JPH10121135A - Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density

Info

Publication number
JPH10121135A
JPH10121135A JP8269688A JP26968896A JPH10121135A JP H10121135 A JPH10121135 A JP H10121135A JP 8269688 A JP8269688 A JP 8269688A JP 26968896 A JP26968896 A JP 26968896A JP H10121135 A JPH10121135 A JP H10121135A
Authority
JP
Japan
Prior art keywords
annealing
temperature
rolling
hot
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8269688A
Other languages
Japanese (ja)
Other versions
JP3674183B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Toshito Takamiya
俊人 高宮
Kunihiro Senda
邦浩 千田
Mineo Muraki
峰男 村木
Chizuko Gotou
千寿子 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26968896A priority Critical patent/JP3674183B2/en
Priority to US08/947,641 priority patent/US5885371A/en
Priority to KR1019970052026A priority patent/KR100352675B1/en
Priority to EP97117614A priority patent/EP0835944B1/en
Priority to BR9707089A priority patent/BR9707089A/en
Priority to DE69705282T priority patent/DE69705282T2/en
Priority to CN97126011A priority patent/CN1094981C/en
Publication of JPH10121135A publication Critical patent/JPH10121135A/en
Application granted granted Critical
Publication of JP3674183B2 publication Critical patent/JP3674183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize iron loss and to increase magnetic flux density by specifying, in particular, hot rolled plate annealing conditions and process annealing conditions, respectively. SOLUTION: It is necessary to regulate temp. rise rate, up to 800 deg.C, to (5 to 25) deg.C/s in order to finely precipitate AlN in the course of temp. raise at the time of hot rolled plate annealing and process annealing in a cold rolling process. By this procedure, precipitates are not coarsened but precipitated sufficiently, and a strong inhibiting power as inhibitor is obtained. Further, it is necessary to carry out the above annealing stages under the conditions of 900-1125 deg.C and <=150sec holding time. The lower limit temp. is set at 900 deg.C in order to coarsen the crystal structure after annealing to a prescribed size or above to obtain sufficient strength of the (110) grains, and the upper limit temp. and the holding time are set up in order to prevent the re-entering into solid solution of the AlN finely precipitated in the temp. rise stage. By this method, the strength of the (110) grain in the structure of primary recrystallized grains is increased, and as a result, secondary recrystallization, with high magnetic flux density and fine-grained structure, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
などの鉄心に用いられる方向性電磁鋼板のなかでも、特
に鉄損が極めて低く磁束密度の高い方向性電磁鋼板の製
造方法を提案するものである。
BACKGROUND OF THE INVENTION The present invention proposes a method for manufacturing a grain-oriented electrical steel sheet having extremely low iron loss and a high magnetic flux density, particularly among grain-oriented electrical steel sheets used for iron cores such as transformers and generators. Things.

【0002】Siを含有し、かつ結晶方位が(110)
〔001〕方位や(100)〔001〕方位に配向した
方向性電磁鋼板は優れた軟磁気特性を有することから商
用周波数域での各種鉄心材料として広く用いられてい
る。その折、電磁鋼板に要求される特性としては、一般
に50Hzの周波数で1.7 Tに磁化させたときの損失である
W 17/50 であらわす鉄損が低いことが重要である。発電
機や変圧器としての鉄心の鉄損は、この W17/50 の値が
低い材料を用いることにより大幅に低減できることか
ら、鉄損として W17/50 の低い材料の開発が年々強く求
められてきている。
[0002] It contains Si and has a crystal orientation of (110)
[001] orientation or (100) [001] orientation
Grain-oriented electrical steel sheets have excellent soft magnetic properties and
Widely used as various iron core materials in the
You. At that time, the characteristics required for electrical steel sheets are generally
Loss when magnetized to 1.7 T at a frequency of 50 Hz
 W 17/50It is important that the iron loss is low. Power generation
The iron loss of the iron core as a machine or transformer17/50Is the value of
What can be greatly reduced by using lower materials?
W as iron loss17/50Demand for low-cost materials is increasing year by year
Are being used.

【0003】[0003]

【従来の技術】一般に、材料の鉄損を低減するには、渦
電流損を低下させるために有効なSiの含有量を増加し電
気抵抗を高める方法、鋼板板厚を薄くする方法、結晶粒
を細粒化する方法さらには結晶方位の集積度を高めて磁
束密度を向上させる方法などが知られている。このう
ち、Si含有量を増加させる手法および鋼板板厚を薄くす
る手法について検討を加えたが、Si含有量を増加させる
手法はSiを過度に含有させると圧延性や加工性を劣化さ
せるので好ましくなく限界があり、また鋼板板厚を薄く
する手法は極端な製造コストの増大をもたらすので自ず
から限界があった。
2. Description of the Related Art In general, in order to reduce iron loss of a material, a method of increasing an effective Si content to reduce an eddy current loss to increase electric resistance, a method of reducing a thickness of a steel sheet, a method of reducing a crystal grain, There is known a method of reducing the grain size, a method of increasing the degree of integration of crystal orientations, and improving the magnetic flux density. Among them, the method of increasing the Si content and the method of reducing the thickness of the steel sheet were examined.However, the method of increasing the Si content is preferable because excessive inclusion of Si deteriorates the rollability and workability. There is a limit, and the method of reducing the thickness of a steel sheet has a limit naturally because it extremely increases the manufacturing cost.

【0004】上記のうちの磁束密度を向上させる手法に
ついては、これまで数多く研究されてきており、例え
ば、特公昭46−23820号公報(高磁束密度電磁鋼
板の熱処理法)には、鋼中にAlを添加し熱間圧延後に10
00〜1200℃の温度範囲と高温での熱延板焼鈍とその後の
急冷処理によって微細なAlN を析出させ最終の冷間圧延
での圧下率を80〜95%とする高圧下を施す技術が提案開
示されており、これによってB10で1.95Tと極めて高い
磁束密度を得ている。これは、微細に分散析出したAlN
が1次再結晶粒の成長を抑制するインヒビターとしての
強い作用を有することを利用し、結晶方位の優れた核の
みを2次再結晶させることにより方位の優れた結晶組織
を有する製品を得ようとするものである。
[0004] Among the above-mentioned techniques for improving the magnetic flux density, many studies have been made so far. For example, Japanese Patent Publication No. 46-23820 (heat treatment method for high magnetic flux density electromagnetic steel sheet) discloses a method for improving the magnetic flux density in steel. Al added and 10 after hot rolling
A proposal is made of a technique in which fine AlN is precipitated by hot-rolled sheet annealing at a temperature range of 00 to 1200 ° C and high temperature, followed by quenching, and a high-pressure reduction of 80 to 95% in the final cold rolling is performed. It is disclosed, and thereby obtain a very high magnetic flux density and 1.95T in B 10. This is because finely dispersed AlN
Has a strong effect as an inhibitor that suppresses the growth of primary recrystallized grains, and secondary recrystallizes only nuclei with excellent crystal orientation to obtain a product having a crystal structure with excellent orientation. It is assumed that.

【0005】しかしながら、この技術では一般的に結晶
粒が粗大化し、よって低い鉄損を得ることが難かしく、
また、熱延板焼鈍において完全にAlN を固溶することが
困難であるので、安定して高磁束密度の製品を得ること
が困難であった。その理由は、この技術が最終圧延の圧
下率を80〜95%という高圧下を施すことを必須としてお
り、これにより少数の結晶方位の優れた核のみを成長さ
せ、優れた磁束密度を得ようとするもので、高磁束密度
は得られるものの、2次再結晶粒の発生密度が低くなり
製品での結晶粒が粗大化するので磁気特性が不安定化す
るからである。
However, in this technique, it is generally difficult to obtain a small iron loss by coarsening the crystal grains.
Further, since it is difficult to completely dissolve AlN into solid solution in hot-rolled sheet annealing, it has been difficult to stably obtain a product having a high magnetic flux density. The reason is that this technology requires that the final rolling reduction rate be 80-95%, thereby growing only a few nuclei with excellent crystal orientation and obtaining excellent magnetic flux density. This is because, although high magnetic flux density can be obtained, the density of secondary recrystallized grains is low and the crystal grains in the product are coarsened, so that the magnetic properties are unstable.

【0006】その後、AlN をインヒビターとする材料の
製造技術に関しては、特公昭54−23647号公報
(高級一方向性電磁鋼板の製造方法)および特公昭54
−13846号公報(特性の優れた高磁束密度一方向性
珪素鋼板を得る冷間圧延法)に開示されているような、
冷間圧延パス間で時効処理を施す技術や、特開平7−3
2006号公報(方向性けい素鋼板の冷間圧延方法およ
び冷間圧延機のロール冷却装置)に開示されているよう
な温間圧延技術によって材料の磁気特性を安定化する試
みがなされてきたが、いずれも安定して高磁束密度の製
品を得るには未だ不十分であり、上記したような本質的
な理由による製造上の不安定性は依然解消されなかっ
た。
[0006] After that, with regard to the technology for producing a material using AlN as an inhibitor, Japanese Patent Publication No. 23647/1979 (a method for producing a high-grade unidirectional electrical steel sheet) and Japanese Patent Publication No.
No. 13846 (cold rolling method for obtaining a high magnetic flux density unidirectional silicon steel sheet having excellent characteristics),
Technology for performing aging treatment between cold rolling passes, and Japanese Patent Laid-Open No. 7-3
Attempts have been made to stabilize the magnetic properties of materials by a warm rolling technique as disclosed in Japanese Patent Application Publication No. 2006 (a cold rolling method for grain-oriented silicon steel sheets and a roll cooling device for a cold rolling mill). However, these methods are still insufficient to stably obtain a product having a high magnetic flux density, and the instability in production due to the essential reasons as described above has not been solved.

【0007】[0007]

【発明が解決しようとする課題】前記したように、結晶
方位の集積度を高めて高磁束密度を得ようとすると、そ
れにともない必然的に結晶粒が粗大化し、磁気特性が不
安定化する。これを抑制すべく結晶粒の細粒化を図ると
逆に結晶方向集積度が低下し磁束密度の低下を招く、こ
のような二律背反状態のため、これまで高磁束密度で極
めて鉄損の低い材料を安定して製造することは困難であ
った。
As described above, when an attempt is made to obtain a high magnetic flux density by increasing the degree of integration of the crystal orientation, the crystal grains are inevitably coarsened and the magnetic characteristics become unstable. If crystal grains are refined to suppress this, conversely, the degree of integration in the crystal direction will decrease and the magnetic flux density will decrease. Due to such a trade-off state, materials with high magnetic flux density and extremely low iron loss have been used. It was difficult to stably produce.

【0008】そこで、この発明は、AlN をインヒビター
とする方向性電磁鋼板を製造するにあたって、本質的に
内在する製品板での結晶粒の粗大化という不安定要因を
解消して極めて低い鉄損を得、しかも極めて高い磁束密
度B8 が得られる方向性電磁鋼板の製造方法を提案する
ことを目的とする。
In view of the above, the present invention eliminates the instability factor of coarsening of crystal grains in a product sheet inherently present in producing a grain-oriented electrical steel sheet using AlN as an inhibitor to reduce extremely low iron loss. the resulting, moreover aims to propose a method of manufacturing very high magnetic flux density oriented electrical steel sheet B 8 is obtained.

【0009】[0009]

【課題を解決するための手段】前記した二律背反の状態
を解消すべく、発明者らはインヒビターであるAlN の析
出分散状態に着目し、従来とは全く異なった析出方法を
とることにより、極めて微細にAlN を析出させ、1次再
結晶粒の成長に対し強い抑制効果が得られることを見出
し、これを有効に活用してこの発明を達成したものであ
る。なすわち、この発明の要旨とするところは以下の通
りである。
Means for Solving the Problems In order to solve the above trade-off state, the present inventors have focused on the precipitation and dispersion state of AlN, which is an inhibitor, and have taken a very different precipitation method from that of the prior art to achieve extremely fine particles. And found that a strong inhibitory effect on the growth of primary recrystallized grains was obtained, and the present invention was effectively utilized to achieve the present invention. That is, the gist of the present invention is as follows.

【0010】 C:0.025 〜0.095 wt%、Si:1.5 〜
7.0 wt%、Mn:0.03〜2.5 wt%、SもしくはSeのうちの
1種または2種の合計:0.003 〜0.040 wt%、Al:0.01
0 〜0.030 wt%およびN:0.003 〜0.010 wt%を含有す
るけい素鋼スラブを素材として、該スラブを1350℃以上
の温度に加熱し、熱間圧延後、熱延板焼鈍を施してから
1回冷間圧延法または中間焼鈍を挟む2回冷間圧延法に
より冷間圧延し最終冷延板厚とするか、もしくは、熱間
圧延後、中間焼鈍を挟む2回冷間圧延法により冷間圧延
し最終冷延板厚としたのち、1次再結晶焼鈍を施し、そ
の後、焼鈍分離剤を塗布してから最終仕上げ焼鈍を施す
一連の工程により方向性電磁鋼板を製造するにあたり、
熱間の仕上げ圧延圧下率を85〜99%の範囲とし、仕上げ
圧延終了温度を950 〜1150℃の範囲でかつ素材のSi含有
量およびAl含有量との関係から下記式(1)を満たす温度
範囲とする熱間圧延を行うこと、熱間圧延終了後20℃/
s以上の冷却速度で急冷して670 ℃以下の温度でコイル
に巻取ること、熱延板焼鈍および中間焼鈍をともに、80
0 ℃の温度まで5〜25℃/sの範囲の昇温速度で昇温
し、900 〜1125℃の温度域で保持時間を150 秒間以下と
する条件で行うこと、冷間圧延を、1回冷間圧延法によ
り圧下率:80〜95%の範囲で行い最終冷延板厚とする
か、もしくは、2回冷間圧延法により第1回目の圧延を
圧下率:15〜60%の範囲で行ったのち、中間焼鈍後第2
回目の圧延を圧下率:80〜95%の範囲で行い最終冷延板
厚とすること、Ti化合物:1〜20wt%およびCa:0.01〜
3.0 wt%を含有する焼鈍分離剤を用いること、最終仕上
げ焼鈍の昇温途中の少なくとも900 ℃以上の温度からは
2 を含有する雰囲気中で昇温すること、との順次組合
せになることを特徴とする極めて鉄損の低い高磁束密度
方向性電磁鋼板の製造方法(第1発明)。
C: 0.025 to 0.095 wt%, Si: 1.5 to
7.0 wt%, Mn: 0.03 to 2.5 wt%, total of one or two of S or Se: 0.003 to 0.040 wt%, Al: 0.01
Using a silicon steel slab containing 0 to 0.030 wt% and N: 0.003 to 0.010 wt% as a raw material, the slab is heated to a temperature of 1350 ° C. or more, hot-rolled, and then subjected to hot-rolled sheet annealing. Cold rolling is performed by a cold rolling method or a twice cold rolling method with intermediate annealing to obtain a final cold-rolled sheet thickness, or after hot rolling, cold rolling is performed twice with intermediate annealing. After rolling and making it the final cold-rolled sheet thickness, it is subjected to primary recrystallization annealing, and then, after producing a grain-oriented electrical steel sheet by a series of steps of applying an annealing separating agent and then performing final finish annealing,
The temperature at which the hot finish rolling reduction rate is in the range of 85 to 99%, the finish rolling end temperature is in the range of 950 to 1150 ° C, and satisfies the following formula (1) from the relationship between the Si content and the Al content of the material. Perform hot rolling within the range, 20 ° C /
quenching at a cooling rate of 670 ° C or higher and coiling at a temperature of 670 ° C or lower, and both hot-rolled sheet annealing and intermediate annealing
The temperature is raised to a temperature of 0 ° C. at a heating rate of 5 to 25 ° C./s, and the holding time is 150 seconds or less in a temperature range of 900 to 1125 ° C., and cold rolling is performed once. Cold rolling is performed in the range of reduction ratio: 80 to 95% to obtain the final cold-rolled sheet thickness, or the first rolling is performed by double cold rolling in the range of reduction ratio: 15 to 60%. After the second annealing after the intermediate annealing
The first rolling is performed in a rolling reduction range of 80 to 95% to obtain a final cold-rolled sheet thickness, Ti compound: 1 to 20 wt%, and Ca: 0.01 to
The use of an annealing separator containing 3.0 wt% and the temperature increase of at least 900 ° C. or higher during the final finish annealing in an atmosphere containing H 2 are sequentially combined. A method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss (first invention).

【0011】 最終冷間圧延直前の熱延板焼鈍または
中間焼鈍時の冷却が、鋼板内固溶C量を高めるための急
冷処理である第1発明に記載の極めて鉄損の低い高磁束
密度方向性電磁鋼板の製造方法(第2発明)。
[0011] The high magnetic flux density direction with extremely low iron loss according to the first invention, wherein cooling at the time of hot rolled sheet annealing or intermediate annealing immediately before final cold rolling is a quenching treatment for increasing the amount of solute C in the steel sheet. A method for producing a conductive electrical steel sheet (second invention).

【0012】 最終冷間圧延が、90〜350 ℃の温度範
囲の温間圧延か、もしくは、100 〜300 ℃の温度範囲で
10〜60分間の時間範囲のパス間時効処理を施すものであ
る第1発明または第2発明に記載の極めて鉄損の低い高
磁束密度方向性電磁鋼板の製造方法(第3発明)。
[0012] The final cold rolling is performed at a temperature range of 90 to 350 ° C, or at a temperature range of 100 to 300 ° C.
The method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss according to the first or second invention, wherein the inter-pass aging treatment is performed for a time range of 10 to 60 minutes (third invention).

【0013】 最終冷間圧延前の焼鈍で、0.005 〜0.
025 wt%の脱炭を施すことを特徴とする第1、第2また
は第3発明に記載の極めて鉄損の低い高磁束密度方向性
電磁鋼板の製造方法(第4発明)。
[0013] Annealing before final cold rolling, 0.005 to 0.
The method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss according to the first, second or third invention, characterized by performing decarburization of 025 wt% (fourth invention).

【0014】ここでTi化合物とは、TiO2,TiN, MgTi
O3 ,FeTiO2, SrTiO3, TiS などのTiを含有する酸化物
や窒化物および硫化物などの物質である。
Here, the Ti compound means TiO 2 , TiN, MgTi
O 3 , FeTiO 2 , SrTiO 3 , TiS and other Ti-containing materials such as oxides, nitrides and sulfides.

【0015】[0015]

【発明の実施の形態】まず、この発明に至った実験例に
ついて以下に述べる。C:0.08wt%(以下単に%であら
わす)、Si:3.32%、Mn:0.07%、Al:0.024 %、Se:
0.020 %、Sb:0.040 %、N:0.008 %を含有し、残部
はFeおよび不可避的不純物の組成になる250 mm厚のけい
素鋼スラブ2本をそれぞれ1380℃の温度に加熱した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an experimental example which led to the present invention will be described below. C: 0.08 wt% (hereinafter simply expressed as%), Si: 3.32%, Mn: 0.07%, Al: 0.024%, Se:
Two 250 mm thick silicon steel slabs each containing 0.020%, Sb: 0.040%, N: 0.008%, and the balance being Fe and inevitable impurities were heated to a temperature of 1380 ° C.

【0016】その一方は、1220℃の温度で板厚:45mmと
する粗圧延後、1050℃の温度で板厚:2.2 mmとする仕上
げ圧延を終了したのち、大量の冷却水を噴射して50℃/
sの冷却速度で冷却し、550 ℃の温度でコイルに巻取っ
た(コイルAとする)。他方は、1220℃の温度で板厚:
45mmとする粗圧延後、950 ℃の温度で板厚:2.2 mmとす
る仕上げ圧延を終了したのち、大量の冷却水を噴射して
25℃/sの冷却速度で冷却し、550 ℃の温度でコイルに
巻取った(コイルBとする)。
On the other hand, after rough rolling at a temperature of 1220 ° C. and a plate thickness of 45 mm, and finish rolling at a temperature of 1050 ° C. and a plate thickness of 2.2 mm, a large amount of cooling water is injected by spraying a large amount of cooling water. ° C /
The resultant was cooled at a cooling rate of s and wound around a coil at a temperature of 550 ° C. (referred to as a coil A). On the other hand, at a temperature of 1220 ° C, the thickness:
After rough rolling to 45 mm, finish rolling to a thickness of 2.2 mm at a temperature of 950 ° C, then spraying a large amount of cooling water
It was cooled at a cooling rate of 25 ° C./s and wound around a coil at a temperature of 550 ° C. (referred to as coil B).

【0017】これらA,Bのコイルをそれぞれ2分割し
(A−1,A−2およびB−1,B−2とする)、A−
1およびB−1の熱延板コイルは、昇温速度:12℃/s
で1110℃の温度まで昇温させたのち30秒間保持する熱延
板焼鈍をそれぞれ施し、A−2およびB−2の熱延板コ
イルは、昇温速度:12℃/sで1170℃の温度まで昇温さ
せたのち30秒間保持する熱延板焼鈍をそれぞれ施した。
Each of the coils A and B is divided into two (referred to as A-1, A-2 and B-1, B-2).
1 and B-1 hot-rolled sheet coils were heated at a rate of 12 ° C./s.
After heating to 1110 ° C. at a temperature of 1170 ° C., the hot rolled sheet coils of A-2 and B-2 were heated at a rate of 12 ° C./s at a temperature of 1170 ° C. Then, the hot rolled sheet was held for 30 seconds and then annealed.

【0018】これらの熱延板は、酸洗後、120 ℃の温度
での冷間圧延を施して最終冷延板厚:0.27mmとしたの
ち、脱脂処理を施してから、0.15%のCaと0.08%のBを
含有するMgO 中にTiO2を4.5 %添加したものを焼鈍分離
剤として鋼板表面に塗布し、それぞれコイルに巻取っ
た。
These hot-rolled sheets are subjected to cold rolling at a temperature of 120 ° C. after pickling, to a final cold-rolled sheet thickness: 0.27 mm, and then to a degreasing treatment, and then to a 0.15% Ca the material obtained by adding TiO 2 4.5% in MgO in containing 0.08% of B is applied to the surface of the steel sheet as an annealing separating agent, wound to a coil, respectively.

【0019】その後、最終仕上げ焼鈍条件として、800
℃の温度までの昇温をN2 雰囲気中で30℃/hの昇温速
度で、800 〜1050℃の温度域の昇温をN2 :25%および
2:75%の混合雰囲気中で15℃/sの昇温速度で、105
0〜1200℃の温度域の昇温および1200℃・5時間の均熱
をH2 雰囲気中で、かつ1050〜1200℃の温度域の昇温速
度を20℃/sとし、降温に際しては、800 ℃の温度まで
をH2 雰囲気中で急冷し、800 ℃以下の温度をN2 雰囲
気中で冷却する熱サイクルと雰囲気を採用して、それぞ
れ最終仕上げ焼鈍を行った。
Thereafter, the final finish annealing condition is 800
The temperature was raised to a temperature of 30 ° C. in a N 2 atmosphere at a rate of 30 ° C./h, and the temperature in a temperature range of 800 to 1050 ° C. was increased in a mixed atmosphere of N 2 : 25% and H 2 : 75%. At a heating rate of 15 ° C / s, 105
The temperature rise in the temperature range of 0 to 1200 ° C. and the soaking in 1200 ° C. for 5 hours are performed in an H 2 atmosphere, and the temperature rise rate in the temperature range of 1050 to 1200 ° C. is 20 ° C./s. The final finish annealing was performed by using a heat cycle and an atmosphere in which the temperature was rapidly cooled to a temperature of 800 ° C. in an H 2 atmosphere, and a temperature of 800 ° C. or less was cooled in an N 2 atmosphere.

【0020】最終仕上げ焼鈍後は、未反応焼鈍分離剤を
除去したのち、50%のコロイダルシリカとりん酸マグネ
シウムからなる張力コートを塗布し焼付けそれぞれ製品
とした。かくして得られた各製品より圧延方向に沿って
エプスタインサイズの試験片を切り出し800 ℃の温度で
3時間の歪取焼鈍を施したのち、1.7 Tの磁束密度にお
ける鉄損 W17/50 および磁束密度B8 を測定し、さらに
これらの鋼板をマクロエッチして平均結晶粒径を調査し
た。これらの調査結果を表1にまとめて示す。
After the final finish annealing, after removing the unreacted annealing separating agent, a tension coat composed of 50% colloidal silica and magnesium phosphate was applied and baked to obtain respective products. A specimen of Epstein size was cut out from each product thus obtained along the rolling direction, subjected to strain relief annealing at a temperature of 800 ° C. for 3 hours, and then subjected to iron loss W 17/50 and magnetic flux density at a magnetic flux density of 1.7 T. the B 8 were measured to examine the average crystal grain size further these steel sheets macros etched to. Table 1 summarizes the results of these investigations.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、熱間圧延(仕上
げ圧延)終了温度が高く、熱延板焼鈍温度が低い記号A
−1のコイルは、従来条件である記号B−2に比し、極
めて高い磁束密度(B8)と極めて低い鉄損( W17/50
が得られている。
As is clear from Table 1, symbol A indicates that the hot rolling (finish rolling) end temperature is high and the hot-rolled sheet annealing temperature is low.
The coil of -1 has an extremely high magnetic flux density (B 8 ) and an extremely low iron loss (W 17/50 ) as compared with the symbol B-2 which is the conventional condition.
Has been obtained.

【0023】かかる良好な結果を得た理由について調査
した結果、以下に述べることが明らかとなった。すなわ
ち、従来の方法においては、熱延板焼鈍時の高温均熱時
にγ変態を起こさせ、AlN の再固溶ののち、その冷却過
程での再析出を狙うものであるが、上記実験で良好な結
果を得た記号A−1のコイルでは、熱延板焼鈍の昇温過
程で極めて微細なAlN が析出し、これが強いインヒビタ
ーの抑制作用をもたらすものであることがわかった。
As a result of investigating the reason why such a good result was obtained, the following has become clear. That is, in the conventional method, γ transformation is caused during high-temperature soaking during hot-rolled sheet annealing, and after re-dissolution of AlN, re-precipitation in the cooling process is aimed at. It was found that in the coil of symbol A-1, which obtained the above results, extremely fine AlN was precipitated during the heating process of hot-rolled sheet annealing, and this resulted in a strong inhibitory action of the inhibitor.

【0024】したがって、この発明における第1の技術
的ポイントは熱延板焼鈍温度は析出したAlN の再固溶や
オストワルド成長が起こらないように低温にする必要が
あることであり、この点が従来とは技術的思想を全く異
にするものである。
Therefore, the first technical point of the present invention is that the annealing temperature of the hot-rolled sheet needs to be low so that the precipitated AlN does not re-dissolve and the Ostwald growth does not occur. Is a completely different technical idea.

【0025】この発明における熱延板焼鈍温度の適正値
については、焼鈍後の結晶組織の粒サイズを適正にする
ことを目的にするものであり、焼鈍温度が過度に低い場
合、圧延後の再結晶組織において2次再結晶の核となる
(110)粒の強度が不足し、良好な方位の2次再結晶
が得られなくなる。そこで(110)粒の高い強度を得
るためには、熱延板焼鈍後の結晶組織を一定サイズ以上
に粗大化する必要があり、このためには、900 ℃以上の
温度まで昇温することが不可欠である。
The proper value of the annealing temperature of the hot-rolled sheet in the present invention is intended to make the grain size of the crystal structure after annealing appropriate. When the annealing temperature is excessively low, the re-rolling after rolling is performed. In the crystal structure, the strength of the (110) grains serving as nuclei for secondary recrystallization is insufficient, and secondary recrystallization with a good orientation cannot be obtained. Therefore, in order to obtain high strength of the (110) grains, it is necessary to coarsen the crystal structure after annealing the hot-rolled sheet to a certain size or more. For this purpose, it is necessary to raise the temperature to 900 ° C. or more. It is essential.

【0026】一方、熱延板焼鈍温度の上限については、
上記したように、昇温過程で微細に析出したAlN の再固
溶およびオストワルド成長をさせないことが最も肝要な
点となる。このためには、1125℃以下の温度で均熱時間
が150 秒間以内の焼鈍とすることが必要とされる。かか
る焼鈍における昇温時のAlN の析出現象は、ほぼ900 ℃
の温度までに終了するが、昇温速度によってそのサイズ
や分布が変化するので、昇温速度を制御することも必要
である。昇温速度が5℃/sよりも遅いとAlN が粗大析
出しやすく、逆に25℃/sよりも速いとAlN の析出量が
不十分となる。
On the other hand, regarding the upper limit of the hot-rolled sheet annealing temperature,
As described above, the most important point is to prevent the re-dissolution of AlN, which is finely precipitated during the heating process, and Ostwald ripening. For this purpose, it is necessary to perform annealing at a temperature of 1125 ° C or less and a soaking time of 150 seconds or less. The precipitation phenomenon of AlN at the time of temperature rise during such annealing is almost 900 ° C.
However, since the size and distribution change depending on the heating rate, it is necessary to control the heating rate. If the heating rate is slower than 5 ° C./s, AlN tends to precipitate coarsely, and if it is faster than 25 ° C./s, the amount of AlN deposited becomes insufficient.

【0027】焼鈍後の冷却条件は特に限定する必要はな
いが、例えば特公平7−84615号公報(磁束密度に
優れる方向性けい素鋼板の製造方法)に記載されている
ような、急冷処理して微細カーバイドを析出させる技術
は1次再結晶集合組織を良好にするので、この発明に適
用して有効である。また、焼鈍時に鋼板表層部の脱炭を
行うことは、さらに好ましい結果を得ることができる。
The cooling conditions after annealing do not need to be particularly limited. For example, a quenching treatment as described in Japanese Patent Publication No. 7-84615 (a method for producing a grain-oriented silicon steel sheet having excellent magnetic flux density) is used. The technique of precipitating fine carbide by means of improving the primary recrystallization texture is effective when applied to the present invention. Further, performing decarburization of the surface layer of the steel sheet during annealing can obtain more preferable results.

【0028】第2の技術的ポイントは、熱延板焼鈍の昇
温過程で微細なAlN を析出させる手法を効果的に活用す
るための必須条件として、熱間圧延工程ではAlN を析出
させないことである。仮に、熱間圧延工程においてAlN
が析出したとすると、熱延板焼鈍の昇温過程ですでに析
出しているAlN を核としてAlN が成長するため、少数の
粗大な析出AlN が存在し抑制力が減少することになる。
The second technical point is that as a prerequisite for effectively utilizing the technique of precipitating fine AlN in the process of increasing the temperature of hot-rolled sheet annealing, AlN is not precipitated in the hot rolling step. is there. Assuming that AlN
If AlN precipitates, AlN grows with AlN already deposited as a nucleus in the process of increasing the temperature of the hot-rolled sheet annealing, so that a small number of coarse AlN is present and the suppressing power is reduced.

【0029】熱延板焼鈍の昇温過程でAlN が微細析出す
る過程を詳細に調査したところ、熱延板中にすでに多数
のAlN とは異なる超微細析出物がすでに存在していて、
これらがAlN 析出の核となっていること、さらに、これ
らの超微細析出物はMnS 、CuS 等の硫化物や、MnSe、Cu
Se等のセレン化物およびこれらの複合析出物からなり、
熱間仕上げ圧延温度が適正な範囲において極めて微細に
析出することがわかった。すなわち、鋼中に転位等の欠
陥が高密度に存在する状態でAlN の析出を抑制できれば
よいことがわかった。ここで、仕上げ圧延温度が適正温
度よりも高い場合には、鋼中に存在する欠陥の密度が低
下して十分な数の上記した超微細析出物が得られず、逆
に低い場合には、この析出が不十分となり、ともに超微
細析出物の析出密度は低下する。なお、これらの析出物
は超微細であるため、0.003 %以上のわずかな量で十分
であるがSおよび/またはSeを鋼中に含有させておくこ
とが必要になる。
A detailed examination of the process of fine precipitation of AlN during the heating process of hot-rolled sheet annealing revealed that a large number of ultrafine precipitates different from AlN already existed in the hot-rolled sheet.
These are the cores of AlN precipitation, and these ultrafine precipitates are sulfides such as MnS and CuS, MnSe, Cu
Consisting of selenides such as Se and their composite precipitates,
It was found that the hot finish rolling temperature was extremely fine in an appropriate range. That is, it was found that precipitation of AlN should be suppressed in a state where defects such as dislocations exist in the steel at high density. Here, when the finish rolling temperature is higher than the appropriate temperature, the density of the defects existing in the steel is reduced and a sufficient number of the above-mentioned ultrafine precipitates cannot be obtained. This precipitation becomes insufficient, and the precipitation density of ultra-fine precipitates decreases. Since these precipitates are ultrafine, a small amount of 0.003% or more is sufficient, but it is necessary to contain S and / or Se in the steel.

【0030】熱間圧延工程においてAlN の析出を防止す
る手段は、以下の3点がある。そのひとつは、熱間圧延
(仕上げ圧延)終了温度を高温化しAlN を過飽和固溶状
態で鋼中に存在させることである。AlN の析出温度は、
SiやAlの含有量によって変化することが知られているの
で、これらの含有量に合せて熱間圧延終了温度を変える
必要がある。熱間圧延終了温度が低く過ぎる場合には熱
間圧延工程でAlN が析出してしまい、上記実験において
熱延板焼鈍を高温として再固溶・再析出させた記号B−
2のコイルはともかくとしても、熱延板焼鈍を低温とし
た記号B−1のコイルのように少数の粗大なAlN の析出
状態となり、抑制力が低下して2次再結晶不良となる。
Means for preventing the precipitation of AlN in the hot rolling step include the following three points. One of them is to raise the temperature at the end of hot rolling (finish rolling) to make AlN exist in the steel in a supersaturated solid solution state. The precipitation temperature of AlN is
It is known that the temperature changes depending on the contents of Si and Al, so it is necessary to change the hot rolling end temperature in accordance with these contents. If the hot-rolling end temperature is too low, AlN precipitates in the hot rolling step, and in the above experiment, the symbol B-
In any case, the coil No. 2 is in a state where a small number of coarse AlN is precipitated as in the coil of symbol B-1 where the hot-rolled sheet annealing is performed at a low temperature, the suppression power is reduced, and secondary recrystallization failure occurs.

【0031】他のひとつは、熱間圧延終了後鋼板を急冷
する点である。すなわち、これにより過飽和状態のまま
Alを鋼中に凍結することが可能になる。冷却速度が遅い
場合には、冷却の過程でAlN が析出しやすくなる。この
ため必要とされる冷却速度は20℃/s以上である。
Another point is that the steel sheet is rapidly cooled after the completion of the hot rolling. That is, this leaves the supersaturated state
Al can be frozen in steel. If the cooling rate is low, AlN is likely to precipitate during the cooling process. Therefore, the required cooling rate is 20 ° C./s or more.

【0032】残るひとつは、熱間圧延終了後のコイル巻
取り温度を低温とする点である。コイルは長時間その温
度近傍に保持されるため、巻取り温度が高いとやはりAl
N の析出を招く結果となる。このためコイル巻取り温度
を670 ℃以下とすることが必要である。
The other one is that the coil winding temperature after the completion of hot rolling is lowered. Since the coil is kept near that temperature for a long time, if the winding temperature is high, Al
This results in precipitation of N. For this reason, it is necessary to set the coil winding temperature to 670 ° C. or less.

【0033】ついで、上記したようにSi含有量とAl含有
量とが関係する熱間圧延終了温度の適正範囲について調
査した。
Next, as described above, the appropriate range of the hot-rolling termination temperature related to the Si content and the Al content was examined.

【0034】Si含有量とAl含有量とを意図的に変化させ
た以外は前述の実験とほぼ同様の成分組成の250 mm厚の
各種けい素鋼スラブを用い、熱間圧延終了温度を変化さ
せた以外は前述の実験の記号A−1と同様の工程でそれ
ぞれ製品とし、得られた各製品の磁束密度B8 /B
s (Bs は飽和磁束密度) の値を調査した。図1は、製
品の結晶方位の集積度(B8 /Bs )に及ぼす素材のSi
およびAl含有量ならびに熱間圧延終了温度の影響を示す
グラフである。
Using various silicon steel slabs of 250 mm thickness having almost the same composition as in the above experiment except that the Si content and the Al content were intentionally changed, the hot rolling end temperature was changed. Each product was manufactured in the same process as the symbol A-1 in the above-described experiment except that the magnetic flux density B 8 / B
The value of s (B s is the saturation magnetic flux density) was investigated. Figure 1 shows the effect of Si of the material on the degree of crystal orientation (B 8 / B s ) of the product.
4 is a graph showing the effects of the Al content, the Al content, and the hot rolling end temperature.

【0035】図1より、B8 /Bs が0.98以上の極めて
高い値を得るためには熱間圧延終了温度は、Si(%)を
XおよびAl(ppm)をYとしてあらわす610 +40X+Y以
上でかつ950 ℃以上の温度が必要であり、また、750 +
40X+Y以下でかつ1150℃以下の温度であることが必要
であることがわかる。熱間圧延終了温度が上記範囲よ
り、低い場合にはAlN が熱間圧延工程で析出し、高い場
合には高温域における圧延となり熱延板のバンド組織の
幅が増大して良好な2次再結晶の成長を妨害するように
なる。
According to FIG. 1, in order to obtain an extremely high value of B 8 / B s of 0.98 or more, the hot rolling end temperature is 610 + 40X + Y or more, where X represents Si (%) and Y represents Al (ppm). And a temperature of 950 ° C or higher, and 750+
It is understood that the temperature must be 40X + Y or less and 1150 ° C or less. If the hot rolling end temperature is lower than the above range, AlN precipitates in the hot rolling step, and if the temperature is high, rolling in a high temperature range occurs and the width of the band structure of the hot-rolled sheet increases, resulting in good secondary re-rolling. It hinders crystal growth.

【0036】第3の技術的ポイントは、焼鈍温度を低温
とすることにより2次再結晶粒の結晶粒径が細粒化する
点である。この理由は明確ではないが、焼鈍温度を低温
化することによりγ変態量が低下し圧延前の結晶粒が実
質的に増加し、圧延1次再結晶組織において(110)
粒の核生成頻度が増加したためではないかと推察され
る。
The third technical point is that the crystal size of the secondary recrystallized grains is reduced by lowering the annealing temperature. The reason for this is not clear, but by lowering the annealing temperature, the amount of γ transformation is reduced, and the crystal grains before rolling are substantially increased, and the (110)
It is presumed that the nucleation frequency of grains increased.

【0037】1次再結晶組織において(110)粒が増
加した場合、2次再結晶粒が細粒化することはよく知ら
れた現象であるが、この場合には従来より磁束密度の低
下を招くことも常であった。しかし、この発明において
は、強いインヒビターの抑制作用のため2次再結晶粒の
細粒化と同時に磁束密度の向上効果も得られたものと推
定される。
It is a well-known phenomenon that when the number of (110) grains increases in the primary recrystallized structure, the secondary recrystallized grains become finer. I always invited them. However, in the present invention, it is presumed that the effect of suppressing the strong inhibitor was obtained, and at the same time, the effect of improving the magnetic flux density was obtained at the same time as the secondary recrystallized grains were refined.

【0038】冷間圧延工程については、熱延板焼鈍を施
したのち1回の冷間圧延を行う1回冷間圧延法、熱延板
焼鈍を施したのち第1回目の冷間圧延後中間焼鈍を施し
てから第2回目の冷間圧延を行う2回冷間圧延法、また
は、熱延板焼鈍を省略して第1回目の冷間圧延後中間焼
鈍を施してから第2回目の冷間圧延を行う2回冷間圧延
法のいずれもが採用できる。この冷間圧延工程における
焼鈍では、その昇温過程でAlN を析出させるとともに析
出したAlN のオストワルド成長、再固溶・再析出を防止
するよう留意すること、熱延板焼鈍と中間焼鈍とを行う
場合の2回目の焼鈍(中間焼鈍)でも析出したAlN のオ
ストワルド成長、再固溶・再析出を防止するよう留意す
ることが肝要である。
In the cold rolling step, a one-time cold rolling method in which a hot-rolled sheet is annealed and then a single cold-rolling is performed, and a hot-rolled sheet is annealed and then an intermediate after the first cold-rolling is performed. The second cold rolling method in which annealing is performed and then the second cold rolling is performed, or the second cold rolling is performed after the first cold rolling and the intermediate annealing is performed after the hot rolled sheet annealing is omitted. Any of the two cold rolling methods in which cold rolling is performed can be employed. In the annealing in the cold rolling step, AlN is precipitated during the temperature raising process, and attention must be paid to prevent Ostwald growth, re-solid solution and re-precipitation of the precipitated AlN, and hot-rolled sheet annealing and intermediate annealing are performed. It is important to take care to prevent Ostwald ripening, re-solid solution and re-precipitation of AlN precipitated even in the second annealing (intermediate annealing) in this case.

【0039】また冷間圧延圧下率は、従来より公知のよ
うに最終圧延の圧下率を80〜95%の範囲とすることが重
要である。
It is important that the rolling reduction of the final rolling be in the range of 80 to 95% as conventionally known.

【0040】次の実験として、最終仕上げ焼鈍条件につ
いての調査を行った。C:0.08%、Si:3.38%、Mn:0.
07%、Al:0.022 %、Se:0.020 %、Sb:0.035 %およ
びN:0.008 %を含み、残部はFeおよび不可避的不純物
の組成になる250 mm厚のけい素鋼スラブ10本を、それぞ
れ1410℃の温度に加熱し、1250℃の温度で板厚:45mmと
する粗圧延後、1020℃の温度で板厚:2.2 mmとする仕上
げ圧延を終了したのち、大量の冷却水を噴射して55℃/
sの冷却速度で急冷し、550 ℃の温度でコイル状に巻取
った。
As the next experiment, an investigation was made on the conditions of final finish annealing. C: 0.08%, Si: 3.38%, Mn: 0.
10% of 250 mm-thick silicon steel slabs each containing 14% each containing 07%, Al: 0.022%, Se: 0.020%, Sb: 0.035% and N: 0.008%, with the balance being Fe and unavoidable impurities. After heating at a temperature of 1250 ° C and rough rolling to a thickness of 45 mm at a temperature of 1250 ° C, finishing rolling to a thickness of 2.2 mm at a temperature of 1020 ° C is completed, and then a large amount of cooling water is injected. ° C /
Then, it was rapidly cooled at a cooling rate of s and wound up in a coil at a temperature of 550 ° C.

【0041】これらの熱延板は昇温速度6.5 ℃/sで昇
温し1050℃・30秒間の熱延板焼鈍を行い、酸洗後、ゼン
ジマー圧延機により120 〜160 ℃の温度範囲での温間圧
延を施し最終冷延板厚:0.30mmとしたのち、脱脂処理を
行いそれぞれ850 ℃・2分間の脱炭・1次再結晶焼鈍を
施した。
These hot rolled sheets were heated at a heating rate of 6.5 ° C./s, annealed at 1050 ° C. for 30 seconds, pickled, and then pickled at a temperature of 120 to 160 ° C. using a Sendzimer rolling mill. After being subjected to warm rolling to a final cold-rolled sheet thickness of 0.30 mm, each was subjected to degreasing treatment, followed by decarburization and primary recrystallization annealing at 850 ° C. for 2 minutes, respectively.

【0042】つづいて、これらの脱炭焼鈍板に、表2に
示す焼鈍分離剤を塗布してから、最終仕上げ焼鈍を、11
80℃の温度まで30℃/sの昇温速度で昇温し7時間保持
したのち降温するヒートパターンで、400 ℃の温度まで
はN2 雰囲気中で、その後は表2に示す雰囲気中でそれ
ぞれ行った。
Subsequently, an annealing separator shown in Table 2 was applied to these decarburized annealed sheets, and then a final finish annealing was performed.
A heat pattern in which the temperature is raised to a temperature of 80 ° C. at a rate of 30 ° C./s, held for 7 hours, and then lowered, in an N 2 atmosphere up to a temperature of 400 ° C., and thereafter in an atmosphere shown in Table 2. went.

【0043】[0043]

【表2】 [Table 2]

【0044】その後、それぞれの鋼板について、未反応
焼鈍分離剤を除去したのち、60%のコロイダルシリカを
含むりん酸マグネシウムを主成分とする絶縁コーティン
グを塗布し、800 ℃の温度で焼付け製品とした。
Then, after removing the unreacted annealing separator from each steel sheet, an insulating coating mainly composed of magnesium phosphate containing 60% of colloidal silica was applied, and baked at a temperature of 800 ° C. .

【0045】かしくて得られた各製品より圧延方向に沿
ってエプスタインサイズの試験片を切り出し800 ℃の温
度で3時間の歪取り焼鈍を施したのち、1.7 Tの磁束密
度における鉄損( W17/50 )および磁束密度(B8)をそ
れぞれ測定するとともに、各製品板の平均結晶粒径も測
定した。これらの測定結果を表3にまとめて示す。
A test piece of Epstein size was cut out from each of the products thus obtained along the rolling direction, subjected to strain relief annealing at a temperature of 800 ° C. for 3 hours, and then subjected to iron loss (W 17) at a magnetic flux density of 1.7 T. / 50 ) and magnetic flux density (B 8 ), and the average crystal grain size of each product plate was also measured. Table 3 summarizes the measurement results.

【0046】[0046]

【表3】 [Table 3]

【0047】表3から、最終仕上げ焼鈍において高温ま
でN2 単味の雰囲気で処理した条件記号AやBの製品は
磁気特性が劣っている。これは、鋼板の窒化が進行し方
位の劣る結晶粒が2次再結晶したことが、磁束密度の低
下および平均結晶粒径の値からわかる。
From Table 3, it can be seen that the products of the condition symbols A and B which were treated in the final finish annealing at a high temperature in an atmosphere of plain N 2 were inferior in magnetic properties. This can be seen from the decrease in magnetic flux density and the value of the average crystal grain size that the nitriding of the steel sheet progressed and the crystal grains having poor orientation were recrystallized.

【0048】また、焼鈍分離剤に含有されるべき成分と
して、CaおよびTiが必須の成分であることも理解され
る。鋼板表面には、脱炭焼鈍時に鋼板表層に生成した S
iO2 と焼鈍分離剤の主成分であるMgO とが最終仕上げ焼
鈍時に反応してフォルステライト(Mg2 SiO4)を主成分
とする被膜が形成されているが、焼鈍分離剤にこれらの
成分を添加することによって、被膜中にCaおよびTiの窒
化物または酸化物が形成され、被膜の強化作用が高めら
れ、被膜の張力効果が増加する結果磁気特性を向上させ
たものと考えられる。
It is also understood that Ca and Ti are essential components to be contained in the annealing separator. On the steel sheet surface, S formed on the steel sheet surface during decarburization annealing
iO 2 and MgO, which is the main component of the annealing separator, react during the final annealing to form a film containing forsterite (Mg 2 SiO 4 ) as a main component. It is considered that the addition causes the formation of nitrides or oxides of Ca and Ti in the coating, thereby enhancing the strengthening effect of the coating and increasing the tensile effect of the coating, thereby improving the magnetic properties.

【0049】最終仕上げ焼鈍の雰囲気はかかる被膜中の
酸化物や窒化物の形成に重要な働きをしており、焼鈍の
中期から後期において特に還元性を強めておくことが必
要であると考えられる。すなわち、還元性の強いH2
雰囲気中に含有させることによって鋼中窒化物の分解を
促進し被膜中のAl含有量を増加させることが可能にな
り、同時に還元性雰囲気によって被膜形成を促進し、被
膜中に含有するTiやCaの量も増加させることが可能とな
ったと思われる。
The atmosphere of the final annealing plays an important role in the formation of oxides and nitrides in such a coating, and it is considered that it is necessary to enhance the reducibility especially in the middle to late stages of annealing. . In other words, the inclusion of strong reducing H 2 in the atmosphere promotes the decomposition of nitrides in the steel and increases the Al content in the coating, and at the same time promotes the formation of the coating by the reducing atmosphere. It seems that it became possible to increase the amounts of Ti and Ca contained in the coating.

【0050】なお、この発明の効果を発現するための成
分組成について種々探索した結果、特にAlについて、熱
延板焼鈍の昇温過程でAlN を十分に析出させるために
は、Al含有量が0.010 〜0.030 %の範囲で良好な結果が
得られることがわかった。
As a result of various searches for the component composition for achieving the effects of the present invention, in order to sufficiently precipitate AlN during the temperature raising process of hot-rolled sheet annealing, particularly for Al, an Al content of 0.010 It has been found that good results can be obtained in the range of 0.030%.

【0051】以上、上記した実験・調査結果からの知見
をもとに、この発明を完成したものである。つぎに、こ
の発明の方向性電磁鋼板の成分組成や製造方法につい
て、この発明の効果を発現するための要件とその範囲お
よび作用などについて詳述する。まず、素材の成分組成
について述べる。
As described above, the present invention has been completed based on the knowledge obtained from the results of the above-described experiments and investigations. Next, with respect to the component composition and the manufacturing method of the grain-oriented electrical steel sheet of the present invention, the requirements for exhibiting the effects of the present invention, the range thereof, the operation, and the like will be described in detail. First, the component composition of the material will be described.

【0052】C:0.025 〜0.095 % Cは、含有量が0.095 %を超えるとγ変態量が過剰とな
り、熱間圧延中のAlの分布が不均一となって熱延板焼鈍
や中間焼鈍の昇温過程で析出するAlN の分布の均一性を
阻害し、また、脱炭焼鈍の負荷も増大して脱炭不良が発
生しやすくなる。一方、0.025 %未満では、組織改善効
果が得られず2次再結晶が不完全となり磁気特性が劣化
する。したがって、その含有量は0.025 〜0.095 %の範
囲とする。
C: 0.025 to 0.095% When the content of C exceeds 0.095%, the amount of γ transformation becomes excessive, the distribution of Al during hot rolling becomes uneven, and the rise of hot-rolled sheet annealing and intermediate annealing increases. The uniformity of the distribution of AlN precipitated during the heating process is impaired, and the load of decarburization annealing is increased, so that poor decarburization tends to occur. On the other hand, if it is less than 0.025%, the effect of improving the structure cannot be obtained, and the secondary recrystallization becomes incomplete and the magnetic properties deteriorate. Therefore, its content is in the range of 0.025 to 0.095%.

【0053】Si:1.5 〜7.0 % Siは、電気抵抗を増加させ鉄損を低減させるために必須
の成分であり、このためには1.5 %以上含有させること
が必要であるが、7.0 %を超えて含有させると加工性が
劣化し製品の製造や製品の加工が極めて困難になる。し
たがって、その含有量は1.5 〜7.0 %の範囲とする。
Si: 1.5 to 7.0% Si is an essential component for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 1.5% or more. If it is contained, the processability deteriorates, and it becomes extremely difficult to manufacture and process the product. Therefore, its content is in the range of 1.5 to 7.0%.

【0054】Mn:0.03〜2.5 % Mnは、Siと同様に電気抵抗を高め、また製造時の熱間加
工性を向上させるので重要な成分である。この目的のた
めには0.03%以上含有させることが必要であるが、2.5
%を超えて含有させるとγ変態を誘起して磁気特性が劣
化する。したがって、その含有量は0.03〜2.5 %の範囲
とする。
Mn: 0.03 to 2.5% Mn is an important component because it increases the electric resistance and improves the hot workability at the time of production, like Si. For this purpose, it is necessary to contain 0.03% or more.
%, Magnetic properties are deteriorated by inducing γ transformation. Therefore, its content is in the range of 0.03 to 2.5%.

【0055】Al:0.010 〜0.030 %、N:0.003 〜0.01
0 % 鋼中には上記成分のほか2次再結晶を誘起するためのイ
ンヒビターが必要で、インヒビター成分としてAlおよび
Nを含有させることを必須とする。Alは、含有量が0.01
0 %未満の場合は熱延板焼鈍や中間焼鈍での昇温過程で
析出するAlN の量が不足し良好な2次再結晶を得ること
がてきなく、逆に0.030 %を超える場合はAlN の析出温
度が上昇し、通常の熱間圧延ではAlN の析出を抑制する
ことができなくなる。したがって、Alは0.010 〜0.030
%の範囲で含有させることとする。
Al: 0.010 to 0.030%, N: 0.003 to 0.01
In addition to the above components, an inhibitor for inducing secondary recrystallization is required in the 0% steel, and it is essential to contain Al and N as inhibitor components. Al has a content of 0.01
If it is less than 0%, the amount of AlN precipitated during the heating process in hot-rolled sheet annealing or intermediate annealing is insufficient, and it is not possible to obtain a good secondary recrystallization. Conversely, if it exceeds 0.030%, AlN The precipitation temperature rises, and ordinary hot rolling makes it impossible to suppress the precipitation of AlN. Therefore, Al is 0.010-0.030
%.

【0056】Nは、含有量が0.003 %未満の場合、熱延
板焼鈍や中間焼鈍の昇温過程において析出するAlN 量が
不足し良好な2次再結晶を得ることがてきなく、逆に0.
010%を超える場合、鋼中でガス化しふくれなどの欠陥
をもたらす。したがって、Nは0.003 〜0.010 %の範囲
で含有させることとする。
If the content of N is less than 0.003%, the amount of AlN precipitated during the heating process of hot-rolled sheet annealing or intermediate annealing is insufficient, so that good secondary recrystallization cannot be obtained. .
If it exceeds 010%, it causes gasification and blistering in steel. Therefore, N should be contained in the range of 0.003 to 0.010%.

【0057】これらの他に若干量のSおよび/またはSe
を含有させることが必要である。それらの成分は鋼中に
Mn化合物もしくはCu化合物として析出するが、インヒビ
ターとしての作用はほとんどなく、熱延板焼鈍や中間焼
鈍の昇温過程において析出するAlN の析出核として機能
する。これらは微細高密度分散の核生成のための析出で
あるので析出量としては少量で十分であり、この機能の
発現のためには、SもしくはSeの単独あるいは複合で0.
003 %以上含有させれば十分である。また、過剰に含有
する場合も過剰分が粗大析出するだけであるのでさして
有害とはならない。ただし、0.040 %を超えて含有する
場合は粒界に析出して熱間圧延時の加工性を阻害するの
でSもしくはSeの単独あるいは複合で0.040 %までの含
有量とする。
In addition to these, a small amount of S and / or Se
Must be contained. Those components in the steel
It precipitates as a Mn compound or a Cu compound, but has almost no effect as an inhibitor, and functions as a precipitation nucleus of AlN that precipitates during the heating process of hot-rolled sheet annealing or intermediate annealing. Since these are precipitations for nucleation of fine and high-density dispersion, a small amount is sufficient as the amount of precipitation, and S or Se alone or in combination with S. or S.
It is sufficient if the content is at least 003%. In addition, even if it is contained excessively, it is not harmful because only the excessive amount precipitates coarsely. However, if the content exceeds 0.040%, it precipitates at the grain boundaries and impairs the workability during hot rolling. Therefore, the content of S or Se alone or in combination is up to 0.040%.

【0058】さらに、Sb,Sn, Bi, Te, Ge, P,Zn, In
およびCrなどはインヒビターとして抑制力を強化する補
助的な働きを有するので、鋼中に随時含有させることが
好ましい。それらの好適含有量としてはそれぞれ0.001
〜0.30%の範囲である。
Further, Sb, Sn, Bi, Te, Ge, P, Zn, In
Since Cr and Cr and the like have an auxiliary function of reinforcing the inhibitory force as inhibitors, it is preferable to include them in steel as needed. Their preferred content is 0.001 each
It is in the range of ~ 0.30%.

【0059】その他の添加成分については、例えば、N
i,CoおよびMoなどは鋼板の表面性状を改善する効果が
あるので適宜含有させることは可能である。
As for other additive components, for example, N
Since i, Co, Mo, and the like have the effect of improving the surface properties of the steel sheet, they can be appropriately included.

【0060】ついで、この発明の製造方法について述べ
る。上記の成分組成に調整されたけい素鋼スラブは、従
来より公知のいかなる方法によっても製造することがで
きる。
Next, the manufacturing method of the present invention will be described. The silicon steel slab adjusted to the above component composition can be manufactured by any conventionally known method.

【0061】該けい素鋼スラブは、通常のスラブ加熱に
供されたのち熱間圧延により熱延板コイルとされるが、
この時スラブ加熱温度を1350℃以上とすることがこの発
明の重要な構成要件である。このスラブ加熱温度が1350
℃未満である場合インヒビターの固溶が十分でなく、Al
N の微細かつ均一な分散析出状態が得られなくなる。
The silicon steel slab is subjected to ordinary slab heating and then hot-rolled to form a hot-rolled sheet coil.
At this time, it is an important component of the present invention to set the slab heating temperature to 1350 ° C. or higher. This slab heating temperature is 1350
If the temperature is lower than ℃, the solid solution of the inhibitor is not sufficient and Al
A fine and uniform dispersion and precipitation state of N cannot be obtained.

【0062】熱間圧延に際しては、スラブ加熱前後にお
いて組織の均一化のための厚み低減処理や幅圧下処理な
どの公知の技術を随時加えることは可能である。
In the hot rolling, known techniques such as a thickness reduction treatment and a width reduction treatment for uniformizing the structure can be added before and after the slab heating, as needed.

【0063】そして熱間圧延においては、以下に列記す
る4要件が必須となる。第1に、仕上げ圧延での累積圧
下率を85〜99%の範囲とすることである。これは、累積
圧下率が85%未満の場合熱延板でのバンド組織の間隔が
大きくなり、2次再結晶に有害となり、逆に99%を超え
ると熱延板に再結晶粒が存在するようになり、冷間圧延
工程でのAlN の分散析出状態が粗くなることによる。
In hot rolling, the following four requirements are indispensable. First, the cumulative rolling reduction in finish rolling is to be in the range of 85 to 99%. This is because if the cumulative rolling reduction is less than 85%, the interval of the band structure in the hot-rolled sheet becomes large and it becomes harmful to the secondary recrystallization, and if it exceeds 99%, recrystallized grains are present in the hot-rolled sheet. And the state of dispersed precipitation of AlN in the cold rolling step becomes rough.

【0064】第2に、仕上げ圧延終了温度T(℃)を、
950 ℃から1150°までの温度範囲とし、かつ、Si(%)
XおよびAl(ppm)Yに応じ、下記式(1)を満たす範囲に
することが必要である。 610 +40X+Y≦T≦750 +40X+Y --- (1) これは、仕上げ圧延終了温度が上記下限値を下回るとMn
S の超微細析出が困難となり、またAlN が圧延中に析出
するようになるので、熱延板焼鈍や中間焼鈍におけるAl
N の微細均一な析出が得られず、所望の磁気特性を有す
る製品が得られなくなり、逆に上限値を上回る場合は、
高温域での圧延となりAlN の析出核となる硫化物やセレ
ン化物の超微細析出をもたらす鋼中の欠陥が不足し、結
局AlN の微細均一な析出が得られず所望の磁気特性を有
する製品が得られなくなることによる。
Second, the finish rolling end temperature T (° C.)
Temperature range from 950 ° C to 1150 ° C and Si (%)
Depending on X and Al (ppm) Y, it is necessary to make the range satisfying the following formula (1). 610 + 40X + Y ≦ T ≦ 750 + 40X + Y --- (1) When the finish rolling end temperature falls below the lower limit, Mn
Ultrafine precipitation of S becomes difficult, and AlN precipitates during rolling.
In the case where fine and uniform precipitation of N cannot be obtained and a product having desired magnetic properties cannot be obtained, and conversely, when the upper limit is exceeded,
There is a shortage of defects in the steel that result in ultra-fine precipitation of sulfides and selenides that become rolling nuclei at high temperatures and become AlN precipitation nuclei.As a result, products with the desired magnetic properties cannot be obtained because fine and uniform precipitation of AlN cannot be obtained. It is because it cannot be obtained.

【0065】第3に、仕上げ圧延終了後20℃/s以上の
冷却速度で急冷することが必要である。すなわち、この
ことは急冷により過飽和状態のAlN の析出を抑制し、熱
延板焼鈍や中間焼鈍における昇温過程でのAlN 析出のた
めの駆動力を高めることになる。第4に、コイル巻取り
温度を670 ℃以下とすることである。これは、巻取り温
度が670 ℃を超える場合は、過飽和状態のAlN が析出し
てしまいインヒビターの抑制力が劣化し所望の磁気特性
の製品が得られなくなることによる。
Third, it is necessary to rapidly cool at a cooling rate of 20 ° C./s or more after the finish rolling. That is, the rapid cooling suppresses the precipitation of AlN in the supersaturated state, and increases the driving force for AlN precipitation during the temperature raising process in hot-rolled sheet annealing and intermediate annealing. Fourth, the coil winding temperature must be 670 ° C. or less. This is because, when the winding temperature exceeds 670 ° C., supersaturated AlN precipitates, the inhibitory power of the inhibitor is deteriorated, and a product having desired magnetic properties cannot be obtained.

【0066】冷間圧延工程においては、前記したよう
に、熱延板焼鈍を施したのち1回冷間圧延法、熱延板焼
鈍を施したのち中間焼鈍を挟む2回冷間圧延法または熱
延板焼鈍を省略した中間焼鈍を挟む2回冷間圧延法のい
ずれもが採用できる。この冷間圧延工程における最初の
焼鈍(熱延板焼鈍または中間焼鈍)では、その昇温過程
でこの発明の骨子とするAlN を微細析出させ、その後の
焼鈍過程および2回目の焼鈍(中間焼鈍)では析出した
AlN のオストワルド成長や再固溶・再析出を防止するよ
うに留意することが極めて重要である。
In the cold rolling step, as described above, the sheet is annealed and then cold-rolled once, the sheet is annealed and the sheet is twice cold-rolled with intermediate annealing or hot-rolled. Any of the two-time cold rolling method that sandwiches intermediate annealing in which the strip annealing is omitted can be employed. In the first annealing (hot-rolled sheet annealing or intermediate annealing) in this cold rolling step, AlN, which is the essence of the present invention, is finely precipitated in the temperature raising process, and thereafter the annealing process and the second annealing (intermediate annealing) Has precipitated
It is extremely important to take care to prevent Ostwald ripening, re-dissolution and re-precipitation of AlN.

【0067】この冷間圧延工程で最初に行う焼鈍、すな
わち、熱延板焼鈍を施す1回冷間圧延法および2回冷間
圧延法においては熱延板焼鈍、熱延板焼鈍を省略する2
回冷間圧延法においては中間焼鈍の昇温過程でAlN を微
細析出させるためには、その昇温過程にて、800 ℃の温
度までの昇温速度を5〜25℃/sの範囲とすることが必
要である。これは、昇温速度が5℃/s未満では析出物
が粗大に析出し、インヒビターとしての強い抑制力が得
られず、逆に25℃/sを超える場合は析出物の析出量が
不十分となり、同じくインヒビターとしての強い抑制力
が得られなくなるためである。
In the first annealing in the cold rolling step, that is, in the one-time cold rolling method and the two-time cold rolling method in which hot-rolled sheet annealing is performed, hot-rolled sheet annealing and hot-rolled sheet annealing are omitted.
In the cold rolling method, in order to cause AlN to be finely precipitated during the heating process of the intermediate annealing, the heating rate up to a temperature of 800 ° C. in the heating process is in a range of 5 to 25 ° C./s. It is necessary. This is because if the heating rate is less than 5 ° C./s, the precipitates are coarsely precipitated, and a strong inhibitory force as an inhibitor cannot be obtained. This is also because it becomes impossible to obtain a strong inhibitory force as an inhibitor.

【0068】さらに、この焼鈍は900 〜1125℃の温度範
囲で150 秒間以下の保持時間とすることが必要である。
すなわち、焼鈍温度が過度に低い場合、圧延後の再結晶
組織において2次再結晶の核となる(110)粒の強度
が不足し良好な方位の2次再結晶組織が得られなくなる
ことから、(110)粒の十分な強度を得るためにこの
焼鈍後の結晶組織を一定サイズ以上に粗大化しておく必
要がある。このためには900 ℃以上の温度で焼鈍するこ
とが不可欠となる。また、焼鈍温度の上限については、
昇温過程で微細に析出させたAlN をオストワルド成長も
しくは再固溶させないことがもっとも肝要な点となる。
このためには1125℃以下の焼鈍温度としかつ保持時間を
150 秒間以下とすることが必要とされる。このように焼
鈍温度を低温化することにこの発明の特徴があり、かく
して、1次再結晶粒の組織中に(110)粒の強度を増
加させることが可能となり、結果として高磁束密度でか
つ細粒組織の2次再結晶を得ることができる。
Further, it is necessary that the annealing be performed at a temperature of 900 to 1125 ° C. for a holding time of 150 seconds or less.
That is, if the annealing temperature is excessively low, the strength of the (110) grains serving as nuclei for secondary recrystallization in the recrystallized structure after rolling is insufficient, and a secondary recrystallized structure having a good orientation cannot be obtained. In order to obtain sufficient strength of the (110) grains, it is necessary that the crystal structure after annealing is coarsened to a certain size or more. For this purpose, annealing at a temperature of 900 ° C. or more is indispensable. Also, regarding the upper limit of the annealing temperature,
The most important point is that the AlN deposited finely during the temperature raising process is not Ostwald-grown or re-dissolved.
For this purpose, set the annealing temperature to 1125 ° C or lower and maintain the holding time.
It must be less than 150 seconds. As described above, the present invention is characterized by lowering the annealing temperature. Thus, it becomes possible to increase the strength of the (110) grains in the structure of the primary recrystallized grains. Secondary recrystallization of a fine grain structure can be obtained.

【0069】また、かかる焼鈍の冷却過程については、
特に必要とされる点はないが、焼鈍後の鋼中の固溶Cを
増加させる急冷処理を行ったり、鋼中に微細カーバイド
を析出させるための急冷低温保持処理を行ったりするこ
とは、製品の磁気特性を向上させるので有効である。さ
らに、焼鈍雰囲気の酸化性を高めて鋼板表層部を脱炭す
る公知の手段も有効に作用する。
Further, regarding the cooling process of the annealing,
Although not particularly required, quenching to increase the solid solution C in the steel after annealing or quenching to maintain fine quenching in the steel to precipitate fine carbides is not a product. This is effective in improving the magnetic characteristics of. Further, a known means for increasing the oxidizing property of the annealing atmosphere and decarburizing the surface layer of the steel sheet also works effectively.

【0070】ここで、最終冷間圧延前の熱延板焼鈍や、
中間焼鈍での脱炭量は0.005 〜0.025 %の範囲とするこ
とがよい。かかる脱炭処理によって鋼板表層部のC含有
量が低下し、焼鈍時のγ変態量が低減するため、2次再
結晶の核が生成する板厚表層部のインヒビターの抑制力
が強化され、より好ましい2次再結晶を得ることができ
る。この効果を得るためには、鋼板のC含有量を0.005
%以上低減することがよい。しかし、0.025 %を超えて
低減した場合、1次再結晶組織を劣化させるので好まし
くない。
Here, hot-rolled sheet annealing before final cold rolling,
The amount of decarburization in the intermediate annealing is preferably in the range of 0.005 to 0.025%. Due to such decarburization treatment, the C content of the surface layer of the steel sheet is reduced, and the amount of γ transformation during annealing is reduced, so that the inhibitory force of the inhibitor on the surface layer of the sheet thickness at which nuclei for secondary recrystallization is generated is enhanced, Preferred secondary recrystallization can be obtained. In order to obtain this effect, the C content of the steel sheet must be 0.005.
% Or more. However, if the content is reduced beyond 0.025%, the primary recrystallized structure is deteriorated, which is not preferable.

【0071】なお、熱延板焼鈍後2回冷間圧延法の2番
目の焼鈍(中間焼鈍)についても、微細析出したAlN の
状態を保つためおよび結晶組織の調整のために最初の焼
鈍と同様に900 〜1125℃の温度範囲で150 秒間以下の焼
鈍とする。
The second annealing (intermediate annealing) of the cold rolling twice after the hot-rolled sheet annealing is the same as the first annealing for maintaining the state of finely precipitated AlN and adjusting the crystal structure. Annealing at a temperature in the range of 900 to 1125 ° C for 150 seconds or less.

【0072】冷間圧延の圧下率については、従来から公
知のように、最終冷間圧延の圧下率を80〜95%の範囲と
することが必要である。これは、圧下率が95%を超える
と2次再結晶が困難となり、80%未満では良好な2次再
結晶粒の方位が得られず、ともに製品での磁束密度が劣
化することによる。
Regarding the rolling reduction of the cold rolling, it is necessary to make the rolling reduction of the final cold rolling in the range of 80 to 95% as conventionally known. This is because when the rolling reduction exceeds 95%, secondary recrystallization becomes difficult, and when the rolling reduction is less than 80%, a good orientation of the secondary recrystallized grains cannot be obtained, and the magnetic flux density of the product deteriorates.

【0073】また、2回冷間圧延法の第1回目の圧延圧
下率は15〜60%の範囲とする。これは、圧下率が15%未
満の場合は圧延再結晶の機構が作用せず結晶組織の均一
化が得られず、逆に60%を超えると結晶組織の集積化が
起り第2回目の圧延の効果が得られなくなるためであ
る。
The rolling reduction in the first rolling of the two-time cold rolling is in the range of 15 to 60%. If the rolling reduction is less than 15%, the mechanism of rolling recrystallization does not work and the crystal structure cannot be homogenized. Conversely, if it exceeds 60%, the crystal structure is integrated and the second rolling is performed. This is because the effect of (1) cannot be obtained.

【0074】さらに、最終冷間圧延においては、公知の
ように90〜350 ℃の温度範囲での温間圧延を行うこと
や、100 〜300 ℃の温度範囲で10〜60分間の時間範囲の
パス間時効処理を行うことは、1次再結晶集合組織を改
善する効果を有しより好ましい結果が得られるので、こ
の発明に適用することは有意である。
Further, in the final cold rolling, warm rolling at a temperature range of 90 to 350 ° C. is performed as is well-known, or a pass for a time range of 10 to 60 minutes at a temperature range of 100 to 300 ° C. Performing the intermediate aging treatment has the effect of improving the primary recrystallized texture and more preferable results are obtained, and therefore, it is significant to apply the present invention to the present invention.

【0075】なお、最終冷間圧延後に、公知のように磁
区細分化のため鋼板表面に線状の溝を設けることもよ
い。
After the final cold rolling, a linear groove may be provided on the surface of the steel sheet for magnetic domain refinement as is known.

【0076】かかる方法により最終冷延板厚とした鋼板
には、公知の手法による1次再結晶焼鈍を施したのち、
Ti化合物を1〜20%およびCaを0.01〜3.0 %の範囲で含
有する焼鈍分離剤を塗布してから、昇温途中の少なくと
も900 ℃以上からはH2 を含む雰囲気中で昇温する最終
仕上げ焼鈍を施す。
The steel sheet having the final cold-rolled thickness obtained by the above method is subjected to primary recrystallization annealing by a known method,
After applying an annealing separator containing a Ti compound in the range of 1 to 20% and Ca in a range of 0.01 to 3.0%, the temperature is raised at least from 900 ° C. to an atmosphere containing H 2 from 900 ° C. or more. Anneal.

【0077】上記で、焼鈍分離剤中にTi,Caを含有させ
る理由は、最終仕上げ焼鈍によって形成される被覆中に
これらの成分の酸化物や窒化物が生成し、これらによる
被膜の張力効果の向上が考えられることによるものであ
り、このためには、Ti化合物を1%以上、Caを0.01%以
上含有させることが必要である。しかしながら、Ti化合
物を20%を超えて含有させた場合は、多量のTiが鋼中に
侵入し磁気特性の劣化をもたらし、かつ、被膜形成も阻
害され、Caを3.0 %を超えて含有させた場合は、被膜の
密着性が劣化するので、それらの含有量の上限をTi化合
物が20%、Caが3.0 %とする。
The reason why Ti and Ca are contained in the annealing separator is that oxides and nitrides of these components are generated in the coating formed by the final finish annealing, and the tensile effect of the coating due to these components is generated. This is because improvement is conceivable, and for this purpose, it is necessary to contain 1% or more of a Ti compound and 0.01% or more of Ca. However, when the Ti compound is contained in an amount exceeding 20%, a large amount of Ti penetrates into the steel to cause deterioration of the magnetic properties and inhibits the formation of the film, so that the Ca is included in an amount exceeding 3.0%. In such a case, the adhesion of the coating film is deteriorated. Therefore, the upper limits of these contents are set to 20% for the Ti compound and 3.0% for Ca.

【0078】最終仕上げ焼鈍において、焼鈍中に鋼板の
窒化が生じると方位の劣る結晶粒の2次再結晶を招くの
で、最終仕上げ焼鈍の雰囲気は少なくとも900 ℃以上に
おいてH2 を含ませることが必要である。また、H2
含む雰囲気とすることは、上記被膜中の酸化物や窒化物
の形成に重要な働きをしており、900 ℃以上の温度の焼
鈍の中期から後期において特に還元性を強めておくこと
が重要であると考えられる。
In the final finish annealing, if nitriding of the steel sheet occurs during the annealing, secondary recrystallization of crystal grains having poor orientation is caused. Therefore, it is necessary that the atmosphere of the final finish annealing contains H 2 at least at 900 ° C. or more. It is. The use of an atmosphere containing H 2 plays an important role in the formation of oxides and nitrides in the above-mentioned film, and particularly in the middle to late stages of annealing at a temperature of 900 ° C. or more, the reducing property is enhanced. Is considered important.

【0079】この最終仕上げ焼鈍は、未反応焼鈍分離剤
を除去したのち、鋼板表面に絶縁コーティングを塗布し
て製品とするが、必要に応じてコーティング塗布前に鋼
板表面を鏡面化してもよいし、絶縁コーティングとして
張力コーティングを用いてもよく、また、コーティング
の塗布焼付け処理を平坦化処理と兼ねてもよい。
In this final finish annealing, after removing the unreacted annealing separating agent, an insulating coating is applied to the steel sheet surface to obtain a product. If necessary, the steel sheet surface may be mirror-finished before coating. Alternatively, a tension coating may be used as the insulating coating, and the coating baking process may also serve as a flattening process.

【0080】さらに、2次再結晶後の鋼板には鉄損の低
減をはかるため、公知の磁区細分化処理としてプラズマ
ジェットやレーザ照射を線状に施したり、突起ロールに
よる線状のへこみを設けたりする処理を施すこともでき
る。
Further, in order to reduce iron loss, the steel sheet after the second recrystallization is subjected to a plasma jet or laser irradiation as a well-known magnetic domain segmentation treatment, or a linear dent is formed by a projection roll. Or other processing can be performed.

【0081】[0081]

【実施例】【Example】

実施例1 C:0.08%、Si:3.35%、Mn:0.07%、Al:0.022 %、
Se:0.012 %、Sb:0.02%およびN:0.008 %を含有
し、残部はFeおよび不可避的不純物からなる組成のけい
素鋼スラブを、1410℃の温度に加熱したのち、板厚:45
mmのシートバーに1230℃の温度で粗圧延し、圧延終了温
度:1020℃で板厚:2.2 mmとする仕上げ圧延後、冷却水
を噴射させて冷却速度:25℃/sで冷却し600 ℃の温度
でコイルに巻取り熱延板とした。
Example 1 C: 0.08%, Si: 3.35%, Mn: 0.07%, Al: 0.022%,
A silicon steel slab containing 0.012% Se, 0.02% Sb and 0.008% N and the balance consisting of Fe and unavoidable impurities was heated to a temperature of 1410 ° C., and the sheet thickness was 45%.
rough rolling at a temperature of 1230 ° C on a sheet bar of 12 mm, finishing rolling to a rolling end temperature of 1020 ° C and a sheet thickness of 2.2 mm, cooling water is injected to cool at a cooling rate of 25 ° C / s and 600 ° C. At a temperature of 5 ° C. to form a hot rolled sheet.

【0082】この熱延板を1100℃の温度まで昇温速度:
12.5℃/sで昇温し、この温度で30秒間保持する熱延板
焼鈍を施したのち、酸洗し、板厚:1.5 mmに冷間圧延し
た。
The heating rate of the hot-rolled sheet to a temperature of 1100 ° C .:
The temperature was raised at 12.5 ° C./s, and after hot-rolled sheet annealing maintained at this temperature for 30 seconds, pickling was performed and cold-rolled to a sheet thickness of 1.5 mm.

【0083】ついで、この冷延板コイルを2等分し、露
点:40℃のH2 雰囲気中で中間焼鈍を施し、C含有量を
0.06%まで低減したが、その際、一方をこの発明の適合
例として1080℃・50秒間の焼鈍を施し、他方を比較例と
して1200℃・50秒間の焼鈍を施した。
Next, this cold-rolled sheet coil was divided into two equal parts, and subjected to intermediate annealing in an H 2 atmosphere at a dew point of 40 ° C. to reduce the C content.
At this time, one of them was annealed at 1080 ° C. for 50 seconds as a compatible example of the present invention, and the other was annealed at 1200 ° C. for 50 seconds as a comparative example.

【0084】これらの中間焼鈍板を、それぞれ、鋼板温
度:220 ℃の温間圧延により、最終冷延板厚:0.22mmと
したのち、脱脂処理し、850 ℃・2分間の脱炭・1次再
結晶焼鈍後、0.5 %のCaを含有するMgO にTiO2を5%添
加した焼鈍分離剤を塗布してから、最終仕上げ焼鈍とし
て、N2 雰囲気中で800 ℃の温度まで30℃/hの昇温速
度で、N2 :25%、H2 :75%の混合雰囲気中で800 ℃
から1050℃の温度までを12.5℃/hの昇温速度でそれぞ
れ昇温し、その後H2 雰囲気中で1200℃の温度まで25℃
/hの昇温速度で昇温して、この温度で6時間保持した
のち降温し、この時600 ℃までをH2 雰囲気で600 ℃か
らはN2 雰囲気で降温する処理を施した。
These intermediate annealed sheets were each subjected to warm rolling at a steel sheet temperature of 220 ° C. to a final cold-rolled sheet thickness of 0.22 mm, and then degreased, and then decarburized at 850 ° C. for 2 minutes. After recrystallization annealing, an annealing separator containing 5% of TiO 2 added to MgO containing 0.5% of Ca is applied, and then as final finishing annealing, a temperature of 30 ° C./h is applied to a temperature of 800 ° C. in an N 2 atmosphere. 800 ° C. in a mixed atmosphere of N 2 : 25% and H 2 : 75% at a heating rate
From 1 to 1050 ° C at a rate of 12.5 ° C / h, then 25 ° C in an H 2 atmosphere to 1200 ° C.
The temperature was raised at a rate of / h, maintained at this temperature for 6 hours, and then lowered. At this time, a treatment was performed in which the temperature was lowered to 600 ° C. in an H 2 atmosphere and from 600 ° C. in an N 2 atmosphere.

【0085】この最終仕上げ焼鈍後は、未反応焼鈍分離
剤を除去したのち、60%のコロイダルシリカを含有する
りん酸マグネシウムを張力コーティングとして塗布した
のち800 ℃の温度で焼付け、磁区細分化処理としてプラ
ブマジェットを6mmピッチで照射しそれぞれ製品とし
た。
After the final annealing, the unreacted annealing separating agent was removed, and magnesium phosphate containing 60% of colloidal silica was applied as a tension coating and baked at a temperature of 800 ° C. to perform magnetic domain refining. Irradiation was carried out at a pitch of 6 mm with a plumb jet to produce products.

【0086】これらの製品について調査した磁気特性の
測定結果は以下の通りである。
The measurement results of the magnetic properties investigated for these products are as follows.

【0087】上記結果から明らかなように、中間焼鈍温
度の高い比較例に比し、この発明の適合例は極めて優れ
る磁気特性を示している。
As is clear from the above results, compared to the comparative example having a high intermediate annealing temperature, the conforming example of the present invention shows extremely excellent magnetic properties.

【0088】実施例2 表4に示す種々の成分組成になるけい素鋼スラブを1430
℃の温度に加熱後、板厚:50mmのシートバーに1250℃の
温度で粗圧延したのち、仕上げ圧延し、記号VII および
Xの鋼については1000℃の仕上げ圧延終了温度で、その
他の鋼については1030℃の仕上げ圧延終了温度でそれぞ
れ板厚:2.6 mmとし、その後ジェット水を噴射して35℃
/sの冷却速度で冷却し550 ℃の温度でコイルに巻取り
熱延板とした。
Example 2 1430 silicon steel slabs having various component compositions shown in Table 4 were used.
After heating to a temperature of ℃ ℃, a sheet bar with a thickness of 50mm is roughly rolled at a temperature of 1250 ℃, and then finish-rolled. For steels with symbols VII and X, the finish-rolling temperature is 1000 ℃ and for other steels At a finishing rolling temperature of 1030 ° C and a plate thickness of 2.6 mm, respectively, and then jet water to 35 ° C
/ S and cooled at a temperature of 550 ° C. into a coil to form a hot rolled sheet.

【0089】[0089]

【表4】 [Table 4]

【0090】さらに、これらの熱延板を酸洗し、板厚:
1.8 mmに冷間圧延後、15℃/sの昇温速度で1080℃の温
度まで昇温し露点:50℃のH2 雰囲気中で50秒間保持す
る中間処理を施したのち、230 ℃の鋼板温度での温間圧
延によりそれぞれ最終冷延板厚:0.26mmの冷延板とし
た。
Further, these hot-rolled sheets were pickled, and the sheet thickness:
Cold-rolled to 1.8 mm, heated to 1080 ° C at a rate of 15 ° C / s, subjected to an intermediate treatment of 50 seconds in a 50 ° C H 2 atmosphere, and then to 230 ° C steel sheet. Cold rolling at a final temperature of 0.26 mm was performed by warm rolling at a temperature.

【0091】これらの冷延板を脱脂処理し、850 ℃・2
分間の脱炭・1次再結晶焼鈍を施したのち、0.35%のCa
と0.07%のBを含有するMgO に5%のTiO2、2%のSr(O
H)2および2%のSnO2を添加した焼鈍分離剤を塗布して
コイル状に巻取ってから、最終仕上げ焼鈍として、N2
雰囲気中で850 ℃の温度まで30℃/hの昇温速度で昇温
し850 ℃の温度で25時間保持後、N2 :25%、H2 :75
%の混合雰囲気中で1200℃の温度まで昇温速度:15℃/
hで昇温し、H2 雰囲気中でこの温度に5時間保持した
のち降温する処理をそれぞれ施した。
These cold-rolled sheets were degreased and treated at 850 ° C.
Minutes after decarburization and primary recrystallization annealing, 0.35% Ca
MgO containing 0.07% B and 5% TiO 2 , 2% Sr (O
After wound into a coil shape and coated with an annealing separating agent was added H) 2 and 2% of SnO 2, as a final finish annealing, N 2
In the atmosphere, the temperature was raised to a temperature of 850 ° C. at a rate of 30 ° C./h and maintained at a temperature of 850 ° C. for 25 hours. N 2 : 25%, H 2 : 75
% In a mixed atmosphere at a temperature of 1200 ° C: 15 ° C /
h, the temperature was maintained at this temperature in an H 2 atmosphere for 5 hours, and then the temperature was lowered.

【0092】その後、未反応焼鈍分離剤を除去したの
ち、50%のコロイダルシリカを含有する張力コーティン
グを塗布し焼付けてそれぞれ製品とした。これらの製品
について調査した磁気特性の測定結果を表5にまとめて
示す。
After removing the unreacted annealing separator, a tension coating containing 50% colloidal silica was applied and baked to obtain respective products. Table 5 summarizes the measurement results of the magnetic properties investigated for these products.

【0093】[0093]

【表5】 [Table 5]

【0094】表5から明らかなように、Al、S+Seある
いはNの含有量がこの発明の限定範囲を外れる比較例に
比し、この発明の適合例はいずれも良好な磁気特性を示
している。
As is apparent from Table 5, all of the applicable examples of the present invention show good magnetic properties as compared with the comparative examples in which the content of Al, S + Se or N is out of the range of limitation of the present invention.

【0095】実施例3 C:0.075 %、Si:3.35%、Mn:0.07%、Al:0.022
%、S:0.004 %、Sb:0.02%およびN:0.0075%を含
有し、残部はFeおよび不可避的不純物からなる組成のけ
い素鋼スラブ(a)、C:0.073 %、Si:3.36%、Mn:
0.07%、Al:0.024 %、S:0.002 %、Sb:0.02%およ
びN:0.0082%を含有し、残部はFeおよび不可避的不純
物からなる組成のけい素鋼スラブ(b)、C:0.080
%、Si:3.52%、Mn:0.07%、Al:0.030 %、S:0.00
8 %、Sb:0.02%およびN:0.0075%を含有し、残部は
Feおよび不可避的不純物からなる組成のけい素鋼スラブ
(c)およびC:0.073 %、Si:3.05%、Mn:0.07%、
Al:0.018 %、S:0.004 %、Sb:0.02%およびN:0.
0075%を含有し、残部はFeおよび不可避的不純物からな
る組成のけい素鋼スラブ(d)の4種類の、それぞれ各
2本づつを1380℃の温度に加熱後、板厚:35mmのシート
バーに粗圧延し、仕上げ圧延で、圧延終了温度を985℃
と1090℃との2種類に変化させ板厚:2.2 mmとしたの
ち、ジェット水を噴射し45℃/sの冷却速度で急冷して
570 ℃の温度でコイルに巻取りそれぞれ熱延板とした。
Example 3 C: 0.075%, Si: 3.35%, Mn: 0.07%, Al: 0.022
%, S: 0.004%, Sb: 0.02% and N: 0.0075%, the balance being a silicon steel slab (a) composed of Fe and unavoidable impurities, C: 0.073%, Si: 3.36%, Mn :
Silicon steel slab (b) containing 0.07%, Al: 0.024%, S: 0.002%, Sb: 0.02% and N: 0.0082%, with the balance being Fe and unavoidable impurities (b), C: 0.080
%, Si: 3.52%, Mn: 0.07%, Al: 0.030%, S: 0.00
8%, Sb: 0.02% and N: 0.0075%, with the balance being
Silicon steel slab (c) composed of Fe and unavoidable impurities and C: 0.073%, Si: 3.05%, Mn: 0.07%,
Al: 0.018%, S: 0.004%, Sb: 0.02% and N: 0.
0075%, the balance being four kinds of silicon steel slabs (d) composed of Fe and unavoidable impurities. After heating two each to a temperature of 1380 ° C., a sheet bar having a thickness of 35 mm Rough rolling and finishing rolling, the rolling end temperature is 985 ° C
After changing the thickness to 2.2 mm, jet water is sprayed and quenched at a cooling rate of 45 ° C / s.
It was wound around a coil at a temperature of 570 ° C. to form a hot rolled sheet.

【0096】これらの熱延板にそれぞれ15℃/sの昇温
速度で1100℃まで昇温し30秒間保持する熱延板焼鈍を施
したのち、酸洗し、中間板厚:1.5 mmとする冷間圧延
後、中間焼鈍を施した。
Each of these hot-rolled sheets was subjected to hot-rolled sheet annealing at a heating rate of 15 ° C./s to 1100 ° C. and holding for 30 seconds, followed by pickling to make the intermediate sheet thickness: 1.5 mm. After cold rolling, intermediate annealing was performed.

【0097】この中間焼鈍では、1090℃の温度で60秒間
保持したのち、ミスト水を噴射して40℃/sの冷却速度
で急冷後350 ℃の温度で30秒間保持するカーバイトの析
出処理を行った。
In the intermediate annealing, a precipitation treatment of a carbide, which is maintained at a temperature of 1090 ° C. for 60 seconds, then rapidly cooled at a cooling rate of 40 ° C./s by spraying mist water and then maintained at a temperature of 350 ° C. for 30 seconds. went.

【0098】その後、各鋼板はゼンジマー圧延機によっ
て120 〜230 ℃の温度範囲のパス間時効処理を施しなが
ら、それぞれ最終冷延板厚:0.22mmに圧延した。
Thereafter, each steel sheet was rolled to a final cold-rolled sheet thickness: 0.22 mm while being subjected to an inter-pass aging treatment in a temperature range of 120 to 230 ° C. by a Sendzimir rolling mill.

【0099】これらの冷延板を脱脂処理し、磁区細分化
処理として50μm の幅で深さ20μmの溝を、鋼板幅方向
から15度の角度の線状に鋼板長手方向に4mmのピッチで
設けたのち、850 ℃・2分間の脱炭・1次再結晶焼鈍を
施し、0.22%のCaおよび0.08%のBを含有するMgO に7.
5 %のTiO2および3%のSnO2を添加した焼鈍分離剤を塗
布しコイルに巻取ってから、最終仕上げ焼鈍として、N
2 雰囲気中で850 ℃の温度まで30℃/hの昇温速度で昇
温し850 ℃の温度で25時間保持後、N2 :25%、H2
75%の混合雰囲気中で1150℃の温度まで昇温速度:15℃
/hで昇温し、H2 雰囲気中でこの温度に5時間保持し
たのち降温する処理をそれぞれ施した。
These cold-rolled sheets were degreased, and as a magnetic domain refining treatment, grooves having a width of 50 μm and a depth of 20 μm were provided linearly at an angle of 15 degrees from the width direction of the steel sheet at a pitch of 4 mm in the longitudinal direction of the steel sheet. After that, decarburization and first recrystallization annealing at 850 ° C. for 2 minutes are performed, and MgO containing 0.22% of Ca and 0.08% of B is added to MgO.
An annealing separator containing 5% TiO 2 and 3% SnO 2 is applied and wound on a coil.
2 Raise the temperature to 850 ° C at a rate of 30 ° C / h in an atmosphere and hold at 850 ° C for 25 hours. N 2 : 25%, H 2 :
Heating rate up to 1150 ° C in a 75% mixed atmosphere: 15 ° C
/ H, and the temperature was maintained for 5 hours in an H 2 atmosphere, and then the temperature was reduced.

【0100】その後、未反応焼鈍分離剤を除去したの
ち、50%のコロイダルシリカを含有する張力コーティン
グを塗布し焼付けてそれぞれ製品とした。これらの製品
について調査した磁気特性の測定結果を表6にまとめて
示す。
Thereafter, after removing the unreacted annealing separator, a tension coating containing 50% of colloidal silica was applied and baked to obtain respective products. Table 6 summarizes the measurement results of the magnetic properties investigated for these products.

【0101】[0101]

【表6】 [Table 6]

【0102】表6から明らかなように、S含有量が0.00
3 %を超え、かつ熱間仕上げ圧延終了温度(T)が 610
+40X+Y≦T≦750 +40X+Yを満足するこの発明の
適合例については、いずれも極めて低い鉄損の値を示し
ている。
As is clear from Table 6, the S content was 0.00
3% and hot finish rolling end temperature (T) is 610
+ 40X + Y ≦ T ≦ 750 All of the applicable examples of the present invention satisfying + 40X + Y show extremely low iron loss values.

【0103】実施例4 前掲表4に示した記号VII の成分組成になるスラブ10本
を、それぞれ1400℃の温度に加熱後、板厚:50mmのシー
トバーに粗圧延したのち、圧延終了温度:1060℃、板
厚:2.7 mmとする仕上げ圧延を施し、その後ジェット水
を噴射して40℃/sの冷却速度で急冷し600 ℃の温度で
コイルに巻取りそれぞれ熱延板とした。
Example 4 Ten slabs each having the component composition of the symbol VII shown in Table 4 above were heated to a temperature of 1400 ° C., and then roughly rolled into a sheet bar having a thickness of 50 mm. Finish rolling was performed at 1060 ° C. and a thickness of 2.7 mm, and then jet water was injected to quench at a cooling rate of 40 ° C./s and wound at 600 ° C. in a coil to form a hot rolled sheet.

【0104】これらの熱延板に17℃/sの昇温速度で11
00℃の温度まで昇温し60秒間保持する熱延板焼鈍を施し
たのち、酸洗し、最終冷延板厚:0.30mmとする冷間圧延
後、脱脂処理を施し、850 ℃・2分間の脱炭・1次再結
晶焼鈍をそれぞれ施した。
These hot-rolled sheets were heated at a heating rate of 17 ° C./s for 11 hours.
After hot-rolled sheet annealing, which is heated to a temperature of 00 ° C and held for 60 seconds, is pickled, cold-rolled to a final cold-rolled sheet thickness of 0.30 mm, degreased, and 850 ° C for 2 minutes. , And primary recrystallization annealing.

【0105】その後、前掲表2に示した焼鈍分離剤をそ
れぞれ塗布したのち、最終仕上げ焼鈍は、400 ℃の温度
まではN2 雰囲気中で昇温しその後は最終の保持温度を
1200℃とした以外は表2に示した雰囲気中でそれぞれ処
理した。その際のヒートパターンは1200℃の温度まで25
℃/sの昇温速度で昇温し、この温度で8時間保持した
のち降温した。
Thereafter, after applying each of the annealing separators shown in Table 2 above, the final finish annealing is performed in a N 2 atmosphere up to a temperature of 400 ° C., and thereafter the final holding temperature is reduced.
Each treatment was performed in the atmosphere shown in Table 2 except that the temperature was changed to 1200 ° C. The heat pattern at that time is 25 up to a temperature of 1200 ° C.
The temperature was raised at a rate of ° C / s, and the temperature was maintained for 8 hours and then lowered.

【0106】最終仕上げ焼鈍後は、未反応焼鈍分離剤を
除去したのち、60%のコロイダルシリカを含有するりん
酸アルミニウムを塗布し800 ℃の温度で焼付けたのち、
磁区細分化処理としてプラズマジェットを7mmピッチで
線状に照射しそれぞれ製品とした。これらの製品につい
て調査した磁気特性の測定結果を表7にまとめて示す。
After the final annealing, the unreacted annealing separating agent is removed, then aluminum phosphate containing 60% colloidal silica is applied and baked at a temperature of 800 ° C.
As a magnetic domain refining treatment, a plasma jet was linearly irradiated at a pitch of 7 mm to obtain products. Table 7 summarizes the measurement results of the magnetic properties investigated for these products.

【0107】[0107]

【表7】 [Table 7]

【0108】表7から明らかなように、この発明の適合
例はいずれも極めて低い鉄損を示している。
As is clear from Table 7, all of the applicable examples of the present invention show extremely low iron loss.

【0109】[0109]

【発明の効果】この発明は、成分組成を限定した素材を
用い、熱間圧延条件、熱延板焼鈍条件および中間焼鈍条
件を特定して冷間圧延前焼鈍でAlN の析出核を微細に析
出させ、さらに焼鈍分離剤の組成などその他製造条件を
特定して方向性電磁鋼板を製造するものであり、この発
明によれば、鉄損の極めて低い高磁束密度方向性けい素
鋼板を製造することができ、近年の鉄心材料の低鉄損化
要請に有利に対応することができる。
The present invention uses a material having a limited component composition, specifies hot rolling conditions, hot-rolled sheet annealing conditions and intermediate annealing conditions, and finely precipitates AlN precipitation nuclei by annealing before cold rolling. In addition, to specify the other manufacturing conditions such as the composition of the annealing separator, to produce a grain-oriented electrical steel sheet, according to the present invention, to produce a high magnetic flux density oriented silicon steel sheet with extremely low iron loss Therefore, it is possible to advantageously respond to the recent demand for lower iron loss of the iron core material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製品の結晶方位の集積度(B8 /Bs ) に及ぼ
す素材のSiおよびAl含有量ならびに熱間圧延終了温度の
影響を示すグラフである。
FIG. 1 is a graph showing the influence of the Si and Al contents of a material and the hot rolling end temperature on the degree of integration (B 8 / B s ) of the crystal orientation of a product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千田 邦浩 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 村木 峰男 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 後藤 千寿子 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kunihiro Senda, 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Chome (without address) Mizushima Works, Kawasaki Steel Corporation (72) Inventor Chisuko Goto 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture (without address) Inside Mizushima Works, Kawasaki Steel Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.025 〜0.095 wt%、Si:1.5 〜7.
0 wt%、Mn:0.03〜2.5 wt%、SもしくはSeのうちの1
種または2種の合計:0.003 〜0.040 wt%、Al:0.010
〜0.030 wt%およびN:0.003 〜0.010 wt%を含有する
けい素鋼スラブを素材として、該スラブを1350℃以上の
温度に加熱し、熱間圧延後、熱延板焼鈍を施してから1
回冷間圧延法または中間焼鈍を挟む2回冷間圧延法によ
り冷間圧延し最終冷延板厚とするか、もしくは、熱間圧
延後、中間焼鈍を挟む2回冷間圧延法により冷間圧延し
最終冷延板厚としたのち、1次再結晶焼鈍を施し、その
後、焼鈍分離剤を塗布してから最終仕上げ焼鈍を施す一
連の工程により方向性電磁鋼板を製造するにあたり、 仕上げ圧延圧下率を85〜99%の範囲とし、仕上げ圧延終
了温度を950 〜1150℃の範囲でかつ素材のSi含有量およ
びAl含有量との関係から下記式(1)を満たす温度範囲と
する熱間圧延を行うこと、 熱間圧延終了後20℃/s以上の冷却速度で急冷して670
℃以下の温度でコイルに巻取ること、 熱延板焼鈍および中間焼鈍をともに、800 ℃の温度まで
5〜25℃/sの範囲の昇温速度で昇温し、900 〜1125℃
の温度域で保持時間を150 秒間以下とする条件で行うこ
と、 冷間圧延を、1回冷間圧延法により圧下率:80〜95%の
範囲で行い最終冷延板厚とするか、もしくは、2回冷間
圧延法により第1回目の圧延を圧下率:15〜60%の範囲
で行ったのち、中間焼鈍後第2回目の圧延を圧下率:80
〜95%の範囲で行い最終冷延板厚とすること、 Ti化合物:1〜20wt%およびCa:0.01〜3.0 wt%を含有
する焼鈍分離剤を用いること、 最終仕上げ焼鈍の昇温途中の少なくとも900 ℃以上の温
度からはH2 を含有する雰囲気中で昇温すること、との
順次組合せになることを特徴とする極めて鉄損の低い高
磁束密度方向性電磁鋼板の製造方法。 〔記〕 610 +40X+Y≦T≦750 +40X+Y --- (1) ただし T:仕上げ圧延終了温度(℃) X:Si(wt%) Y:Al(wtppm)
1. C: 0.025-0.095 wt%, Si: 1.5-7.
0 wt%, Mn: 0.03 to 2.5 wt%, one of S or Se
Species or total of 2 types: 0.003 to 0.040 wt%, Al: 0.010
A silicon steel slab containing -0.030 wt% and N: 0.003 -0.010 wt% is used as a raw material, and the slab is heated to a temperature of 1350 ° C or more, hot-rolled, and then subjected to hot-rolled sheet annealing.
Cold rolling is performed by a cold rolling method or a twice cold rolling method with intermediate annealing to obtain a final cold-rolled sheet thickness, or after hot rolling, cold rolling is performed twice with intermediate annealing. After rolling to the final cold-rolled sheet thickness, subjecting it to primary recrystallization annealing, and then applying an annealing separator, and then performing the final finish annealing, a series of steps to produce a grain-oriented electrical steel sheet, Hot rolling in which the final rolling finish temperature is in the range of 950 to 1150 ° C and the temperature range satisfies the following formula (1) from the relationship between the Si content and the Al content of the material. After the completion of hot rolling, quench at a cooling rate of 20 ° C./s or more
Coiling at a temperature of less than or equal to ℃, hot-rolled sheet annealing and intermediate annealing are both raised to a temperature of 800 ℃ at a heating rate of 5 to 25 ℃ / s, 900 to 1125 ℃
Cold rolling is performed in a temperature range of 80 to 95% by a single cold rolling method under the condition that the holding time is 150 seconds or less. After the first rolling is performed in the range of 15 to 60% by the cold rolling method twice, and then the second rolling is performed after the intermediate annealing, the rolling is reduced to 80:
To be in the range of ~ 95%, to obtain a final cold-rolled sheet thickness, using an annealing separator containing 1 to 20 wt% of Ti compound and 0.01 to 3.0 wt% of Ca, at least during the temperature rise during final finish annealing. A method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss, which is sequentially combined with increasing the temperature from 900 ° C. or higher in an atmosphere containing H 2 . [Note] 610 + 40X + Y≤T≤750 + 40X + Y --- (1) T: Finish rolling end temperature (° C) X: Si (wt%) Y: Al (wtppm)
【請求項2】 最終冷間圧延直前の熱延板焼鈍または中
間焼鈍時の冷却が、鋼板内固溶C量を高めるための急冷
処理である請求項1に記載の極めて鉄損の低い高磁束密
度方向性電磁鋼板の製造方法。
2. The high magnetic flux with extremely low iron loss according to claim 1, wherein the cooling at the time of hot-rolled sheet annealing or intermediate annealing immediately before the final cold rolling is a quenching treatment for increasing the amount of solute C in the steel sheet. Method for producing density-oriented electrical steel sheet.
【請求項3】 最終冷間圧延が、90〜350 ℃の温度範囲
の温間圧延か、もしくは、100 〜300 ℃の温度範囲で10
〜60分間の時間範囲のパス間時効処理を施すものである
請求項1または2に記載の極めて鉄損の低い高磁束密度
方向性電磁鋼板の製造方法。
3. The final cold rolling is performed at a temperature of 90 to 350 ° C. or at a temperature of 100 to 300 ° C.
The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to claim 1 or 2, wherein an inter-pass aging treatment is performed for a time range of up to 60 minutes.
【請求項4】 最終冷間圧延前の焼鈍で、0.005 〜0.02
5 wt%の脱炭を施すことを特徴とする請求項1,2また
は3に記載の極めて鉄損の低い高磁束密度方向性電磁鋼
板の製造方法。
4. Annealing before final cold rolling is performed in a range of 0.005 to 0.02.
4. The method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss according to claim 1, wherein decarburization of 5 wt% is performed.
JP26968896A 1996-10-11 1996-10-11 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP3674183B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP26968896A JP3674183B2 (en) 1996-10-11 1996-10-11 Method for producing grain-oriented electrical steel sheet
US08/947,641 US5885371A (en) 1996-10-11 1997-10-09 Method of producing grain-oriented magnetic steel sheet
EP97117614A EP0835944B1 (en) 1996-10-11 1997-10-10 Method of producing grain-oriented magnetic steel sheet
BR9707089A BR9707089A (en) 1996-10-11 1997-10-10 Production method of steel sheet for oriented granulation magnetic purposes
KR1019970052026A KR100352675B1 (en) 1996-10-11 1997-10-10 Method of producing grain-oriented magnetic steel sheet
DE69705282T DE69705282T2 (en) 1996-10-11 1997-10-10 Process for producing grain-oriented electrical sheets
CN97126011A CN1094981C (en) 1996-10-11 1997-10-11 Method for manufacturing high magnetic flux density oriented electric steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26968896A JP3674183B2 (en) 1996-10-11 1996-10-11 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH10121135A true JPH10121135A (en) 1998-05-12
JP3674183B2 JP3674183B2 (en) 2005-07-20

Family

ID=17475811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26968896A Expired - Fee Related JP3674183B2 (en) 1996-10-11 1996-10-11 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3674183B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721823B1 (en) * 2005-12-22 2007-05-25 주식회사 포스코 A hot rolling method for grain-oriented electrical steel sheet
KR100876181B1 (en) 2006-12-27 2008-12-31 주식회사 포스코 Manufacturing method of thin oriented electrical steel sheet
JP2011219793A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Hot-rolled plate for oriented electromagnetic steel sheet excellent in magnetic characteristic, and method of producing the same
CN102471818A (en) * 2009-07-13 2012-05-23 新日本制铁株式会社 Method for producing grain-oriented electromagnetic steel plate
WO2016098917A1 (en) * 2014-12-15 2016-06-23 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
JP2019035104A (en) * 2017-08-10 2019-03-07 新日鐵住金株式会社 Manufacturing method of grain-oriented electric steel sheet
JP2020070477A (en) * 2018-11-01 2020-05-07 Jfeスチール株式会社 Production method of oriented electromagnetic steel sheet
WO2020218329A1 (en) 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP2021139040A (en) * 2020-02-28 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet
WO2023113527A1 (en) * 2021-12-17 2023-06-22 주식회사 포스코 Grain-oriented electrical steel sheet and method for manufacturing same
EP4276205A4 (en) * 2021-03-04 2024-05-22 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116940695A (en) * 2021-03-04 2023-10-24 杰富意钢铁株式会社 Method for producing oriented electrical steel sheet, and hot-rolled steel sheet for oriented electrical steel sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721823B1 (en) * 2005-12-22 2007-05-25 주식회사 포스코 A hot rolling method for grain-oriented electrical steel sheet
KR100876181B1 (en) 2006-12-27 2008-12-31 주식회사 포스코 Manufacturing method of thin oriented electrical steel sheet
CN102471818A (en) * 2009-07-13 2012-05-23 新日本制铁株式会社 Method for producing grain-oriented electromagnetic steel plate
JP2011219793A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Hot-rolled plate for oriented electromagnetic steel sheet excellent in magnetic characteristic, and method of producing the same
US10760141B2 (en) 2014-12-15 2020-09-01 Posco Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
WO2016098917A1 (en) * 2014-12-15 2016-06-23 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
JP2019035104A (en) * 2017-08-10 2019-03-07 新日鐵住金株式会社 Manufacturing method of grain-oriented electric steel sheet
JP2020070477A (en) * 2018-11-01 2020-05-07 Jfeスチール株式会社 Production method of oriented electromagnetic steel sheet
WO2020218329A1 (en) 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
KR20210137198A (en) 2019-04-23 2021-11-17 제이에프이 스틸 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20240035911A (en) 2019-04-23 2024-03-18 제이에프이 스틸 가부시키가이샤 Method for producing grain-oriented electrical steel sheet
JP2021139040A (en) * 2020-02-28 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet
EP4276205A4 (en) * 2021-03-04 2024-05-22 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2023113527A1 (en) * 2021-12-17 2023-06-22 주식회사 포스코 Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP3674183B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
KR100352675B1 (en) Method of producing grain-oriented magnetic steel sheet
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
EP0837149B1 (en) Grain-oriented electromagnetic steel sheet and process for producing the same
JP3674183B2 (en) Method for producing grain-oriented electrical steel sheet
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP3415377B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP3456415B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JP3357601B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
US5244511A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP2024503245A (en) Grain-oriented electrical steel sheet and its manufacturing method
KR930011405B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP3928275B2 (en) Electrical steel sheet
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP3536812B2 (en) Method for producing grain-oriented electrical steel sheet with few edge cracks and good coating properties and excellent magnetic properties
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JP3885391B2 (en) Method for producing grain-oriented electrical steel sheet
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees