JP5958501B2 - Method for evaluating grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet - Google Patents
Method for evaluating grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP5958501B2 JP5958501B2 JP2014131989A JP2014131989A JP5958501B2 JP 5958501 B2 JP5958501 B2 JP 5958501B2 JP 2014131989 A JP2014131989 A JP 2014131989A JP 2014131989 A JP2014131989 A JP 2014131989A JP 5958501 B2 JP5958501 B2 JP 5958501B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- mass
- grain
- oriented electrical
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
本発明は、方向性電磁鋼板の評価方法であって、特に、鉄損特性に優れた方向性電磁鋼板を判定することができる評価方法に関するものである。また、本発明は、方向性電磁鋼板の製造方法に関するものである。 The present invention relates to an evaluation method for a grain-oriented electrical steel sheet, and particularly relates to an evaluation method capable of determining a grain-oriented electrical steel sheet having excellent iron loss characteristics. The present invention also relates to a method for producing a grain-oriented electrical steel sheet.
方向性電磁鋼板は、トランスの鉄心材料として広く用いられている軟磁性材料であり、磁気特性、なかでも鉄損特性に優れる(鉄損が低い)ことが求められている。良好な鉄損を満たすものとして、二次再結晶を起こさせて、鋼板の圧延方向にゴス方位と呼ばれる{110}<001>方位を高度に集積させた方向性電磁鋼板が開発され、実用化されているのは周知のとおりである。 A grain-oriented electrical steel sheet is a soft magnetic material that is widely used as a core material for transformers, and is required to have excellent magnetic properties, particularly iron loss properties (low iron loss). A grain-oriented electrical steel sheet with a high level of integration of the {110} <001> orientation called the Goth orientation in the rolling direction of the steel sheet was developed and put into practical use to satisfy good iron loss. As is well known.
鋼板上の圧延方向に{110}<001>方位を高度に集積させる方法としては、インヒビターと呼ばれる析出物を利用して二次再結晶を制御する方法が一般的である。しかし、析出物(インヒビター)が製品鋼板中に残留すると、磁気特性の劣化につながる。このため、例えば、特許文献1、2に開示されているように、仕上焼鈍で二次再結晶させた後、引き続き高温焼鈍して不純物を除去する、いわゆる純化焼鈍を施すことが行われている。この純化焼鈍ではインヒビターが溶解して鋼中を拡散し表層から抜けていく必要があるため、方向性電磁鋼板の製造工程では1100〜1250℃の温度で3hr以上の焼鈍といった、高温かつ長時間の条件で行う。 As a method of highly accumulating the {110} <001> orientation in the rolling direction on a steel plate, a method of controlling secondary recrystallization using precipitates called inhibitors is common. However, when precipitates (inhibitors) remain in the product steel plate, the magnetic properties are deteriorated. For this reason, for example, as disclosed in Patent Documents 1 and 2, after the secondary recrystallization by finish annealing, so-called purification annealing is performed to remove impurities by subsequent high-temperature annealing. . In this purification annealing, it is necessary that the inhibitor dissolves and diffuses in the steel and escapes from the surface layer. Therefore, in the manufacturing process of the grain-oriented electrical steel sheet, annealing at a temperature of 1100 to 1250 ° C. for 3 hours or more is performed at a high temperature for a long time. Perform under conditions.
ところで、近年、省エネルギーを目的として、さらなる低鉄損化が要請されている。それには、インヒビター成分を除去する技術や、インヒビターレス技術を向上させ、最終製品における不純物(インヒビター成分)を確実に除去することが求められている。 By the way, in recent years, further reduction of iron loss has been demanded for the purpose of energy saving. For this purpose, it is required to improve the technology for removing the inhibitor component and the inhibitor-less technology to reliably remove impurities (inhibitor component) in the final product.
しかしながら、不純物の残存による不良が明らかになるのは、純化焼鈍処理の終了後である。方向性電磁鋼板の製造工程は、製鋼、熱間圧延、冷間圧延、一次再結晶焼鈍、二次再結晶焼鈍(仕上焼鈍)、純化焼鈍と、長時間を要する。したがって、方向性電磁鋼板の製造工程を完了してからでなければ、得られる方向性電磁鋼板の磁気特性を測定することができない。このため、方向性電磁鋼板の最終製品板の歩留まりを大きく低下させている。 However, defects due to remaining impurities become apparent after the end of the purification annealing process. The manufacturing process of grain-oriented electrical steel sheets takes a long time, such as steelmaking, hot rolling, cold rolling, primary recrystallization annealing, secondary recrystallization annealing (finish annealing), and purification annealing. Therefore, the magnetic properties of the obtained grain-oriented electrical steel sheet cannot be measured unless the manufacturing process for the grain-oriented electrical steel sheet is completed. For this reason, the yield of the final product sheet of grain-oriented electrical steel sheet is greatly reduced.
本発明は、上記従来技術の問題点に鑑みてなされたものであり、方向性電磁鋼板の製造工程の初期の段階において、製品板における鉄損不良を高い精度で予測し、鉄損特性に優れる方向性電磁鋼板を安価かつ安定して提供することができる方向性電磁鋼板の評価方法および方向性電磁鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and predicts iron loss failure in a product plate with high accuracy in the initial stage of the production process of grain-oriented electrical steel sheet, and is excellent in iron loss characteristics. An object of the present invention is to provide a method for evaluating a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet, which can provide the grain-oriented electrical steel sheet inexpensively and stably.
本発明者らは、上記課題の解決に向け、熱間圧延から純化焼鈍までの各製造工程の鋼板に着目し、鋭意検討を重ねた。純化焼鈍の昇温過程を模擬した簡易的な熱処理を施した後、鋼板の表層に残存するインヒビターの個数により、鉄損特性の良/不良を高精度に予測することができることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the inventors focused on the steel sheet in each manufacturing process from hot rolling to purification annealing, and made extensive studies. After performing a simple heat treatment simulating the temperature raising process of the purification annealing, it was found that the iron loss property good / bad can be predicted with high accuracy by the number of inhibitors remaining on the surface layer of the steel sheet. Was completed.
本発明の要旨は、以下のとおりである。
[1]熱間圧延工程以降の任意の製造工程における鋼板に、焼鈍分離剤を塗布し、その後最高到達温度1100℃以上での二次再結晶焼鈍、および980℃以上1025℃以下での純化焼鈍を施したものを供試材とし、
前記供試材の表面から30〜60μmの領域の任意の位置より開始し、前記供試材の所定量を溶解して終える電解抽出を行って、得られる溶解物に含まれるインヒビターが所定の個数以下であるものを合格とすることを特徴とする方向性電磁鋼板の評価方法。
[2]熱間圧延工程以降の任意の製造工程における鋼板に、焼鈍分離剤を塗布し、その後最高到達温度1100℃以上での二次再結晶焼鈍、および1000℃での純化焼鈍を施したものを供試材とし、
前記供試材の表面から30〜60μmの領域の任意の位置より開始し、前記供試材の所定量を溶解して終える電解抽出を行って、得られる溶解物に含まれるインヒビターが所定の個数以下であるものを合格とすることを特徴とする方向性電磁鋼板の評価方法。
[3]前記供試材は、成分組成として、C:0.01〜0.08mass%、Si:2.00〜8.00mass%、Mn:0.005〜1.00mass%を含有し、さらに以下の(1)〜(3)のいずれか1種以上を含有し、残部はFeおよび不可避的不純物であることを特徴とする[1]または[2]に記載の方向性電磁鋼板の評価方法。
(1)Al:0.010〜0.065mass%およびN:0.005〜0.012mass%
(2)S:0.005〜0.030mass%
(3)Se:0.005〜0.030mass%
[4]前記供試材の電解抽出する面の大きさが1000mm2で、前記所定量は0.1gであり、前記インヒビターの個数は2500以下であることを特徴とする[1]〜[3]のいずれか1項に記載の方向性電磁鋼板の評価方法。
ただし、前記インヒビターは、濾過面積が1020mm2のフィルターを用いて前記溶解物を濾過した後、前記フィルター上の0.01mm2の範囲に観察されるインヒビターである。
[5]前記供試材は、さらに成分組成として、Cu:0.03〜3.00mass%、Sb:0.005〜0.50mass%、Ni:0.01〜1.50mass%、P:0.03〜0.50mass%、Sn:0.005〜0.50mass%、Mo:0.005〜0.10mass%のうちから選ばれる1種または2種以上を含有することを特徴とする[3]または[4]に記載の方向性電磁鋼板の評価方法。
[6][1]〜[5]のいずれか1項に記載の方向性電磁鋼板の評価方法で合格と判定される鋼板について、前記任意の製造工程以降の製造工程を実施することにより、方向性電磁鋼板を製造することを特徴とする方向性電磁鋼板の製造方法。
The gist of the present invention is as follows.
[1] An annealing separator is applied to a steel sheet in an arbitrary manufacturing process after the hot rolling process, and then secondary recrystallization annealing at a maximum attained temperature of 1100 ° C or higher and purification annealing at 980 ° C or higher and 1025 ° C or lower. The material that has been subjected to
Starting from an arbitrary position in the region of 30 to 60 μm from the surface of the specimen, electrolytic extraction is performed after dissolving a predetermined amount of the specimen, and a predetermined number of inhibitors are contained in the obtained melt. An evaluation method for a grain-oriented electrical steel sheet, wherein the following are accepted.
[2] An annealing separator was applied to a steel sheet in an arbitrary manufacturing process after the hot rolling process, followed by secondary recrystallization annealing at a maximum attained temperature of 1100 ° C. or higher and purification annealing at 1000 ° C. As a test material,
Starting from an arbitrary position in the region of 30 to 60 μm from the surface of the specimen, electrolytic extraction is performed after dissolving a predetermined amount of the specimen, and a predetermined number of inhibitors are contained in the obtained melt. An evaluation method for a grain-oriented electrical steel sheet, wherein the following are accepted.
[3] The test material contains C: 0.01 to 0.08 mass%, Si: 2.00 to 8.00 mass%, Mn: 0.005 to 1.00 mass% as a component composition, The method for evaluating a grain-oriented electrical steel sheet according to [1] or [2], comprising at least one of the following (1) to (3), the balance being Fe and inevitable impurities: .
(1) Al: 0.010-0.065 mass% and N: 0.005-0.012 mass%
(2) S: 0.005-0.030 mass%
(3) Se: 0.005 to 0.030 mass%
[4] The size of the surface to be electrolytically extracted of the test material is 1000 mm 2 , the predetermined amount is 0.1 g, and the number of the inhibitors is 2500 or less [1] to [3 ] The evaluation method of the grain-oriented electrical steel sheet according to any one of the above.
However, the inhibitor is an inhibitor observed in a range of 0.01 mm 2 on the filter after filtering the lysate using a filter having a filtration area of 1020 mm 2 .
[5] The test material further includes Cu: 0.03 to 3.00 mass%, Sb: 0.005 to 0.50 mass%, Ni: 0.01 to 1.50 mass%, and P: 0 as component compositions. 0.03 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Mo: 0.005 to 0.10 mass%, or one or more selected from [3] ] Or the evaluation method of the grain-oriented electrical steel sheet according to [4].
[6] For a steel sheet that is determined to be acceptable by the evaluation method for the grain-oriented electrical steel sheet according to any one of [1] to [5], the manufacturing process after the arbitrary manufacturing process is performed, thereby performing the direction. A method for producing a grain-oriented electrical steel sheet, comprising producing a directional electrical steel sheet.
本発明によれば、熱間圧延工程以降の任意の製造工程の鋼板に、純化焼鈍の昇温過程を模擬した簡易的な熱処理を施した後、鋼板の表層に残存するインヒビターの個数により、鉄損特性の良/不良を精度よく予測することができる。このため、方向性電磁鋼板の製造工程の初期の段階において、鉄損特性不良となる鋼板、すなわち不合格の鋼板を判定することでき、不合格と判定されたものについて、その後の工程に進ませないことができる。したがって、鉄損特性に優れる方向性電磁鋼板を安価かつ安定して提供することが可能となる。 According to the present invention, the steel sheet in an arbitrary manufacturing process after the hot rolling process is subjected to a simple heat treatment simulating the temperature rising process of the purification annealing, and then the number of inhibitors remaining on the surface layer of the steel sheet It is possible to accurately predict whether the loss characteristic is good or bad. For this reason, at the initial stage of the production process of grain-oriented electrical steel sheets, it is possible to determine a steel sheet that has a poor iron loss characteristic, that is, a rejected steel sheet. Can not. Therefore, it becomes possible to provide a grain-oriented electrical steel sheet having excellent iron loss characteristics at low cost and stably.
<本発明の評価方法>
本発明の評価方法を見出した経緯について、以下に説明するが、そのまえに本発明に係る方向性電磁鋼板について簡単に説明する。
<Evaluation method of the present invention>
The background of finding the evaluation method of the present invention will be described below, but before that, the grain-oriented electrical steel sheet according to the present invention will be briefly described.
まず、本発明に係る方向性電磁鋼板の成分組成は、基本的なものであればとりわけ限定されるわけではないが、C:0.01〜0.08mass%、Si:2.00〜8.00mass%、Mn:0.005〜1.00mass%を含有するのが一般的である。 First, the component composition of the grain-oriented electrical steel sheet according to the present invention is not particularly limited as long as it is basic, but C: 0.01-0.08 mass%, Si: 2.00-8. It is common to contain 00mass% and Mn: 0.005-1.00mass%.
また、本発明の方向性電磁鋼板は、磁気特性の改善を目的として、上記成分組成に加えて、Cu:0.03〜3.00mass%、Ni:0.01〜1.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%のうちから選ばれる1種または2種以上をさらに含有してもよい。 Further, the grain-oriented electrical steel sheet of the present invention has a Cu: 0.03 to 3.00 mass%, Ni: 0.01 to 1.50 mass%, Sn: One or two selected from 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, P: 0.03 to 0.50 mass%, Mo: 0.005 to 0.10 mass% You may further contain a seed | species or more.
上記の成分組成のなかで、本発明の評価方法に係る方向性電磁鋼板は、二次再結晶を起こさせるためのインヒビターを用いるので、例えば、AlN系インヒビターを利用するときには、AlおよびNを、Al:0.010〜0.065mass%およびN:0.005〜0.012mass%の範囲で含有する。あるいは、MnS・MnSe系インヒビターを利用するときには、S:0.005〜0.030mass%および/またはSe:0.005〜0.030mass%の範囲で含有する。また、AlN系インヒビターとMnS・MnSe系インヒビターを併用することもあり、その場合は、Al、N、S、Seは、上記の範囲で含有している。 Among the above component compositions, the grain-oriented electrical steel sheet according to the evaluation method of the present invention uses an inhibitor for causing secondary recrystallization. For example, when using an AlN-based inhibitor, Al and N, It contains in the range of Al: 0.010-0.065 mass% and N: 0.005-0.012 mass%. Or when using a MnS * MnSe type | system | group inhibitor, it contains in the range of S: 0.005-0.030 mass% and / or Se: 0.005-0.030 mass%. Further, an AlN-based inhibitor and a MnS / MnSe-based inhibitor may be used in combination, and in that case, Al, N, S, and Se are contained in the above range.
さらに、ここで上記成分以外の残部は、Feおよび不可避的不純物である。 Further, the balance other than the above components here is Fe and inevitable impurities.
つぎに、本発明の評価方法に係る方向性電磁鋼板のその他の製造条件について一例を説明する。 Below, an example is demonstrated about the other manufacturing conditions of the grain-oriented electrical steel sheet which concerns on the evaluation method of this invention.
例えば、上記成分組成の鋼スラブを、常法に従って、スラブ再加熱し、熱間圧延し、必要に応じて熱延板焼鈍した後、1回または中間焼鈍を挟む2回以上の冷間圧延を行い最終板厚の冷延板とする。その後、上記冷延板に、脱炭を兼ねた一次再結晶焼鈍を施し、焼鈍分離剤を塗布して、二次再結晶と純化のための二次再結晶焼鈍および純化焼鈍を施す。なお、脱炭は、上記一次再結晶焼鈍を湿潤雰囲気とすることで行うことができるが、別途行ってもよい。 For example, a steel slab having the above component composition is reheated according to a conventional method, hot-rolled, hot-rolled as necessary, and then cold-rolled twice or more with intermediate or intermediate annealing. The final thickness of the cold-rolled sheet is obtained. Thereafter, the cold-rolled sheet is subjected to primary recrystallization annealing also serving as decarburization, and an annealing separator is applied to perform secondary recrystallization annealing and purification annealing for secondary recrystallization and purification. In addition, although decarburization can be performed by making the said primary recrystallization annealing into a humid atmosphere, you may perform separately.
以上、このような方向性電磁鋼板のなかで、本発明者らは、鉄損に大きく影響を及ぼすインヒビターの析出状態(例えば、形態、数、大きさが挙げられる。)について、熱間圧延工程以降の任意の各製造工程の鋼板をそれぞれ採取して、調べた。 As described above, among such grain-oriented electrical steel sheets, the present inventors have conducted a hot rolling process on the precipitation state (for example, the form, number, and size) of the inhibitor that greatly affects the iron loss. Steel sheets of each of the subsequent arbitrary manufacturing steps were collected and examined.
具体的には、熱延板から仕上焼鈍板までのいずれかの任意の製造工程より採取した鋼板を、一定厚み(例えば、0.2〜3.0mm)の板厚として(例えば、圧延して板厚を薄くするあるいはそのままの板厚の状態とする。)、酸洗などでスケールを除去した後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから最高到達温度1100℃以上での二次再結晶焼鈍、および1000℃での純化焼鈍を施した供試材を準備した。供試材から20mm×50mmの大きさの試験片(試料)を作製し、その20mm×50mmの表面より30μm研磨した後に、新たに形成された表面から電解抽出を実施して0.1gの試料を溶解した。この場合、電解抽出する面の大きさ(面積)が1000mm2である。引き続いて、電解抽出により得られた溶解物の全量を、濾過面積が1020mm2のフィルターで濾過し、乾燥した。その後、フィルター上に残ったインヒビターについて走査型電子顕微鏡(SEM)を用いて観察した。このとき、フィルター上に均一に分散していたインヒビターのうち、縦100μm×横100μmの面積(0.01mm2)を観察し、その領域における円相当径が5μm以下のものを観察した。 Specifically, a steel sheet collected from any manufacturing process from hot-rolled sheet to finish-annealed sheet is used as a sheet thickness of a certain thickness (for example, 0.2 to 3.0 mm) (for example, rolled). The plate thickness is reduced or the plate thickness is kept as it is.) After removing the scale by pickling, etc., after applying an annealing separator mainly composed of MgO to the steel plate surface, the maximum temperature reached 1100 ° C. or higher A test material was prepared which was subjected to secondary recrystallization annealing at 1 ° C. and purification annealing at 1000 ° C. A test piece (sample) having a size of 20 mm × 50 mm was prepared from the test material, polished by 30 μm from the surface of 20 mm × 50 mm, and then subjected to electrolytic extraction from the newly formed surface to obtain a 0.1 g sample. Was dissolved. In this case, the size (area) of the surface to be electrolytically extracted is 1000 mm 2 . Subsequently, the entire amount of the lysate obtained by electrolytic extraction was filtered through a filter having a filtration area of 1020 mm 2 and dried. Thereafter, the inhibitor remaining on the filter was observed using a scanning electron microscope (SEM). At this time, among the inhibitors that were uniformly dispersed on the filter, an area of 100 μm in length × 100 μm in width (0.01 mm 2 ) was observed, and those having an equivalent circle diameter in the region of 5 μm or less were observed.
その結果、析出するインヒビター(以下、単に、インヒビターまたは析出物と称することもある。)は、約30〜150nmの大きさ(円相当径)で鋼板中に存在し、しかも、熱間圧延工程以降で仕上焼鈍が終了する段階までの、いずれの製造段階の鋼板においても、インヒビターの析出形態は、つぎに述べるようなものであり、ほとんど変化することなく存在していることがわかった。 As a result, the inhibitor that precipitates (hereinafter sometimes referred to simply as “inhibitor or precipitate”) is present in the steel sheet in a size of about 30 to 150 nm (equivalent circle diameter), and after the hot rolling step. Thus, it was found that the precipitation form of the inhibitor was as described below in the steel sheets in any manufacturing stage up to the stage where the finish annealing was finished, and it existed with almost no change.
すなわち、析出するインヒビターとしては、Al系インヒビターとしてのAlNや、MnSが析出することがわかった。また、成分組成にMnSeまたはCuを含む場合、Cu2SまたはCu2Seがインヒビターとして析出することがわかった。これらのインヒビターは、単独で析出するものもあれば、MnSe、Cu2S、Cu2Se、MnSを核としてAlNが複合析出するものもある。前述したように、これらのインヒビターは、円相当径がおよそ30〜150nmの大きさで鋼板中に存在する。 That is, it was found that AlN or MnS as an Al-based inhibitor is precipitated as the precipitated inhibitor. Moreover, when MnSe or Cu was included in the component composition, it was found that Cu 2 S or Cu 2 Se was precipitated as an inhibitor. Some of these inhibitors precipitate alone, while other inhibitors cause AlN to precipitate together using MnSe, Cu 2 S, Cu 2 Se, and MnS as nuclei. As described above, these inhibitors are present in the steel sheet with an equivalent circle diameter of about 30 to 150 nm.
一方で、インヒビターは、仕上焼鈍の後の純化焼鈍にて溶解し消滅する。この挙動について調べるために、純化焼鈍の昇温過程を模擬した簡易的な熱処理を施した試料について、SEMを用いて鋼板表層のインヒビターを観察した。 On the other hand, the inhibitor dissolves and disappears in the purification annealing after the finish annealing. In order to investigate this behavior, an inhibitor on the surface layer of the steel sheet was observed using a SEM for a sample subjected to a simple heat treatment simulating the temperature raising process of purification annealing.
