JP2022513169A - Directional electrical steel sheet and its manufacturing method - Google Patents

Directional electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2022513169A
JP2022513169A JP2021531053A JP2021531053A JP2022513169A JP 2022513169 A JP2022513169 A JP 2022513169A JP 2021531053 A JP2021531053 A JP 2021531053A JP 2021531053 A JP2021531053 A JP 2021531053A JP 2022513169 A JP2022513169 A JP 2022513169A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
grain
oriented electrical
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021531053A
Other languages
Japanese (ja)
Other versions
JP7312255B2 (en
Inventor
コ,ヒョン-ソク
ソ,ジン-ウク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2022513169A publication Critical patent/JP2022513169A/en
Priority to JP2023062393A priority Critical patent/JP2023089089A/en
Application granted granted Critical
Publication of JP7312255B2 publication Critical patent/JP7312255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】本発明の目的は、複数の冷間圧延および脱炭焼鈍工程を含むことによって、磁性を向上させた方向性電磁鋼板およびその製造方法を提供することである。【解決手段】本発明による方向性電磁鋼板の製造方法は、スラブを加熱する段階、スラブを熱間圧延して熱延鋼板を製造する段階、熱延鋼板を熱延板焼鈍する段階、熱延板焼鈍された熱延鋼板を1次冷間圧延する段階、1次冷間圧延された鋼板を脱炭焼鈍する段階、脱炭焼鈍が完了した鋼板を2次冷間圧延する段階、2次冷間圧延が完了した鋼板を連続焼鈍する段階、および連続焼鈍された鋼板をバッチ焼鈍する段階を含むことを特徴とする。【選択図】 図1PROBLEM TO BE SOLVED: To provide a grain-oriented electrical steel sheet having improved magnetism and a method for manufacturing the same by including a plurality of cold rolling and decarburization annealing steps. SOLUTION: The method for manufacturing a directional electromagnetic steel sheet according to the present invention is a step of heating a slab, a step of hot rolling a slab to manufacture a hot-rolled steel sheet, a step of hot-rolling a hot-rolled steel sheet, and a hot-rolling step. The stage of primary cold rolling of hot-rolled sheet that has been plate-baked, the stage of decarburizing and annealing the primary cold-rolled steel sheet, and the stage of secondary cold rolling of a steel sheet that has been decarburized and annealed. It is characterized by including a step of continuously annealing a steel sheet for which interrolling has been completed, and a step of batch annealing the continuously annealed steel sheet. [Selection diagram] Fig. 1

Description

本発明は方向性電磁鋼板およびその製造方法に係り、より詳しくは複数の冷間圧延および脱炭焼鈍工程を含むことによって、磁性を向上させた方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a grain-oriented electrical steel sheet and a method for producing the same, and more particularly to a grain-oriented electrical steel sheet having improved magnetism by including a plurality of cold rolling and decarburization annealing steps and a method for producing the same.

方向性電磁鋼板は、鋼板の結晶方位が{110}<001>である、別名ゴス(Goss)方位を有する結晶粒からなる圧延方向の磁気的特性に優れた軟磁性材料である。
このような方向性電磁鋼板は、スラブ加熱後に熱間圧延、熱延板焼鈍、冷間圧延を通じて最終厚さに圧延された後、1次再結晶焼鈍と2次再結晶形成のために高温焼鈍を経て製造される。
通常、方向性電磁鋼板の2次再結晶焼鈍工程は、低い昇温率および高温での長時間純化焼鈍が必要であるため、エネルギー消耗が激しい工程といえる。このような極限の工程を経ながら2次再結晶を形成して優れた磁気的特性を有する方向性電磁鋼板を製造するため、次のような工程上の困難が発生する。
The grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction and composed of crystal grains having a crystal orientation of {110} <001>, which is also known as a Goss orientation.
Such grain-oriented electrical steel sheets are rolled to the final thickness through hot rolling, hot rolling, and cold rolling after slab heating, and then high-temperature annealing for primary recrystallization annealing and secondary recrystallization formation. Manufactured via.
Usually, the secondary recrystallization annealing step of grain-oriented electrical steel sheets requires a low temperature rise rate and long-term purification annealing at a high temperature, so that it can be said to be a process that consumes a lot of energy. Since secondary recrystallization is formed through such an extreme process to produce a grain-oriented electrical steel sheet having excellent magnetic properties, the following process difficulties occur.

第一に、コイル状態での熱処理によるコイルの外巻部と内巻部との温度偏差が発生して各部分で同一の熱処理パターンを適用することができないため、外巻部と内巻部との磁性偏差が発生する。第二に、脱炭焼鈍後にMgOを表面にコーティングし、高温焼鈍中にベースコーティング(Base coating)を形成する過程で多様な表面欠陥が発生するため、実収率を低下させる。第三に、脱炭焼鈍が終わった脱炭板をコイル形態で巻いた後に高温焼鈍後、再び平坦化焼鈍を経て絶縁コーティングをするため、生産工程が3段階に分けられることによって実収率が低下するという問題点が発生する。
このような工程上の制約を克服するために、脱炭焼鈍および冷間圧下率を調節して2次再結晶現象を利用せずに、正常結晶成長を利用する技術が提案されている。しかし、連続焼鈍では水分の短い熱処理時間によって最終結晶粒の結晶粒成長に限界があり、最適の粒径を有する結晶粒として成長することができず、鉄損改善に限界が存在する。
First, since the same heat treatment pattern cannot be applied to each part due to a temperature deviation between the outer winding part and the inner winding part due to the heat treatment in the coil state, the outer winding part and the inner winding part Magnetic anomaly occurs. Secondly, after decarburization annealing, MgO is coated on the surface, and various surface defects occur in the process of forming a base coating during high temperature annealing, which lowers the actual yield. Thirdly, the decarburized plate that has been decarburized and annealed is wound in a coil form, then annealed at a high temperature, then flattened and annealed again, and then an insulating coating is applied. There is a problem of doing.
In order to overcome such process restrictions, a technique has been proposed in which normal crystal growth is utilized without utilizing the secondary recrystallization phenomenon by adjusting the decarburization annealing and the cold reduction rate. However, in continuous annealing, there is a limit to the crystal grain growth of the final crystal grains due to the short heat treatment time of water content, and it is not possible to grow as crystal grains having an optimum particle size, and there is a limit to the improvement of iron loss.

本発明が目的とするところは、複数の冷間圧延および脱炭焼鈍工程を含むことによって、磁性を向上させた方向性電磁鋼板およびその製造方法を提供することである。 An object of the present invention is to provide a grain-oriented electrical steel sheet having improved magnetism and a method for manufacturing the same by including a plurality of cold rolling and decarburization annealing steps.

本発明による方向性電磁鋼板の製造方法は、スラブを加熱する段階、スラブを熱間圧延して熱延鋼板を製造する段階、熱延鋼板を熱延板焼鈍する段階、熱延板焼鈍された熱延鋼板を1次冷間圧延する段階、1次冷間圧延された鋼板を脱炭焼鈍する段階、脱炭焼鈍が完了した鋼板を2次冷間圧延する段階、2次冷間圧延が完了した鋼板を連続焼鈍する段階、および連続焼鈍された鋼板をバッチ焼鈍する段階を含むことを特徴とする。 The method for producing a directional electromagnetic steel plate according to the present invention includes a stage of heating a slab, a stage of hot rolling the slab to produce a hot-rolled steel plate, a stage of hot-rolling a hot-rolled steel plate, and a stage of hot-rolling a hot-rolled plate. The stage of primary cold rolling of a hot-rolled steel sheet, the stage of decarburizing and annealing a primary cold-rolled steel sheet, the stage of secondary cold rolling of a steel sheet that has been decarburized and tempered, and the stage of secondary cold rolling are completed. It is characterized by including a step of continuously rolling the rolled steel sheet and a step of batch rolling the continuously rolled-rolled steel sheet.

前記スラブは、重量%で、Si:1.0%~4.0%、C:0.1%~0.4%を含み、残部がFeおよび不可避な不純物からなり、
Mn:0.1重量%以下およびS:0.005重量%以下をさらに含むことをとくちょうとする。
The slab contains, by weight, Si: 1.0% to 4.0%, C: 0.1% to 0.4%, with the balance consisting of Fe and unavoidable impurities.
It is intended to further contain Mn: 0.1% by weight or less and S: 0.005% by weight or less.

前記スラブを熱延板焼鈍する段階で、脱炭過程を含み、
熱延板焼鈍する段階は、850℃~1000℃の温度および露点温度50℃~70℃で焼鈍し、
1次冷間圧延された鋼板を脱炭焼鈍する段階は、850℃~1000℃の温度および露点温度50℃~70℃で焼鈍することを特徴とする。
At the stage of hot rolling and annealing the slab, including the decarburization process,
In the stage of annealing the hot-rolled sheet, the sheet is annealed at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C.
The stage of decarburizing and annealing a primary cold-rolled steel sheet is characterized by annealing at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C.

1次冷間圧延された鋼板を脱炭焼鈍する段階は、オーステナイト単相領域またはフェライトおよびオーステナイトの複合相が存在する領域で焼鈍し、
1次冷間圧延された鋼板を脱炭焼鈍する段階の後、結晶粒の平均直径は150~250μmとなり、
1次冷間圧延された鋼板を脱炭焼鈍する段階および前記脱炭焼鈍が完了した鋼板を2次冷間圧延する段階は、2回以上繰り返されることを特徴とする。
The step of decarburizing and annealing the primary cold-rolled steel sheet is to anneaate in the austenite single-phase region or the region where the ferrite and austenite composite phase is present.
After the stage of decarburizing and annealing the primary cold-rolled steel sheet, the average diameter of the crystal grains became 150 to 250 μm.
The step of decarburizing and annealing the primary cold-rolled steel sheet and the step of secondary cold-rolling the steel sheet for which the decarburization and annealing has been completed are repeated two or more times.

連続焼鈍する段階は、850℃~1000℃の温度および露点温度50℃~70℃で
1~5分間焼鈍し、
バッチ焼鈍する段階は、1000℃~1200℃の温度および露点温度-20℃以下で
1~8時間焼鈍し、
バッチ焼鈍する段階の後、{110}<001>から15゜以下の角度をなす結晶粒の体積分率が40%以上であり、
全体結晶粒中の直径が1000μm~5000μmである結晶粒の面積分率が20~70%であることを特徴とする。
In the continuous annealing step, annealing is performed at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C for 1 to 5 minutes.
The batch annealing step is to anneal at a temperature of 1000 ° C to 1200 ° C and a dew point temperature of -20 ° C or lower for 1 to 8 hours.
After the batch annealing step, the volume fraction of the crystal grains forming an angle of 15 ° or less from {110} <001> is 40% or more.
It is characterized in that the area fraction of the crystal grains having a diameter of 1000 μm to 5000 μm in the whole crystal grains is 20 to 70%.

本発明による方向性電磁鋼板は、全体結晶粒中の直径が1000μm~5000μmである結晶粒の面積分率が20~70%であることを特徴とする。 The grain-oriented electrical steel sheet according to the present invention is characterized in that the area fraction of the crystal grains having a diameter of 1000 μm to 5000 μm in the whole crystal grains is 20 to 70%.

電磁鋼板は、重量%で、Si:1.0%~4.0%、C:0.005%以下(0%を除く。)を含み、残部がFeおよび不可避な不純物からなり、
Mn:0.1重量%以下およびS:0.005重量%以下をさらに含み、
{110}<001>から15゜以下の角度をなす結晶粒の体積分率が40%以上であり、
外接円の直径(D1)と内接円の直径(D2)との比(D2/D1)が0.5以上であるゴス結晶粒が全体ゴス結晶粒中の95面積%以上であることを特徴とする。
The electrical steel sheet contains Si: 1.0% to 4.0%, C: 0.005% or less (excluding 0%) in weight%, and the balance consists of Fe and unavoidable impurities.
Mn: 0.1% by weight or less and S: 0.005% by weight or less are further contained.
The volume fraction of the crystal grains forming an angle of 15 ° or less from {110} <001> is 40% or more.
The ratio (D2 / D1) of the diameter of the circumscribed circle (D1) to the diameter of the inscribed circle (D2) is 0.5 or more. And.

本発明による方向性電磁鋼板は、正常結晶成長を利用しながら、直径が大きいゴス結晶粒を安定的に形成させることによって磁気的特性に優れており、
また、結晶粒成長抑制剤としてAlNおよびMnSを使用しないため、1300℃以上の高温でスラブを加熱する必要がない。
また、析出物であるN、Sを除去することが不要となり、純化焼鈍時間が相対的に短くなり得るため、生産性が向上することができ、
また、幅方向に亀裂した磁気的特性を有する方向性電磁鋼板を提供することができる。
The grain-oriented electrical steel sheet according to the present invention has excellent magnetic properties by stably forming goth crystal grains having a large diameter while utilizing normal crystal growth.
Further, since AlN and MnS are not used as the crystal grain growth inhibitor, it is not necessary to heat the slab at a high temperature of 1300 ° C. or higher.
Further, it is not necessary to remove N and S which are precipitates, and the purification annealing time can be relatively short, so that the productivity can be improved.
Further, it is possible to provide a grain-oriented electrical steel sheet having magnetic properties cracked in the width direction.

発明材2で製造した方向性電磁鋼板の表面を走査電子顕微鏡で観察した写真である。It is a photograph which observed the surface of the grain-oriented electrical steel sheet manufactured by the invention material 2 with a scanning electron microscope. 比較材2で製造した方向性電磁鋼板の表面を走査電子顕微鏡で観察した写真である。It is a photograph which observed the surface of the grain-oriented electrical steel sheet manufactured by the comparative material 2 with a scanning electron microscope.

第1、第2および第3などの用語は、多様な部分、成分、領域、層および/またはセクションを説明するために使用されるが、これらに限定されない。これら用語は、ある部分、成分、領域、層またはセクションを他の部分、成分、領域、層またはセクションと区別するためだけに使用される。したがって、以下で叙述する第1部分、成分、領域、層またはセクションは、本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションと言及され得る。
ここで使用される専門用語は、単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数の形態は、文言がこれと明確に反対の意味を示さない限り、複数の形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるものではない。
ある部分が他の部分の「上に」あると言及する場合、これは他の部分の「直上に」にあるか、またはその間にまた他の部分が介され得る。対照的に、ある部分が他の部分の「直上に」あると言及する場合、その間にまた他の部分が介されない。
異なって定義しなかったが、ここで使用される技術用語および科学用語を含む全ての用語は、本発明が属する技術分野における通常の知識を有する者が一般的に理解する意味と同一の意味を有する。通常使用される辞書に定義された用語は、関連技術文献と現在開示された内容に符合する意味を有すると追加解釈され、定義されない限り、理想的または非常に公式的な意味に解釈されない。
また、特に言及しない限り、%は重量%を意味し、1ppmは0.0001重量%である。
本発明の一実施形態で追加元素をさらに含むことの意味は、追加元素の追加量の分、残部である鉄(Fe)を代替して含むことを意味する。
Terms such as first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and / or sections. These terms are used only to distinguish one part, component, area, layer or section from another part, component, area, layer or section. Therefore, the first part, component, region, layer or section described below may be referred to as the second part, component, region, layer or section without departing from the scope of the present invention.
The terminology used herein is merely to refer to a particular embodiment and is not intended to limit the invention. The singular form used herein also includes multiple forms unless the wording has a clear opposite meaning. As used herein, the meaning of "contains" embodies a particular property, region, integer, stage, behavior, element and / or component and other properties, region, integer, stage, behavior, element and / or. It does not exclude the presence or addition of ingredients.
When referring to one part being "above" another part, it may be "directly above" the other part, or another part may be mediated in between. In contrast, when one mentions that one part is "directly above" another, no other part is intervened in the meantime.
Although not defined differently, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by a person of ordinary knowledge in the art to which the invention belongs. Have. Terms defined in commonly used dictionaries are additionally interpreted as having a meaning consistent with the relevant technical literature and currently disclosed content, and are not interpreted in an ideal or very formal sense unless defined.
Further, unless otherwise specified,% means% by weight, and 1 ppm is 0.0001% by weight.
The meaning of further containing an additional element in one embodiment of the present invention means that iron (Fe), which is the balance, is contained in place of the additional amount of the additional element.

以下、本発明の実施形態について本発明が属する技術分野における通常の知識を有する者が容易に実施することができるように詳細に説明する。しかし、本発明は多様な異なる形態に実現することができ、ここで説明する実施形態に限定されない。
本発明による方向性電磁鋼板の製造方法は、スラブを加熱する段階、スラブを熱間圧延して熱延鋼板を製造する段階、熱延鋼板を熱延板焼鈍する段階、熱延板焼鈍された熱延鋼板を1次冷間圧延する段階、1次冷間圧延された鋼板を脱炭焼鈍する段階、脱炭焼鈍が完了した鋼板を2次冷間圧延する段階、2次冷間圧延が完了した鋼板を連続焼鈍する段階、および連続焼鈍された鋼板をバッチ焼鈍する段階を含む。
Hereinafter, embodiments of the present invention will be described in detail so that those having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the embodiments. However, the present invention can be realized in a variety of different forms and is not limited to the embodiments described herein.
The method for producing a directional electromagnetic steel plate according to the present invention includes a stage of heating a slab, a stage of hot rolling the slab to produce a hot-rolled steel plate, a stage of hot-rolling a hot-rolled steel plate, and a stage of hot-rolling a hot-rolled plate. The stage of primary cold rolling of a hot-rolled steel sheet, the stage of decarburizing and annealing a primary cold-rolled steel sheet, the stage of secondary cold rolling of a steel sheet that has been decarburized and tempered, and the stage of secondary cold rolling are completed. It includes a step of continuously rolling a rolled steel sheet and a step of batch rolling a continuously rolled steel sheet.

以下、各段階別に具体的に説明する。
まず、スラブを加熱する。
スラブは、重量%で、Si:1.0%~4.0%、C:0.1%~0.4%を含み、残部がFeおよび不可避な不純物からなる。
組成を限定した理由は、下記のとおりである。
シリコン(Si)は、電磁鋼板の磁気異方性を低め、比抵抗を増加させて鉄損を改善する。Si含有量が1.0重量%未満である場合には鉄損が劣位になり、4.0重量%超過である場合、脆性が増加する。したがって、スラブおよび最終焼鈍段階の後に方向性電磁鋼板でのSiの含有量は、1.0~4.0重量%であり得る。より具体的にSiの含有量は1.5~3.5重量%である。
Hereinafter, each step will be specifically described.
First, heat the slab.
The slab contains Si: 1.0% to 4.0%, C: 0.1% to 0.4% by weight, and the balance consists of Fe and unavoidable impurities.
The reasons for limiting the composition are as follows.
Silicon (Si) lowers the magnetic anisotropy of electrical steel sheets, increases resistivity, and improves iron loss. When the Si content is less than 1.0% by weight, the iron loss becomes inferior, and when it exceeds 4.0% by weight, the brittleness increases. Therefore, the Si content in grain-oriented electrical steel sheets after the slab and final annealing steps can be 1.0-4.0% by weight. More specifically, the Si content is 1.5 to 3.5% by weight.

炭素(C)は、中間脱炭焼鈍および最終脱炭焼鈍中に表層部のGoss結晶粒が中心部に拡散するために中心部のCが表層部に抜け出る過程が必要であるため、スラブ中のCの含有量は0.1~0.4重量%である。より具体的にスラブ中のCの含有量は0.15~0.3重量%である。また、脱炭が完了した最終焼鈍段階の後に最終方向性電磁鋼板での炭素量は0.0050重量%以下であり、より具体的に0.002重量%以下である。
スラブは、Mn:0.1重量%以下およびS:0.005重量%以下をさらに含む。
Carbon (C) in the slab requires a process in which C in the central part escapes to the surface layer in order for the Goss crystal grains in the surface layer to diffuse to the central part during the intermediate decarburization annealing and the final decarburization annealing. The content of C is 0.1 to 0.4% by weight. More specifically, the content of C in the slab is 0.15 to 0.3% by weight. Further, after the final annealing step in which decarburization is completed, the carbon content in the final grain-oriented electrical steel sheet is 0.0050% by weight or less, and more specifically, 0.002% by weight or less.
The slab further contains Mn: 0.1% by weight or less and S: 0.005% by weight or less.

MnおよびSは、MnS析出物を形成して脱炭過程中に中心部に拡散するGoss結晶粒の成長を妨害する。したがって、Mn、Sは添加されないことが好ましい。しかし、製鋼工程中に不可避に混入される量を考慮してスラブおよび最終焼鈍段階の後に方向性電磁鋼板でのMn、Sは、Mn:0.1重量%以下、S:0.005重量%以下にそれぞれ制御する。
残部は、Feおよび不可避な不純物からなる。不可避な不純物については、製鋼段階および方向性電磁鋼板の製造工程過程で混入される不純物であり、これは当該分野で広く知られているため、具体的な説明は省略する。具体的に、Al、N、Ti、Mg、Caのような成分は、鋼中で酸素と反応して酸化物を形成するようになり、強力抑制することが必要であるため、それぞれの成分別に0.005重量%以下で管理することができる。本発明の一実施形態で前述した合金成分以外に元素の追加を排除するのではなく、本発明の技術思想を害しない範囲内で多様に含まれる。追加元素をさらに含む場合、残部であるFeを代替して含む。
Mn and S form MnS precipitates and interfere with the growth of Goss crystal grains that diffuse to the center during the decarburization process. Therefore, it is preferable that Mn and S are not added. However, in consideration of the amount inevitably mixed in during the steelmaking process, Mn and S in the grain-oriented electrical steel sheet after the slab and the final annealing step are Mn: 0.1% by weight or less and S: 0.005% by weight. It is controlled as follows.
The balance consists of Fe and unavoidable impurities. The unavoidable impurities are impurities mixed in the steelmaking stage and the manufacturing process of the grain-oriented electrical steel sheet, and since they are widely known in the art, specific description thereof will be omitted. Specifically, components such as Al, N, Ti, Mg, and Ca react with oxygen in steel to form oxides, and it is necessary to strongly suppress them. It can be controlled at 0.005% by weight or less. In one embodiment of the present invention, the addition of elements other than the alloy components described above is not excluded, but various elements are included within a range that does not impair the technical idea of the present invention. When an additional element is further contained, the remaining Fe is contained in place of Fe.

より具体的に、スラブは、重量%で、Si:1.0%~4.0%、C:0.1%~0.4%含み、残部はFeおよび不可避な不純物からなる。
スラブ加熱温度は、通常の加熱温度より高い1100℃~1350℃である。スラブ加熱時に温度が高い場合、熱延組織が粗大化して磁性に悪影響を与えるようになる問題点がある。しかし、本発明による方向性電磁鋼板の製造方法は、スラブの炭素含有量が比較的に多いため、スラブ再加熱温度が高くても熱延組織が粗大化せず、通常の場合より高い温度で再加熱することによって、熱間圧延時にはさらに有利である。
More specifically, the slab contains, by weight, Si: 1.0% to 4.0%, C: 0.1% to 0.4%, and the balance consists of Fe and unavoidable impurities.
The slab heating temperature is 1100 ° C to 1350 ° C, which is higher than the normal heating temperature. If the temperature is high when the slab is heated, there is a problem that the hot-rolled structure becomes coarse and adversely affects the magnetism. However, in the method for manufacturing grain-oriented electrical steel sheets according to the present invention, since the carbon content of the slab is relatively high, the hot-rolled structure does not become coarse even if the slab reheating temperature is high, and the temperature is higher than usual. Reheating is even more advantageous during hot rolling.

次に、スラブを熱間圧延して熱延鋼板を製造する。
熱間圧延は、最終冷間圧延段階で適正な圧延率を適用して最終の製品厚さに製造できるように熱間圧延によって厚さ1.5~4.0mmの熱延板として製造する。
熱延温度や冷却温度は、特に制限されないが、磁性が優れた一例として熱延終了温度を950℃以下にし、冷却を水によって急冷して600℃以下で巻き取る。
次に、熱延鋼板を熱延板焼鈍する。この時、熱延板焼鈍は、脱炭過程を含む。具体的に熱延板焼鈍は、850℃~1000℃の温度および露点温度50℃~70℃で焼鈍する。前述した焼鈍後、1000~1200℃の温度および露点温度0℃以下で追加焼鈍する。熱延板焼鈍を実施した後、酸洗する。
Next, the slab is hot-rolled to produce a hot-rolled steel sheet.
Hot rolling is manufactured as a hot rolled plate with a thickness of 1.5 to 4.0 mm by hot rolling so that an appropriate rolling ratio can be applied at the final cold rolling stage to produce the final product thickness.
The hot rolling temperature and the cooling temperature are not particularly limited, but as an example of excellent magnetism, the hot rolling end temperature is set to 950 ° C. or lower, and the cooling is rapidly cooled with water and wound up at 600 ° C. or lower.
Next, the hot-rolled steel sheet is annealed. At this time, the hot-rolled sheet annealing involves a decarburization process. Specifically, the hot-rolled sheet is annealed at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C. After the above-mentioned annealing, additional annealing is performed at a temperature of 1000 to 1200 ° C. and a dew point temperature of 0 ° C. or lower. After performing hot-rolled sheet annealing, pickling is performed.

次に、1次冷間圧延を実施して冷延鋼板を製造する。
通常の方向性電磁鋼板の製造工程において冷間圧延は、90%に近い高圧下率で1回実施することが効果的であるされている。これが1次再結晶粒中のGoss結晶粒だけが粒子成長するのに有利な環境を作るためである。しかし、本発明による方向性電磁鋼板の製造方法は、Goss方位結晶粒の異常な粒子成長を利用せず、脱炭焼鈍および冷間圧延によって発生した表層部のGoss結晶粒を内部拡散させるものであるため、表層部でGoss方位結晶粒を多数分布するように形成することが有利である。
したがって、冷間圧延時に圧下率50%~70%で冷間圧延を実施する場合、Goss集合組織が表層部で多数形成される。より具体的に55%~65%である。
次に、冷延鋼板を脱炭焼鈍する。この時、脱炭焼鈍する段階は、オーステナイト単相領域またはフェライトおよびオーステナイトの複合相が存在する領域で実施する。具体的に850℃~1000℃温度および露点温度50℃~70℃で焼鈍する。また、雰囲気は、水素および窒素の混合ガス雰囲気である。また、脱炭焼鈍時に脱炭量は、0.0300重量%~0.0600重量%でありる。前述した焼鈍後、1000~1200℃の温度および露点温度0℃以下で追加焼鈍する。
このような脱炭焼鈍過程で電磁鋼板の表面の結晶粒の大きさは、粗大に成長するが、電磁鋼板の内部の結晶粒は微細な組織として残る。このような脱炭焼鈍後、結晶粒の平均直径は150μm~250μmである。この時、結晶粒は表面フェライト結晶粒である。また結晶粒の直径とは、結晶粒と同一の面積を有する仮想の円を想定して、その円の直径を意味する。
Next, primary cold rolling is carried out to manufacture a cold-rolled steel sheet.
In the normal manufacturing process of grain-oriented electrical steel sheets, it is effective to carry out cold rolling once at a high pressure reduction rate close to 90%. This is because only the Goss crystal grains in the primary recrystallized grains create an advantageous environment for grain growth. However, the method for producing a directional electromagnetic steel sheet according to the present invention does not utilize the abnormal grain growth of the Goss directional crystal grains, and internally diffuses the Goss crystal grains of the surface layer portion generated by decarburization annealing and cold rolling. Therefore, it is advantageous to form a large number of Goss-oriented crystal grains in the surface layer portion.
Therefore, when cold rolling is carried out at a rolling reduction of 50% to 70% during cold rolling, a large number of Goss textures are formed on the surface layer portion. More specifically, it is 55% to 65%.
Next, the cold-rolled steel sheet is decarburized and annealed. At this time, the decarburization annealing step is carried out in the austenite single-phase region or the region in which the ferrite and austenite composite phase is present. Specifically, it is annealed at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C. The atmosphere is a mixed gas atmosphere of hydrogen and nitrogen. Further, the amount of decarburized during annealing is 0.0300% by weight to 0.0600% by weight. After the above-mentioned annealing, additional annealing is performed at a temperature of 1000 to 1200 ° C. and a dew point temperature of 0 ° C. or lower.
In such a decarburization annealing process, the size of the crystal grains on the surface of the electrical steel sheet grows coarsely, but the crystal grains inside the electrical steel sheet remain as a fine structure. After such decarburization annealing, the average diameter of the crystal grains is 150 μm to 250 μm. At this time, the crystal grains are surface ferrite crystal grains. Further, the diameter of the crystal grain means the diameter of the circle assuming a virtual circle having the same area as the crystal grain.

次に、脱炭焼鈍が完了した鋼板を2次冷間圧延する。2次冷間圧延は、1次冷間圧延と同一であるため、具体的な説明は省略する。
前述した冷延鋼板を脱炭焼鈍する段階および脱炭焼鈍が完了した鋼板を2次冷間圧延する段階は、2回以上繰り返して実施することができる。2回以上繰り返して実施することによって、Goss集合組織が表層部で多数形成される。
次に、2次冷間圧延が完了した鋼板を連続焼鈍する。
連続焼鈍する段階は、850℃~1000℃の温度および露点温度50℃~70℃で焼鈍する。連続焼鈍前の冷延板は、脱炭焼鈍が行われて炭素量がスラブの炭素重量に対して40%~60%残っている状態である。したがって、連続焼鈍する段階では、炭素が抜け出ながら表層部に形成された結晶粒が内部に拡散する。連続焼鈍する段階では、鋼板中の炭素量を0.005重量%以下になるように脱炭を実施することができる。
Next, the steel sheet that has been decarburized and annealed is secondarily cold-rolled. Since the secondary cold rolling is the same as the primary cold rolling, a specific description thereof will be omitted.
The steps of decarburizing and annealing the cold-rolled steel sheet and the secondary cold rolling of the steel sheet that has been decarburized and annealed can be repeated two or more times. By repeating the process two or more times, a large number of Goss textures are formed on the surface layer.
Next, the steel sheet for which the secondary cold rolling has been completed is continuously annealed.
The step of continuous annealing is annealing at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C. The cold-rolled plate before continuous annealing is in a state where 40% to 60% of the carbon content remains with respect to the carbon weight of the slab after decarburization annealing. Therefore, in the stage of continuous annealing, the crystal grains formed on the surface layer portion diffuse into the inside while carbon escapes. At the stage of continuous annealing, decarburization can be carried out so that the amount of carbon in the steel sheet is 0.005% by weight or less.

連続焼鈍する段階では、1~5分間焼鈍する。連続焼鈍する段階の目的は、鋼中の炭素(Carbon)を脱炭後、結晶粒を一定の大きさ以上に成長させることにある。その理由は、脱炭およびその直後の結晶粒成長の過程を通じて持続的にGoss結晶粒の分率が増えるためである。これはGoss結晶粒が周辺のNon-Goss結晶粒を蚕食しながら成長するためである。しかし、連続焼鈍の生産性を考慮して焼鈍時間が数分内に制限されるため、結晶成長が制約的であるといえる。本発明では、追加的なバッチ焼鈍を通じて結晶成長を誘発して鉄損減少に効果があることを主張する。この時、Goss分率の増加は起こらないが、結晶粒の大きさの増加による効果によって鉄損の減少が起こる。
連続焼鈍する段階の後、焼鈍分離剤を塗布する。焼鈍分離剤は、当該技術分野に広く知られているため、具体的な説明は省略する。例えば、MgOを主成分とする焼鈍分離剤を使用することができる。
In the stage of continuous annealing, annealing is performed for 1 to 5 minutes. The purpose of the continuous annealing step is to grow the crystal grains to a certain size or more after decarburizing the carbon in the steel. The reason is that the fraction of Goss crystal grains continuously increases through the process of decarburization and the grain growth immediately after that. This is because the Goss crystal grains grow while eating the surrounding Non-Goss crystal grains. However, it can be said that the crystal growth is restricted because the annealing time is limited to a few minutes in consideration of the productivity of continuous annealing. The present invention claims that it is effective in reducing iron loss by inducing crystal growth through additional batch annealing. At this time, the Goss fraction does not increase, but the iron loss decreases due to the effect of increasing the size of the crystal grains.
After the step of continuous annealing, an annealing separator is applied. Since the annealing separator is widely known in the art, a specific description thereof will be omitted. For example, an annealing separator containing MgO as a main component can be used.

次に、連続焼鈍された鋼板をバッチ焼鈍する。バッチ(batch)焼鈍とは、鋼板をコイル状で巻き取って焼鈍することを意味する。
バッチ焼鈍する段階では、連続焼鈍段階で拡散したゴス方位を有する集合組織が成長する。本発明による方向性電磁鋼板の製造方法では、ゴス集合組織は従来の異常な粒子成長によって結晶粒が成長した場合とは異なり、結晶粒の直径が5mm以下である。具体的に1000um~5000umの直径を有する結晶粒分率が増加する。したがって、従来の異常な結晶成長によって製造される方向性電磁鋼板に比べて結晶粒の大きさが小さいゴス結晶粒が多数個存在するが、その結晶粒の大きさは鉄損を最大限に下げることができるように適切な大きさで調節される。より具体的に全体結晶粒中の直径が1000μm~5000μmである結晶粒の面積分率が20~70%である。この時、結晶粒の面積分率は、鋼板の圧延面(ND面)と平行な面で測定したものである。より具体的に全体結晶粒中の直径が1000μm~5000μmである結晶粒の面積分率が20~60%である。さらに具体的に全体結晶粒中の直径が1000μm~5000μmである結晶粒の面積分率が20~50%である。
バッチ焼鈍する段階は、1000℃~1200℃温度および露点温度-20℃以下で焼鈍することができる。
またバッチ焼鈍は、1~8時間焼鈍する。より具体的に2~5時間焼鈍する。
また、本発明による方向性電磁鋼板の製造方法では、ゴス分率が高いため、磁性が向上する。具体的に{110}<001>から15゜以下の角度をなす結晶粒の体積分率が40%以上であり、より具体的に40%~75%、さらに具体的に45~60%である。
Next, the continuously annealed steel sheet is batch annealed. Batch annealing means winding and annealing a steel sheet in a coil shape.
In the batch annealing step, an aggregate with a diffused Goth orientation grows in the continuous annealing step. In the method for producing grain-oriented electrical steel sheets according to the present invention, the Goth texture has a crystal grain diameter of 5 mm or less, unlike the case where crystal grains grow due to the conventional abnormal particle growth. Specifically, the grain fraction with a diameter of 1000 um to 5000 um increases. Therefore, there are many Goth crystal grains whose crystal grain size is smaller than that of the conventional grain-oriented electrical steel sheet manufactured by abnormal crystal growth, but the crystal grain size minimizes iron loss. Adjusted to the appropriate size so that it can be. More specifically, the surface integral of the crystal grains having a diameter of 1000 μm to 5000 μm in the whole crystal grains is 20 to 70%. At this time, the surface integral of the crystal grains was measured on a plane parallel to the rolled plane (ND plane) of the steel sheet. More specifically, the surface integral of the crystal grains having a diameter of 1000 μm to 5000 μm in the whole crystal grains is 20 to 60%. More specifically, the surface integral of the crystal grains having a diameter of 1000 μm to 5000 μm in the whole crystal grains is 20 to 50%.
The batch annealing step can be annealed at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of −20 ° C. or lower.
The batch annealing is annealed for 1 to 8 hours. More specifically, it is annealed for 2 to 5 hours.
Further, in the method for manufacturing grain-oriented electrical steel sheets according to the present invention, the magnetism is improved because the goth fraction is high. Specifically, the volume fraction of the crystal grains forming an angle of 15 ° or less from {110} <001> is 40% or more, more specifically 40% to 75%, and more specifically 45 to 60%. ..

本発明による方向性電磁鋼板は、全体結晶粒中の直径が1000μm~5000μmである結晶粒の面積分率が20~70%である。
結晶粒の面積分布については、方向性電磁鋼板の製造方法と関連して詳細に説明したため、重複する説明は省略する。
電磁鋼板は、重量%で、Si:1.0%~4.0%、C:0.005%以下(0%を除く。)を含み、残部はFeおよび不可避な不純物からなる。
電磁鋼板は、Mn:0.1重量%以下およびS:0.005重量%以下をさらに含む。
Cを除き、スラブの成分限定内容と同一であるため、重複する説明は省略する。
{110}<001>から15゜以下の角度をなす結晶粒の体積分率が40%以上である。
外接円の直径(D1)と内接円の直径(D2)との比(D2/D1)が0.5以上であるゴス結晶粒が全体ゴス結晶粒中の95面積%以上である。本発明特有の製造工程によって前述した形態の結晶粒が形成される。
The grain-oriented electrical steel sheet according to the present invention has an area fraction of crystal grains having a diameter of 1000 μm to 5000 μm in the whole crystal grains of 20 to 70%.
Since the area distribution of crystal grains has been described in detail in relation to the method for manufacturing grain-oriented electrical steel sheets, overlapping description will be omitted.
The electrical steel sheet contains Si: 1.0% to 4.0% and C: 0.005% or less (excluding 0%) in weight%, and the balance consists of Fe and unavoidable impurities.
The magnetic steel sheet further contains Mn: 0.1% by weight or less and S: 0.005% by weight or less.
Except for C, it is the same as the content of the slab component limitation, so duplicate description will be omitted.
The volume fraction of the crystal grains forming an angle of 15 ° or less from {110} <001> is 40% or more.
The ratio (D2 / D1) of the diameter of the circumscribed circle (D1) to the diameter of the inscribed circle (D2) is 0.5 or more, and the goth crystal grains are 95 area% or more of the total goth crystal grains. The above-mentioned form of crystal grains is formed by the manufacturing process peculiar to the present invention.

本発明による方向性電磁鋼板は、ゴス分率が高いため、磁性が向上する。具体的に鉄損(W17/50)が1.3W/kg以下であり、より具体的に鉄損(W17/50)が1~1.3W/kgであり、さらに具体的に1.1~1.25W/kgである。鉄損W17/50は1.7Teslaおよび50Hz条件で誘導される鉄損の大きさ(W/kg)である。
以下、本発明の具体的な実施例を記載する。しかし、下記の実施例は、本発明の具体的な一実施例に過ぎず、本発明が下記の実施例に限定されるのではない。
The grain-oriented electrical steel sheet according to the present invention has a high goth fraction, so that the magnetism is improved. Specifically, the iron loss (W 17/50 ) is 1.3 W / kg or less, more specifically, the iron loss (W 17/50 ) is 1 to 1.3 W / kg, and more specifically 1. It is 1 to 1.25 W / kg. Iron loss W 17/50 is the magnitude of iron loss (W / kg) induced under 1.7 Tesla and 50 Hz conditions.
Hereinafter, specific examples of the present invention will be described. However, the following examples are merely specific examples of the present invention, and the present invention is not limited to the following examples.

実施例1
重量%で、Si:2.32%、C:0.195%を含有し、残部がFeおよび不可避な不純物からなるスラブを1250℃の温度で加熱した後に熱間圧延し、次いで、焼鈍温度950℃、露点温度60℃で熱延板焼鈍した。その後、鋼板を冷却した後に酸洗を施し、65%の圧下率で冷間圧延して厚さ0.8mmの冷延板を製作した。
冷間圧延された板は、再び950℃の温度で水素および窒素の湿潤混合ガス雰囲気(露点温度60℃)で80秒間脱炭焼鈍を経て再び65%の圧下率で冷間圧延して厚さ0.28mmの冷延板を製作した。
その後、最終焼鈍時には950℃の温度で水素および窒素の湿潤混合ガス雰囲気(露点温度60℃)で2分間脱炭焼鈍を実施した後、表1のように、連続的に1100℃の水素および窒素の混合ガス雰囲気(露点温度60℃)で熱処理を実施し、またはコイル状態で1200℃の水素および窒素の混合ガス雰囲気で下記表1の時間の間に熱処理を実施した。
表1は、実施例による高温焼鈍後の方向性電磁鋼板の結晶粒のGoss分率、1mm以上5mm以下である結晶粒の面積分率および鉄損を示す表である。Goss分率は、{110}<001>から15゜以下の角度をなす結晶粒の体積分率を測定した。最終的に得られた鋼板を表面洗浄後、単板磁気(Single sheet)測定法を利用して1.7Tesla、50Hz条件で鉄損を測定した。
Example 1
A slab containing, by weight%, Si: 2.32%, C: 0.195%, with the balance consisting of Fe and unavoidable impurities, was heated at a temperature of 1250 ° C. and then hot rolled, followed by an annealing temperature of 950. The hot-rolled plate was annealed at ° C. and a dew point temperature of 60 ° C. Then, after cooling the steel sheet, it was pickled and cold-rolled at a reduction rate of 65% to produce a cold-rolled sheet having a thickness of 0.8 mm.
The cold-rolled plate is again cold-rolled at a reduction rate of 65% after being decarburized and annealed for 80 seconds in a wet mixed gas atmosphere of hydrogen and nitrogen (dew point temperature 60 ° C.) at a temperature of 950 ° C. to a thickness. A 0.28 mm cold rolled plate was manufactured.
Then, at the time of final annealing, decarburization annealing was carried out for 2 minutes in a wet mixed gas atmosphere of hydrogen and nitrogen (dew point temperature 60 ° C.) at a temperature of 950 ° C., and then continuously hydrogen and nitrogen at 1100 ° C. as shown in Table 1. The heat treatment was carried out in the mixed gas atmosphere (dew point temperature 60 ° C.) of the above, or in the coiled state, the heat treatment was carried out in the mixed gas atmosphere of hydrogen and nitrogen at 1200 ° C. during the time shown in Table 1 below.
Table 1 is a table showing the Goss fraction of the crystal grains of the grain-oriented electrical steel sheet after high-temperature annealing according to the examples, the area fraction of the crystal grains of 1 mm or more and 5 mm or less, and the iron loss. For the Goss fraction, the volume fraction of the crystal grains forming an angle of 15 ° or less from {110} <001> was measured. After surface cleaning of the finally obtained steel sheet, iron loss was measured under 1.7 Tesla and 50 Hz conditions using a single plate magnetic measurement method.

Figure 2022513169000002
表1に示すように、バッチ焼鈍を適切な時間の間に行った発明材1~発明材4は、直径が1~5mmである結晶粒の面積分率が高いことを確認できる。ゴス分率が比較材に比べて比較的低くても鉄損がむしろ優れていることを確認できる。
図1および図2では、発明材2および比較材2で製造した方向性電磁鋼板の表面を走査電子顕微鏡で観察した写真を示す。
図1および図2で確認できるように、発明材2で製造した方向性電磁鋼板の結晶粒が比較的大きく形成されたことを確認できる。
Figure 2022513169000002
As shown in Table 1, it can be confirmed that the invention materials 1 to 4, which have been subjected to batch annealing for an appropriate time, have a high area fraction of crystal grains having a diameter of 1 to 5 mm. It can be confirmed that the iron loss is rather excellent even if the Goth fraction is relatively low compared to the comparative material.
1 and 2 show photographs of the surfaces of grain-oriented electrical steel sheets manufactured with the invention material 2 and the comparative material 2 observed with a scanning electron microscope.
As can be confirmed in FIGS. 1 and 2, it can be confirmed that the crystal grains of the grain-oriented electrical steel sheet manufactured from the invention material 2 are formed relatively large.

本発明は、前記実施形態および/または実施例に限定されるのではなく、互いに異なる多様な形態に製造可能であり、本発明が属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更することなく他の具体的な形態に実施可能であることを理解できるはずである。したがって、以上で記述した実施形態および/または実施例は、全ての面で例示的なものであり、限定的なものではないと理解しなければならない。 The present invention is not limited to the above-described embodiments and / or examples, and can be manufactured in various forms different from each other. You should be able to understand that it can be implemented in other concrete forms without changing the specific ideas and essential features. Therefore, it should be understood that the embodiments and / or examples described above are exemplary in all respects and are not limiting.

Claims (14)

重量%で、Si:1.0%~4.0%、C:0.005%以下(0%を除く。)、Mn:0.1重量%以下(0%を除く。)、S:0.005重量%以下(0%を除く。)を含み、残部がFeおよび不可避な不純物からなり、
全体結晶粒中の直径が1000μm~5000μmである結晶粒の面積分率が20~70%であることを特徴とする方向性電磁鋼板。
By weight%, Si: 1.0% to 4.0%, C: 0.005% or less (excluding 0%), Mn: 0.1% by weight or less (excluding 0%), S: 0 It contains .005% by weight or less (excluding 0%), and the balance consists of Fe and unavoidable impurities.
A grain-oriented electrical steel sheet having a diameter of 1000 μm to 5000 μm in the whole crystal grain and an area fraction of the crystal grain of 20 to 70%.
{110}<001>から15゜以下の角度をなす結晶粒の体積分率が40%以上であることを特徴とする請求項1に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1, wherein the volume fraction of the crystal grains forming an angle of 15 ° or less from {110} <001> is 40% or more. 外接円の直径(D1)と内接円の直径(D2)との比(D2/D1)が0.5以上であるゴス結晶粒が全体ゴス結晶粒中の95面積%以上であることを特徴とする請求項1に記載の方向性電磁鋼板。 The ratio (D2 / D1) of the diameter of the circumscribed circle (D1) to the diameter of the inscribed circle (D2) is 0.5 or more. The directional electromagnetic steel plate according to claim 1. スラブを加熱する段階、
前記スラブを熱間圧延して熱延鋼板を製造する段階、
前記熱延鋼板を熱延板焼鈍する段階、
前記熱延板焼鈍された熱延鋼板を1次冷間圧延する段階、
前記1次冷間圧延された鋼板を脱炭焼鈍する段階、
前記脱炭焼鈍が完了した鋼板を2次冷間圧延する段階、
前記2次冷間圧延が完了した鋼板を連続焼鈍する段階、および
連続焼鈍された鋼板をバッチ焼鈍する段階を含むことを特徴とする方向性電磁鋼板の製造方法。
The stage of heating the slab,
At the stage of hot rolling the slab to produce a hot-rolled steel sheet,
The stage of annealing the hot-rolled steel sheet,
The stage of primary cold rolling of the hot-rolled steel sheet that has been annealed.
The stage of decarburizing and annealing the primary cold-rolled steel sheet,
The stage of secondary cold rolling of the steel sheet for which decarburization annealing has been completed,
A method for producing a grain-oriented electrical steel sheet, which comprises a step of continuously annealing a steel sheet for which secondary cold rolling has been completed, and a step of batch annealing a steel sheet that has been continuously annealed.
前記熱延板焼鈍する段階で、脱炭過程を含むことを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 4, wherein the step of annealing the hot-rolled sheet includes a decarburization step. 前記熱延板焼鈍する段階は、850℃~1000℃の温度および露点温度50℃~70℃で焼鈍することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 4, wherein the step of annealing the hot-rolled sheet is annealing at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C. 前記1次冷間圧延された鋼板を脱炭焼鈍する段階は、850℃~1000℃の温度および露点温度50℃~70℃で焼鈍することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The grain-oriented electrical steel sheet according to claim 4, wherein the step of decarburizing and annealing the primary cold-rolled steel sheet is annealed at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C. Manufacturing method. 前記1次冷間圧延された鋼板を脱炭焼鈍する段階は、オーステナイト単相領域またはフェライトおよびオーステナイトの複合相が存在する領域で焼鈍することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The grain-oriented electrical steel sheet according to claim 4, wherein the step of decarburizing and annealing the primary cold-rolled steel sheet is annealed in a region where an austenite single phase region or a composite phase of ferrite and austenite is present. Manufacturing method. 前記1次冷間圧延された鋼板を脱炭焼鈍する段階の後、結晶粒の平均直径が150~250μmであることを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The method for producing grain-oriented electrical steel sheets according to claim 4, wherein after the step of decarburizing and annealing the primary cold-rolled steel sheet, the average diameter of crystal grains is 150 to 250 μm. 前記1次冷間圧延された鋼板を脱炭焼鈍する段階および前記脱炭焼鈍が完了した鋼板を2次冷間圧延する段階は、2回以上繰り返されることを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The fourth aspect of claim 4, wherein the step of decarburizing and annealing the primary cold-rolled steel sheet and the step of secondary cold-rolling the steel sheet for which the decarburization annealing is completed are repeated two or more times. Manufacturing method of directional electromagnetic steel sheet. 前記連続焼鈍する段階は、850℃~1000℃の温度および露点温度50℃~70℃で焼鈍することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 4, wherein the step of continuous annealing is annealing at a temperature of 850 ° C to 1000 ° C and a dew point temperature of 50 ° C to 70 ° C. 前記連続焼鈍する段階は、1~5分間焼鈍することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 4, wherein the step of continuous annealing is annealing for 1 to 5 minutes. 前記バッチ焼鈍する段階は、1000℃~1200℃の温度および露点温度-20℃以下で焼鈍することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 4, wherein the batch annealing step is annealed at a temperature of 1000 ° C. to 1200 ° C. and a dew point temperature of −20 ° C. or lower. 前記バッチ焼鈍する段階は、1~8時間焼鈍することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 4, wherein the batch annealing step is annealed for 1 to 8 hours.
JP2021531053A 2018-11-30 2019-11-26 Grain-oriented electrical steel sheet and manufacturing method thereof Active JP7312255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023062393A JP2023089089A (en) 2018-11-30 2023-04-06 Grain-oriented electromagnetic steel sheet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180153116A KR102177044B1 (en) 2018-11-30 2018-11-30 Grain oriented electrical steel sheet and manufacturing method of the same
KR10-2018-0153116 2018-11-30
PCT/KR2019/016382 WO2020111738A2 (en) 2018-11-30 2019-11-26 Oriented electrical steel sheet and method for manufacturing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023062393A Division JP2023089089A (en) 2018-11-30 2023-04-06 Grain-oriented electromagnetic steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2022513169A true JP2022513169A (en) 2022-02-07
JP7312255B2 JP7312255B2 (en) 2023-07-20

Family

ID=70852944

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021531053A Active JP7312255B2 (en) 2018-11-30 2019-11-26 Grain-oriented electrical steel sheet and manufacturing method thereof
JP2023062393A Pending JP2023089089A (en) 2018-11-30 2023-04-06 Grain-oriented electromagnetic steel sheet and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023062393A Pending JP2023089089A (en) 2018-11-30 2023-04-06 Grain-oriented electromagnetic steel sheet and method for producing the same

Country Status (4)

Country Link
JP (2) JP7312255B2 (en)
KR (1) KR102177044B1 (en)
CN (1) CN113166882A (en)
WO (1) WO2020111738A2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143560A (en) * 1995-11-14 1997-06-03 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH10183313A (en) * 1996-10-21 1998-07-14 Kawasaki Steel Corp Oriented silicon steel sheet having low core loss and having excellent strain resistance and machine mounting property
JP2011517732A (en) * 2008-03-25 2011-06-16 宝山鋼鉄股▲ふん▼有限公司 Method for producing directional silicon steel with high electromagnetic performance
JP2011208188A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
KR20160074350A (en) * 2014-12-18 2016-06-28 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR101719232B1 (en) * 2015-12-23 2017-03-23 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
JP2018502222A (en) * 2014-11-27 2018-01-25 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103393B2 (en) 2002-01-09 2008-06-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP5286872B2 (en) * 2008-03-26 2013-09-11 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
RU2536150C2 (en) * 2009-11-25 2014-12-20 Тата Стил Эймейден Б.В. Method of production of electrical steel strip with oriented grains and electrical steel with oriented grains thus obtained
JP4840518B2 (en) * 2010-02-24 2011-12-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101223115B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143560A (en) * 1995-11-14 1997-06-03 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH10183313A (en) * 1996-10-21 1998-07-14 Kawasaki Steel Corp Oriented silicon steel sheet having low core loss and having excellent strain resistance and machine mounting property
JP2011517732A (en) * 2008-03-25 2011-06-16 宝山鋼鉄股▲ふん▼有限公司 Method for producing directional silicon steel with high electromagnetic performance
JP2011208188A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
JP2018502222A (en) * 2014-11-27 2018-01-25 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
KR20160074350A (en) * 2014-12-18 2016-06-28 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR101719232B1 (en) * 2015-12-23 2017-03-23 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP7312255B2 (en) 2023-07-20
WO2020111738A3 (en) 2020-08-13
KR102177044B1 (en) 2020-11-10
CN113166882A (en) 2021-07-23
JP2023089089A (en) 2023-06-27
WO2020111738A2 (en) 2020-06-04
KR20200066060A (en) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2011158519A1 (en) Oriented electromagnetic steel plate production method
JP2020050955A (en) Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
KR20190058542A (en) Directional electric steel sheet and manufacturing method thereof
JP6683724B2 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP6868030B2 (en) Directional electrical steel sheet and its manufacturing method
WO2011102455A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
KR101657467B1 (en) Oriented electrical steel sheet and method for manufacturing the same
WO2017022360A1 (en) Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
WO2019132363A1 (en) Double oriented electrical steel sheet and method for manufacturing same
JP6663999B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2022501517A (en) Directional electrical steel sheet and its manufacturing method
JP6808830B2 (en) Electrical steel sheet and its manufacturing method
JP2023508029A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP6842550B2 (en) Directional electrical steel sheet and its manufacturing method
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP6622919B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2019132356A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
JP7053848B2 (en) Electrical steel sheet and its manufacturing method
JP7312255B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP6842549B2 (en) Directional electrical steel sheet and its manufacturing method
JP2017122269A (en) Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
WO2019131853A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP2022512498A (en) Directional electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230419

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230707

R150 Certificate of patent or registration of utility model

Ref document number: 7312255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150