度が低下するのは、出発材である一方
向性電磁鋼帯の結晶粒が微細になり、結晶粒界面積が増
加し、結晶粒界からの核発生の頻度が高くなるためであ
ると考えられる。
FIG. 3 shows the relationship between the Sn content and the magnetic flux density of the obtained product. From FIG. 3, it can be seen that the nucleation of {111} <011> oriented grains from the crystal grain boundaries can be suppressed and the magnetic flux density of the product can be improved from the Sn addition amount: 0.01%. 0.30% Sn addition
The magnetic flux density decreases when the magnetic flux density exceeds 1, because the grains of the unidirectional electromagnetic steel strip, which is the starting material, become finer, the grain boundary area increases, and the frequency of nucleation from the grain boundaries increases. It is considered to be.

また、出発材にSnおよびSbの1種または2種を合計量
で0.03〜0.30%含有せしめると、第4図に示すように、
得られる製品の磁束密度(B8値)の到達レベルが1.94Te
slaと極めて高いものとなる。さらに、製品が最も高い
磁束密度をもつことになる冷延率が、SnおよびSbの1種
または2種を含有しないものに比し高い冷延率側へシフ
トするから、同一厚さの出発材から極めて薄い製品を得
ることができる。また、製品が高い磁束密度を有するこ
とになる好ましい冷延率領域が、SnおよびSbの1種また
は2種を含有しないものに比し非常に拡大されるから、
あるゲージをもつ出発材から種々のゲージの、高い磁束
密度を有する極薄電磁鋼帯を作り分けることが可能にな
る。
When the starting material contains one or two of Sn and Sb in a total amount of 0.03 to 0.30%, as shown in FIG.
The ultimate level of the magnetic flux density (B 8 value) of the obtained product is 1.94 Te
It will be extremely high with sla. Furthermore, since the cold rolling reduction at which the product has the highest magnetic flux density shifts to the higher cold rolling reduction side as compared with those not containing one or two types of Sn and Sb, the starting material having the same thickness is used. Extremely thin products can be obtained. Also, since the preferred cold rolling reduction region in which the product has a high magnetic flux density is greatly expanded as compared with those not containing one or two of Sn and Sb,
From a starting material having a certain gauge, it becomes possible to produce ultra-thin electromagnetic steel strips of various gauges having a high magnetic flux density.

前記のように、本発明を特徴づける、出発材へのSnお
よびSbの1種または2種の添加は、製品の磁束密度を低
下させる原因となる粒界から核発生する{111}<011>
方位粒の核発生・成長を抑制し、{110}<001>方位粒
を優先的に核発生・成長させるために効果的に機能す
る。
As described above, the addition of one or two of Sn and Sb to the starting material, which characterizes the present invention, nucleates from grain boundaries which cause a reduction in the magnetic flux density of the product {111} <011>.
It functions effectively to suppress nucleation and growth of oriented grains and preferentially generate and grow {110} <001> oriented grains.

このようにして得られる本発明の極薄電磁鋼帯の磁束
密度は、従来技術によって得られる極薄電磁鋼帯の磁束
密度に比し、格段に優れている。
The magnetic flux density of the ultra-thin electromagnetic steel strip of the present invention obtained in this way is much better than the magnetic flux density of the ultra-thin electromagnetic steel strip obtained by the conventional technique.

次に、鋼板表面近傍の低透磁率領域を周期的に形成す
ることによる鉄損低減効果について説明する。
Next, the effect of reducing iron loss by periodically forming the low magnetic permeability region near the steel sheet surface will be described.

鋼板表面近傍の低透磁率領域と透磁率の高い地鉄とそ
の境界領域に、自発磁化の不連続に起因する自由磁極が
発生する。この自由領域は、その領域の静磁エネルギー
を高める。静磁エネルギー緩和のために、これらの領域
に板厚方向に磁化成分を有する補助磁区が生じる。表面
皮膜によって鋼板に生じる張力と地鉄の磁歪との相互作
用によって、これらの補助磁区が消去される。補助磁区
の消去による静磁エネルギーの高まりは、180゜磁壁間
隔の細分化(活動磁壁の増加)によって緩和されること
になる。従って、活動磁壁数の多少は境界領域の自由磁
極の密度に依存する。
Free magnetic poles are generated in the low magnetic permeability region near the surface of the steel sheet, in the ground iron with high magnetic permeability, and in the boundary region between them, due to the discontinuity of spontaneous magnetization. This free region increases the magnetostatic energy of that region. In order to alleviate the magnetostatic energy, auxiliary domains having a magnetization component in the thickness direction are generated in these regions. The interaction between the tension generated in the steel sheet by the surface film and the magnetostriction of the ground iron eliminates these auxiliary magnetic domains. The increase in the magnetostatic energy due to the elimination of the auxiliary magnetic domain is mitigated by the subdivision of the 180 ° domain wall interval (the increase in the active domain wall). Therefore, the number of active domain walls depends on the density of free magnetic poles in the boundary region.

上に述べた、張力による鉄損低減効果の様子を、第5
図に示す。
The state of the iron loss reduction effect due to the tension described above is described in the fifth section.
Shown in the figure.

第5図において、は表面皮膜を除去した{110}<0
01>方位集積度が高い、50μm厚さの極薄電磁鋼板の鉄
損値、は試料を圧延方向に0.9kg/m2の張力を付加し
た状態下での鉄損値、は上記試料に圧延方向に直角な
方向に深さ約3μmの溝を1.25mmの間隔で穿設し、圧延
方向に0.9kg/mm2の張力を付加した状態で測定した鉄損
値を示す。からへの鉄損値の低減は、が有してい
る補助磁区と張力の相互作用によるものである。から
への鉄損値の低減は、低透磁率領域、即ち空隙に生じ
た補助磁区と張力の相互作用によるものである。Cの状
態で、極めて低い鉄損値を示すことが分る。このような
低透磁率領域の形成は、低鉄損を実現するために極めて
有効であることが分る。
In FIG. 5, {110} <0 where the surface film was removed
01> Iron loss value of ultra-thin magnetic steel sheet with a high degree of orientation integration and a thickness of 50 μm, the iron loss value when a 0.9 kg / m 2 tension is applied to the sample in the rolling direction; The values indicate iron loss values measured when grooves having a depth of about 3 μm were formed in a direction perpendicular to the direction at intervals of 1.25 mm, and a tension of 0.9 kg / mm 2 was applied in the rolling direction. The reduction of the iron loss value from to is caused by the interaction between the auxiliary magnetic domain and the tension which the iron has. The decrease in the iron loss value from the core is caused by the interaction between the auxiliary magnetic domain generated in the low magnetic permeability region, that is, the gap and the tension. In the state of C, it can be seen that the iron loss value is extremely low. It can be seen that the formation of such a low magnetic permeability region is extremely effective for realizing low iron loss.

ここで言う低透磁率領域とは、たとえば、 1)鋼板表面の凹凸 2)酸化物等の非強磁性物質 等が該当し、何れの場合も自由磁極を形成することがで
きる。
The low magnetic permeability region mentioned here corresponds to, for example, 1) unevenness of the steel sheet surface 2) a non-ferromagnetic substance such as an oxide, and in any case, a free magnetic pole can be formed.

磁化曲線の形、鉄損、透磁率等は、自由磁極の密度に
強く依存する。
The shape of the magnetization curve, iron loss, magnetic permeability and the like strongly depend on the density of the free magnetic pole.

上記低透磁率領域の間隔が大き過ぎると、或は透磁率
領域が広過ぎると当然のことながら自由磁極の密度は低
くなり、材料の磁化特性への影響は小さくなる。一方、
この領域の板厚方向の深さが大き過ぎると、自由磁極の
密度は高くなるけれども、材料の磁化特性を著しく劣化
させる。また、この領域が浅いときは、材料の磁化特性
の劣化が小さくなる。従って、極薄電磁鋼板の鉄損低減
を目的とするときは、低透磁率領域の深さを適当な値に
抑えて、活動磁壁数を増加させることが重要である。即
ち、この材料(製品)が使用される機器の要求機能(た
とえば、磁化曲線の形、鉄損、透磁率等)また、素材の
板厚等に応じて適当な低透磁率領域の広さ、間隔、深さ
を選択する必要がある。
If the interval between the low magnetic permeability regions is too large, or if the magnetic permeability region is too wide, the density of the free magnetic pole naturally becomes low, and the influence on the magnetization characteristics of the material becomes small. on the other hand,
If the depth of this region in the plate thickness direction is too large, the density of the free magnetic pole is increased, but the magnetic properties of the material are significantly deteriorated. When this region is shallow, deterioration of the magnetization characteristics of the material is reduced. Therefore, when aiming to reduce the iron loss of the ultra-thin electromagnetic steel sheet, it is important to suppress the depth of the low magnetic permeability region to an appropriate value and increase the number of active domain walls. That is, the required function (for example, the shape of the magnetization curve, the iron loss, the magnetic permeability, etc.) of the device in which this material (product) is used, and the width of the low magnetic permeability region suitable for the thickness of the material, etc. It is necessary to select the interval and depth.

実施例1 重量で、Si:3.2%、Mn:0.05%、C:0.002%、N:0.001
%、Al:0.002%、S:0.001%、Sb:0.02%、残部が実質的
にFeからなる一方向性電磁鋼板(B8=1.90T、粒径:RD
6mm、RC=6mm、板厚:140μm)を、酸洗してグラス皮膜
を除去した後、冷間圧延して26μmの最終板厚とした。
然る後、H2:100%の雰囲気中で、1000℃で5分間焼鈍し
た後、N2雰囲気中で絶縁皮膜形成処理を施した。こうし
て得られた製品にレーザ照射し、圧延方向に直角な方向
にレーザスポット間隔:0.2mm、レーザスポット列間隔:
1.0mmで走査した。レーザ照射部分のみ絶縁皮膜が除去
され、この鋼板を約10秒間濃硝酸に浸漬し、次いで水
洗、乾燥した。かかる処理によって、直径:約110μ
m、中心部の深さ:約3μmのホールが周期的に形成さ
れた。こうして得られた極薄電磁鋼板の鉄損特性を、レ
ーザ処理前後の比較において、第7図に示す。
Example 1 Si: 3.2%, Mn: 0.05%, C: 0.002%, N: 0.001 by weight
%, Al: 0.002%, S: 0.001%, Sb: 0.02%, with the balance being substantially Fe, a grain-oriented electrical steel sheet (B 8 = 1.90T, grain size: R D =
(6 mm, R C = 6 mm, thickness: 140 μm) was pickled to remove the glass film, and then cold-rolled to a final thickness of 26 μm.
Then, after annealing at 1000 ° C. for 5 minutes in an atmosphere of H 2 : 100%, an insulating film forming treatment was performed in an N 2 atmosphere. The product thus obtained is irradiated with a laser, and a laser spot interval in a direction perpendicular to the rolling direction: 0.2 mm, a laser spot row interval:
Scanned at 1.0 mm. The insulating film was removed only from the laser-irradiated portion, and this steel sheet was immersed in concentrated nitric acid for about 10 seconds, then washed with water and dried. By such processing, the diameter: about 110μ
m, depth at the center: Holes of about 3 μm were periodically formed. FIG. 7 shows the iron loss characteristics of the ultra-thin electromagnetic steel sheet thus obtained before and after the laser treatment.

実施例2 重量で、Si:3.0%、Mn:0.06%、C:0.003%、N:0.002
%、Al:0.001%、S:0.001%、Sn:0.07%、残部:実質的
にFeからなる一方向性電磁鋼帯(B8=1.88T、粒径:RD
5mm、RC=3mm、板厚:230μm)を、酸洗してグラス皮膜
を除去した後冷間圧延して50μmの最終板厚とした。こ
の鋼板(ストリップ)を脱脂した後、耐酸塗料を塗布し
た。次いで、この鋼板に実施例1におけると同様な処理
によってホールを形成し耐酸塗料を除去した。然る後、
N2:25%+H2:75%の雰囲気中、850℃×10分間焼鈍し、
さらにN2雰囲気中で絶縁皮膜形成処理を施した。こうし
て得られた製品の鉄損特性を、第6図に示す。
Example 2 Si: 3.0%, Mn: 0.06%, C: 0.003%, N: 0.002% by weight
%, Al: 0.001%, S: 0.001%, Sn: 0.07%, balance: Unidirectional electromagnetic steel strip consisting essentially of Fe (B 8 = 1.88T, particle size: R D =
(5 mm, R C = 3 mm, thickness: 230 μm) was pickled to remove the glass film and then cold-rolled to a final thickness of 50 μm. After the steel plate (strip) was degreased, an acid-resistant paint was applied. Next, holes were formed in this steel sheet by the same treatment as in Example 1, and the acid-resistant paint was removed. After that,
Annealed at 850 ° C for 10 minutes in an atmosphere of N 2 : 25% + H 2 : 75%
Further, an insulating film forming treatment was performed in an N 2 atmosphere. FIG. 6 shows the iron loss characteristics of the product thus obtained.

(発明の効果) 本発明によって得られた製品は、下記のような優れた
磁気特性を有する。
(Effect of the Invention) The product obtained by the present invention has the following excellent magnetic properties.

(1) 励磁力800A/Mにおける磁束密度が、たとえば3
%Siの場合、1.84〜1.95Tと、従来技術によって得られ
た製品の磁束密度に比し、約0.2〜0.4Tも高い。
(1) The magnetic flux density at an exciting force of 800 A / M is, for example, 3
In the case of% Si, the magnetic flux density is 1.84 to 1.95 T, which is about 0.2 to 0.4 T higher than the magnetic flux density of the product obtained by the conventional technology.

(2) 製品の鉄損値、たとえばW15/400は、従来技術
によって得られた製品の鉄損値の約50%であり、極めて
低い値を示す。特に1.5T以上の高励磁における鉄損値
は、前例がない。
(2) The iron loss value of the product, for example, W15 / 400, is about 50% of the iron loss value of the product obtained by the prior art, and shows an extremely low value. In particular, the iron loss value at high excitation of 1.5 T or more has no precedent.

このような本発明品を、変圧器わけても高周波電源用
変圧器に用いれば、小型化、効率化の面で顕著な効果を
もたらす。また、本発明品は、制御素子に適用して大き
な効果がある。
If such a product of the present invention is used for a transformer, especially a transformer for a high-frequency power supply, a remarkable effect is brought about in terms of miniaturization and efficiency. The product of the present invention has a great effect when applied to a control element.

【図面の簡単な説明】[Brief description of the drawings]

第1図は周波数と鉄損の関係を示す図、第2図は本発明
の知見を得る基礎となった実験の結果得られた製品の集
合組織を示す極点図、第3図は本発明の、Snを添加した
極薄電磁鋼帯の磁束密度(B8値)とSn含有量の関係を示
す図、第4図は本発明のSn添加材と無添加材における冷
延率と製品の磁束密度の関係を示す図、第5図は本発明
の原理を示す図、第6図および第7図は本発明の製品の
鉄損を示す図である。
FIG. 1 is a diagram showing the relationship between frequency and iron loss, FIG. 2 is a pole figure showing the texture of a product obtained as a result of an experiment on which the knowledge of the present invention was obtained, and FIG. , shows the added flux density (8 value B) of the ultra-thin electrical steel strip and Sn content of relationship Sn, Fig. 4 flux of the cold rolling rate and product in Sn additive and additive-free material of the present invention FIG. 5 is a diagram showing the relationship between densities, FIG. 5 is a diagram showing the principle of the present invention, and FIGS. 6 and 7 are diagrams showing iron loss of the product of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野沢 忠生 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社第3技術研究所内 (72)発明者 岩崎 勝 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社第3技術研究所内 (56)参考文献 特開 昭61−238916(JP,A) 特開 昭63−130747(JP,A) 特開 平1−198430(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadao Nozawa 1-1-1 Edamitsu, Yahata-Higashi-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation 3rd Technical Research Institute (72) Inventor Masaru Iwasaki Yawata, Kitakyushu-shi, Fukuoka E1-1, Higashi-ku, Nippon Steel Corporation 3rd Technical Research Institute −198430 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量で、Si≦8%、SnおよびSbの1種また
は2種を0.005〜0.30%含有し、残部が実質的にFeから
なり、板厚≦150μm、平均粒径≦1.0mmで、{110}<0
01>方位集合組織を有し、磁束密度B8/Bs>0.9(Bs:そ
の成分系での飽和磁束密度)であり、かつ地鉄(鋼板)
に比し透磁率の低い領域を鋼板表面近傍に周期的に有す
ることを特徴とする{110}<001>方位集積度が高く鉄
損の低い極薄電磁鋼帯。
1. The composition according to claim 1, wherein Si ≤ 8%, one or two of Sn and Sb are contained in an amount of 0.005 to 0.30%, and the balance is substantially made of Fe, with a plate thickness ≤ 150 μm and an average particle size ≤ 1.0 mm. And {110} <0
01> has orientation texture, magnetic flux density B 8 / B s > 0.9 (B s : saturated magnetic flux density in its component system), and ground iron (steel plate)
An ultra-thin electromagnetic steel strip having a high degree of {110} <001> orientation accumulation and low iron loss, characterized by periodically having a region having a low magnetic permeability near the surface of the steel sheet as compared with that of the above.
【請求項2】重量で、Si≦8%、SnおよびSbの1種また
は2種を0.005〜0.30%含有し、残部が実質的にFeから
なり、{110}<001>方位集合組織を有し、磁束密度B8
/Bs>0.9(Bs:その成分系での飽和磁束密度)である一
方向性電磁鋼帯に、60〜90%の圧下率を適用する少なく
とも1回の冷間圧延を施して150μm以下の最終板厚と
し、次いで一次再結晶焼鈍を施した後、鋼板表面近傍に
地鉄(鋼板)に比し透磁率の低い領域を周期的に形成す
ることを特徴とする{110}<001>方位集積度が高く鉄
損の低い極薄電磁鋼帯の製造方法。
2. The composition according to claim 1, wherein said alloy contains, by weight, Si ≦ 8%, one or two of Sn and Sb in an amount of 0.005 to 0.30%, the balance substantially consisting of Fe, and a {110} <001> orientation texture. And the magnetic flux density B 8
Apply at least one cold rolling to a unidirectional magnetic steel strip with / B s > 0.9 (B s : saturated magnetic flux density in its component system) at a rolling reduction of 60 to 90% and 150 μm or less {110} <001> characterized by periodically forming a region having a lower magnetic permeability than that of ground steel (steel plate) near the surface of the steel plate after subjecting it to the final plate thickness and then subjecting it to primary recrystallization annealing. A method for producing an ultra-thin electromagnetic steel strip having a high degree of orientation accumulation and a low iron loss.
【請求項3】重量で、Si≦8%、SnおよびSbの1種また
は2種を0.005〜0.30%含有し、残部が実質的にFeから
なり、{110}<001>方位集合組織を有し、磁束密度B8
/Bs>0.9(Bs:その成分系での飽和磁束密度)である一
方向性電磁鋼帯に、60〜90%の圧下率を適用する少なく
とも1回の冷間圧延を施して150μm以下の最終板厚と
した後、鋼板表面近傍に地鉄(鋼板)に比し透磁率の低
い領域を周期的に形成し、次いで一次再結晶焼鈍を施す
ことを特徴とする{110}<001>方位集積度が高く鉄損
の低い極薄電磁鋼帯の製造方法。
3. The composition according to claim 1, wherein Si ≦ 8% by weight, one or two of Sn and Sb are contained in an amount of 0.005 to 0.30%, and the balance is substantially composed of Fe and has {110} <001> orientation texture. And the magnetic flux density B 8
Apply at least one cold rolling to a unidirectional magnetic steel strip with / B s > 0.9 (B s : saturated magnetic flux density in its component system) at a rolling reduction of 60 to 90% and 150 μm or less {110} <001> characterized by periodically forming a region having a lower magnetic permeability than that of the base steel (steel plate) near the surface of the steel plate after the final thickness, and then subjecting it to primary recrystallization annealing A method for producing an ultra-thin electromagnetic steel strip having a high degree of orientation accumulation and a low iron loss.
JP02173940A 1990-06-30 1990-06-30 {110} <001> Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss Expired - Fee Related JP3127262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02173940A JP3127262B2 (en) 1990-06-30 1990-06-30 {110} <001> Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02173940A JP3127262B2 (en) 1990-06-30 1990-06-30 {110} <001> Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss

Publications (2)

Publication Number Publication Date
JPH0463250A JPH0463250A (en) 1992-02-28
JP3127262B2 true JP3127262B2 (en) 2001-01-22

Family

ID=15969887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02173940A Expired - Fee Related JP3127262B2 (en) 1990-06-30 1990-06-30 {110} <001> Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss

Country Status (1)

Country Link
JP (1) JP3127262B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393496B (en) * 2017-02-05 2019-08-06 鞍钢股份有限公司 Preparation method of high-silicon steel thin strip

Also Published As

Publication number Publication date
JPH0463250A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
KR930005897B1 (en) Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
JPS5850295B2 (en) Manufacturing method of unidirectional silicon steel sheet with high magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3127262B2 (en) {110} &lt;001&gt; Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
CN114829657B (en) Oriented electrical steel sheet and method for manufacturing same
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2784683B2 (en) {110} &lt;001&gt; Method for producing ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss
JP4873770B2 (en) Unidirectional electrical steel sheet
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH0742556B2 (en) Ultra-thin electromagnetic steel strip with low iron loss and high magnetic flux density and method for manufacturing the same
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02149622A (en) Manufacture of nonoriented silicon steel sheet having superior magnetic property
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3169427B2 (en) Method for producing bidirectional silicon steel sheet with excellent magnetic properties
JPS6256205B2 (en)
JPH0459929A (en) Extra thin silicon steel strip having high (110)&lt;001&gt; orientation integration degree and reduced in iron loss and its production
JP2826890B2 (en) Method for manufacturing ultra-thin electromagnetic steel strip having uniform magnetic properties
JPH0699752B2 (en) High magnetic flux density bi-directional electrical steel sheet manufacturing method
JP2724091B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH0742507B2 (en) Method for manufacturing thin unidirectional electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees