JP2008057001A - Grain-oriented electromagnetic steel sheet - Google Patents

Grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2008057001A
JP2008057001A JP2006235913A JP2006235913A JP2008057001A JP 2008057001 A JP2008057001 A JP 2008057001A JP 2006235913 A JP2006235913 A JP 2006235913A JP 2006235913 A JP2006235913 A JP 2006235913A JP 2008057001 A JP2008057001 A JP 2008057001A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
grooves
sheet thickness
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006235913A
Other languages
Japanese (ja)
Other versions
JP4876799B2 (en
Inventor
Kenichi Sadahiro
健一 定廣
Akio Fujita
明男 藤田
Takashi Suzuki
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006235913A priority Critical patent/JP4876799B2/en
Publication of JP2008057001A publication Critical patent/JP2008057001A/en
Application granted granted Critical
Publication of JP4876799B2 publication Critical patent/JP4876799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low core-loss grain-oriented electromagnetic steel sheet with which the core-loss is not deteriorated after strain-removal annealing and the low core-loss characteristic can be obtained, even after working as a transformer core. <P>SOLUTION: The grain-oriented electromagnetic steel sheet, has a plurality of grooves directed to almost at right angle to the rolling direction, and further, in the interval of respective grooves, the sheet thickness decreasing parts are formed as the studded-state and the sum total of the sheet thickness decreased amount in the sheet thickness decreasing parts is 0.01-0.05% in the weight decreasing ratio to the steel sheet before forming the above sheet thickness decreasing parts. For example, as the sheet thickness decreasing parts, the recessed parts having 45μmϕ diameter and 25μm depth, are introduced at the interval of the respective grooves at 0.03% of the weight decreasing ratio. A demagnetizing field is formed by arranging this sheet thickness decreasing parts between the respective grooves and in the case of carrying magnetic flux except the rolling direction, the raising of the core-loss can be restrained by forming the demagnetizing field. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、変圧器やその他の電気機器の鉄心として用いられる低鉄損方向性電磁鋼板に関するものであり、特に歪取焼鈍による鉄損特性の劣化防止を図ったものである。   The present invention relates to a low iron loss direction-oriented electrical steel sheet used as an iron core of a transformer or other electric equipment, and particularly aims to prevent deterioration of iron loss characteristics due to stress relief annealing.

方向性電磁鋼板は変圧器やその他の電気機器鉄心として利用され、磁気特性に優れること、中でも鉄損の低いことが要求される。この鉄損は、概ねヒステリシス損と渦電流損の和で表わすことができ、ヒステリシス損は、二次再結晶を生じさせる際に、インヒビターと称される析出物(AlN、MnS、MnSe等)により一次再結晶粒の粒成長抑制力を強めることで、結晶方位をゴス方位、すなわち{110}<001>方位に高度に集積させたり、磁化したとき磁壁移動を妨げるピンニング因子(析出物)の生成原因となる不純物元素を低減すること等により大幅に低減されてきた。   Oriented electrical steel sheets are used as iron cores for transformers and other electrical equipment, and are required to have excellent magnetic properties, especially low iron loss. This iron loss can be roughly expressed by the sum of hysteresis loss and eddy current loss. Hysteresis loss is caused by precipitates (AlN, MnS, MnSe, etc.) called inhibitors when secondary recrystallization occurs. By strengthening the grain growth inhibiting power of the primary recrystallized grains, the pinning factor (precipitate) that prevents the domain wall movement when the crystal orientation is highly accumulated in the Goth orientation, that is, {110} <001> orientation, or when magnetized is generated. It has been greatly reduced by reducing the causative impurity elements.

一方、渦電流損については、Si含有量を増加して電気抵抗を増大させることや、鋼板板厚を薄くすることや、鋼板地鉄表面に地鉄と熱膨張係数の異なる被膜を形成して地鉄に張力を付与したり、結晶粒を微細化したりすることにより磁区幅を低減すること等によって低減が図られてきた。
さらに渦電流損を低減する方法として、特許文献1には、鋼板の圧延方向と直行する方向に沿ってレーザー光を照射する方法が、特許文献2には、プラズマ炎等を照射する方法が提案されている。これらの方法は、鋼板表面に線状又は点状に微小な熱歪みを導入することにより磁区を細分化し、鉄損を大幅に低減しようとするものである。しかしながら特許文献1および2の方法において、磁区細分化後に高温での焼鈍を施すと熱歪が除去されて鉄損低減効果は消失してしまうため、照射処理後に歪取焼鈍を必要とする巻鉄心用素材として用いることはできなかった。
On the other hand, for eddy current loss, increasing the Si content to increase the electrical resistance, reducing the thickness of the steel sheet, or forming a coating with a different thermal expansion coefficient on the steel sheet surface Reduction has been achieved by, for example, reducing the magnetic domain width by applying tension to the base iron or by refining crystal grains.
Further, as a method for reducing eddy current loss, Patent Document 1 proposes a method of irradiating laser light along a direction perpendicular to the rolling direction of a steel sheet, and Patent Document 2 proposes a method of irradiating a plasma flame or the like. Has been. These methods are intended to subdivide the magnetic domains by introducing minute thermal strains in the form of lines or dots on the surface of the steel sheet, thereby greatly reducing the iron loss. However, in the methods of Patent Documents 1 and 2, if annealing is performed at a high temperature after magnetic domain subdivision, the thermal strain is removed and the iron loss reduction effect disappears. Therefore, a wound iron core that requires strain relief annealing after irradiation treatment. It could not be used as a raw material.

そこで歪取焼鈍にも耐え得る磁区細分化方法として、鋼板への溝形成を行う手法が種々提案されている。例えば、最終仕上げ焼鈍後即ち二次再結晶後の鋼板に局所的に溝を形成し、その反磁界効果によって磁区を細分化する方法である。特許文献3には、この溝形成手段として、機械的な加工方法が、特許文献4にはレーザー光照射により絶縁被膜及び下地被膜を局所的に除去した後電解エッチングする方法が記載されている。また、特許文献5には、歯車型ロールで圧刻後、歪取焼鈍することで溝形成及び再結晶を達成して磁区を細分化する方法が、特許文献6には最終仕上げ焼鈍前の鋼板に溝を形成する方法が、それぞれ開示されている。   Accordingly, various methods for forming grooves in a steel sheet have been proposed as magnetic domain subdivision methods that can withstand strain relief annealing. For example, there is a method in which grooves are locally formed in the steel sheet after final finish annealing, that is, after secondary recrystallization, and the magnetic domains are subdivided by the demagnetizing field effect. Patent Document 3 describes a mechanical processing method as the groove forming means, and Patent Document 4 describes a method of performing electrolytic etching after locally removing the insulating film and the base film by laser light irradiation. Patent Document 5 discloses a method of subdividing magnetic domains by achieving groove formation and recrystallization by stamping and annealing after gear rolling, and Patent Document 6 discloses a steel plate before final finish annealing. A method of forming grooves in each of the above is disclosed.

このように近年では、以上のような結晶方位の高配向化(溝形成後の製品でB8が1.91T以上)と磁区細分化の組み合わせで、材料の低鉄損特性はきわめて高いレベルにまで改善されてきている。しかしながら、変圧器鉄心に加工したのちの鉄損は、高配向化の影響でビルディングファクターが劣化し、設計などにより必ずしも材料の低鉄損特性を生かしきれていないという問題点がある。
特公昭57-2252 号公報 特開昭62-96617号公報 特公昭50-35679号公報 特開昭 63-76819号公報 特公昭62-53579号公報 特開昭59-197520 号公報
Thus, in recent years, the combination of high crystal orientation as described above (B8 is 1.91 T or more in the product after groove formation) and magnetic domain refinement have improved the low iron loss characteristics of materials to an extremely high level. Has been. However, the iron loss after being processed into a transformer core has a problem that the building factor deteriorates due to the effect of high orientation, and the low iron loss characteristics of the material cannot always be fully utilized by design or the like.
Japanese Patent Publication No.57-2252 JP 62-96617 A Japanese Patent Publication No. 50-35679 JP-A 63-76819 Japanese Examined Patent Publication No.62-53579 JP 59-197520

本発明は上記問題を有利に解決するためになされたもので、歪取焼鈍後に鉄損が劣化せず、変圧器鉄心として加工した後も低鉄損特性を得ることが可能な低鉄損方向性電磁鋼板を提供することを目的とする。   The present invention was made in order to advantageously solve the above problem, and the iron loss is not deteriorated after the stress relief annealing, and the low iron loss direction capable of obtaining the low iron loss characteristic even after being processed as a transformer core. An object of the present invention is to provide an electrical steel sheet.

本発明者らは上記課題を解決するため、方向性電磁鋼板に線状の溝を設け磁区細分化処理を行うことを基本としさらに改良を加えることを中心に鋭意研究を行った。その結果、各溝の間に、例えば、凹部や貫通孔、すなわち板厚減少部を導入し、反磁界を形成することにより、歪取焼鈍後においても鉄損が劣化しない低鉄損方向性電磁鋼板が得られることを見出した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research focusing on making further improvements on the basis of providing a linear groove in a grain-oriented electrical steel sheet and performing a magnetic domain refinement treatment. As a result, a low iron loss directional electromagnetic wave that does not deteriorate even after strain relief annealing by introducing, for example, a recess or a through hole, that is, a reduced thickness portion, between each groove to form a demagnetizing field. It has been found that a steel sheet can be obtained.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]鋼板幅方向に延びる複数の溝を有する方向性電磁鋼板であって、前記各溝の間に、板厚減少部が点在して形成され、前記板厚減少部による板厚減少量の合計が、前記板厚減少部が形成される前の鋼板に対する重量減少率で0.01〜0.05%であることを特徴とする方向性電磁鋼板。
[2]前記[1]において、前記板厚減少部が凹部および/または貫通孔からなることを特徴とする方向性電磁鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A grain-oriented electrical steel sheet having a plurality of grooves extending in the width direction of the steel sheet, wherein a thickness reduction portion is formed between the grooves, and a thickness reduction amount by the thickness reduction portion. Is a grain-oriented electrical steel sheet characterized by a weight reduction rate of 0.01 to 0.05% with respect to the steel sheet before the thickness reduction portion is formed.
[2] The grain-oriented electrical steel sheet according to [1], wherein the thickness reduction portion is formed of a recess and / or a through hole.

本発明によれば、歪取焼鈍後においても鉄損が劣化しない低鉄損方向性電磁鋼板を得ることができる。そして、本発明の方向性電磁鋼板を変圧器鉄心として加工し使用した際にも、低鉄損特性を得ることが可能である。この結果、変圧器において、材料の低鉄損特性が最大限利用可能となり、変圧器における鉄損の低減が図られ、産業、民生用の電気エネルギーの効率的利用につながり、社会の省エネルギー化に貢献することができる。   According to the present invention, it is possible to obtain a low iron loss directional electrical steel sheet in which iron loss does not deteriorate even after strain relief annealing. And even when the grain-oriented electrical steel sheet of the present invention is processed and used as a transformer core, it is possible to obtain low iron loss characteristics. As a result, the transformer's low iron loss characteristics can be used to the maximum in transformers, reducing iron loss in transformers, leading to the efficient use of industrial and consumer electrical energy, and saving energy in society. Can contribute.

本発明は、溝形成による磁区細分化処理に種々の加工を組み合わせることを中心に鋭意研究した結果、変圧器の鉄損を有利に改善できる鋼板を完成するに至ったものである。すなわち、本発明の方向性電磁鋼板は、圧延方向と略直交する向きに複数の溝を有し、前記各溝の間に、板厚減少部が点在して形成され、前記板厚減少部における板厚減少量の合計が、前記板厚減少部が形成される前の鋼板に対する重量減少率で0.01〜0.05%であることを特徴とする。これは本発明において、最も重要な要件であり、このように、各溝の間に板厚減少部を点在させることで、各々の板厚減少部により反磁界が形成される。そして、反磁界が形成されることで、圧延方向以外に磁束が流れる場合の鉄損上昇を抑制することが可能となり、本発明の課題が解決される。なお、本発明において、板厚減少部とは、溝間の平坦部に形成されるものであり、例えば、直径200μm以下で深さ40μm以下程度の微少な凹部や、直径100μm以下程度の微少な貫通孔により形成されるものである。また、前記重量減少率とは、線状溝の間に板厚減少部を導入しない場合の鋼板重量に対しての、板厚減少部を導入した場合の鋼板重量減少率である。   As a result of earnest research focusing on combining various processes with magnetic domain subdivision processing by groove formation, the present invention has completed a steel plate that can advantageously improve the iron loss of a transformer. That is, the grain-oriented electrical steel sheet of the present invention has a plurality of grooves in a direction substantially orthogonal to the rolling direction, and is formed by interspersing the thickness reduction portions between the grooves. The total thickness reduction amount at is a weight reduction rate of 0.01 to 0.05% with respect to the steel plate before the plate thickness reduction portion is formed. This is the most important requirement in the present invention. In this way, a demagnetizing field is formed by each of the plate thickness reduction portions by interposing the plate thickness reduction portions between the grooves. And by forming a demagnetizing field, it becomes possible to suppress an increase in iron loss when magnetic flux flows in a direction other than the rolling direction, and the problem of the present invention is solved. In the present invention, the plate thickness reduction part is formed in a flat part between the grooves, for example, a minute recess having a diameter of 200 μm or less and a depth of about 40 μm or less, or a minute part having a diameter of about 100 μm or less. It is formed by a through hole. Moreover, the said weight reduction rate is a steel plate weight reduction rate at the time of introduce | transducing a plate thickness reduction part with respect to the steel plate weight when not introducing a thickness reduction part between linear grooves.

以下に本発明を詳細に説明する。まず、本発明の端緒になった実験について述べる。
方向性電磁鋼板用の最終板厚0.23mmの冷延鋼板を用い、深さ15μm、幅70μmの溝がピッチ3mmで形成されるようなエッチングレジストを形成し、電解研磨を行って、溝を形成した。さらに、エッチングレジストを除去した後、同様の電解手法で電解条件を調整して、溝の間の平坦部に板厚減少部導入のため、直径75μm、深さ20μmの凹部を点在させた。このとき点在させる凹部の量を変化させることにより、重量減少率として、最大0.10%まで導入した(条件1)。
また、条件2として、板厚減少部導入のため、直径40μmの貫通孔を上記と同様の重量減少率分、レーザー加工により導入した。さらに、条件3では、板厚減少部導入のため直径75μm、深さ20μmの凹部と直径40μmの貫通孔を併用した。なお重量減少率分は、条件1及び条件2と同様である。さらに比較として、前記溝形成のみを行い、凹部や貫通孔を有しない試料も準備した(条件4)。条件1、条件2、条件3および条件4の処理を施した各々の材料に対して脱炭焼鈍、二次再結晶処理に供したのち平坦化焼鈍により最終製品を得た。得られた最終製品に対してJIS C2550に記載のエプスタイン法により磁気特性を測定した結果、この最終製品の特性は、いずれも磁束密度B8で1.91T以上であった。
次に、上記により得られた最終製品から3相積変圧器鉄心(鉄心重量500kg)を製作し、周波数50Hzにて鉄心脚部分の磁束密度が1.7Tとなるときの鉄損特性を測定した。この,1.7T、50Hzでの鉄損特性はワットメータを用いて無負荷損を測定した。得られた結果を図1に示す。
図1より、変圧器の鉄損は、溝加工に加え、凹部、貫通孔を重量減少率として0.01%以上0.05%以下導入することでより低くなり、溝の間の凹部、貫通孔は低鉄損化に有利に働くことが判明した。これらの改善メカニズムについては明確ではないが、0.01%以上で変圧器鉄損が改善される理由は、板厚減少部による反磁界形成により変圧器鉄心内での磁束の流れが結晶の配向した圧延方向以外に流れる場合の鉄損上昇を抑制したことによるものと考えられる。一方、0.05%を超える領域では、磁区の乱れが顕著になり逆に面内渦電流損などの鉄損増加成分が上昇したものと考えられる。
The present invention is described in detail below. First, an experiment that led to the present invention will be described.
Using a cold rolled steel sheet with a final thickness of 0.23 mm for grain oriented electrical steel sheets, an etching resist is formed such that grooves with a depth of 15 μm and a width of 70 μm are formed with a pitch of 3 mm, and electropolishing is performed to form the grooves. did. Further, after removing the etching resist, the electrolysis conditions were adjusted by the same electrolysis technique, and in order to introduce a plate thickness reduction portion into the flat portion between the grooves, concave portions having a diameter of 75 μm and a depth of 20 μm were scattered. At this time, by changing the amount of recessed portions to be scattered, a maximum weight reduction rate of 0.10% was introduced (Condition 1).
Further, as condition 2, through-holes with a diameter of 40 μm were introduced by laser processing for the same weight reduction rate as described above for the introduction of a reduced thickness portion. Further, in condition 3, a concave portion having a diameter of 75 μm and a depth of 20 μm and a through hole having a diameter of 40 μm were used in combination for the introduction of a reduced thickness portion. The weight reduction rate is the same as in conditions 1 and 2. Further, as a comparison, a sample was prepared in which only the groove formation was performed and no recess or through hole was provided (Condition 4). Each material subjected to the treatments of Condition 1, Condition 2, Condition 3, and Condition 4 was subjected to decarburization annealing and secondary recrystallization treatment, and then a final product was obtained by planarization annealing. As a result of measuring the magnetic properties of the obtained final products by the Epstein method described in JIS C2550, all the properties of the final products were 1.91 T or more in magnetic flux density B8.
Next, a three-phase transformer core (core weight 500 kg) was manufactured from the final product obtained above, and the iron loss characteristics were measured when the magnetic flux density of the core leg portion was 1.7 T at a frequency of 50 Hz. The iron loss characteristics at 1.7T and 50Hz were measured for no-load loss using a wattmeter. The obtained results are shown in FIG.
From Fig. 1, the iron loss of the transformer is reduced by introducing the recesses and through-holes in a weight reduction rate of 0.01% to 0.05% in addition to the groove processing, and the recesses and through-holes between the grooves are made of low iron. It has been found that it works favorably. Although these improvement mechanisms are not clear, the reason why the transformer iron loss is improved at 0.01% or more is that the magnetic flux flow in the transformer core is crystal oriented due to the formation of the demagnetizing field by the reduced thickness part. This is thought to be due to the suppression of iron loss increase when flowing in other directions. On the other hand, in the region exceeding 0.05%, the disturbance of the magnetic domain becomes remarkable, and conversely, the iron loss increasing component such as the in-plane eddy current loss is considered to have increased.

以上より、本発明においては、線状溝の間に、重量減少率で0.01〜0.05%に相当する板厚減少部を点在させることとする。   From the above, in the present invention, plate thickness reduction portions corresponding to 0.01 to 0.05% in weight reduction rate are interspersed between the linear grooves.

次に、本発明に好適に用いられる方向性電磁鋼板の組成について説明する。本発明の素材としては含珪素鋼であり、従来公知の成分組成のいずれも適合することができる。しかし、磁気特性向上の点から以下に示す組成を用いることが好ましい。
C:0.01〜0.10質量%(以下、単に%と称す)
Cは、熱間圧延、冷間圧延中の組織の均一微細化のみらならず、ゴス方位の発達に有用な元素であり、0.01%以上の添加が好ましい。一方、0.10%を超えて含有するとゴス方位に乱れが生じる場合があるので上限は0.10%が好ましい。
Si:2.0 〜4.5 %
Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与するが、4.5 %を上回ると冷延性が損なわれる。一方、2.0 %に満たないと比抵抗が低下するだけでなく、2次再結晶・純化のために行われる最終高温焼鈍中にα−γ変態によって結晶方位のランダム化を生じ、十分な鉄損改善効果が得られない場合がある。よって、Si量は2.0%以上4.5%以下が好ましい。
Mn:0.02〜0.12%
Mnは、熱間脆化を防止するため少なくとも0.02%程度を必要とする。一方、あまりに多すぎると磁気特性を劣化させる場合がある。よって、0.02%以上0.12%以下が好ましい。
インヒビター(析出物)としては、いわゆるMnS、MnSe系とAlN 系とがある。 MnS、 MnSe系の場合は、Se、 Sのうちから選ばれる少なくとも1種を0.005%以上0.06%以下含有することが好ましい。Se、 Sは、いずれも、方向性けい素鋼板の2次再結晶を制御するインヒビターとして有力な元素である。抑制力確保の観点からは、少なくとも0.005 %以上を必要とする。一方、0.06%を超えるとその効果が損なわれる場合がある。その下限、上限はそれぞれ0.005%、 0.06%程度とするのが好ましい。
AlN 系の場合は、AlおよびNの範囲についても上述したMnS、 MnSe系の場合と同様な理由により、Al:0.005%以上0.10%以下、N:0.004%以上0.015%以下が好ましい。なお、MnS、 MnSe系および AlN系は併用が可能である。
また、インヒビター成分としては上記したS、 Se、 Alの他、Cu、 Sn、 Cr、Ge、 Sb、 Mo、 Te、 BiおよびPなども有利に適合するので、Cu、 Sn、 Cr、Ge、 Sb、 Mo、 Te、 BiおよびPなどをそれぞれ少量併せて含有させることもできる。含有する場合の各々の成分の好適添加範囲は、Cu、 Sn、 Crが0.01%以上0.15%以下、Ge、Sb、Mo、Te、Biが0.005%以上0.1%以下、Pが0.01%以上0.2%以下である。これらの各インヒビター成分についても、単独使用および複合使用のいずれも可能である。以上のうち、C、Al、N、S、Seは、製造過程において、所期の目的を果たした後鈍化除去され、製品板中には不純物程度残留する。
Next, the composition of the grain-oriented electrical steel sheet suitably used in the present invention will be described. The material of the present invention is silicon-containing steel, and any conventionally known composition can be adapted. However, it is preferable to use the following composition from the viewpoint of improving magnetic properties.
C: 0.01 to 0.10% by mass (hereinafter simply referred to as%)
C is an element useful not only for uniform refinement of the structure during hot rolling and cold rolling but also for the development of Goss orientation, and is preferably added in an amount of 0.01% or more. On the other hand, if the content exceeds 0.10%, the Goth orientation may be disturbed, so the upper limit is preferably 0.10%.
Si: 2.0 to 4.5%
Si increases the specific resistance of the steel sheet and contributes effectively to the reduction of iron loss. However, if it exceeds 4.5%, the cold rolling property is impaired. On the other hand, if it is less than 2.0%, not only the specific resistance is lowered, but also the crystal orientation is randomized by α-γ transformation during the final high-temperature annealing performed for secondary recrystallization and purification, and sufficient iron loss is caused. The improvement effect may not be obtained. Therefore, the Si content is preferably 2.0% to 4.5%.
Mn: 0.02 to 0.12%
Mn needs to be at least about 0.02% to prevent hot embrittlement. On the other hand, if it is too much, the magnetic properties may be deteriorated. Therefore, 0.02% to 0.12% is preferable.
Inhibitors (precipitates) include so-called MnS, MnSe, and AlN. In the case of MnS and MnSe, it is preferable to contain at least one selected from Se and S in an amount of 0.005% to 0.06%. Se and S are both effective elements as inhibitors for controlling secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing restraining power, at least 0.005% is required. On the other hand, if it exceeds 0.06%, the effect may be impaired. The lower and upper limits are preferably about 0.005% and 0.06%, respectively.
In the case of AlN, Al: 0.005% or more and 0.10% or less and N: 0.004% or more and 0.015% or less are preferable for the same reason as in the case of the MnS and MnSe systems described above. MnS, MnSe, and AlN can be used together.
In addition to the above-described S, Se, Al, Cu, Sn, Cr, Ge, Sb, Mo, Te, Bi, and P are also advantageously adapted as inhibitor components, so Cu, Sn, Cr, Ge, Sb , Mo, Te, Bi, and P can also be contained in small amounts. The preferred range of addition of each component when contained is 0.01% to 0.15% for Cu, Sn, Cr, 0.005% to 0.1% for Ge, Sb, Mo, Te, Bi, and 0.01% to 0.2% for P It is as follows. Each of these inhibitor components can be used alone or in combination. Among the above, C, Al, N, S, and Se are blunted and removed after fulfilling the intended purpose in the manufacturing process, and remain in the product plate to the extent of impurities.

次に本発明の方向性電磁鋼板の製造方法について説明する。
上記成分を含有した鋼は、通常、連続鋳造機もしくは造塊によりスラブとしたのち、熱間圧延により2〜3mmの板厚に仕上げる。次いで、この熱延鋼板を、必要に応じて熱延板焼鈍したのち、1回の冷間圧延、もしくは、中間焼鈍をはさむ2回の冷間圧延により最終製品厚の冷延鋼板とする。この冷延鋼板は、通常、脱炭焼鈍後、1200℃程度までの高温箱焼鈍により、二次再結晶焼鈍と不純物の除去が行われる。箱焼鈍を完了したコイルは、板の巻ぐせを矯正するとともに、ガラス被膜を塗布焼つけするための平坦化焼鈍が施され、製品となる。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The steel containing the above components is usually made into a slab by a continuous casting machine or ingot forming, and then finished to a thickness of 2 to 3 mm by hot rolling. Next, the hot-rolled steel sheet is subjected to hot-rolled sheet annealing as necessary, and then cold-rolled steel sheet having a final product thickness is obtained by one cold rolling or two cold rolling sandwiching intermediate annealing. This cold-rolled steel sheet is usually subjected to secondary recrystallization annealing and removal of impurities by high-temperature box annealing up to about 1200 ° C. after decarburization annealing. The coil that has been subjected to the box annealing corrects the winding of the plate and is flattened and annealed to apply and bake a glass coating, resulting in a product.

本発明の特徴である磁区細分化のための溝加工および溝の間の板厚減少部の導入は、最終冷間圧延後に施しても、平坦化焼鈍完了までに施してもどちらでもよい。さらには、平坦化焼鈍後に追加工の形で実施することもできる。ただし、この場合には、絶縁効果を有するガラス被膜の塗布焼き付けを再度行う必要がある。
導入方法については、特に限定しない。溝加工については電解研磨、化学研磨、機械加工による方法があげられる。溝加工は、圧延方向と略直交する向き(鋼板幅方向)に複数の線状に有していればよく、形状、大きさ等は特に限定しない。一般的な磁束密度評価の指標であるB8(磁化力800A/mにおける磁束密度)の劣化防止の観点からは、溝断面が矩形に近い形状で、幅150μm以下、深さ40μm以下が好ましい。
溝間の凹部の導入については、電解研磨、化学研磨、機械加工による方法があげられる。一方、貫通孔の導入については、集光したレーザービームやプラズマを照射する方法があげられる。板厚減少部を導入するにあたっては、各線状溝の間に重量減少率が0.01〜0.05%となるように、例えば、微少な凹部や微少な貫通孔を点在させる。凹部や貫通孔を点在させるにあたっては、磁気特性向上の点から、各線状溝の間に均一に散らばるように導入するのが好ましい。板厚減少部の形状は問わないが、鋼板表面から凹部に陥入する部分(壁面)の傾斜は、反磁界形成の点から、なるべく急であることがよく、板厚方向に対して好ましくは60°以下、より好ましくは45°以下となることが好ましい。また、サイズは最長径(略円形の場合は直径)が200μm以下程度がB8の劣化防止や鋼板の強度を維持するために好ましい。深さは反磁界形成による鉄損低減効果を得るために5μm以上とすることが好ましい。
The groove processing for magnetic domain subdivision and the introduction of the reduced thickness portion between the grooves, which are the characteristics of the present invention, may be performed after the final cold rolling or before the completion of the flattening annealing. Furthermore, it can also be implemented in the form of additional machining after planarization annealing. However, in this case, it is necessary to re-apply and bake a glass film having an insulating effect.
The introduction method is not particularly limited. As the groove processing, there are methods by electrolytic polishing, chemical polishing, and machining. The grooving is only required to have a plurality of lines in the direction (steel plate width direction) substantially orthogonal to the rolling direction, and the shape, size, etc. are not particularly limited. From the viewpoint of preventing deterioration of B8 (magnetic flux density at a magnetizing force of 800 A / m), which is a general index for evaluating magnetic flux density, the groove cross-section is preferably a shape close to a rectangle, with a width of 150 μm or less and a depth of 40 μm or less.
Examples of the introduction of the recesses between the grooves include electrolytic polishing, chemical polishing, and machining. On the other hand, the introduction of the through hole includes a method of irradiating a focused laser beam or plasma. In introducing the plate thickness reduction portion, for example, minute recesses and minute through holes are interspersed so that the weight reduction rate is 0.01 to 0.05% between the linear grooves. When the concave portions and the through holes are scattered, it is preferable to introduce the concave portions and the through holes so that the concave portions and the through holes are uniformly scattered between the linear grooves. The shape of the thickness reduction portion is not limited, but the slope of the portion (wall surface) that intrudes into the recess from the steel plate surface is preferably as steep as possible from the viewpoint of demagnetizing field formation, preferably in the thickness direction It is preferably 60 ° or less, more preferably 45 ° or less. Further, the size is preferably about 200 μm or less for the longest diameter (in the case of a substantially circular shape) in order to prevent the deterioration of B8 and maintain the strength of the steel sheet. The depth is preferably 5 μm or more in order to obtain an effect of reducing iron loss by forming a demagnetizing field.

板厚0.27mmの方向性電磁鋼板用冷延鋼板を用いて、半量は比較例として従来の溝形成処理を、残る半量は本発明例として上記と同様の溝形成に加え、溝の間に凹部を溝形成と同一のタイミングで電解研磨処理により形成した。このとき、溝は線状溝とし、溝幅は全て平均65μm、深さは平均19μm、ピッチ3.5mmであり、電解研磨により施した。また、溝の間の凹部のサイズは、45μmφで、深さ25μmとし、重量減少率としては0.03%であった。   Using a cold rolled steel sheet for directional electrical steel sheets with a plate thickness of 0.27 mm, half the conventional groove forming treatment as a comparative example, the remaining half is a recess formed between the grooves Was formed by electrolytic polishing at the same timing as the groove formation. At this time, the grooves were linear grooves, all of the groove widths were average 65 μm, the depth was 19 μm on average, and the pitch was 3.5 mm. The size of the recesses between the grooves was 45 μmφ, the depth was 25 μm, and the weight reduction rate was 0.03%.

上記により得られた材料に対して、通常の脱炭焼鈍、二次再結晶のための箱焼鈍を施した後、平坦化焼鈍において絶縁被膜を塗布焼付けを行った。次いで、磁束密度を測定したところ、比較例のB8は1.916T、発明例のB8は1.912Tであった。なお、磁束密度の測定は、図1と同様の方法である。
次いで、絶縁被膜塗布後の材料を鉄心重量750kgの三相変圧器鉄心に加工し、鉄損特性を測定した。なお、鉄損の測定は、図1と同様の方法である。
以上により得られた結果は、比較例の鉄心脚の磁束密度1.7T、50Hzでの鉄損は690Wであり、これに対し、本発明例の鉄心脚の磁束密度1.7T、50Hzでの鉄損は660Wであった。この結果より、本発明例では鉄損の改善が認められた。
The material obtained as described above was subjected to normal decarburization annealing and box annealing for secondary recrystallization, and then an insulating film was applied and baked in flattening annealing. Next, when the magnetic flux density was measured, B8 of the comparative example was 1.916T, and B8 of the invention example was 1.912T. The measurement of the magnetic flux density is the same method as in FIG.
Next, the material after applying the insulating coating was processed into a three-phase transformer core having a core weight of 750 kg, and the iron loss characteristics were measured. The iron loss measurement is the same method as in FIG.
As a result, the iron loss at a magnetic flux density of 1.7 T and 50 Hz of the iron core leg of the comparative example is 690 W, whereas the iron loss at a magnetic flux density of 1.7 T and 50 Hz of the iron core leg of the present invention example is as follows. Was 660W. From this result, improvement of iron loss was recognized in the examples of the present invention.

本発明の方向性電磁鋼板を、例えば、変圧器の鉄心として用いた場合、低鉄損特性が得られるなど、本発明の方向性電磁鋼板は鉄損特性に優れるため、変圧器やその他の電気機器などの鉄損が低いことが要求される用途を中心に幅広い用途での使用が期待される。   For example, when the grain-oriented electrical steel sheet of the present invention is used as an iron core of a transformer, low grain loss characteristics can be obtained. It is expected to be used in a wide range of applications, especially in applications that require low iron loss such as equipment.

凹部および貫通孔による重量減少率と変圧器鉄損との関係を示した図である。It is the figure which showed the relationship between the weight reduction rate by a recessed part and a through-hole, and a transformer iron loss.

Claims (2)

鋼板幅方向に延びる複数の溝を有する方向性電磁鋼板であって、
前記各溝の間に、板厚減少部が点在して形成され、前記板厚減少部による板厚減少量の合計が、前記板厚減少部が形成される前の鋼板に対する重量減少率で0.01〜0.05%であることを特徴とする方向性電磁鋼板。
A grain-oriented electrical steel sheet having a plurality of grooves extending in the steel sheet width direction,
A plate thickness reduction portion is formed between the grooves, and the total thickness reduction amount by the plate thickness reduction portion is a weight reduction rate with respect to the steel plate before the plate thickness reduction portion is formed. A grain-oriented electrical steel sheet characterized by being 0.01 to 0.05%.
前記板厚減少部が凹部および/または貫通孔からなることを特徴とする請求項1記載の方向性電磁鋼板。   2. The grain-oriented electrical steel sheet according to claim 1, wherein the thickness-reducing portion comprises a recess and / or a through hole.
JP2006235913A 2006-08-31 2006-08-31 Oriented electrical steel sheet Active JP4876799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235913A JP4876799B2 (en) 2006-08-31 2006-08-31 Oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235913A JP4876799B2 (en) 2006-08-31 2006-08-31 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2008057001A true JP2008057001A (en) 2008-03-13
JP4876799B2 JP4876799B2 (en) 2012-02-15

Family

ID=39240097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235913A Active JP4876799B2 (en) 2006-08-31 2006-08-31 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4876799B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021250953A1 (en) 2020-06-09 2021-12-16 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105424A (en) * 1980-01-25 1981-08-21 Nippon Steel Corp Directional magnetic steel plate with excellent magnetic property
JPS57198217A (en) * 1981-05-27 1982-12-04 Nippon Steel Corp Magnetic characteristic improvidng method of directional electrical sheet
JPH07201550A (en) * 1993-12-28 1995-08-04 Kawasaki Steel Corp Unidirectional electromagnetic steel plate of low iron loss
JPH07320922A (en) * 1994-03-31 1995-12-08 Kawasaki Steel Corp One directional electromagnetic steel sheet at low iron loss

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105424A (en) * 1980-01-25 1981-08-21 Nippon Steel Corp Directional magnetic steel plate with excellent magnetic property
JPS57198217A (en) * 1981-05-27 1982-12-04 Nippon Steel Corp Magnetic characteristic improvidng method of directional electrical sheet
JPH07201550A (en) * 1993-12-28 1995-08-04 Kawasaki Steel Corp Unidirectional electromagnetic steel plate of low iron loss
JPH07320922A (en) * 1994-03-31 1995-12-08 Kawasaki Steel Corp One directional electromagnetic steel sheet at low iron loss

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021250953A1 (en) 2020-06-09 2021-12-16 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
KR20220152580A (en) 2020-06-09 2022-11-16 제이에프이 스틸 가부시키가이샤 grain oriented electrical grater
EP4163403A4 (en) * 2020-06-09 2024-01-03 Jfe Steel Corp Grain-oriented electromagnetic steel sheet
US11990261B2 (en) 2020-06-09 2024-05-21 Jfe Steel Corporation Grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4876799B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
RU2610204C1 (en) Method of making plate of textured electrical steel
JP5740854B2 (en) Oriented electrical steel sheet
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
KR20220156644A (en) Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
KR102407899B1 (en) grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
KR20170074608A (en) Grain oriented electrical steel sheet and manufacturing method for the same
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP4876799B2 (en) Oriented electrical steel sheet
JP6947248B1 (en) Directional electrical steel sheet
WO2020149341A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP4873770B2 (en) Unidirectional electrical steel sheet
JP2009155731A (en) Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
EP3947755B1 (en) Iron-silicon material suitable for medium frequency applications
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250