図1は、純化焼鈍の昇温過程を模擬した簡易的な熱処理として、一次再結晶焼鈍後に焼鈍分離剤を塗布し、最高到達温度1100℃以上で二次再結晶焼鈍を行った後、850〜1050℃の純化焼鈍をした試料について、鋼板表面位置(最表層)、鋼板表面から10μmの位置、および鋼板表面から30μmの位置から電解抽出を開始したときにおけるインヒビターの個数と純化焼鈍温度との関係を示すグラフである。図1に示すとおり、鉄損特性の良い鋼板(鉄損W17/50が0.90以下、表1中のOK材)の場合、電解抽出の開始位置が鋼板表面からの深さが30μmに到達しない位置、すなわち最表層位置や鋼板表面から10μmの位置では、インヒビターの数は975℃以上で激減している。この相関関係については、熱間圧延工程以降で仕上焼鈍が終了する段階までの、いずれの製造段階の鋼板においても、同様の相関関係が得られた。したがって、純化焼鈍の昇温過程において、インヒビターの溶解は975℃以上の高温で起こると考えられる。 FIG. 1 shows a simple heat treatment that simulates the temperature raising process of purification annealing, after applying an annealing separator after primary recrystallization annealing and performing secondary recrystallization annealing at a maximum temperature of 1100 ° C. or higher, Regarding the sample annealed at 1050 ° C., the relationship between the number of inhibitors and the purification annealing temperature when electrolytic extraction was started from the steel sheet surface position (outermost layer), the position 10 μm from the steel sheet surface, and the position 30 μm from the steel sheet surface It is a graph which shows. As shown in FIG. 1, in the case of a steel plate with good iron loss characteristics (iron loss W 17/50 is 0.90 or less, OK material in Table 1), the electrolytic extraction start position is 30 μm in depth from the steel plate surface. In the position where it does not reach, that is, the position of the outermost layer or 10 μm from the steel sheet surface, the number of inhibitors is drastically decreased at 975 ° C. or more. About this correlation, the same correlation was acquired also in the steel plate of any manufacturing stage until the stage where finish annealing is complete | finished after a hot rolling process. Therefore, it is considered that dissolution of the inhibitor occurs at a high temperature of 975 ° C. or higher in the temperature raising process of the purification annealing.
さらにまた、鋼板表面から60μmの深さ近傍までの領域において、加熱によるインヒビターの溶解が顕著であることと、鉄損特性の良い鋼板と悪い鋼板とでは溶解挙動に差があることがわかった。具体的には、鉄損特性の悪い鋼板の場合、鋼板表面からの深さが30〜60μm近傍の領域において、インヒビターが溶解しにくいことを見出した。例えば、図1に示すように、鋼板表面を起点とした深さが30μmの位置から電解抽出したものでは、OK材に比べてNG材の方が、溶解温度が975℃以上でのインヒビターの個数の減少量が少ないことがわかる。この相関関係については、熱間圧延工程以降で仕上焼鈍が終了する段階までの、いずれの製造段階の鋼板においても、同様の相関関係が得られた。したがって、鉄損特性の悪い鋼板の場合、溶解温度が975℃以上では、インヒビターが溶解しにくいといえる。 Furthermore, it was found that in the region from the surface of the steel sheet to the vicinity of a depth of 60 μm, the dissolution of the inhibitor by heating is significant, and there is a difference in dissolution behavior between the steel sheet with good iron loss characteristics and the bad steel sheet. Specifically, in the case of a steel sheet with poor iron loss characteristics, it was found that the inhibitor is difficult to dissolve in a region where the depth from the steel sheet surface is in the vicinity of 30 to 60 μm. For example, as shown in FIG. 1, in the case of electrolytic extraction from a position having a depth of 30 μm starting from the surface of the steel sheet, the number of inhibitors with a melting temperature of 975 ° C. or more is higher in the NG material than in the OK material. It can be seen that the amount of decrease is small. About this correlation, the same correlation was acquired also in the steel plate of any manufacturing stage until the stage where finish annealing is complete | finished after a hot rolling process. Therefore, in the case of a steel sheet with poor iron loss characteristics, it can be said that the inhibitor is difficult to dissolve at a melting temperature of 975 ° C. or higher.
また、図1から、1025℃を超えるとインヒビターの溶解が進行しすぎるため、鉄損特性の良い鋼板と悪い鋼板とでは、インヒビターの個数に明確な差異が見られない。 Further, from FIG. 1, when the temperature exceeds 1025 ° C., the dissolution of the inhibitor proceeds too much, so that there is no clear difference in the number of inhibitors between a steel plate with good iron loss characteristics and a steel plate with poor iron loss characteristics.
加えて、実際の製品板である方向性電磁鋼板と、本発明の簡易の製造工程により得られる供試材との相関関係について調べた。具体的には、実際の製品板で電解抽出を始めた位置が深さ30μm(表面基準)のときのインヒビターの個数と、本発明の供試材で電解抽出を始めた位置が深さ30μm(表面基準)のときのインヒビターの個数とを比較した。その結果、実際の製品板と本発明の供試材とでは、インヒビターの個数がほぼ同じ、すなわち高度の相関関係があり、鉄損特性にも差がないことがわかった。 In addition, the correlation between the grain-oriented electrical steel sheet, which is an actual product plate, and the test material obtained by the simple manufacturing process of the present invention was examined. Specifically, the number of inhibitors when the position where the electrolytic extraction was started on the actual product plate was 30 μm deep (surface standard), and the position where the electrolytic extraction was started with the test material of the present invention was 30 μm deep ( The number of inhibitors at the time of (surface standard) was compared. As a result, it was found that the actual product plate and the test material of the present invention had almost the same number of inhibitors, that is, a high degree of correlation and no difference in iron loss characteristics.
さらに、インヒビターの個数と製品板の鉄損特性との相関関係について調べた。図2は、熱延板を採取して実験室において冷延した鋼板、あるいはそのままの厚みの鋼板を用いて、焼鈍分離剤(MgO)を塗布し、最高到達温度1100℃以上での二次再結晶焼鈍、および980℃以上1025℃以下での純化焼鈍を実施した試料について、電解抽出を始めた位置が深さ30μm(表面基準)のときのインヒビターの個数と、製品板の鉄損特性との関係を示すグラフである。図2に示すとおり、インヒビターの個数が2500個より少ない場合、鉄損特性が良い(図2中の○)。一方、インヒビターの個数が2500個を超える場合、鉄損が0.90以上となり、鉄損特性が悪いことがわかる(図2中の×)。したがって、SEM観察により、所定面積(0.01mm2)あたりのインヒビターの個数が2500個以下であれば、製品板の鉄損特性が良好であるといえる。 Furthermore, the correlation between the number of inhibitors and the iron loss characteristics of the product plate was investigated. FIG. 2 shows a case where an annealing separator (MgO) is applied using a steel sheet obtained by collecting hot-rolled sheets and cold-rolled in a laboratory, or a steel sheet having a thickness as it is. For samples subjected to crystal annealing and purification annealing at 980 ° C. or more and 1025 ° C. or less, the number of inhibitors when the position where electrolytic extraction was started was 30 μm deep (surface standard) and the iron loss characteristics of the product plate It is a graph which shows a relationship. As shown in FIG. 2, when the number of inhibitors is less than 2500, the iron loss characteristics are good (◯ in FIG. 2). On the other hand, when the number of inhibitors exceeds 2500, the iron loss is 0.90 or more, indicating that the iron loss characteristics are poor (× in FIG. 2). Therefore, when the number of inhibitors per predetermined area (0.01 mm 2 ) is 2500 or less by SEM observation, it can be said that the iron loss characteristic of the product plate is good.
以上より、本発明では、純化焼鈍の昇温過程を模擬した簡易的な熱処理として、最高到達温度1100℃以上での二次再結晶焼鈍、およびこれに引き続く980℃以上1025℃以下での純化焼鈍を施した後、鋼板の30〜60μm程度の領域に残存するインヒビターの個数により、鉄損特性を判定することができる。 As described above, in the present invention, as a simple heat treatment simulating the temperature raising process of the purification annealing, the secondary recrystallization annealing at the maximum attained temperature of 1100 ° C. or higher, and the subsequent purification annealing at 980 ° C. or higher and 1025 ° C. or lower. After applying, the iron loss characteristics can be determined by the number of inhibitors remaining in the region of about 30 to 60 μm of the steel sheet.
二次再結晶焼鈍温度が1100℃未満では、所望のインヒビター効果を得ることができない。また、純化焼鈍温度が980℃未満では、図1に示すように、鉄損特性の良い鋼板と悪い鋼板ともインヒビターの溶解挙動があまり進行しない。一方、純化焼鈍温度が1025℃を超えると、インヒビターの溶解が進行しすぎるため、鉄損特性の良い鋼板と悪い鋼板とではインヒビターの個数に明確な差異が見られない。このため、本発明では、溶解挙動が明確である980℃以上1025℃以下とする。より好ましくは、上記の差異がもっとも明確に見られるという点から1000℃である。また、インヒビターの個数は、図2に示すように、2500個以下であれば鉄損特性が良好である。 If the secondary recrystallization annealing temperature is less than 1100 ° C., the desired inhibitor effect cannot be obtained. Further, when the purification annealing temperature is lower than 980 ° C., as shown in FIG. 1, the inhibitor dissolution behavior does not proceed so much in both the steel sheet having good iron loss characteristics and the bad steel sheet. On the other hand, when the purification annealing temperature exceeds 1025 ° C., the dissolution of the inhibitor proceeds excessively, so that there is no clear difference in the number of inhibitors between a steel plate with good iron loss characteristics and a steel plate with poor iron loss characteristics. For this reason, in this invention, it is set as 980 degreeC or more and 1025 degrees C or less whose dissolution behavior is clear. More preferably, it is 1000 ° C. from the viewpoint that the above difference is most clearly seen. Moreover, as shown in FIG. 2, if the number of inhibitors is 2500 or less, the iron loss characteristics are good.
したがって、本発明の方向性電磁鋼板の評価方法は、熱間圧延工程以降の任意の製造工程における鋼板を、焼鈍分離剤を塗布した後、最高到達温度1100℃以上での二次再結晶焼鈍、およびこれに引き続く980℃以上1025℃以下での純化焼鈍を行ったものを供試材とし、表層スケールを除去後、所定量の鋼板を電解抽出して得られた溶解物についてSEM観察して得られるインヒビターが所定の個数以下であるものを良と判定し合格とすることを特徴とする。 Therefore, the evaluation method of the grain-oriented electrical steel sheet according to the present invention is a secondary recrystallization annealing at a maximum ultimate temperature of 1100 ° C. or higher after applying the annealing separator to the steel sheet in any manufacturing process after the hot rolling process. Then, the material obtained by subjecting the material to purification annealing at 980 ° C. or more and 1025 ° C. or less following the test sample was obtained by SEM observation of the melt obtained by electrolytic extraction of a predetermined amount of steel sheet after removing the surface scale. If the number of inhibitors to be obtained is less than or equal to a predetermined number, it is judged as good and passed.
ここで、所定量とは、分析の操作性を考慮して、20mm×50mmの大きさの試験片(電解抽出する面の面積が1000mm2)程度、すなわち電解抽出する面の面積が800〜8000mm2で、0.005〜0.1gである。所定量が0.005g未満であると分析精度が低下し、また、0.1gを超えると鋼板表面から深いところまで電解抽出することになるので、高度の相関関係がなくなる。さらに、所定の個数とは、例えば上述の成分組成の方向性電磁鋼板から作成した20mm×50mmの試験片において0.1gを電解抽出し、その溶解物を濾過面積が1020mm2のフィルターで濾過した後、フィルター上に存在するインヒビターについてSEMを用いて縦100μm×横100μmの領域(0.01mm2)を観察したとき、円相当径が5μm以下のものが2500個である。上述の成分組成から成分組成が多少外れる方向性電磁鋼板においては、製造開始の初期、すなわち製品板を市場に供給し始めるときに、いろいろな鉄損特性のものが発生するので、鉄損特性の良/不良の製品板を用いてインヒビターの所定の個数を決定しておくことができる。 Here, the predetermined amount is about 20 mm × 50 mm test piece (the area of the surface to be electrolytically extracted is 1000 mm 2 ) in consideration of the operability of analysis, that is, the area of the surface to be electrolytically extracted is 800 to 8000 mm. 2 , 0.005-0.1 g. When the predetermined amount is less than 0.005 g, the analysis accuracy is lowered, and when it exceeds 0.1 g, electrolytic extraction is performed from the steel sheet surface to a deep place, so that a high degree of correlation is lost. Further, the predetermined number means, for example, that 0.1 g is electrolytically extracted in a test piece of 20 mm × 50 mm prepared from the grain-oriented electrical steel sheet having the above-described component composition, and the dissolved product is filtered through a filter having a filtration area of 1020 mm 2 . Later, when an area of 100 μm in length and 100 μm in width (0.01 mm 2 ) was observed using SEM for the inhibitors present on the filter, there were 2500 circle equivalent diameters of 5 μm or less. In a grain-oriented electrical steel sheet whose component composition deviates somewhat from the above-described component composition, various iron loss characteristics are generated at the beginning of production, that is, when starting to supply product sheets to the market. A predetermined number of inhibitors can be determined using good / bad product plates.
また、本発明によれば、製品板まで製造してから鉄損特性を測定する必要がなく、途中段階の鋼板を用いて製品板の鉄損特性を判定することができる。
<本発明の製造方法>
つぎに、本発明の方向性電磁鋼板の製造方法について説明する。
Further, according to the present invention, it is not necessary to measure the iron loss characteristic after manufacturing the product plate, and the iron loss characteristic of the product plate can be determined using the steel plate in the middle stage.
<Production method of the present invention>
Below, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
本発明の方向性電磁鋼板の製造方法は、上記の評価方法を用いて、鉄損特性が良と判定され合格であるとされた鋼板を用いて最終の製造段階まで製造することにより、鉄損特性に優れた方向性電磁鋼板を得るものである。 The method for producing a grain-oriented electrical steel sheet according to the present invention uses the above-described evaluation method to produce iron loss by producing up to the final production stage using a steel sheet whose iron loss characteristics are determined to be good and passed. A grain-oriented electrical steel sheet having excellent characteristics is obtained.
本発明の製造方法の方向性電磁鋼板の成分組成は、C:0.01〜0.08mass%、Si:2.00〜8.00mass%、Mn:0.005〜1.00mass%であり、さらに用いるインヒビターの種類により、(1)Al:0.010〜0.065mass%およびN:0.005〜0.012mass%、(2)S:0.005〜0.030mass%(3)Se:0.005〜0.030mass%のうち少なくとも1種以上を含有し、残部はFeおよび不可避的不純物である。以下に、その限定理由を示す。 The component composition of the grain-oriented electrical steel sheet in the production method of the present invention is C: 0.01 to 0.08 mass%, Si: 2.00 to 8.00 mass%, Mn: 0.005 to 1.00 mass%, Further, depending on the type of inhibitor used, (1) Al: 0.010 to 0.065 mass% and N: 0.005 to 0.012 mass%, (2) S: 0.005 to 0.030 mass% (3) Se: It contains at least one of 0.005 to 0.030 mass%, and the balance is Fe and inevitable impurities. The reason for limitation will be shown below.
C:0.01〜0.08mass%
Cは、一次再結晶時の集合組織の改善のために必要な元素であり、その効果を得るためには0.01mass%以上含有させる。一方、C量が0.08mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.0050mass%以下に低減することが困難となる。よって、Cは0.01〜0.08mass%の範囲とする。
C: 0.01-0.08 mass%
C is an element necessary for improving the texture at the time of primary recrystallization, and is contained in an amount of 0.01 mass% or more in order to obtain the effect. On the other hand, when the amount of C exceeds 0.08 mass%, it becomes difficult to reduce to 0.0050 mass% or less at which no magnetic aging occurs due to decarburization annealing. Therefore, C is in the range of 0.01 to 0.08 mass%.
Si:2.00〜8.00mass%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素である。しかしながら、含有量が2.00mass%未満では、十分な鉄損低減効果が得られない。一方、8.00mass%を超えると、加工性が著しく低下して、圧延して製造することが難しくなり、また、磁束密度も低下する。よって、Siは2.00〜8.00mass%の範囲とする。
Si: 2.00 to 8.00 mass%
Si is an element effective for increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.00 mass%, a sufficient iron loss reduction effect cannot be obtained. On the other hand, if it exceeds 8.00 mass%, the workability is remarkably lowered, it becomes difficult to roll and manufacture, and the magnetic flux density is also lowered. Therefore, Si is set to a range of 2.00 to 8.00 mass%.
Mn:0.005〜1.00mass%
Mnは、熱間加工性を改善するために必要な元素である。しかしながら、含有量が0.005mass%未満では、上記効果は得られない。一方、1.00mass%を超えると、磁束密度が低下するようになる。よって、Mnは0.005〜1.00mass%の範囲とする。
Mn: 0.005 to 1.00 mass%
Mn is an element necessary for improving hot workability. However, if the content is less than 0.005 mass%, the above effect cannot be obtained. On the other hand, if it exceeds 1.00 mass%, the magnetic flux density decreases. Therefore, Mn is set to a range of 0.005 to 1.00 mass%.
また、本発明の製造方法の方向性電磁鋼板は、磁気特性の改善を目的として、上記成分組成に加えて、下記の元素をさらに含有してもよい。 Moreover, the grain-oriented electrical steel sheet of the manufacturing method of this invention may further contain the following elements in addition to the said component composition for the purpose of the improvement of a magnetic characteristic.
Cu:0.03〜3.00mass%、Ni:0.01〜1.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%のうちから選ばれる1種または2種以上
Cuは、磁気特性の向上に有用な元素である。しかし、0.03mass%未満では磁気特性向上効果が小さく、一方、3.00mass%を超えると、二次再結晶粒の発達が阻害されるようになるため、0.03〜3.00mass%の範囲とする。
Cu: 0.03-3.00 mass%, Ni: 0.01-1.50 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, P: 0.03- One or more selected from 0.50 mass%, Mo: 0.005 to 0.10 mass% Cu is an element useful for improving magnetic properties. However, if it is less than 0.03 mass%, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 3.00 mass%, the development of secondary recrystallized grains is inhibited, so 0.03 to 3.00 mass%. Range.
Niは、熱延板組織を改善して磁気特性を向上させるのに有用な元素である。しかし、0.01mass%未満では上記効果が小さく、一方、1.50mass%を超えると二次再結晶が不安定となり磁気特性が劣化する。 Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the amount is less than 0.01 mass%, the above effect is small. On the other hand, if it exceeds 1.50 mass%, the secondary recrystallization becomes unstable and the magnetic characteristics deteriorate.
Sn、Sb、PおよびMoは、磁気特性の向上に有用な元素であるが、いずれも各下限値未満では磁気特性向上効果が小さく、一方、各上限値を超えると、二次再結晶粒の発達が阻害されるようになるため、それぞれ上記の範囲で含有させる。 Sn, Sb, P and Mo are elements useful for improving the magnetic properties, but any of them is less effective in improving the magnetic properties if it is less than each lower limit value. On the other hand, if it exceeds each upper limit value, Since the development is inhibited, each is contained in the above range.
上述した成分組成のなかで、本発明の方向性電磁鋼板の製造方法では、二次再結晶を起こさせるために、以下の(1)〜(3)のうち少なくとも1種以上のインヒビターを用いる。
(1)Al:0.010〜0.065mass%およびN:0.005〜0.012mass%
(2)S:0.005〜0.030mass%
(3)Se:0.005〜0.030mass%
例えば、AlN系インヒビターを利用するときには、AlおよびNを、Al:0.010〜0.065mass%およびN:0.005〜0.012mass%の範囲で含有させることが好ましい。あるいは、MnS・MnSe系インヒビターを利用するときには、S:0.005〜0.030mass%および/またはSe:0.005〜0.030mass%の範囲で含有させることが好ましい。また、両者を併用してもよい。この範囲外では、二次再結晶を起こさせるのに必要なインヒビターを得ることができない。
Among the component compositions described above, in the method for producing a grain-oriented electrical steel sheet according to the present invention, at least one or more of the following (1) to (3) are used in order to cause secondary recrystallization.
(1) Al: 0.010-0.065 mass% and N: 0.005-0.012 mass%
(2) S: 0.005-0.030 mass%
(3) Se: 0.005 to 0.030 mass%
For example, when using an AlN-based inhibitor, it is preferable to contain Al and N in the range of Al: 0.010 to 0.065 mass% and N: 0.005 to 0.012 mass%. Or when using a MnS * MnSe type | system | group inhibitor, it is preferable to make it contain in the range of S: 0.005-0.030 mass% and / or Se: 0.005-0.030 mass%. Moreover, you may use both together. Outside this range, the inhibitor required to cause secondary recrystallization cannot be obtained.
また、ここで上記成分以外の残部は、Feおよび不可避的不純物である。 Further, the balance other than the above components is Fe and unavoidable impurities.
本発明の方向性電磁鋼板の製造方法は、上記成分組成の鋼スラブを、常法に従って、スラブ再加熱し、熱間圧延し、必要に応じて熱延板焼鈍した後、1回または中間焼鈍を挟む2回以上の冷間圧延を行い最終板厚の冷延板とする。その後、上記冷延板に、脱炭を兼ねた一次再結晶焼鈍を施し、焼鈍分離剤を塗布した後、二次再結晶と純化のための仕上焼鈍を施す。ここで、熱間圧延工程以降の任意の製造工程で採取された鋼板に対して、上述の評価を行い、合格と判定されたものについて、次工程以降最終工程まで進ませる。すなわち、不合格となったものは、その製造工程で取り除く。なお、脱炭は、上記一次再結晶焼鈍を湿潤雰囲気とすることで行うことができるが、別途行ってもよい。 The method for producing a grain-oriented electrical steel sheet according to the present invention comprises a steel slab having the above-described composition composition, slab reheating according to a conventional method, hot rolling, and hot-rolled sheet annealing as necessary, once or intermediate annealing. Cold rolling is performed twice or more with a final thickness of the cold rolled sheet. Thereafter, the cold-rolled sheet is subjected to primary recrystallization annealing also serving as decarburization, and after applying an annealing separator, secondary recrystallization and finish annealing for purification are performed. Here, the above-described evaluation is performed on the steel sheet collected in an arbitrary manufacturing process after the hot rolling process, and those determined to be passed are advanced to the subsequent process and the final process. That is, the rejected product is removed in the manufacturing process. In addition, although decarburization can be performed by making the said primary recrystallization annealing into a humid atmosphere, you may perform separately.
そこで、本発明の方向性電磁鋼板の製造方法によれば、製品板の最終製造に必要な数ヶ月の時間を要することがなく、製品板の段階で不良と判定される材料を事前に取り除くことができる。すなわち、本発明で不合格と判定されたものについて、その後の工程(後工程)に進ませないことができ、後工程の負荷が減る。このため、歩留まりが向上し、鉄損特性に優れた方向性電磁鋼板を安定してかつ安価に製造することが可能となる。 Therefore, according to the method of manufacturing a grain-oriented electrical steel sheet of the present invention, it is possible to remove in advance the material that is determined to be defective at the stage of the product plate without requiring several months of time required for the final manufacture of the product plate. Can do. That is, what is determined to be unacceptable in the present invention cannot be advanced to the subsequent process (post process), and the load of the post process is reduced. For this reason, a yield improves and it becomes possible to manufacture the grain-oriented electrical steel sheet excellent in the iron loss characteristic stably and cheaply.
表1の成分組成を有する方向性電磁鋼板について、熱間圧延工程(熱延板)後、ノルマ焼鈍(ノルマ板)後、または一次再結晶焼鈍(1H板)後の製造段階でそれぞれ一部(20mm×50mmの大きさ)採取した。熱延板およびノルマ板については、実験室で冷間圧延して最終板厚が0.27mmの冷延板とした。その後、常法に従って脱炭を兼ねた一次再結晶焼鈍し、酸洗でスケールを除去してMgOを主成分とした焼鈍分離剤を塗布した。引き続いて、最高到達温度が1100℃の二次再結晶焼鈍と850℃〜1050℃の純化焼鈍を模擬した熱処理として、最高到達温度1100℃以上で二次再結晶焼鈍を施した後、850℃〜1050℃の純化焼鈍を実施した。また、1H板については、一次再結晶焼鈍後にMgOを主成分とした焼鈍分離剤を塗布し、最高到達温度1100℃以上で二次再結晶焼鈍を実施した後、850℃〜1000℃の純化焼鈍を行った。 About the grain-oriented electrical steel sheets having the composition shown in Table 1, a part of each of the production stages after the hot rolling step (hot rolled sheet), after normal annealing (normal plate), or after primary recrystallization annealing (1H sheet) ( (Size of 20 mm × 50 mm). The hot-rolled sheet and the normal sheet were cold-rolled in a laboratory to obtain a cold-rolled sheet having a final sheet thickness of 0.27 mm. Thereafter, primary recrystallization annealing that also served as decarburization was performed according to a conventional method, the scale was removed by pickling, and an annealing separator mainly composed of MgO was applied. Subsequently, after performing secondary recrystallization annealing at a maximum ultimate temperature of 1100 ° C. or higher as a heat treatment that simulates secondary recrystallization annealing with a maximum ultimate temperature of 1100 ° C. and purification annealing at 850 ° C. to 1050 ° C., 850 ° C. to Purification annealing at 1050 ° C. was performed. In addition, for the 1H plate, after the primary recrystallization annealing, an annealing separator mainly composed of MgO is applied, and after the secondary recrystallization annealing is performed at a maximum attained temperature of 1100 ° C. or higher, purification annealing at 850 ° C. to 1000 ° C. is performed. Went.
以上の供試材について、20mm×50mmの大きさの試験片(試料)を切出し、その表面より30μm研磨した後に、新たに形成された表面から電解抽出を実施して0.1gの試料を溶解した。なお、電解抽出の基本条件は、MA系電解液(10質量%無水マレイン酸−2質量%テトラメチルアンモニウムクロライド−2質量%アセチルアセトン−メタノール)250ml中で500mAの定電流電解とした。その後、電解抽出により得られた抽出液の全量を、濾過面積が1020mm2のフィルターで濾過して乾燥し、フィルター上に残ったインヒビターについて走査型電子顕微鏡(SEM)を用いて観察した。このとき、フィルター上に均一に分散していたインヒビターのうち、100μm×100μm□の面積(領域)を観察し、その領域における円相当径が5μm以下のものを観察した。また、エプスタイン試験片を切り出して鉄損W17/50を測定した。 A test piece (sample) having a size of 20 mm × 50 mm is cut out from the above test material, polished by 30 μm from the surface, and then subjected to electrolytic extraction from the newly formed surface to dissolve a 0.1 g sample. did. The basic conditions for electrolytic extraction were constant current electrolysis of 500 mA in 250 ml of MA electrolyte (10% by mass maleic anhydride-2% by mass tetramethylammonium chloride-2% by mass acetylacetone-methanol). Thereafter, the total amount of the extract obtained by electrolytic extraction was filtered through a filter having a filtration area of 1020 mm 2 and dried, and the inhibitor remaining on the filter was observed using a scanning electron microscope (SEM). At this time, among the inhibitors uniformly dispersed on the filter, an area (region) of 100 μm × 100 μm □ was observed, and an equivalent circle diameter in the region was 5 μm or less. Moreover, the Epstein test piece was cut out and the iron loss W 17/50 was measured.
さらに、表1に示す成分組成を有する鋼スラブを常法に従って熱間圧延し、冷間圧延して最終板厚が0.27mmの冷延板とした後、常法に従って脱炭を兼ねた一次再結晶焼鈍し、MgOを主成分とした焼鈍分離剤を塗布し、その後、二次再結晶焼鈍と、均熱温度1200℃で10hr均熱保持する純化焼鈍を含む仕上焼鈍を施した方向性電磁鋼板(製品板)を7コイル準備した。斯くして得た各製品コイルの長手方向中央部かつ幅方向中央部からエプスタイン試験片を切り出し、鉄損W17/50を測定した。鉄損は0.90以下を合格とする。 Further, a steel slab having the composition shown in Table 1 is hot-rolled according to a conventional method, cold-rolled into a cold-rolled sheet having a final thickness of 0.27 mm, and then decarburized according to a conventional method. Directional electromagnetic that is recrystallized annealed, coated with an annealing separator based on MgO, and then subjected to secondary recrystallization annealing and finish annealing including soaking at a soaking temperature of 1200 ° C. for 10 hr. Seven coils of a steel plate (product plate) were prepared. The Epstein test piece was cut out from the longitudinal center and the width center of each product coil thus obtained, and the iron loss W 17/50 was measured. The iron loss is 0.90 or less.
表1に成分組成を、表2に測定結果をそれぞれ示す。 Table 1 shows the component composition, and Table 2 shows the measurement results.
表2から明らかなように、発明例はいずれも、磁気特性のばらつきがない製品安定性に優れた方向性電磁鋼板が得られることがわかる。一方、インヒビターの個数が本発明の範囲から外れている比較例8については、供試材および製品板の鉄損特性が不良である。また、比較例9〜11、17については、インヒビターの個数が本発明の範囲から外れており、供試材と製品板との鉄損特性の相関関係(供試材と製品板の鉄損W17/50の差が、絶対値で0.04W/kg以内とする。)が取れていない。これは、純化焼鈍温度が980℃以上1025℃以下を満たしていないことから、製品板の鉄損特性との相関関係が取れていないといえる。以上より、本発明の評価方法を用いることにより、製品板まで製造した後に鉄損特性を測定する必要がなく、製品板の鉄損特性の判定を行うことができる。 As is apparent from Table 2, it can be seen that all the inventive examples can obtain grain-oriented electrical steel sheets excellent in product stability with no variation in magnetic properties. On the other hand, in Comparative Example 8 in which the number of inhibitors is out of the scope of the present invention, the iron loss characteristics of the test material and the product plate are poor. In Comparative Examples 9 to 11 and 17, the number of inhibitors is out of the scope of the present invention, and the correlation between the iron loss characteristics of the test material and the product plate (the iron loss W of the test material and the product plate). the difference of 17/50 is, in absolute value is less than 0.04W / kg.) is not taken. This can be said to be because the purification annealing temperature does not satisfy 980 ° C. or more and 1025 ° C. or less, so that there is no correlation with the iron loss characteristic of the product plate. As described above, by using the evaluation method of the present invention, it is not necessary to measure the iron loss characteristic after manufacturing the product plate, and the iron loss characteristic of the product plate can be determined.
Claims (6)
前記供試材の表面から30〜60μmの領域の任意の位置より開始し、前記供試材の所定量を溶解して終える電解抽出を行って、得られる溶解物に含まれるインヒビターが所定の個数以下であるものを合格とすることを特徴とする方向性電磁鋼板の評価方法。 An annealing separator was applied to the steel sheet in any manufacturing process after the hot rolling process, followed by secondary recrystallization annealing at a maximum attained temperature of 1100 ° C or higher and purification annealing at 980 ° C or higher and 1025 ° C or lower. Using a sample as a test material,
Starting from an arbitrary position in the region of 30 to 60 μm from the surface of the specimen, electrolytic extraction is performed after dissolving a predetermined amount of the specimen, and a predetermined number of inhibitors are contained in the obtained melt. An evaluation method for a grain-oriented electrical steel sheet, wherein the following are accepted.
前記供試材の表面から30〜60μmの領域の任意の位置より開始し、前記供試材の所定量を溶解して終える電解抽出を行って、得られる溶解物に含まれるインヒビターが所定の個数以下であるものを合格とすることを特徴とする方向性電磁鋼板の評価方法。 Tested by applying an annealing separator to the steel sheet in any manufacturing process after the hot rolling process, followed by secondary recrystallization annealing at a maximum temperature of 1100 ° C or higher and purification annealing at 1000 ° C. Material,
Starting from an arbitrary position in the region of 30 to 60 μm from the surface of the specimen, electrolytic extraction is performed after dissolving a predetermined amount of the specimen, and a predetermined number of inhibitors are contained in the obtained melt. An evaluation method for a grain-oriented electrical steel sheet, wherein the following are accepted.
(1)Al:0.010〜0.065mass%およびN:0.005〜0.012mass%
(2)S:0.005〜0.030mass%
(3)Se:0.005〜0.030mass% The sample material contains C: 0.01 to 0.08 mass%, Si: 2.00 to 8.00 mass%, Mn: 0.005 to 1.00 mass%, and the following ( The method for evaluating a grain-oriented electrical steel sheet according to claim 1 or 2, wherein any one or more of 1) to (3) are contained, and the balance is Fe and inevitable impurities.
(1) Al: 0.010-0.065 mass% and N: 0.005-0.012 mass%
(2) S: 0.005-0.030 mass%
(3) Se: 0.005 to 0.030 mass%
ただし、前記インヒビターは、濾過面積が1020mm2のフィルターを用いて前記溶解物を濾過した後、前記フィルター上の0.01mm2の範囲に観察されるインヒビターである。 In magnitude 1000 mm 2 of the surface of electrowinning of the test material, the predetermined amount is 0.1 g, claim 1-4, wherein the number of said inhibitor is 2500 or less 1 Evaluation method of grain-oriented electrical steel sheet according to item.
However, the inhibitor is an inhibitor observed in a range of 0.01 mm 2 on the filter after filtering the lysate using a filter having a filtration area of 1020 mm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014131989A JP5958501B2 (en) | 2013-08-07 | 2014-06-27 | Method for evaluating grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013163761 | 2013-08-07 | ||
JP2013163761 | 2013-08-07 | ||
JP2014131989A JP5958501B2 (en) | 2013-08-07 | 2014-06-27 | Method for evaluating grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015052589A JP2015052589A (en) | 2015-03-19 |
JP5958501B2 true JP5958501B2 (en) | 2016-08-02 |
Family
ID=52701703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014131989A Expired - Fee Related JP5958501B2 (en) | 2013-08-07 | 2014-06-27 | Method for evaluating grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5958501B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6610767B2 (en) | 2016-02-18 | 2019-11-27 | 日本製鉄株式会社 | Electrolytic etching apparatus and method for extracting metal compound particles |
JP6690699B2 (en) | 2016-02-18 | 2020-04-28 | 日本製鉄株式会社 | Method for extracting metal compound particles, method for analyzing metal compound particles, and electrolytic solution used therein |
KR102044321B1 (en) * | 2017-12-26 | 2019-11-13 | 주식회사 포스코 | Grain oriented electrical steel sheet method for manufacturing the same |
KR102325004B1 (en) * | 2019-12-20 | 2021-11-10 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method of the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2639226B2 (en) * | 1991-03-15 | 1997-08-06 | 住友金属工業株式会社 | Grain-oriented electrical steel sheet and its manufacturing method |
JPH11158555A (en) * | 1997-11-26 | 1999-06-15 | Sumitomo Metal Ind Ltd | Production of separation agent for annealing and grain oriented silicon steel sheet |
JPH11158557A (en) * | 1997-11-28 | 1999-06-15 | Nippon Steel Corp | Method for purification annealing of grain oriented silicon steel sheet |
JP5712626B2 (en) * | 2011-01-18 | 2015-05-07 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5982883B2 (en) * | 2011-04-11 | 2016-08-31 | Jfeスチール株式会社 | Evaluation method of grain-oriented electrical steel sheet |
-
2014
- 2014-06-27 JP JP2014131989A patent/JP5958501B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015052589A (en) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10704115B2 (en) | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet | |
KR102071321B1 (en) | Grain-oriented electrical steel sheet and method for producing the same | |
JP6485554B2 (en) | Directional electrical steel sheet and method for producing the same, and method for producing decarburized steel sheet for directionally oriented electrical steel sheet | |
JP5605518B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
KR101620763B1 (en) | Grain-oriented electrical steel sheet and method of producing the same | |
JP4746716B2 (en) | Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound iron core, and wound iron core | |
JP5338750B2 (en) | Method for producing non-oriented electrical steel sheet | |
KR102260531B1 (en) | Hot-rolled steel sheet for grain-oriented electrical steel sheet and method of producing same, and method of producing grain-oriented electrical steel sheet | |
JP5958501B2 (en) | Method for evaluating grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
JP7462737B2 (en) | 600MPa-class non-oriented electrical steel sheet and its manufacturing method | |
KR101607044B1 (en) | Method for producing electrical steel sheet | |
JP2017222898A (en) | Production method of grain oriented magnetic steel sheet | |
KR20190142357A (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP2014529008A (en) | Non-oriented electrical steel strip or sheet, parts produced therefrom and method for producing non-oriented electrical steel strip or sheet | |
KR20160138253A (en) | Method for producing oriented electromagnetic steel sheet | |
JP5287641B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6146582B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP5491968B2 (en) | Steel bar manufacturing method | |
JP2019035121A (en) | Method for manufacturing directional electromagnetic steel plate | |
JP2009209428A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density | |
JP4646872B2 (en) | Soft magnetic steel material, soft magnetic component and method for manufacturing the same | |
JP4701669B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP2012102344A (en) | Grain-oriented electromagnetic steel sheet | |
JP2019035119A (en) | Method for manufacturing directional electromagnetic steel plate | |
JP5045176B2 (en) | Hot-rolled steel sheet excellent in in-plane anisotropy of r value and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5958501 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |