JP5332946B2 - Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet - Google Patents

Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5332946B2
JP5332946B2 JP2009151126A JP2009151126A JP5332946B2 JP 5332946 B2 JP5332946 B2 JP 5332946B2 JP 2009151126 A JP2009151126 A JP 2009151126A JP 2009151126 A JP2009151126 A JP 2009151126A JP 5332946 B2 JP5332946 B2 JP 5332946B2
Authority
JP
Japan
Prior art keywords
nitriding
annealing
amount
grain
nitrogen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009151126A
Other languages
Japanese (ja)
Other versions
JP2011006738A (en
Inventor
知二 熊野
洋一 財前
浩康 藤井
修一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009151126A priority Critical patent/JP5332946B2/en
Publication of JP2011006738A publication Critical patent/JP2011006738A/en
Application granted granted Critical
Publication of JP5332946B2 publication Critical patent/JP5332946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、主にトランス等の鉄芯として使用される方向性電磁鋼板を製造する方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet mainly used as an iron core such as a transformer.

方向性電磁鋼板は、磁気特性、特に、鉄損、磁束密度及び磁歪が良好であることは当然であるが、その製造においては、歩留が高いことが工業生産において求められる。
方向性電磁鋼板の製造では、二次再結晶焼鈍後に平坦化処理が行われる。その結果、方向性電磁鋼板は、Goss方位の二次再結晶鋼帯の上にフォルステライトを主成分とするグラス被膜を有し、さらにその上に施された燐酸系の張力絶縁被膜を有する。
その際、フォルステライトを主成分とするグラス被膜形成が不十分であると外観が不良であるのみでなく、積層して用いられる方向性電磁鋼板では、被膜形成が不十分な箇所で短絡し、変圧器として欠陥品となり、方向性電磁鋼板製品としての商品価値は無くなる。このため、グラス被膜形成が均一でまた充分であることが求められる。
The grain-oriented electrical steel sheet naturally has good magnetic properties, particularly iron loss, magnetic flux density, and magnetostriction, but its production requires high yield in industrial production.
In the manufacture of grain-oriented electrical steel sheets, a flattening process is performed after secondary recrystallization annealing. As a result, the grain-oriented electrical steel sheet has a glass film mainly composed of forsterite on the secondary recrystallized steel strip in the Goss orientation, and further has a phosphoric acid-based tensile insulating film applied thereon.
At that time, not only the appearance is poor if the glass coating mainly composed of forsterite is insufficient, but in the grain-oriented electrical steel sheet used by laminating, a short circuit occurs at a location where the coating is insufficient, It becomes a defective product as a transformer, and the commercial value as a grain-oriented electrical steel sheet product is lost. For this reason, it is required that the glass film formation is uniform and sufficient.

方向性電磁鋼板の二次再結晶焼鈍処理は、一次再結晶・脱炭焼鈍後の鋼帯にMgOを主成分とする焼鈍分離材を塗布しコイル状に巻取り、この鋼帯を箱型焼鈍炉で高温度の焼鈍をならしめる。この箱型焼鈍では、二次再結晶・グラス被膜形成・純化を行わせしめる。   The secondary recrystallization annealing treatment of grain-oriented electrical steel sheets is performed by applying an annealing separator mainly composed of MgO to the steel strip after primary recrystallization / decarburization annealing and winding it into a coil shape. Level the high-temperature annealing in the furnace. In this box-type annealing, secondary recrystallization, glass film formation, and purification are performed.

この箱型焼鈍は、コイル状に巻取られた鋼帯を、鋼板幅方向を垂直に立てた穴縦の状態にして行われるため、鋼帯には内表面および外表面が存在する。ここで、図1に示す如くコイル内表面とは、コイル中心部に向いている面とする。   This box-type annealing is carried out with a steel strip wound in a coil shape in a vertical state with the steel plate width direction set up vertically, so that the steel strip has an inner surface and an outer surface. Here, as shown in FIG. 1, the inner surface of the coil is a surface facing the center of the coil.

従来から、製造方法によらず、このコイル内表面でのグラス被膜形成が不十分の場合があった。この理由は、コイル内表面は引き続く平坦化処理時に張力が作用するので引っ張られ、グラス皮膜形成が不十分であると剥離するものである。即ち、グラス被膜の鋼板本体への根っ子の形成が不十分であるので、張力により剥離し易いのである。   Conventionally, there has been a case where the glass coating is insufficiently formed on the inner surface of the coil regardless of the manufacturing method. This is because the inner surface of the coil is pulled because tension acts during the subsequent flattening treatment, and peels off when the glass film formation is insufficient. That is, since the formation of the root of the glass coating on the steel plate body is insufficient, it is easy to peel off due to the tension.

この現象は、特に、窒化型の方向性電磁鋼板の製造の場合に顕著になる。AlNを二次再結晶の主なインヒビターとする窒化型の方向性電磁鋼板の製造では、特許文献1〜5で例示されるように、二次再結晶焼鈍前に窒化が行われる。このため、窒化型の製造では鋼板の窒素含有量が多くなるので、箱型焼鈍の最終段階での純化時に窒素が鋼帯外部に放出され、最表層のグラス被膜を破損するため、グラス被膜形成が不十分になるものと推定される。   This phenomenon is particularly noticeable in the manufacture of nitride-type grain-oriented electrical steel sheets. In the production of a nitriding-type grain-oriented electrical steel sheet using AlN as a main inhibitor for secondary recrystallization, as exemplified in Patent Documents 1 to 5, nitriding is performed before secondary recrystallization annealing. For this reason, since the nitrogen content of the steel sheet increases in the nitriding type production, nitrogen is released to the outside of the steel strip during purification in the final stage of box annealing, and the glass film is formed because the outermost glass film is damaged. Is estimated to be insufficient.

そもそも、窒化は、一次再結晶・脱炭後にストリップを走行せしめてアンモニアを含む雰囲気中で行われる。このアンモニアガスは、最終的に、鉄を触媒として窒素と水素に分解するので鋼板表面の雰囲気は極めてドライ(還元雰囲気)となる。この極めてドライ雰囲気(還元雰囲気)では、折角形成したフォルステライトの材料となる酸化層(主成分はSiO2)の還元が生じてグラス被膜形成が不十分となる。 In the first place, nitriding is performed in an atmosphere containing ammonia by running the strip after primary recrystallization and decarburization. This ammonia gas is finally decomposed into nitrogen and hydrogen using iron as a catalyst, so that the atmosphere on the surface of the steel sheet is extremely dry (reducing atmosphere). In this extremely dry atmosphere (reducing atmosphere), reduction of the oxide layer (main component is SiO 2 ) that becomes the material of the folded forsterite occurs, and the glass film formation becomes insufficient.

この還元雰囲気に接した面の性状が鋼帯の表裏(内表面および外表面)で均一であれば、窒化前の焼鈍条件の適正化で改善することも可能であるが、昨今の窒化装置の設備投資額低減、及び炉メンテナンス用スペース確保のための焼鈍炉の各種ガス管・制御系装置配線等の配置の制約等により、必ずしも鋼帯表裏(内表面および外表面)で均等な窒化が設備的に保障・実現されているわけではない。
このために、後窒化によって、インヒビターを作りこむ窒化型の方向性電磁鋼板の製造の場合に、被膜不良が顕著になると考えられる。
If the properties of the surface in contact with the reducing atmosphere are uniform on the front and back of the steel strip (inner surface and outer surface), it can be improved by optimizing the annealing conditions before nitriding. Uniform nitriding on the front and back of the steel strip (inner and outer surfaces) due to restrictions on the arrangement of various gas pipes and control system wiring in the annealing furnace to reduce capital investment and secure space for furnace maintenance It is not guaranteed or realized.
For this reason, it is considered that in the case of manufacturing a nitriding-type grain-oriented electrical steel sheet in which an inhibitor is formed by post-nitridation, a coating defect becomes conspicuous.

因みに、窒化型の方向性電磁鋼板の製造においては、鋼帯両面(内表面および外表面)の窒化量が異なっていても一般的に二次再結晶温度が高いので、二次再結晶開始までに窒素の全板厚への拡散が充分行われるので二次再結晶(磁気特性)の観点では問題は無い。   By the way, in the manufacture of nitriding-type grain-oriented electrical steel sheets, the secondary recrystallization temperature is generally high even if the nitriding amount on both sides of the steel strip (inner surface and outer surface) is different. In addition, there is no problem from the viewpoint of secondary recrystallization (magnetic properties) because sufficient diffusion of nitrogen to the entire plate thickness is performed.

特開平05−112827号公報Japanese Patent Laid-Open No. 05-112827 特開2001−152250号公報JP 2001-152250 A 特開2000−199015号公報JP 2000-199015 A 特開平07−252523号公報Japanese Patent Application Laid-Open No. 07-252523 特開平09−227941号公報JP 09-227941 A

そこで、本発明は、AlNを二次再結晶の主なインヒビターとし二次再結晶焼鈍前に窒化をする窒化型方向性電磁鋼板の製造において、グラス被膜形成を鋼帯表裏で均一ならしめることができる製造条件を提供することを課題とするものである。   Therefore, the present invention makes it possible to make the glass film formation uniform on the front and back of the steel strip in the production of a nitride-type grain-oriented electrical steel sheet that uses AlN as a main inhibitor for secondary recrystallization and performs nitriding before secondary recrystallization annealing. It is an object of the present invention to provide manufacturing conditions that can be produced.

発明者らは鋭意検討の結果、窒化型方向性電磁鋼板の製造では、鋼帯表裏(内表面および外表面)の窒化量の差異と窒化後のコイル形成時の巻取り方の間に、グラス被膜形成に関して関連があることを見出した。すなわち、鋼帯表裏(内表面および外表面)の窒化量の比率によって、コイルの巻取り方法を変えることでグラス被膜形成が改善することを見出した。   As a result of intensive studies, the inventors have clarified that in the production of nitride-type grain-oriented electrical steel sheets, there is a difference between the amount of nitriding on the front and back of the steel strip (inner surface and outer surface) and the winding method when forming the coil after nitriding. It has been found that there is a relationship with respect to film formation. That is, it has been found that the glass film formation is improved by changing the coil winding method depending on the ratio of the nitriding amount on the front and back of the steel strip (inner surface and outer surface).

そのような検討の結果なされた本発明は、AlNを二次再結晶の主なインヒビターとし、二次再結晶焼鈍前に窒化をする窒化型方向性電磁鋼板の製造において、コイル内表面および外表面の窒化の割合により窒化後の巻き取り方向を規定するものであり、以下の構成からなる。   As a result of such studies, the present invention provides an inner surface and an outer surface of a coil in the production of a nitride-type grain-oriented electrical steel sheet that uses AlN as a main inhibitor of secondary recrystallization and performs nitriding before secondary recrystallization annealing. The winding direction after nitriding is defined by the ratio of nitriding, and has the following configuration.

(1)鋼帯を脱炭焼鈍後、一次再結晶焼鈍を施し、ストリップ走行状態下で水素、窒素及びアンモニアの混合ガス中で窒化処理し、その後MgOを主成分とする焼鈍分離剤を塗布して、鋼帯をコイル状に巻き取った状態で最終仕上げ焼鈍を施す方向性電磁鋼板の製造方法において、鋼帯厚み表裏面における窒化窒素増量の差異が(式1)を満たす時は、窒化量が多い面をコイル状で最終仕上げ焼鈍する時のコイル外面側とすることを特徴とする鋼帯の巻き取り方法。
│(表側面窒化量−裏側面窒化量)/ΔN│×100≧15% ・・・(式1)
ここで、
表側面窒化量:表側面の表面から板厚(1/10)tまでの部分の窒素含有量から溶製での窒素含有量を差し引いた値
裏側面窒化量:裏側面の表面から板厚(1/10)tまでの部分の窒素含有量から溶製での窒素含有量を差し引いた値
ΔN:総窒化量で、全板厚での窒化後窒素含有量から窒化前窒素含有量を差し引いた値
である。
なお、コイル外表面とは、図1に示す通りとし、板厚(1/10)tは、図2に示す通りとする。
(1) After decarburization annealing of the steel strip, primary recrystallization annealing is performed, nitriding treatment is performed in a mixed gas of hydrogen, nitrogen and ammonia under the strip running condition, and then an annealing separator mainly composed of MgO is applied. In the method of manufacturing a grain-oriented electrical steel sheet in which the final finish annealing is performed in a state where the steel strip is wound in a coil shape, when the difference in the increase in nitrogen nitride on the front and back surfaces of the steel strip satisfies (Equation 1), the nitriding amount A method for winding a steel strip, characterized in that a surface having a large amount of coil is formed in a coil shape on the coil outer surface side when final finishing annealing is performed.
│ (front side nitridation amount-back side nitridation amount) / ΔN│ × 100 ≧ 15% (Formula 1)
here,
Front side nitridation amount: Value obtained by subtracting the nitrogen content in melting from the nitrogen content of the portion from the front side surface to the plate thickness (1/10) t Back side nitridation amount: Plate thickness from the back side surface (plate thickness ( 1/10) Value obtained by subtracting the nitrogen content of the melt from the nitrogen content of the portion up to t ΔN: Total nitriding amount, subtracting the nitrogen content before nitriding from the nitrogen content after nitriding at the total thickness Value.
The outer surface of the coil is as shown in FIG. 1, and the plate thickness (1/10) t is as shown in FIG.

本発明の巻き取り方法に従って方向性電磁鋼板を製造することにより、窒化型製造方法での方向性電磁鋼板のグラス被膜形成を良好ならしめることができる。   By producing the grain-oriented electrical steel sheet according to the winding method of the present invention, it is possible to improve the glass film formation of the grain-oriented electrical steel sheet in the nitriding type production method.

コイルの内表面、外表面を示した図である。It is the figure which showed the inner surface of a coil, and the outer surface. 鋼帯における窒素量を規定する板厚位置を示した図である。It is the figure which showed the board thickness position which prescribes | regulates the nitrogen amount in a steel strip. コイル内外面の窒化量差と皮膜欠陥率の関係を示した図である。It is the figure which showed the relationship between the nitriding amount difference of a coil inner surface, and a film | membrane defect rate.

本発明者らは、AlNを二次再結晶の主なインヒビターとし、二次再結晶焼鈍前に窒化をする窒化型方向性電磁鋼板の製造において、一次再結晶・脱炭焼鈍後にストリップを走行させた状態下でアンモニアを含んだ雰囲気で窒化させる際、鋼帯表裏(内表面および外表面)の窒化量の差異と窒化後のコイル形成時の巻取り方がグラス被膜の形成に関連があることを見出した。   In the manufacture of a nitride-type grain-oriented electrical steel sheet that uses AlN as a main inhibitor for secondary recrystallization and performs nitriding before secondary recrystallization annealing, the strip is run after primary recrystallization and decarburization annealing. When nitriding in an atmosphere containing ammonia under wet conditions, the difference in the amount of nitriding between the front and back of the steel strip (inner surface and outer surface) and the winding method when forming the coil after nitriding are related to the formation of the glass coating I found.

窒化型方向性電磁鋼板の製造において、窒化は、アンモニアの分解を用いて行われるので、鋼板表面は、極度の還元雰囲気となる。このため、脱炭焼鈍時に鋼板表面に形成されたフォルステライトを主成分とするグラス被膜の原料となるSiO2が還元されるので、グラス被膜形成が不十分になる。 In the manufacture of a nitride-type grain-oriented electrical steel sheet, nitriding is performed using ammonia decomposition, so that the steel sheet surface is in an extremely reducing atmosphere. Therefore, since the SiO 2 as a raw material for glass film composed mainly of forsterite formed on the surface of the steel sheet during decarburization annealing is reduced, glass film formation is insufficient.

一方、そもそも窒化しない方向性電磁鋼板においても内表面は、グラス被膜の欠陥が生じ易い。これは、コイル状で二次再結晶焼鈍された後、平滑化処理されるので内表面には張力が働き、内部酸化層の根っ子の形成が不十分であると剥離し金属面が露出する。すなわち、そもそも、内表面では、グラス被膜形成性が劣る。   On the other hand, even in a grain-oriented electrical steel sheet that does not nitride in the first place, a glass coating defect tends to occur on the inner surface. This is a coil-like secondary recrystallization annealing and then smoothed, so the inner surface is tensioned, peeling off if the formation of the root of the internal oxide layer is insufficient and the metal surface exposed To do. That is, in the first place, the glass film forming property is inferior on the inner surface.

これに加えて、窒化型では、窒化量が両面で異なると上述の如く窒化後のSiO2の形成が異なり、引いては被膜形成が同様でなく差異が生じる。 In addition to this, in the nitriding type, if the nitriding amount is different on both sides, the formation of SiO 2 after nitriding is different as described above.

本発明者らの検討の結果、両面層の窒化量の差異割合が15%以下であれば殆ど等量の窒化と見なされコイルの内表面および外表面のグラス被膜形成に差異は殆ど及ぼさないこと、さらに、この差異割合が15%を超え、かつ、窒化が多い面を内表面とするとグラス被膜欠陥(剥離)が多く生じ、特に、コイルの内巻き部の曲率半径が小さい部分で激しく欠陥が生じることが見出された。
そのため、この差異割合が15%を超えるような場合には、窒化が多い面を外表面とすることで、その面におけるグラス被膜欠陥の発生を抑制するようにすればよいことも見出した。
As a result of the study by the present inventors, if the difference ratio of the nitridation amounts of the double-sided layers is 15% or less, it is regarded as almost equal nitridation, and there is almost no difference in the formation of the glass film on the inner surface and the outer surface of the coil. Furthermore, when the difference ratio exceeds 15% and the surface with much nitriding is used as the inner surface, many glass coating defects (peeling) occur, and particularly severe defects occur in the portion where the radius of curvature of the inner winding portion of the coil is small. It was found to occur.
For this reason, it has also been found that when this difference ratio exceeds 15%, the surface with much nitridation is used as the outer surface to suppress the occurrence of glass coating defects on that surface.

この方法を実際の製造に適用しようとすると、アンモニアを用いる方法で窒化された窒素はその時点では両面再表層に局在するため、この定量化は現代の分析機器を用いても非常な困難を伴う。
そこで、操業の実際的な指標としては、図2に示すように、内表面から板厚tの10分の1までの厚さ(1/10t位置)までの平均的窒素含有量を用いればよいことを見出した。
If this method is applied to actual production, nitrogen nitridated by the ammonia method is localized on the double-sided surface layer at that time, so this quantification is extremely difficult even with modern analytical instruments. Accompany.
Therefore, as a practical index of operation, as shown in FIG. 2, an average nitrogen content from the inner surface to a thickness of 1/10 of the plate thickness t (1 / 10t position) may be used. I found out.

即ち、窒化後の鋼板の表側面及び裏側面において、それぞれの表面から板厚1/10tまでの部分の窒素含有量から溶製での窒素含有量を差し引いた値を、それぞれ表側面窒化量及び裏側面窒化量とし、総窒化量で、全板厚での窒化後窒素含有量から窒化前窒素含有量を差し引いた値をΔNとした場合に、下記の(式1)が満たされる場合には、窒化量が多い面をコイル状で二次再結晶焼鈍する時のコイル外面側とする
│(表側面窒化量−裏側面窒化量)/ΔN│×100≧15% ・・・(式1)
ここで、コイル外表面とは、図1に示す通りとし、板厚(1/10)tは、図2の鋼帯における板厚位置に示す通りとする。
That is, on the front side surface and back side surface of the steel sheet after nitriding, the value obtained by subtracting the nitrogen content in the melt from the nitrogen content of the portion from the respective surface to the plate thickness of 1/10 t, respectively, When the following (Equation 1) is satisfied when ΔN is a value obtained by subtracting the nitrogen content before nitriding from the nitrogen content after nitriding at the total plate thickness as the back side nitridation amount, The surface with a large amount of nitridation is the coil outer surface side when secondary recrystallization annealing is performed in a coil shape. | (Front side nitridation amount−back side nitridation amount) / ΔN | × 100 ≧ 15% (Formula 1)
Here, the outer surface of the coil is as shown in FIG. 1, and the plate thickness (1/10) t is as shown at the plate thickness position in the steel strip of FIG.

窒化量が多い面を外表面とする方法は、連続窒化炉で窒化後に鋼帯を巻き取る際、巻取りの回転方向を変えることで可能で容易である。例えば、水平炉で窒化時に連続窒化炉の上面で窒化が多い場合は、鋼帯の進行方向の右側からみれば、時計廻りで巻取る。巻取り方法は、通常のリールでも良いしカローセルリールでも良く、巻取り近傍の装置の幾何学的配置で決まる。   The method of making the surface having a large amount of nitriding the outer surface is possible and easy by changing the rotating direction of winding when winding the steel strip after nitriding in a continuous nitriding furnace. For example, when there is much nitriding on the upper surface of a continuous nitriding furnace during nitriding in a horizontal furnace, winding is performed clockwise when viewed from the right side in the direction of steel strip travel. The winding method may be a normal reel or a carousel reel, and is determined by the geometric arrangement of the device in the vicinity of winding.

なお、窒素量の分析は、一般的に実施されている化学分析で行う。表面側窒化量は、表面側の表面から板厚(1/10)tまでの部分を残して、裏面側から研磨し、そこから切子を採取し、化学分析により表面側の窒素量を分析する。裏面側窒化量も同様にして分析する。   The analysis of the nitrogen amount is performed by a chemical analysis that is generally performed. The amount of nitridation on the surface side is polished from the back side, leaving a portion from the surface on the surface side to the plate thickness (1/10) t, and a facet is collected therefrom, and the amount of nitrogen on the surface side is analyzed by chemical analysis. . The backside nitridation amount is similarly analyzed.

本発明は、以上のように、窒化後の鋼板の表・裏側面のそれぞれの窒化量の差異に基づいて、最終仕上焼鈍に供する鋼板の巻取方向を変えることにより、グラス被膜を方向性電磁鋼板の表側・裏側の両面で良好に形成することができる。   As described above, the present invention changes the winding direction of the steel sheet to be subjected to final finish annealing based on the difference in the nitriding amounts of the front and back sides of the steel sheet after nitriding, thereby making the glass coating a directional electromagnetic wave. It can be satisfactorily formed on both the front and back sides of the steel sheet.

以上のような本発明は、通常の窒化型方向性電磁鋼板の製造方法にそのまま適用できる。そのため、方向性電磁鋼板用素材及び製造条件について、特に制限されるものではないが、それぞれ好ましい態様について説明する。   The present invention as described above can be applied as it is to a method for producing a normal nitride-type grain-oriented electrical steel sheet. Therefore, although it does not restrict | limit especially about the raw material for grain-oriented electrical steel sheets and manufacturing conditions, a preferable aspect is demonstrated, respectively.

本発明では、方向性電磁鋼板用素材として、一般に窒化型方向性電磁鋼板用として知られている鋼が使用できる。
好ましい鋼の化学組成は、質量%でC:0.025〜0.09%、Si:2.5〜4.0%、Mn:0.03〜0.15%、S+0.405Se:0.005〜0.020%、酸可溶性Al:0.022〜0.033%、N:0.003〜0.009%、を含有し、残部がFe及び不可避的不純物からなるもの、あるいは、さらに、Sb、Sn、Pの1種以上:0.02〜0.30%、Cu:0.05〜0.15%、Cr:0.02〜0.15%を必要に応じて含有させたものである。
各成分の選定理由は次のとおりである。
In the present invention, steel that is generally known for nitride-oriented grain-oriented electrical steel sheets can be used as the material for grain-oriented electrical steel sheets.
Preferable chemical composition of steel is C: 0.025 to 0.09%, Si: 2.5 to 4.0%, Mn: 0.03 to 0.15%, S + 0.405Se: 0.005 by mass%. -0.020%, acid-soluble Al: 0.022-0.033%, N: 0.003-0.009%, the balance consisting of Fe and unavoidable impurities, or Sb One or more of Sn, P: 0.02 to 0.30%, Cu: 0.05 to 0.15%, Cr: 0.02 to 0.15%, if necessary .
The reasons for selecting each component are as follows.

Cは、0.025%より少ないと一次再結晶集合組織が適切でなくなり、0.09%を超えると脱炭が困難になり工業生産に適していない。
Siは、2.5%より少ないと良好な鉄損が得られず、4.0%を超えると冷延が極めて困難となり工業生産に適していない。
When C is less than 0.025%, the primary recrystallization texture becomes unsuitable, and when it exceeds 0.09%, decarburization becomes difficult and is not suitable for industrial production.
If Si is less than 2.5%, good iron loss cannot be obtained, and if it exceeds 4.0%, cold rolling becomes extremely difficult and is not suitable for industrial production.

Mnは、0.03%より少ない熱延鋼帯では割れが発生しやすく、歩留まりが低下し二次再結晶が安定しない。一方、0.15%を超えるとMnS、MnSeが多く粗大になり、固溶・析出の程度が場所により不均一となり実工業生産では安定生産に問題が生じる。   Mn tends to crack in a hot-rolled steel strip of less than 0.03%, yield decreases, and secondary recrystallization is not stable. On the other hand, if it exceeds 0.15%, the amount of MnS and MnSe becomes large and coarse, and the degree of solid solution / precipitation becomes uneven depending on the location, causing problems in stable production in actual industrial production.

SおよびSeは、Mn、Cuと結合して析出し先天的インヒビターを形成し、AlNの析出核としても有用である。S当量(Seq=S+0.405Se)は0.005%以上0.020%以下である。S当量が0.005%より少ないと、先天的インヒビターの絶対量が不足して二次再結晶が不安定なる。また0.020%を超えると固溶・析出の程度が鋼帯部位により不均一となり実工業生産では安定生産に問題が生じ、また、この時に窒化するとインヒビター強度が大きくなり過ぎGoss方位先鋭性が劣り磁束密度が低下する。   S and Se combine with Mn and Cu to form an innate inhibitor and are also useful as precipitation nuclei for AlN. The S equivalent (Seq = S + 0.405Se) is 0.005% or more and 0.020% or less. If the S equivalent is less than 0.005%, the absolute amount of the congenital inhibitor is insufficient and secondary recrystallization becomes unstable. Further, if it exceeds 0.020%, the degree of solid solution / precipitation is uneven depending on the steel strip part, and there is a problem in stable production in actual industrial production. In addition, if nitriding at this time, the inhibitor strength becomes too large, and the Goss orientation sharpness is increased. Inferior magnetic flux density decreases.

酸可溶性AlはNと結合してAlNを形成し、主に一次・二次インヒビターとして機能する。このAlNは、窒化前に形成されるものと窒化後高温焼鈍時に形成されるものがあり、この両方のAlNの量確保のために0.022〜0.033%必要である。この上限を外れると二次再結晶不良が生じる。また、下限を外れるとGoss方位集積度が著しく劣化する。   Acid-soluble Al combines with N to form AlN, and functions mainly as a primary and secondary inhibitor. This AlN includes those formed before nitriding and those formed at the time of high-temperature annealing after nitriding, and 0.022 to 0.033% is necessary for securing the amount of both AlN. Outside this upper limit, secondary recrystallization failure occurs. Further, if the lower limit is exceeded, the Goss orientation integration degree is significantly degraded.

スラブに含まれるAlNも同様に一次再結晶粒を制御するために非常に重要なものであり、Nが0.003%未満では一次インヒビターの絶対量が不足し二次再結晶不良が生じる。0.009%を超えた場合は、ブリスターと言う膨れが多く生じ表面欠陥となる。   Similarly, AlN contained in the slab is very important for controlling the primary recrystallized grains. When N is less than 0.003%, the absolute amount of the primary inhibitor is insufficient and secondary recrystallization failure occurs. When it exceeds 0.009%, blisters called blisters often occur and surface defects occur.

また、Sn、Sb、Pは一次再結晶集合組織の改善に有効である。これらの元素の含有量が0.02%より少ないと改善効果が少なく、また、0.30%を超えると安定したフォルステライト皮膜(一次皮膜、グラス皮膜)形成がそもそも困難となる。さらに、Sn,Sb、Pは粒界偏析元素であり二次再結晶焼鈍時の雰囲気遮断効果があり二次再結晶を安定化ならしめることは周知である。   Sn, Sb, and P are effective in improving the primary recrystallization texture. If the content of these elements is less than 0.02%, the improvement effect is small, and if it exceeds 0.30%, it is difficult to form a stable forsterite film (primary film or glass film) in the first place. Furthermore, it is well known that Sn, Sb, and P are grain boundary segregation elements and have an atmosphere blocking effect at the time of secondary recrystallization annealing to stabilize secondary recrystallization.

Cuは、SやSeとともに熱間圧延条件に拘わらず最終冷間圧延前の焼鈍により微細な析出物を形成し、一次・二次インヒビター効果を発揮する。また、この析出物はAlNの分散をより均一にする析出核ともなり二次インヒビターの役割も演じ、この効果が二次再結晶を良好ならしめる。0.05%より少ないと上記効果が減じ工業生産の安定性が劣ることがあり、0.30%を超えると上記効果が飽和するとともに、熱延時に「カッパーヘゲ」なる表面疵の原因になる。   Cu, along with S and Se, forms fine precipitates by annealing before the final cold rolling regardless of the hot rolling conditions, and exhibits primary and secondary inhibitor effects. The precipitates also serve as precipitation nuclei that make the dispersion of AlN more uniform and also play a role of secondary inhibitors, and this effect makes secondary recrystallization good. If it is less than 0.05%, the above effects may be reduced and the stability of industrial production may be inferior. If it exceeds 0.30%, the above effects will be saturated, and it will cause surface flaws such as “copper hege” during hot rolling.

Crはフォルステライト皮膜(一次皮膜、グラス皮膜)形成に有効であるので0.02〜0.30%含むことが望まれる。0.03%未満では酸素が確保されにくく、0.30%を超えると皮膜が形成されない。   Since Cr is effective for forming a forsterite film (primary film, glass film), it is desirable to contain 0.02 to 0.30%. If it is less than 0.03%, it is difficult to ensure oxygen, and if it exceeds 0.30%, no film is formed.

Tiについて、0.005%を超えて含有すると、NはTiNとなって実質低N含有鋼となり、インヒビター強度が確保されず二次再結晶不良が生じることがあるので、少ない方が望ましい。   If Ti is contained in excess of 0.005%, N becomes TiN and becomes a substantially low N-containing steel, and the inhibitor strength is not secured and secondary recrystallization failure may occur.

その他、Ni、Mo,Cdについては、添加することを妨げない。また電気炉溶製の場合は必然的に混入するものでもある。Niは一次、二次インヒビターとしての析出物の均一分散に著しい効果があるので、Niを添加すると磁気特性は更に良好且つ安定する。0.02%より少ないと効果が無く、0.3%を超えると、脱炭焼鈍後の酸素の富化し難くくになりフォルステライト皮膜形成が困難になる。Mo、Cdは硫化物もしくはセレン化物を形成しインヒビターの強化に資する。0.008%未満では効果が無く、0.3%を超えると析出物が粗大化してインヒビターの機能を得られず、磁気特性が安定しない。   In addition, Ni, Mo, and Cd are not prevented from being added. Moreover, in the case of electric furnace melting, it is inevitably mixed. Since Ni has a remarkable effect on the uniform dispersion of precipitates as primary and secondary inhibitors, the magnetic properties are further improved and stabilized when Ni is added. If it is less than 0.02%, there is no effect, and if it exceeds 0.3%, it becomes difficult to enrich oxygen after decarburization annealing and it becomes difficult to form a forsterite film. Mo and Cd form sulfides or selenides and contribute to strengthening of the inhibitor. If it is less than 0.008%, there is no effect, and if it exceeds 0.3%, precipitates are coarsened and the function of the inhibitor cannot be obtained, and the magnetic properties are not stable.

次に、本発明を実施するのに好適な成分以外の製造条件について述べる。
本発明は、アルミニウム含有の方向性電磁鋼板の製造において、窒化が必須の製造方法を対象とする。窒化を必要とする製造方法には、スラブ加熱を1280℃未満で行う、特許文献1で例示される(a)充分析出型と、より高い温度でスラブ加熱を行って、インヒビター物質を完全固溶させる、特許文献2で例示される(b)完全固溶型がある。本発明は、このいずれの方法にも適用することができる。
Next, production conditions other than the components suitable for carrying out the present invention will be described.
The present invention is directed to a manufacturing method in which nitriding is essential in the manufacture of grain-oriented electrical steel sheets containing aluminum. In the manufacturing method that requires nitriding, slab heating is performed at a temperature lower than 1280 ° C. (a) a sufficiently precipitated type and slab heating is performed at a higher temperature as exemplified in Patent Document 1 to completely dissolve the inhibitor substance. There is (b) complete solid solution type exemplified in Patent Document 2. The present invention can be applied to any of these methods.

スラブを得るための鋳造は、従来の連続鋳造でよい。さらにスラブ加熱をたやすくするために分塊法を適用することは構わない。この場合、炭素含有量を減じることができることは周知である。具体的には、公知の連続鋳造法により初期の厚みが150mmから300mmの範囲、好ましくは200mmから250mmの範囲のスラブを製造する。   The casting for obtaining the slab may be a conventional continuous casting. Furthermore, in order to make the slab heating easy, it is possible to apply the lump method. In this case, it is well known that the carbon content can be reduced. Specifically, a slab having an initial thickness in the range of 150 mm to 300 mm, preferably in the range of 200 mm to 250 mm, is manufactured by a known continuous casting method.

この代わりに、近年、通常の連続熱間圧延を補完するものとして、厚み30mm〜100mmの薄スラブ鋳造、直接鋼帯を得る鋼帯鋳造(ストリップキャスター)が実用化されているが、本発明に関して、適用は妨げない。しかし、実際問題として、これらでは凝固時に所謂“中心偏析”等のための析出物等が不均一となり完全均一な固溶・析出状態を得ることは極めて困難である。完全均一な固溶・析出状態を得るためには熱延鋼帯を得る前に一度、固溶化熱処理又は1200℃以下低温度での充分析出処理を伴ってのスラブ再加熱が強く望まれる。   Instead, as a supplement to normal continuous hot rolling in recent years, thin slab casting with a thickness of 30 mm to 100 mm and steel strip casting (strip caster) to obtain a direct steel strip have been put into practical use. The application is not hindered. However, as a practical matter, in these cases, precipitates for so-called “center segregation” and the like are not uniform during solidification, and it is extremely difficult to obtain a completely uniform solid solution / precipitation state. In order to obtain a completely uniform solution / precipitation state, slab reheating with a solution heat treatment or sufficient precipitation treatment at a low temperature of 1200 ° C. or lower is strongly desired once before obtaining a hot-rolled steel strip.

通常の熱間圧延の場合は、先立つスラブ加熱温度の条件は、(a)充分析出型か(b)完全固溶型で異なる。前者では、1200℃以下が望ましいが、後者では、1300℃超が望ましい。もちろん、工業生産上で熱延の加熱方法には通常のガス加熱方法に加え、誘導加熱、直接通電加熱を用いてもよいし、これらの特別な加熱方法のための形状を確保するために、ブレイクダウンを鋳込みスラブに施しても何ら問題ない。また、加熱温度が高い1300℃以上になる場合は、このブレイクダウンにより集合組織の改善を施しC量を減じてもよい。これらは従来の公知技術の範囲である。   In the case of normal hot rolling, the conditions of the slab heating temperature preceding are different depending on whether (a) a sufficient precipitation type or (b) a complete solid solution type. In the former, 1200 ° C. or lower is desirable, but in the latter, it is desirable to exceed 1300 ° C. Of course, in addition to the usual gas heating method for industrial production, in addition to the usual gas heating method, induction heating, direct current heating may be used, and in order to ensure the shape for these special heating methods, There is no problem even if breakdown is applied to the cast slab. When the heating temperature is higher than 1300 ° C., the texture may be improved by this breakdown to reduce the amount of C. These are within the scope of conventional known techniques.

(a)充分析出型の場合は、仕上げ出口温度は、低い930℃以下が望ましく、巻き取り温度も600℃以下が望ましい。(b)完全固溶型では、仕上げ入り口温度は、なるたけ高い1100℃以上が望ましく、巻き取り温度は600℃以下が望ましい。 (A) In the case of a sufficient precipitation type, the finishing exit temperature is desirably low 930 ° C. or lower, and the winding temperature is desirably 600 ° C. or lower. (B) In the complete solid solution type, the finishing entrance temperature is preferably as high as 1100 ° C. or higher, and the winding temperature is preferably 600 ° C. or lower.

熱間圧延後、安定的に良好なGoss方位を得るために焼鈍が行われる。この焼鈍は、主に熱間圧延時に生じた鋼帯内の組織の均一化及びインヒビターの微細分散析出のために行われるもので、熱延鋼帯での焼鈍でも良いし、一度冷間圧延した後の最終冷間圧延前の焼鈍でも良い。すなわち、最終冷間圧延前に熱延でのインヒビターと金属組織の均一化・適正化を行うために1回以上の連続焼鈍が行われる。
焼鈍条件としては、例えば、1060℃〜1150℃での90秒〜180秒の焼鈍後750℃〜900℃から15℃/秒以上の冷却速度で室温まで冷却する態様が例示される。
After hot rolling, annealing is performed to stably obtain a good Goss orientation. This annealing is performed mainly for the homogenization of the structure in the steel strip generated during hot rolling and the fine dispersion precipitation of the inhibitor. It may be annealed in the hot rolled steel strip or cold rolled once. It may be annealed before the final cold rolling. That is, at least one continuous annealing is performed in order to uniformize and optimize the inhibitor and metal structure in hot rolling before the final cold rolling.
As an annealing condition, the aspect cooled to room temperature with the cooling rate of 15 degrees C / second or more from 750 to 900 degreeC after 90 second to 180 second annealing at 1060 degreeC to 1150 degreeC is illustrated, for example.

焼鈍後の冷却は、均一なインヒビター分布状態を確保し焼き入れハード相(主にベーナイト相)を確保するために15℃/秒以上であることが望ましい。例えば、特許文献5で示された方法で良い。   The cooling after annealing is desirably 15 ° C./second or more in order to secure a uniform inhibitor distribution state and secure a hardened hard phase (mainly bainite phase). For example, the method disclosed in Patent Document 5 may be used.

冷間圧延における最終冷延率は80%未満であると{110}<001>集合組織がブロードになり高磁束密度が得られず、92%を超えると{110}<001>集合組織が極端に少なくなり二次再結晶が不安定になる。   If the final cold rolling ratio in cold rolling is less than 80%, the {110} <001> texture becomes broad and a high magnetic flux density cannot be obtained, and if it exceeds 92%, the {110} <001> texture is extreme. The secondary recrystallization becomes unstable.

最終冷間圧延は常温で実施してもよいが、少なくとも1パスを100〜300℃の温度範囲に1分以上保つと一次再結晶集合組織が改善され磁気特性が極めて良好になる。これは、公知である。保定時間は1分以上であれば良いのだが、実際の冷間圧延は、リバースミルで行われるので、ある温度の保定時間は、一般的には10分以上となる。長くなることは本発明では妨げないし、むしろ良好な磁気特性を得る方策でもある。   The final cold rolling may be carried out at room temperature, but if at least one pass is kept in the temperature range of 100 to 300 ° C. for 1 minute or longer, the primary recrystallization texture is improved and the magnetic properties become extremely good. This is known. The holding time may be 1 minute or more, but since actual cold rolling is performed by a reverse mill, the holding time at a certain temperature is generally 10 minutes or more. Increasing the length does not hinder the present invention, but rather is a measure for obtaining good magnetic properties.

冷間圧延後に脱炭焼鈍が行われる。脱炭焼鈍は公知の条件、すなわち650〜950℃で板厚に応じて60〜500秒間、好ましくは80〜300秒間、窒素と水素の混合湿潤雰囲気で行われる。   Decarburization annealing is performed after cold rolling. The decarburization annealing is performed under known conditions, that is, at 650 to 950 ° C. for 60 to 500 seconds, preferably 80 to 300 seconds in a mixed wet atmosphere of nitrogen and hydrogen, depending on the plate thickness.

脱炭焼鈍完了後の一次再結晶粒の平均粒径は、例えば特許文献4では一次再結晶粒の平均粒径を18〜35μmとしている。一方、特許文献1では、一次再結晶粒の平均粒径を7μm以上18μm未満である。   For example, in Patent Document 4, the average particle size of the primary recrystallized grains after completion of decarburization annealing is set to 18 to 35 μm. On the other hand, in patent document 1, the average particle diameter of a primary recrystallized grain is 7 micrometers or more and less than 18 micrometers.

脱炭燒鈍における室温から650〜850℃までの加熱速度を100℃/sec以上とすると、一次再結晶集合組織が改善され磁気特性が良好になるのでその適用を妨げない。加熱速度を確保するためには種々な方法が考えられる。即ち、抵抗加熱、誘導加熱、直接エネルギー付与加熱等がある。加熱速度を早くすると一次再結晶集合組織においてGoss方位が多くなり二次再結晶粒径が小さくなることは特公平6−51887号公報等で公知である。特公平6−51887号公報では、加熱速度を140℃/sec以上としているが、本発明では、前記加熱速度が100℃/secでも効果があり、望ましくは150℃/sec以上である。   When the heating rate from room temperature to 650 to 850 ° C. in the decarburization annealing is set to 100 ° C./sec or more, the primary recrystallization texture is improved and the magnetic characteristics are improved, so that the application is not hindered. Various methods are conceivable for securing the heating rate. That is, there are resistance heating, induction heating, direct energy application heating, and the like. It is known in Japanese Patent Publication No. 6-51887 that the Goss orientation increases in the primary recrystallization texture and the secondary recrystallization grain size decreases when the heating rate is increased. In Japanese Examined Patent Publication No. 6-51887, the heating rate is 140 ° C./sec or more. However, the present invention is effective even when the heating rate is 100 ° C./sec, preferably 150 ° C./sec or more.

一次再結晶・脱炭焼鈍後にストリップを走行させた状態下でアンモニアを含んだ雰囲気で窒化させる。総窒化量は、多いと地鉄が露出した一次被膜(グラス被膜)欠陥が多発し、Goss方位集積度が極めて劣化し、少ないと二次再結晶が不良となる。本発明により、高磁束密度を得るためには、窒化後の総窒素含有量は0.011%〜0.023%が望まれる。   After primary recrystallization and decarburization annealing, nitriding is performed in an atmosphere containing ammonia under the condition of running the strip. When the total amount of nitriding is large, defects in the primary coating (glass coating) exposing the base iron occur frequently, the Goss orientation integration degree is extremely deteriorated, and when the amount is small, secondary recrystallization becomes poor. In order to obtain a high magnetic flux density according to the present invention, the total nitrogen content after nitriding is desirably 0.011% to 0.023%.

窒化処理後、公知の方法に従い、MgOを主成分とする焼鈍分離剤を塗布して最終仕上げ焼鈍を施す。本発明では、上述のように、炉の構成上、窒化後の鋼板の表・裏側面のそれぞれの窒化量の多少が規定されるので、これに基づいて最終仕上げ焼鈍に供する鋼板の巻取方向を決める。
通常は、焼鈍後、絶縁張力コーティングの塗布と平坦化処理を行って製品とする。
After the nitriding treatment, a final finish annealing is performed by applying an annealing separator mainly composed of MgO according to a known method. In the present invention, as described above, since the amount of nitriding of each of the front and back side surfaces of the steel sheet after nitriding is defined on the structure of the furnace, the winding direction of the steel sheet to be subjected to final finish annealing based on this Decide.
Usually, after annealing, an insulating tension coating is applied and planarized to obtain a product.

質量%で、Cを0.065%、Siを3.37%、酸可溶性Alを0.026%、Nを0.0081%、Sを0.0065%、Mnを0.098%、Snを0.065%、Crを0.12%有し、残部Fe及び不可避的不純物を有する溶鋼より得られたスラブを1150℃で再加熱した後、通常の方法で熱間圧延し、890℃で仕上げ熱間圧延を終了して2.6mmの熱延板とし、560℃巻き取った。その後、1120℃で10秒、900℃で100秒保定して750℃20℃/秒の冷却で室温まで水冷し、酸洗でデスケリーングを行った。その後、250℃で3回の温間圧延で0.22mmの冷延板とした。その後、700℃まで150℃/秒で加熱して、850℃で110秒で水素75%、窒素25%、露点70℃の湿雰囲気で一次再結晶・脱炭焼鈍を施した。その後、アンモニア雰囲気内で窒素総量が195ppm〜225ppmの範囲になるように、また鋼帯の表側・裏側のそれぞれの面で窒化量を変更させ、(式1)の値が2.5%から27%になるように、窒化炉の鋼帯上下面のアンモニア流量を変化させ、その後MgOを主成分とする焼鈍分離材を塗布して巻き取り方向を変えて巻き取った。
その後、箱型焼鈍を水素75%、窒素25%で15℃/時間で1200℃まで昇温し、その後1200℃20時間の純化焼鈍を行った。その後、平坦化処理を行い、燐酸アルミニウムを主成分とする張力絶縁被膜を塗布した。その場合のグラス被膜欠陥率を示す。
In mass%, C is 0.065%, Si is 3.37%, acid-soluble Al is 0.026%, N is 0.0081%, S is 0.0065%, Mn is 0.098%, Sn is The slab obtained from molten steel with 0.065%, Cr 0.12%, balance Fe and inevitable impurities is reheated at 1150 ° C, then hot-rolled by a normal method and finished at 890 ° C The hot rolling was finished to obtain a 2.6 mm hot-rolled sheet, which was wound up at 560 ° C. Then, it hold | maintained at 1120 degreeC for 10 second and 900 degreeC for 100 second, it cooled to room temperature by cooling at 750 degreeC20 degreeC / second, and deskeling was performed by pickling. Then, it was set as the 0.22 mm cold-rolled sheet by warm rolling 3 times at 250 degreeC. Thereafter, heating was performed at 150 ° C./second up to 700 ° C., and primary recrystallization / decarburization annealing was performed at 850 ° C. in 10 seconds in a wet atmosphere of 75% hydrogen, 25% nitrogen, and 70 ° C. dew point. Thereafter, the amount of nitriding was changed on each of the front side and the back side of the steel strip so that the total nitrogen amount was in the range of 195 ppm to 225 ppm in the ammonia atmosphere, and the value of (Equation 1) was 2.5% to 27%. %, The ammonia flow rate at the upper and lower surfaces of the steel strip of the nitriding furnace was changed, and then an annealing separator mainly composed of MgO was applied, and the winding direction was changed to wind up.
After that, the box-type annealing was heated to 1200 ° C. at 15 ° C./hour with 75% hydrogen and 25% nitrogen, and then subjected to purification annealing at 1200 ° C. for 20 hours. Thereafter, a flattening treatment was performed, and a tension insulating film mainly composed of aluminum phosphate was applied. The glass film defect rate in that case is shown.

(式1)から求められたコイル内外面の窒化差異ごとに、巻取り方向を変えて巻取った場合のグラス被膜欠陥率を調べ、得られた結果を図3に示した。
図3に示されるように、窒化量が多い面をコイル状で最終仕上げ焼鈍する時のコイル外面側とした例(○)では、窒化量の差の大小にかかわらず、グラス被膜欠陥率は5%未満であったが、窒化量が多い面を内面側とした例(●)では、(式1)から求められた窒化差異の値が15%を超えると、ラス被膜欠陥率は5%を超えて増大した。
なお、グラス被膜欠陥には、密着性不良、金属光沢の露出、グラス形成不良、変色があるが、この実施例では、密着性不良と金属光沢の露出をグラス被膜欠陥とした。
For each nitridation difference between the inner and outer surfaces of the coil determined from (Equation 1), the glass film defect rate when the winding direction was changed was examined, and the obtained results are shown in FIG.
As shown in FIG. 3, in the example (◯) in which the surface having a large amount of nitriding is coiled and the outer surface of the coil is subjected to final finish annealing, the glass film defect rate is 5 regardless of the difference in the amount of nitriding. In the example (●) in which the surface with a large amount of nitriding is the inner surface side, the nitriding difference value obtained from (Equation 1) exceeds 15%, and the lath film defect rate is 5%. Increased beyond.
The glass film defects include poor adhesion, metallic gloss exposure, poor glass formation, and discoloration. In this example, the poor adhesion and metallic gloss exposure were defined as glass coating defects.

Claims (1)

鋼帯を脱炭焼鈍後、一次再結晶焼鈍を施し、ストリップ走行状態下で水素、窒素及びアンモニアの混合ガス中で窒化処理し、その後MgOを主成分とする焼鈍分離剤を塗布して、鋼帯をコイル状に巻き取った状態で最終仕上げ焼鈍を施す方向性電磁鋼板の製造方法において、鋼帯厚み表裏面における窒化窒素増量の差異が(式1)を満たす時は、窒化量が多い面をコイル状で最終仕上げ焼鈍する時のコイル外面側とすることを特徴とする鋼帯の巻き取り方法。
│(表側面窒化量−裏側面窒化量)/ΔN│×100≧15% ・・・(式1)
ここで、
表側面窒化量:表側面の表面から板厚(1/10)tまでの部分の窒素含有量から溶製での窒素含有量を差し引いた値
裏側面窒化量:裏側面の表面から板厚(1/10)tまでの部分の窒素含有量から溶製での窒素含有量を差し引いた値
ΔN:総窒化量で、全板厚での窒化後窒素含有量から窒化前窒素含有量を差し引いた値
である。
After decarburization annealing of the steel strip, it is subjected to primary recrystallization annealing, nitriding in a mixed gas of hydrogen, nitrogen and ammonia under the strip running condition, and then applying an annealing separator mainly composed of MgO, In the method of manufacturing a grain-oriented electrical steel sheet in which the final finish annealing is performed in a state where the strip is wound in a coil shape, when the difference in the increase in nitrogen nitride on the front and back surfaces of the steel strip satisfies (Equation 1), the surface having a large amount of nitriding Is a coil outer surface side when final finishing annealing in a coil shape.
│ (front side nitridation amount-back side nitridation amount) / ΔN│ × 100 ≧ 15% (Formula 1)
here,
Front side nitridation amount: Value obtained by subtracting the nitrogen content in melting from the nitrogen content of the portion from the front side surface to the plate thickness (1/10) t Back side nitridation amount: Plate thickness from the back side surface (plate thickness ( 1/10) Value obtained by subtracting the nitrogen content of the melt from the nitrogen content of the portion up to t ΔN: Total nitriding amount, subtracting the nitrogen content before nitriding from the nitrogen content after nitriding at the total thickness Value.
JP2009151126A 2009-06-25 2009-06-25 Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet Active JP5332946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009151126A JP5332946B2 (en) 2009-06-25 2009-06-25 Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151126A JP5332946B2 (en) 2009-06-25 2009-06-25 Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2011006738A JP2011006738A (en) 2011-01-13
JP5332946B2 true JP5332946B2 (en) 2013-11-06

Family

ID=43563712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151126A Active JP5332946B2 (en) 2009-06-25 2009-06-25 Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5332946B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234727A4 (en) * 2020-10-26 2023-11-15 Nippon Steel Corporation Wound core
EP4234728A4 (en) * 2020-10-26 2023-11-15 Nippon Steel Corporation Wound core
RU2811454C1 (en) * 2020-10-26 2024-01-11 Ниппон Стил Корпорейшн Strip core

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994981B2 (en) * 2011-08-12 2016-09-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5360272B2 (en) * 2011-08-18 2013-12-04 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
EP2770075B1 (en) 2011-10-20 2018-02-28 JFE Steel Corporation Grain-oriented electrical steel sheet and method of producing the same
CN103695619B (en) * 2012-09-27 2016-02-24 宝山钢铁股份有限公司 A kind of manufacture method of high magnetic strength common orientation silicon steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3072401B2 (en) * 1992-09-22 2000-07-31 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and coating properties
JP3940205B2 (en) * 1997-06-30 2007-07-04 新日本製鐵株式会社 Method of nitriding treatment of grain-oriented electrical steel sheet with small deviation in longitudinal and width direction and apparatus therefor
RU2363739C1 (en) * 2005-06-10 2009-08-10 Ниппон Стил Корпорейшн Textured electric sheet metals with extremely high magnetic properties and method of its manufacturing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234727A4 (en) * 2020-10-26 2023-11-15 Nippon Steel Corporation Wound core
EP4234728A4 (en) * 2020-10-26 2023-11-15 Nippon Steel Corporation Wound core
RU2811454C1 (en) * 2020-10-26 2024-01-11 Ниппон Стил Корпорейшн Strip core
AU2021371519A9 (en) * 2020-10-26 2024-02-08 Nippon Steel Corporation Wound core
AU2021369232B2 (en) * 2020-10-26 2024-03-28 Nippon Steel Corporation Wound core

Also Published As

Publication number Publication date
JP2011006738A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP4823719B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties
JP5423909B1 (en) Method for producing grain-oriented electrical steel sheet
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5037728B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
JP4598702B2 (en) Manufacturing method of high Si content grain-oriented electrical steel sheet with excellent magnetic properties
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP4673937B2 (en) Method for processing steel for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP5332946B2 (en) Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
WO2019013351A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP5428188B2 (en) Method for producing grain-oriented electrical steel sheet
JPH04202713A (en) Manufacture of thin grain-oriented silicon steel sheet excellent in film property and magnetic property
JP2019099827A (en) Manufacturing method of grain-oriented electromagnetic steel sheet
JP5854234B2 (en) Method for producing grain-oriented electrical steel sheet
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP7364966B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7260799B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014156633A (en) Manufacturing method for directional electromagnetic steel plate, directional electromagnetic steel plate, surface glass coating for directional electromagnetic steel plate
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP7508012B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
CN113166874B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350