JPH11158555A - Production of separation agent for annealing and grain oriented silicon steel sheet - Google Patents

Production of separation agent for annealing and grain oriented silicon steel sheet

Info

Publication number
JPH11158555A
JPH11158555A JP9324087A JP32408797A JPH11158555A JP H11158555 A JPH11158555 A JP H11158555A JP 9324087 A JP9324087 A JP 9324087A JP 32408797 A JP32408797 A JP 32408797A JP H11158555 A JPH11158555 A JP H11158555A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
purification
weight
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9324087A
Other languages
Japanese (ja)
Inventor
Katsu Takahashi
克 高橋
Tomoki Fukagawa
智機 深川
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9324087A priority Critical patent/JPH11158555A/en
Publication of JPH11158555A publication Critical patent/JPH11158555A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a separation agent for annealing capable of efficiently applying finish annealing to a high-Mn grain oriented silicon steel sheet and also to provide a method of production of a high-Mn grain oriented silicon steel sheet using the above separation agent for annealing. SOLUTION: The separation agent for annealing is composed of a mixed composition containing alumina powder of 0.5-10 μm average grain size and a V compound having V in an amount equivalent to 0.1-10 pts.wt. based on 100 pts.wt. of the alumina powder. The high-Mn grain oriented silicon steel sheet can be produced by subjecting a steel stock, having a composition which consists of, by weight, <=0.01% C, 1.5-4% Si, 1-4% Mn, 0.003-0.03% acid soluble Al, 0.001-0.01% N, and the balance Fe with inevitable impurities and in which the content of S as an inevitable impurity is regulated to <=0.015%, to hot rolling and to cold rolling, annealing the resultant steel sheet continuously in a noncarburizing atmosphere, applying the above separation agent for annealing to the steel sheet so that coating weight after drying becomes (0.5 to 10) g/m<2> , drying it, applying secondary recrystallization annealing at 825-925 deg.C, and then subjecting the steel sheet to purification annealing at 900-1050 deg.C for a time not shorter than the time determined according to purification annealing temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器や発電機の鉄
芯材料や、磁気シールド材などに広く用いられる一方向
性電磁鋼板を製造する際の仕上焼鈍時に用いられる焼鈍
分離剤、およびそれを用いる一方向性電磁鋼板の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an annealing separator used in finish annealing when manufacturing a grain-oriented electrical steel sheet widely used as an iron core material of a transformer or a generator or a magnetic shielding material, and the like. The present invention relates to a method for producing a grain-oriented electrical steel sheet using the same.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、ゴス方位と称され
る{110}<001>方位の結晶配向を持ち、圧延方
向に優れた励磁特性と鉄損特性を有する軟磁性材料であ
る。
2. Description of the Related Art A grain-oriented electrical steel sheet is a soft magnetic material having a {110} <001> crystal orientation called Goss orientation and having excellent excitation and iron loss characteristics in the rolling direction.

【0003】一方向性電磁鋼板の製造方法としては、3
重量%程度(以下、鋼の化学組成を表す%は重量%を意
味する)のSiと、少量のMnS、MnSeなどの二次
再結晶インヒビターとを含有する珪素鋼素材を、130
0℃以上に加熱して熱間圧延し、焼鈍と1回または2回
の冷間圧延により最終製品の厚さに冷間圧延し、脱炭焼
鈍を兼ねた一次再結晶焼鈍を施して表面にSi酸化物層
を形成させ、焼鈍分離剤を塗布した後、1100℃〜1
200℃で仕上焼鈍する方法が知られている。仕上焼鈍
後は、焼鈍分離剤を除去し、絶縁コーティングを塗布
し、コーティング焼付を兼ねた平坦化焼鈍が施される。
[0003] As a method for producing a grain-oriented electrical steel sheet, there are three methods.
A silicon steel material containing about wt% (hereinafter, “% representing the chemical composition of steel means wt%”) and a small amount of a secondary recrystallization inhibitor such as MnS or MnSe was prepared by using 130%
Heating to 0 ° C or higher, hot rolling, annealing and cold rolling once or twice to the final product thickness, primary recrystallization annealing combined with decarburizing annealing After forming an Si oxide layer and applying an annealing separator, 1100 ° C. to 1
A method of finish annealing at 200 ° C. is known. After the finish annealing, the annealing separator is removed, an insulating coating is applied, and flattening annealing that also serves as coating baking is performed.

【0004】この方法での焼鈍分離剤には、MgOを主
成分とするスラリーが用いられる。仕上焼鈍前の鋼板表
面に焼鈍分離剤を塗布することで鋼板の焼付きを防止
し、二次再結晶終了後には不要となる鋼中のインヒビタ
ー析出物を除去(純化)する。さらに、Si酸化物とM
gOを反応させてフォルステライト皮膜(Mg2Si
4)を形成させて絶縁性やシーリング機能を有する下
地グラス皮膜を生成させる作用をする。MgOを主成分
としたものはスラリーの調製が容易であり、ロールコー
タ方式での連続塗装に適する。
A slurry containing MgO as a main component is used as an annealing separator in this method. By applying an annealing separating agent to the surface of the steel sheet before the finish annealing, the steel sheet is prevented from seizing, and after the secondary recrystallization, unnecessary inhibitor precipitates in the steel are removed (purified). Furthermore, Si oxide and M
gO is reacted to form a forsterite film (Mg 2 Si
O 4 ) acts to form a base glass film having an insulating property and a sealing function. Those containing MgO as a main component facilitate preparation of a slurry and are suitable for continuous coating by a roll coater method.

【0005】しかし、上記の製造方法では、熱間圧延前
の1300℃程度の超高温加熱、冷間圧延後の脱炭焼
鈍、さらには1200℃での仕上焼鈍など、超高温での
熱処理や特殊な焼鈍を必要とする。このため、その製造
コストを低減するのは容易でない。
[0005] However, in the above-mentioned manufacturing method, heat treatment at an extremely high temperature such as heating at an ultra-high temperature of about 1300 ° C. before hot rolling, decarburizing annealing after cold rolling, and finish annealing at 1200 ° C. Requires special annealing. Therefore, it is not easy to reduce the manufacturing cost.

【0006】特開平1−119644号公報には、低コ
ストの一方向性電磁鋼板の製造方法が開示されている。
それは、Si:0.5〜2.5%、Mn:1〜2%と微
量のAl、Nを含有する極低炭素鋼を用いる方法であ
り、仕上焼鈍は800〜950℃で施される。この方法
によれば、熱間圧延前の超高温加熱および冷間圧延後の
脱炭焼鈍が不要となり、仕上焼鈍も従来の方法に比較す
るとはるかに低い温度でよい。このため、一方向性電磁
鋼板の製造コストを大幅に低下させることができる(こ
の製造方法により得られる鋼板を、以下では単に「高M
n系一方向性電磁鋼板」と記す)。
[0006] Japanese Patent Application Laid-Open No. 1-119644 discloses a method of manufacturing a low-cost unidirectional magnetic steel sheet.
It is a method using an ultra-low carbon steel containing 0.5 to 2.5% of Si and 1 to 2% of Mn and trace amounts of Al and N, and finish annealing is performed at 800 to 950 ° C. According to this method, ultra-high-temperature heating before hot rolling and decarburizing annealing after cold rolling become unnecessary, and the finish annealing can be performed at a much lower temperature than the conventional method. Therefore, the manufacturing cost of the grain-oriented electrical steel sheet can be significantly reduced (the steel sheet obtained by this manufacturing method is hereinafter simply referred to as “high M steel sheet”).
n-type unidirectional magnetic steel sheet ").

【0007】高Mn系一方向性電磁鋼板の製造方法で
は、AlN等の窒化物をインヒビターとして用いる。こ
の窒化物は、製鋼時に鋼中に含有させたNに加えて、仕
上焼鈍初期の二次再結晶時に、焼鈍雰囲気から鋼中に吸
収させたNも合わせて形成させる。また、仕上焼鈍後期
の純化焼鈍時には、窒化物を形成する鋼中の窒素を雰囲
気中に放出し、脱窒させて鋼を純化する。このため、仕
上焼鈍時の鋼板間に適度の空隙を確保することが重要と
なり、焼鈍分離剤の選択が重要な役割を果たす。
In a method for producing a high Mn-based grain-oriented electrical steel sheet, a nitride such as AlN is used as an inhibitor. In addition to the N contained in the steel during steel making, this nitride also forms the N absorbed in the steel from the annealing atmosphere during the secondary recrystallization at the initial stage of the finish annealing. Further, during the purification annealing in the latter half of the finish annealing, nitrogen in the steel forming nitride is released into the atmosphere and denitrified to purify the steel. For this reason, it is important to secure an appropriate gap between the steel sheets during the finish annealing, and the selection of the annealing separator plays an important role.

【0008】この方法における焼鈍分離剤としては、鋼
板間に適度の空間が得られ、かつ、吸窒や脱窒反応を阻
害するおそれがある鋼板表面の酸化物やグラス皮膜を形
成するような化学反応が生じないものが望ましい。
[0008] The annealing separator used in this method is a chemical which forms an oxide or a glass film on the surface of the steel sheet, which can provide an appropriate space between the steel sheets and which may inhibit the nitrogen absorption and denitrification reactions. Those which do not cause a reaction are desirable.

【0009】特開平4−259329号公報には、焼鈍
分離剤として、80%以上が粒子径3〜100μmの範
囲内であるアルミナ粉末を鋼板表面に静電塗布して焼鈍
分離剤として仕上焼鈍する高Mn系一方向性電磁鋼板の
製造方法が開示されている。ここでは、仕上焼鈍時のコ
イル間隙での雰囲気ガスの流通を確保するためにアルミ
ナの粒径を特定し、静電塗布することで鋼板間への水分
の持ち込みを防止して表面酸化を防いでいる。しかし、
静電塗布時にアルミナ粉末が外部に飛散しやすく、作業
性が好ましくない。
Japanese Patent Application Laid-Open No. 4-259329 discloses, as an annealing separating agent, an alumina powder having a particle diameter of 80% or more in the range of 3 to 100 μm is electrostatically applied to the surface of a steel sheet and finish annealing is performed as the annealing separating agent. A method for producing a high Mn-based grain-oriented electrical steel sheet is disclosed. Here, in order to secure the flow of the atmosphere gas in the coil gap at the time of finish annealing, the particle size of alumina is specified, and electrostatic coating is applied to prevent moisture from being introduced between the steel sheets and prevent surface oxidation. I have. But,
Alumina powder is easily scattered to the outside during electrostatic coating, and workability is not preferable.

【0010】特開平7−62427号公報には、平均粒
径が1〜40μmのアルミナ粉末に水溶性高分子粘結剤
を0.1〜2重量%添加して付着性を向上させたスラリ
ー状の焼鈍分離剤が開示されている。この方法の目的
は、グラス皮膜を生成させないで焼鈍することによる打
ち抜き性の改善、あるいは、鋼板表面を鏡面状に平滑に
することで、磁気特性を改善することにある。しかしこ
の方法においては、脱炭焼鈍を必要とし、脱炭焼鈍時に
生じる酸化皮膜を除去するための酸洗も要するので経済
性に欠ける。
JP-A-7-62427 discloses a slurry prepared by adding 0.1 to 2% by weight of a water-soluble polymer binder to alumina powder having an average particle size of 1 to 40 μm to improve the adhesion. Are disclosed. The purpose of this method is to improve the punching properties by annealing without forming a glass film, or to improve the magnetic properties by smoothing the steel sheet surface to a mirror surface. However, in this method, decarburization annealing is required, and pickling for removing an oxide film generated at the time of decarburization annealing is also required.

【0011】特公昭58−44152号公報には、アル
ミナ粉末に含水珪酸塩とSr、Ba、Ca等のアルカリ
土類金属を含む化合物を添加した焼鈍分離剤を用いる、
グラス皮膜を有しない打ち抜き性に優れた一方向性電磁
鋼板の製造方法が開示されている。この方法によると、
グラス皮膜を生成させず、かつ不要となったインヒビタ
ーはアルカリ土類金属化合物の存在により効率的に除去
することができる。
Japanese Patent Publication No. Sho 58-44152 discloses an annealing separator using an alumina powder to which a hydrated silicate and a compound containing an alkaline earth metal such as Sr, Ba and Ca are added.
A method for producing a grain-oriented electrical steel sheet having no glass film and excellent in punching properties is disclosed. According to this method,
Inhibitors that do not form a glass film and are no longer needed can be efficiently removed by the presence of the alkaline earth metal compound.

【0012】しかし、この方法においては脱炭焼鈍時
に、鋼板表面酸素分として0.2〜1.0g/m2 含有
するだけの酸化皮膜(厚さが0.6〜3μmの酸化皮膜
に相当する)を付与する必要があり、脱炭焼鈍工程に負
荷がかかるので好ましくない。さらに、この焼鈍分離剤
で除去できる析出物は、MnS、MnSeに限られてお
り、本発明者らの提案した高Mn系一方向性電磁鋼板の
製造に使用されるインヒビターである、AlNおよび
(Al、Si、Mn)Nに対しては何らの考慮も払われ
ていない。
However, in this method, during decarburization annealing, an oxide film containing only 0.2 to 1.0 g / m 2 as oxygen content on the steel sheet surface (corresponding to an oxide film having a thickness of 0.6 to 3 μm). ) Is required, which is not preferable because a load is applied to the decarburizing annealing step. Further, the precipitates that can be removed by the annealing separator are limited to MnS and MnSe, and are AlN and (, which are inhibitors used in the production of high Mn-oriented unidirectional electrical steel sheets proposed by the present inventors. No consideration is given to Al, Si, Mn) N.

【0013】特開平3−2380号公報には、アルミ
ナ、MgOおよびV化合物の混合物からなる焼鈍分離剤
が開示されている。Vは鋼中のS、Seの除去を促進す
る目的で添加されている。この方法では、SやSeを除
去して鋼を純化する能力が高く、かつ、鋼板表面が平滑
にできる。しかし、焼鈍分離剤中にMgOを含有してお
り、これが表面酸化物と反応してグラス質の皮膜が形成
される。このため、高Mn系の電磁鋼板の製造時には窒
素雰囲気からの吸窒によるインヒビター形成が起こりに
くくなるので好ましくない。
JP-A-3-2380 discloses an annealing separator comprising a mixture of alumina, MgO and a V compound. V is added for the purpose of promoting the removal of S and Se in the steel. According to this method, the ability to remove S and Se to purify the steel is high, and the surface of the steel sheet can be made smooth. However, the annealing separator contains MgO, which reacts with the surface oxide to form a glassy film. For this reason, when manufacturing a high Mn-based magnetic steel sheet, the formation of an inhibitor due to nitrogen absorption from a nitrogen atmosphere hardly occurs, which is not preferable.

【0014】[0014]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、高Mn系一方向性電磁鋼板の仕上焼鈍を効
率的に施すことができる焼鈍分離剤、およびそれを用い
た、高Mn系一方向性電磁鋼板の製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an annealing separator capable of efficiently performing finish annealing of a high Mn-based grain-oriented electrical steel sheet, and a high Mn using the same. An object of the present invention is to provide a method for producing a system-oriented electrical steel sheet.

【0015】[0015]

【課題を解決するための手段】本発明の要旨は下記
(1)に記載の焼鈍分離剤および(2)に記載の、一方
向性電磁鋼板の製造方法にある。
The gist of the present invention lies in an annealing separator described in (1) below and a method for producing a grain-oriented electrical steel sheet described in (2).

【0016】(1)一方向性電磁鋼板の仕上焼鈍に用い
る焼鈍分離剤であって、平均粒径が0.5〜10μmの
アルミナ粉末と、アルミナ粉末100重量部に対して、
V:0.1〜10重量部に相当する量のV化合物との混
合組成物で実質的に構成されている焼鈍分離剤。
(1) An annealing separator used for finish annealing of a grain-oriented electrical steel sheet, comprising alumina powder having an average particle size of 0.5 to 10 μm and 100 parts by weight of alumina powder.
V: An annealing separator substantially consisting of a mixed composition with a V compound in an amount corresponding to 0.1 to 10 parts by weight.

【0017】(2)化学組成が重量%で、C:0.01
%以下、Si:1.5〜4%、Mn:1〜4%、酸可溶
性Al:0.003〜0.03%、N:0.001〜
0.01%、残部:Feおよび不可避的不純物よりな
り、不可避的不純物としてのSが0.015%以下であ
る鋼素材を熱間圧延し、一回または中間焼鈍を含む二回
の冷間圧延を施した後、非脱炭性雰囲気中で連続焼鈍す
る一次再結晶焼鈍を施し、825℃〜925℃での二次
再結晶焼鈍と900℃〜1050℃での純化焼鈍からな
る仕上焼鈍を施す一方向性電磁鋼板の製造方法におい
て、上記(1)に記載の焼鈍分離剤をスラリーとし、一
次再結晶焼鈍後の鋼板に、乾燥後の塗布量が0.5〜1
0g/m2 の範囲内となるように塗布して乾燥させ、下
記の式で求められる時間を純化焼鈍時間の下限とする
純化焼鈍を施す一方向性電磁鋼板の製造方法。
(2) The chemical composition is% by weight and C: 0.01
% Or less, Si: 1.5 to 4%, Mn: 1 to 4%, acid-soluble Al: 0.003 to 0.03%, N: 0.001 to
0.01%, balance: Fe and unavoidable impurities, hot rolled a steel material having S as an unavoidable impurity of 0.015% or less, and cold-rolled once or twice including intermediate annealing , A primary recrystallization annealing for continuous annealing in a non-decarburizing atmosphere is performed, and a finish annealing including a secondary recrystallization annealing at 825 ° C to 925 ° C and a purification annealing at 900 ° C to 1050 ° C is performed. In the method for producing a grain-oriented electrical steel sheet, the annealing separator according to the above (1) is used as a slurry, and the coated amount after drying on the steel sheet after primary recrystallization annealing is 0.5 to 1
A method for producing a grain-oriented electrical steel sheet which is applied so as to be within the range of 0 g / m 2 , dried and subjected to purification annealing in which the time determined by the following formula is the lower limit of the purification annealing time.

【0018】tmin.=(1120−T)/10・・・ 但し、tmin.:純化焼鈍時間の下限(時間)、 T:純化焼鈍温度(℃)。T min. = (1120-T) / 10 where t min. Is the lower limit (time) of the purification annealing time, and T is the purification annealing temperature (° C.).

【0019】本発明者らは、純化焼鈍時の窒化物インヒ
ビターの除去に対する焼鈍分離剤の影響に関して以下に
記す実験をおこなった。その結果、平均粒径が0.5〜
10μmのアルミナ粉末とV化合物との混合物からなる
焼鈍分離剤が、インヒビターであるAlNおよび(A
l、Si、Mn)Nの純化促進に効果を示すことを知見
して本発明を完成させた。
The present inventors have conducted the following experiments regarding the effect of the annealing separator on the removal of nitride inhibitors during purification annealing. As a result, the average particle size is 0.5 to
Annealing separating agent consisting of a mixture of 10 μm alumina powder and V compound is used for the inhibitor AlN and (A
The inventors have found that the present invention is effective in promoting the purification of (1, Si, Mn) N, and completed the present invention.

【0020】本発明者等は、C:0.003%、Si:
2.35%、Mn:1.53%、酸可溶性Al:0.0
10%、N:0.0042%、残部:Fe及び不可避的
不純物からなる化学組成の鋼を熱間圧延し、熱延板焼鈍
後酸洗し、中間焼鈍を挟む2回の冷間圧延により0.3
5mm厚の冷延板とし、連続焼鈍を施して一次再結晶さ
せた。平均粒径が2μmであるα−アルミナ粉末に、種
々の割合でV25を配合した混合物からなる水スラリー
を調製し、これを一次再結晶させた鋼板に塗布して乾燥
させた後仕上焼鈍し、仕上焼鈍終了後、焼鈍分離剤を除
去して絶縁コーティングと平坦化焼鈍を施し、得られた
鋼板のN含有量と鉄損(W17/50 )を測定した。
The present inventors have found that C: 0.003%, Si:
2.35%, Mn: 1.53%, acid-soluble Al: 0.0
10%, N: 0.0042%, balance: Steel having a chemical composition consisting of Fe and unavoidable impurities is hot-rolled, hot-rolled sheet is annealed, pickled, and cold-rolled twice by intermediate annealing. .3
A 5 mm-thick cold-rolled sheet was subjected to continuous annealing for primary recrystallization. A water slurry composed of a mixture of α-alumina powder having an average particle size of 2 μm and V 2 O 5 mixed at various ratios is prepared, applied to a steel sheet which is primarily recrystallized, dried, and finished. After annealing and finish annealing, the annealing separator was removed, insulation coating and flattening annealing were performed, and the N content and iron loss ( W17 / 50 ) of the obtained steel sheet were measured.

【0021】図1は、上記の実験で得られた結果を示す
図であり、縦軸は、製品のN含有量と鉄損、横軸は、焼
鈍分離剤中の、アルミナ100重量部に対するV化合物
中のVの重量部を表す。この結果からわかるように、ア
ルミナ粉末に、0.1重量部以上のVを含有させた焼鈍
分離剤を用いると、製品のN含有量を著しく低減でき
る。また、鋼板の鉄損は、Vを0.1〜10重量部含有
する場合に特に良好になる。焼鈍分離剤中のVが10重
量部を超えた領域で鉄損が悪くなるのは、鋼板中にVが
拡散浸入したことが原因である。
FIG. 1 is a graph showing the results obtained in the above experiment, wherein the vertical axis represents the N content and iron loss of the product, and the horizontal axis represents the V content relative to 100 parts by weight of alumina in the annealing separator. Represents parts by weight of V in the compound. As can be seen from these results, the use of an annealing separator containing 0.1 part by weight or more of V in alumina powder can significantly reduce the N content of the product. Further, the iron loss of the steel sheet becomes particularly good when V is contained in an amount of 0.1 to 10 parts by weight. The iron loss deteriorates in the region where V in the annealing separator exceeds 10 parts by weight because V diffuses and enters the steel sheet.

【0022】本発明者等は、さらに、以下に記す実験結
果から、上記の焼鈍分離剤を用いると仕上焼鈍での純化
焼鈍時間が大幅に短縮できることを知見した。アルミナ
粉末100重量部に対し1重量部に相当するVを含む量
のV25を配合した混合物からなる水スラリーを調製
し、上記の一次再結晶させた鋼板に塗布し、乾燥させた
後、窒素−水素混合雰囲気ガス中で二次再結晶焼鈍を施
し、さらに、水素ガス100%の雰囲気中で焼鈍温度と
焼鈍時間を種々変更して純化焼鈍を施した。その後、焼
鈍分離剤を除去し、絶縁コーティングと平坦化焼鈍をお
こなって得られた鋼板の鉄損(W17/50 )を測定した。
The present inventors have further found from the experimental results described below that the use of the above-mentioned annealing separator can significantly reduce the time of purification annealing in finish annealing. After preparing a water slurry composed of a mixture of V 2 O 5 containing an amount of V corresponding to 1 part by weight with respect to 100 parts by weight of the alumina powder, applying the slurry to the primary recrystallized steel plate and drying the slurry. Then, secondary recrystallization annealing was performed in a nitrogen-hydrogen mixed atmosphere gas, and further, purification annealing was performed in an atmosphere of 100% hydrogen gas by changing the annealing temperature and annealing time variously. Thereafter, the annealing separator was removed, and the iron loss (W 17/50 ) of the steel sheet obtained by performing the insulating coating and the flattening annealing was measured.

【0023】図2に、得られた鉄損を下記の区分に整理
して示した。
FIG. 2 shows the obtained iron losses arranged in the following categories.

【0024】 ◎:1.15〜1.20W/kg ○:1.21〜1.30W/kg ×:1.31〜1.40W/kg △:1.41〜1.50W/kg ●:1.51W/kg以上 図2に示されるように、900〜1050℃の温度範囲
で一定の時間以上純化焼鈍したばあいに良好な鉄損がえ
られた。純化焼鈍を1100℃で施すと、鉄損レベルは
逆に悪くなった。良好な鉄損レベルと考えているW
17/50 が1.30W/kg以下を実現するのに必要な焼
鈍時間は、焼鈍温度T(℃)に応じて、焼鈍時間t(時
間)を(1120−T)/10以上にした場合に得られ
ることが判明した。また、(1270−T)/10を超
える長時間の純化焼鈍は鉄損改善効果が少ないことを知
見した。
A: 1.15 to 1.20 W / kg O: 1.21 to 1.30 W / kg x: 1.31 to 1.40 W / kg Δ: 1.41 to 1.50 W / kg ●: 1 As shown in FIG. 2, good iron loss was obtained when purification annealing was performed in a temperature range of 900 to 1050 ° C. for a certain period of time or more. When the purification annealing was performed at 1100 ° C., the iron loss level worsened. W considered good iron loss level
The annealing time required to realize 17/50 of 1.30 W / kg or less is based on the case where the annealing time t (time) is set to (1120-T) / 10 or more according to the annealing temperature T (° C.). It turned out to be obtained. In addition, it was found that the long-time purification annealing exceeding (1270-T) / 10 has little effect of improving iron loss.

【0025】[0025]

【発明の実施の形態】以下に本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0026】(a)焼鈍分離剤 アルミナ粉末:アルミナ粉末は鋼板の焼き付きを防止す
る役目と、吸窒及び脱インヒビターのための空隙をコイ
ル層間に維持する役割がある。
(A) Annealing Separating Agent Alumina powder: Alumina powder has a role of preventing seizure of a steel sheet and a role of maintaining a gap for a nitrogen absorption and desorption inhibitor between coil layers.

【0027】アルミナには、MgO等とは異なり、高温
で加熱される珪素含有鋼板間に介在させる焼鈍分離剤と
して用いても鋼と反応することが無く、吸窒や脱窒を阻
害するような皮膜を形成するおそれがない。これらのア
ルミナ粉末は、水に分散されたスラリーとして鋼板に塗
布するのがよい。アルミナは、焼鈍時の構造変化が生じ
ないα−Al23を用いるのが適当であるが、β−Al
23またはγ−Al23でも構わない。
Alumina, unlike MgO or the like, does not react with steel even when used as an annealing separator interposed between silicon-containing steel sheets heated at a high temperature, and does not inhibit nitrogen absorption and denitrification. There is no danger of forming a film. These alumina powders are preferably applied to a steel sheet as a slurry dispersed in water. As alumina, it is appropriate to use α-Al 2 O 3 which does not cause structural change during annealing.
2 O 3 or γ-Al 2 O 3 may be used.

【0028】その粒径は、平均粒径で0.5μm以上1
0μm以下のものを用いることが好ましい。平均粒径が
0.5μm未満であると、コイル層間に維持される空隙
が小さくなり、吸窒および脱インヒビター反応が遅くな
るために磁気特性が向上しない。平均粒径が10μmを
超える場合には、スラリー化の際にアルミナ粉末が沈降
し易くなり、安定して均一に塗布することが困難にな
る。また、鋼板表面にアルミナ粉末が押し込まれ、鋼板
表面の形状が損なわれて磁気特性が損なわれるおそれが
増す。好ましくは、平均粒径が1〜5μmのアルミナ粉
末を使用するのがよい。アルミナの平均粒径は、レーザ
ー回折法により測定される。
The average particle size is 0.5 μm or more and 1
It is preferable to use one having a size of 0 μm or less. When the average particle size is less than 0.5 μm, the gap maintained between the coil layers becomes small, and the nitrogen absorption and deinhibition reactions are slowed, so that the magnetic properties are not improved. If the average particle size exceeds 10 μm, the alumina powder tends to settle during slurrying, making it difficult to apply the slurry uniformly and stably. In addition, alumina powder is pushed into the surface of the steel sheet, and the shape of the surface of the steel sheet is damaged, and the magnetic properties are likely to be damaged. Preferably, alumina powder having an average particle size of 1 to 5 μm is used. The average particle size of alumina is measured by a laser diffraction method.

【0029】V化合物:インヒビターである窒化物の純
化促進剤として添加される。Vは、金属Vとして含有さ
せてもよいが、作業性、安全性、経済性等の面から、V
酸化物やV硫化物の形態で含有させるのが好ましい。V
酸化物やV硫化物の種類は、V25、V25・nH
2O、V23、VO2、NH4VO3、V23、VOSO4
等を用いることができる。
V compound: It is added as a purifier for purifying the nitride as an inhibitor. V may be contained as metal V, but from the viewpoint of workability, safety, economy, etc., V
It is preferable to contain it in the form of an oxide or V sulfide. V
The types of oxides and V sulfides are V 2 O 5 , V 2 O 5 .nH
2 O, V 2 O 3 , VO 2 , NH 4 VO 3 , V 2 S 3 , VOSO 4
Etc. can be used.

【0030】V化合物の含有量は、アルミナ粉末:10
0重量部に対し、Vの含有量が0.1重量部以上、好ま
しくは1重量部以上となるのに必要な量である。その上
限は、アルミナ粉末:100重量部に対し、Vの含有量
が10重量部以下、好ましくは5重量部以下となる量で
ある。焼鈍分離剤中のVの含有量が上記の下限に満たな
い場合には、純化促進効果が発揮されず、上記の上限を
超える場合には、鋼板中にVが浸入して磁気特性が劣化
する場合があるので好ましくない。V化合物を含有させ
る際の形態は、平均粒径がアルミナと同じ0.5〜10
μmの範囲にある粉末として添加するのがよい。
The content of the V compound is as follows: alumina powder: 10
It is an amount necessary for the content of V to be 0.1 part by weight or more, preferably 1 part by weight or more based on 0 part by weight. The upper limit is an amount at which the V content is 10 parts by weight or less, preferably 5 parts by weight or less based on 100 parts by weight of the alumina powder. When the content of V in the annealing separator is less than the above lower limit, the effect of promoting purification is not exhibited, and when the content exceeds the above upper limit, V penetrates into the steel sheet to deteriorate magnetic properties. It is not preferable because it may occur. When the V compound is contained, the average particle size is 0.5 to 10 which is the same as that of alumina.
It is advisable to add as a powder in the range of μm.

【0031】本発明の焼鈍分離剤は、実質的にアルミナ
粉末とV化合物との混合組成物で構成されるものであ
る。アルミナ粉末のスラリー中での分散性を高めるため
に、鋼板に浸炭が起こらない程度に市販のポリアクリル
酸等の分散補助剤を添加することは、本発明目的の効果
を減じるものではないので、添加しても構わない。上記
の「実質的に」というのは、このような添加物、あるい
は、不可避的に混入する不純物があってもよいことを意
味する。分散補助剤を用いる場合には、その量は0.1
〜1重量%の範囲とするのがよい。しかし、鋼中のSi
と反応してグラス皮膜を形成するおそれがあるMgOな
どは含有させない。
The annealing separator of the present invention is substantially composed of a mixed composition of alumina powder and a V compound. In order to enhance the dispersibility of the alumina powder in the slurry, the addition of a commercially available dispersing aid such as polyacrylic acid to the extent that carburization does not occur in the steel sheet does not reduce the effects of the present invention, It may be added. The term “substantially” means that there may be such an additive or an impurity that is unavoidably mixed. When using a dispersing aid, the amount is 0.1%.
The content is preferably in the range of 11% by weight. However, Si in steel
MgO or the like which may form a glass film by reacting with TiO 2 is not contained.

【0032】(b)鋼の化学組成 C:本発明では、仕上焼鈍時の吸窒を促進するため、お
よび、製品の打ち抜き性を損なわないために、鋼板表面
での酸化膜の生成を抑制する。このため、一次再結晶焼
鈍は脱炭焼鈍雰囲気にはしない。焼鈍時には脱炭しない
ので、製綱段階で鋼のC含有量を0.01%以下にす
る。鋼中のCは低ければ低いほど好ましいが、含有量が
0.01%以下であれば、仕上焼鈍中の二次再結晶や最
終製品の磁気時効に対する悪影響はない。
(B) Chemical composition of steel C: In the present invention, the formation of an oxide film on the surface of the steel sheet is suppressed in order to promote nitrogen absorption during finish annealing and not to impair the punchability of the product. . Therefore, the primary recrystallization annealing is not performed in a decarburization annealing atmosphere. Since carbon is not decarburized during annealing, the C content of the steel is reduced to 0.01% or less at the steelmaking stage. The lower the C in the steel, the better, but if the content is 0.01% or less, there is no adverse effect on secondary recrystallization during finish annealing or magnetic aging of the final product.

【0033】Si:Siは鋼の電気抵抗を増す作用があ
るので、Siを含有させると渦電流損が低下して鉄損が
低減する。鉄損低減効果を得るには、1.5%以上含有
させるのがよい。しかし4%を超えて含有させると二次
再結晶が不安定になると共に、加工性が低下して冷間圧
延が困難となる。このため、Si含有量は1.5〜4%
とするのがよい。
Si: Since Si has the effect of increasing the electrical resistance of steel, when Si is contained, eddy current loss is reduced and iron loss is reduced. In order to obtain an iron loss reducing effect, the content is preferably 1.5% or more. However, when the content exceeds 4%, the secondary recrystallization becomes unstable, and the workability is reduced, so that the cold rolling becomes difficult. Therefore, the Si content is 1.5 to 4%.
It is good to do.

【0034】Mn:本発明の製造方法では、熱間圧延中
に、鋼にα−γ変態を生じさせる。これにより、熱間圧
延中の熱延板の組織を微細化し、均一化させて仕上焼鈍
時にゴス方位への集積度の高い二次再結晶を安定して発
生させる。Mnは、高Siの極低炭素鋼にα−γ変態を
生じさせるのに有効な元素である。α−γ変態を生じさ
せるにはMnを1%以上含有させるのがよい。
Mn: In the production method of the present invention, the steel undergoes α-γ transformation during hot rolling. Thereby, the structure of the hot-rolled sheet during hot rolling is refined and uniformized, and secondary recrystallization with a high degree of integration in the Goss orientation during the finish annealing is stably generated. Mn is an element effective for causing α-γ transformation in a high Si ultra-low carbon steel. To cause the α-γ transformation, Mn is preferably contained at 1% or more.

【0035】MnはSiと同様に鋼の電気抵抗を上昇さ
せる作用もあるため、Mn含有量が増すと鉄損を低減で
きる効果もある。しかし、過剰にMnを含有させると冷
間加工性が損なわれて圧延が困難になるので、含有量の
上限は4%とするのがよい。
Since Mn also has the effect of increasing the electrical resistance of steel, like Si, increasing Mn content also has the effect of reducing iron loss. However, if Mn is excessively contained, cold workability is impaired and rolling becomes difficult. Therefore, the upper limit of the content is preferably set to 4%.

【0036】酸可溶性Al:本発明の製造方法でのイン
ヒビターであるAlNや(Al、Si)Nのような窒化
物を形成する重要な元素である。酸可溶性Alの含有量
が0.003%に満たない場合にはインヒビター作用が
不足する。しかし、酸可溶性Alの含有量が0.03%
を超えると、窒化物の分散状態が不適切になり安定した
二次再結晶を生じない。このため、酸可溶性Al 含有量
の範囲は0.003〜0.03%とするのがよい。
Acid-soluble Al: An important element that forms a nitride such as AlN or (Al, Si) N which is an inhibitor in the production method of the present invention. When the content of the acid-soluble Al is less than 0.003%, the inhibitor effect is insufficient. However, the content of acid-soluble Al is 0.03%
If it exceeds 3, the dispersed state of the nitride becomes inappropriate and stable secondary recrystallization does not occur. For this reason, the range of the acid-soluble Al content is preferably set to 0.003 to 0.03%.

【0037】N:インヒビターとなる窒化物を形成する
ので、二次再結晶が完了するまでは必要な元素である。
鋼素材の段階でのN含有量が、0.001%に満たない
場合にはインヒビター作用が不足する。鋼素材のN含有
量が0.01%を超えると、インヒビター効果は飽和す
るうえ、純化時に長時間の処理を必要とするので経済性
に欠ける。このため、N含有量は0.001〜0.01
%とするのがよい。
N: An element necessary for forming a nitride serving as an inhibitor until completion of secondary recrystallization.
When the N content at the stage of the steel material is less than 0.001%, the inhibitor effect is insufficient. If the N content of the steel material exceeds 0.01%, the inhibitor effect is saturated, and a long time treatment is required at the time of purification, which is not economical. Therefore, the N content is 0.001 to 0.01.
%.

【0038】上記以外の元素はFeおよび不可避的不純
物である。特に、不可避的不純物としてのSはMnと結
合してMnSを形成し、製品の鉄損を悪くする。このた
め、S含有量は低いほど好ましく、0.015%以下と
するのがよい。好ましくは0.005%以下、さらに好
ましくは0.002%以下がよい。
Elements other than the above are Fe and inevitable impurities. In particular, S as an unavoidable impurity combines with Mn to form MnS, and deteriorates iron loss of a product. For this reason, the lower the S content, the better, and preferably the content is 0.015% or less. Preferably it is 0.005% or less, more preferably 0.002% or less.

【0039】(c)圧延と熱処理 上記の化学組成の鋼素材は、転炉、電気炉などで溶製さ
れ、必要に応じて真空脱ガス等の処理が施された溶鋼
を、連続鋳造法や、鋼塊にして分塊圧延する方法などで
スラブとされる。
(C) Rolling and heat treatment The steel material having the above chemical composition is melted in a converter, an electric furnace, or the like, and if necessary, subjected to a process such as vacuum degassing. It is made into a slab by a method such as a steel ingot and slab rolling.

【0040】熱間圧延:スラブの熱間圧延条件について
特に制約はないが、1150℃〜1270℃の範囲でス
ラブを加熱し、700℃〜900℃の範囲で熱間圧延を
終了するのがよい。
Hot rolling: There are no particular restrictions on the hot rolling conditions of the slab, but it is preferred that the slab be heated in the range of 1150 ° C to 1270 ° C and the hot rolling be completed in the range of 700 ° C to 900 ° C. .

【0041】冷間圧延:常法により、熱延板を酸洗した
後、1回または2回以上の冷間圧延により製品の厚さに
圧延する。熱延板は、冷間圧延前に焼鈍(熱延板焼鈍)
してもよい。熱延板に焼鈍を施せば、析出物の分散状態
が適性化され、熱延板の再結晶により結晶組織が均一化
されるので二次再結晶が安定する。熱延板焼鈍条件は特
定するものではないが、連続焼鈍の場合には750℃〜
1100℃で10秒〜5分間加熱するのがよく、箱焼鈍
の場合には600℃〜950℃で30分〜24時間加熱
するのが好ましい。
Cold rolling: A hot rolled sheet is pickled by a conventional method, and then rolled to a product thickness by one or more cold rollings. Hot rolled sheet is annealed before cold rolling (Hot rolled sheet annealing)
May be. When the hot-rolled sheet is annealed, the dispersion state of the precipitate is optimized, and the crystal structure is made uniform by recrystallization of the hot-rolled sheet, so that the secondary recrystallization is stabilized. The conditions for hot-rolled sheet annealing are not specified, but in the case of continuous annealing, 750 ° C.
It is preferable to heat at 1100 ° C. for 10 seconds to 5 minutes, and in the case of box annealing, it is preferable to heat at 600 ° C. to 950 ° C. for 30 minutes to 24 hours.

【0042】冷間圧延を2回以上に分けておこなう場合
には、冷間圧延の間に中間焼鈍を施す。中間焼鈍は65
0℃〜1000℃の温度でおこなうのが望ましい。ま
た、次に記す一次再結晶焼鈍時に良好な結晶組織を得る
ためには、最終の冷間圧延時の圧下率は40〜90%と
するのがよい。
When the cold rolling is performed twice or more, intermediate annealing is performed during the cold rolling. Intermediate annealing is 65
It is desirable to carry out at a temperature of 0 ° C to 1000 ° C. Further, in order to obtain a good crystal structure at the time of primary recrystallization annealing described below, the rolling reduction at the time of final cold rolling is preferably set to 40 to 90%.

【0043】一次再結晶焼鈍:仕上焼鈍時に安定した二
次再結晶を発生させるために、一次再結晶焼鈍時の加熱
速度は急速加熱がよい。このため、一次再結晶焼鈍は連
続焼鈍法でおこなうのが望ましい。焼鈍温度は700℃
〜950℃の範囲がよい。
Primary Recrystallization Annealing: In order to generate stable secondary recrystallization during finish annealing, the heating rate during primary recrystallization annealing is preferably rapid heating. For this reason, it is desirable that the primary recrystallization annealing be performed by a continuous annealing method. Annealing temperature is 700 ℃
The range of -950 ° C is good.

【0044】焼鈍分離剤塗布:一次再結晶焼鈍後、
(a)に記載の焼鈍分離剤を鋼板表面に塗布する。焼鈍
分離剤は水と混合したスラリーとして塗布し、乾燥させ
るのがよい。スラリー中の固形分は、10〜50重量%
とするのが好ましい。スラリー中の固形分の重量比率が
10重量%に満たない場合には、乾燥に時間を要するの
で好ましくなく、50重量%を超えると粘度が高くなり
すぎて鋼板への塗布状況が不安定になる。
Application of annealing separating agent: After primary recrystallization annealing,
The annealing separator described in (a) is applied to the steel sheet surface. The annealing separator is preferably applied as a slurry mixed with water and dried. Solid content in the slurry is 10-50% by weight
It is preferred that When the weight ratio of the solid content in the slurry is less than 10% by weight, it takes a long time for drying, which is not preferable. When the weight ratio exceeds 50% by weight, the viscosity becomes too high and the application state to the steel sheet becomes unstable. .

【0045】塗布量は、乾燥後の重量で、0.5〜10
g/m2 の範囲とする。0.5g/m2 に満たない場合
には、鋼板同士の焼き付きが生じたり、鋼板間の空隙が
確保されず、安定して良好な磁気特性の製品が得られな
い。10g/m2 を超えると、乾燥後の焼鈍分離剤の付
着力が弱くなり、粉塵を発生しやすくなるうえ、純化を
促進させる効果も飽和するので、コスト的にも不利であ
る。スラリーの塗布方法や塗布後の乾燥方法は任意であ
り、例えば、ロールコーター法で塗布し、熱風オーブン
により乾燥させる等公知の方法が使用できる。
The coating amount is 0.5 to 10 by weight after drying.
g / m 2 . If the amount is less than 0.5 g / m 2 , seizure between the steel sheets occurs or a gap between the steel sheets is not secured, and a product having stable and good magnetic properties cannot be obtained. If it exceeds 10 g / m 2 , the adhesion of the annealed separating agent after drying is weakened, dust is easily generated, and the effect of accelerating the purification is saturated, which is disadvantageous in cost. The method of applying the slurry and the method of drying after the application are arbitrary. For example, a known method such as applying by a roll coater method and drying with a hot air oven can be used.

【0046】仕上焼鈍:仕上焼鈍は、二次再結晶焼鈍と
純化焼鈍との2つの段階で構成される。
Finish Annealing: Finish annealing consists of two stages, secondary recrystallization annealing and purification annealing.

【0047】二次再結晶焼鈍は、一次再結晶焼鈍で生成
したゴス方位を持つ再結晶核を成長させることを目的と
する。二次再結晶を良好におこなわせるには、窒素ガス
を含有する雰囲気中で焼鈍するのがよい。窒素ガスを含
有する雰囲気を用いることにより、インヒビターである
窒化物が脱窒するのを防止する。さらに、焼鈍雰囲気中
の窒素を鋼板中に吸収させ(吸窒)、インヒビターとな
る窒化物量を増加させることにより、ゴス方位への集積
度の高い二次再結晶を安定しておこなわせる。焼鈍雰囲
気中の窒素ガスの濃度は、10体積%以上であることが
望ましい(以下、雰囲気ガス組成を表す%は、体積%を
意味する)。窒素ガス以外の雰囲気ガス成分には、水素
ガスまたはアルゴンガスが使用できるが、前者が一般的
である。
The purpose of the secondary recrystallization annealing is to grow a recrystallization nucleus having a Goss orientation generated by the primary recrystallization annealing. For good secondary recrystallization, annealing is preferably performed in an atmosphere containing nitrogen gas. By using an atmosphere containing nitrogen gas, the nitride as an inhibitor is prevented from being denitrified. Further, by absorbing nitrogen in the annealing atmosphere into the steel sheet (nitridation) and increasing the amount of nitride serving as an inhibitor, secondary recrystallization with a high degree of integration in the Goss orientation can be stably performed. It is desirable that the concentration of the nitrogen gas in the annealing atmosphere is 10% by volume or more (hereinafter,% representing the composition of the atmosphere gas means volume%). Hydrogen gas or argon gas can be used as the atmospheric gas components other than nitrogen gas, but the former is generally used.

【0048】二次再結晶温度は、825〜925℃の範
囲がよい。二次再結晶焼鈍温度が825℃に満たない場
合には、インヒビターの粒成長抑制力が強すぎて二次再
結晶が発生しない。925℃を超える温度領域では、イ
ンヒビター効果が弱くなり、ゴス方位以外の、例えば
{211}〈111〉等の方位の結晶粒が成長して、ゴ
ス方位への集積度の弱い二次再結晶組織が発生する。焼
鈍時間は、4時間以上が好ましいが、100時間を超え
ると2次再結晶がそれ以上進行しなくなるので意味がな
く、コスト的にも不利である。
[0048] The secondary recrystallization temperature is preferably in the range of 825 to 925 ° C. If the secondary recrystallization annealing temperature is lower than 825 ° C., the inhibitor has a too strong ability to suppress the grain growth, so that secondary recrystallization does not occur. In a temperature region exceeding 925 ° C., the inhibitor effect becomes weak, and crystal grains having an orientation other than the Goss orientation, such as {211} <111>, grow, and the secondary recrystallized structure having a low degree of integration in the Goss orientation. Occurs. The annealing time is preferably 4 hours or more, but if it exceeds 100 hours, the secondary recrystallization does not proceed any further, so it is meaningless and disadvantageous in cost.

【0049】純化焼鈍:製品中の窒化物は製品の磁気特
性を損なう。このため、二次再結晶焼鈍終了後、純化焼
鈍されてインヒビターは除去される。純化焼鈍雰囲気
は、100%水素ガス雰囲気とするのがよい。純化焼鈍
時には、磁気特性に対し有害なCも除去される。純化焼
鈍温度は、900℃未満では脱窒効果が小さいので、9
00℃以上とするのがよい。しかし、1050℃を超え
ると、脱炭、脱窒反応が飽和するうえ、γ変態して磁束
密度が悪くなるおそれがある。このため、純化焼鈍温度
は900〜1050℃の範囲とするのがよい。
Purification annealing: Nitride in the product impairs the magnetic properties of the product. For this reason, after the end of the secondary recrystallization annealing, purification annealing is performed to remove the inhibitor. The purification annealing atmosphere is preferably a 100% hydrogen gas atmosphere. During the purification annealing, C harmful to magnetic properties is also removed. If the purification annealing temperature is less than 900 ° C., the denitrification effect is small.
The temperature is preferably set to 00 ° C. or higher. However, when the temperature exceeds 1050 ° C., the decarburization and denitrification reactions are saturated, and the γ-transformation may deteriorate the magnetic flux density. For this reason, the purification annealing temperature is preferably in the range of 900 to 1050C.

【0050】脱窒反応を主体とする純化反応は焼鈍温度
が高くなるほど促進されるので、純化に要する焼鈍時間
は焼鈍温度が高いほど短時間でよい。このため、純化焼
鈍時間の下限(tmin.)は、純化焼鈍温度をT(℃)と
した場合に、下記の式で求められる値(単位:時間)
とするのが好ましい。
Since the purification reaction mainly including the denitrification reaction is accelerated as the annealing temperature is increased, the annealing time required for the purification is shorter as the annealing temperature is higher. For this reason, the lower limit (t min. ) Of the purification annealing time is a value (unit: time) obtained by the following equation when the purification annealing temperature is T (° C.).
It is preferred that

【0051】tmin.=(1120−T)/10・・・ 焼鈍時間が上記の時間に満たない場合には純化が不十分
となり、製品の鉄損が向上しない。さらに、鉄損を1.
20W/kg以下にするには(1270−T)/10)
を下限とするのがよい。
Tmin. = (1120-T) / 10 If the annealing time is shorter than the above-mentioned time, purification becomes insufficient and iron loss of the product does not improve. Furthermore, iron loss is 1.
To reduce to 20W / kg or less (1270-T) / 10)
Is preferably the lower limit.

【0052】仕上焼鈍後は、水洗または酸洗等の方法を
用いて焼鈍分離剤を除去する。その後の工程は一般の一
方向性電磁鋼板の場合と同様に処理すればよく、必要に
応じて、公知のリン酸塩を主成分とする絶縁コーティン
グ、平坦化焼鈍などを施すことができる。
After the finish annealing, the annealing separator is removed by a method such as water washing or pickling. Subsequent steps may be performed in the same manner as in the case of a general grain-oriented electrical steel sheet, and if necessary, a known insulating coating containing a phosphate as a main component, flattening annealing and the like can be applied.

【0053】[0053]

【実施例】(実施例1)転炉で溶製し、真空処理して得
た、C:0.003%、Si:2.35%、Mn:1.
53%、酸可溶性Al:0.010%、N:0.004
2%、残部:Fe及び不可避的不純物からなり、不可避
的不純物としてのS含有量が0.002%である化学組
成の鋼スラブを、加熱温度1180℃、仕上温度820
℃で厚さ2.0mm厚に熱間圧延した。この熱延板に、
880℃で40秒間加熱する熱延板焼鈍を施した後、酸
洗し、1回の冷間圧延で厚さ0.35mmに冷間圧延し
た。さらに、窒素ガス78%、水素ガス22%からなる
非脱炭性雰囲気ガス中で880℃で30秒間加熱する連
続焼鈍を施して一次再結晶させた。
EXAMPLES (Example 1) C: 0.003%, Si: 2.35%, Mn: 1.
53%, acid-soluble Al: 0.010%, N: 0.004
A steel slab having a chemical composition of 2%, balance: Fe and unavoidable impurities, and having an S content of 0.002% as an unavoidable impurity was heated at a temperature of 1180 ° C and a finishing temperature of 820 ° C.
The sample was hot-rolled at 2.0 ° C. to a thickness of 2.0 mm. On this hot rolled sheet,
After subjecting the hot-rolled sheet to annealing at 880 ° C. for 40 seconds, it was pickled and cold-rolled to a thickness of 0.35 mm by one cold rolling. Furthermore, in a non-decarburizing atmosphere gas consisting of 78% of nitrogen gas and 22% of hydrogen gas, continuous annealing was performed by heating at 880 ° C. for 30 seconds to perform primary recrystallization.

【0054】その後、鋼板表面に種々の条件で焼鈍分離
剤を塗布した。
Thereafter, an annealing separator was applied to the surface of the steel sheet under various conditions.

【0055】焼鈍分離剤は、平均粒径2μmのα−アル
ミナ粉末と、アルミナ粉末100重量部に対し種々のV
重量部に相当する量の平均粒径0.5μmのV25粉末
からなる混合物を30重量%含有する水スラリーを調製
し、一次再結晶させた鋼板の片面に、乾燥後の付着量が
5g/m2 となるようにロールコート法で塗布し、25
0℃で30秒乾燥させ、コイル状に巻取った。さらに、
比較として、平均粒径5μmのアルミナ粉末を静電塗布
方法により5g/m2 塗布してコイル状に巻取った鋼板
(表1に記載の試番10)と、MgO粉末を10重量%
含有する水スラリーを、乾燥後の付着量が5g/m2
なるように塗布して乾燥させてコイル状に巻取った鋼板
(表1に記載の試番11)を作製した。
The annealing separator is composed of α-alumina powder having an average particle size of 2 μm and various V powders per 100 parts by weight of alumina powder.
A water slurry containing 30% by weight of a mixture consisting of V 2 O 5 powder having an average particle diameter of 0.5 μm in an amount corresponding to parts by weight was prepared, and the amount of adhesion after drying on one surface of the steel plate which was primarily recrystallized was determined. 5 g / m 2 by roll coating method,
It was dried at 0 ° C. for 30 seconds and wound into a coil. further,
For comparison, a steel sheet (sample No. 10 shown in Table 1) obtained by applying 5 g / m 2 of an alumina powder having an average particle diameter of 5 μm by an electrostatic coating method and winding it into a coil shape, and 10% by weight of a MgO powder
The contained water slurry was applied so that the adhesion amount after drying was 5 g / m 2, and dried to prepare a coiled steel sheet (test number 11 shown in Table 1).

【0056】これらの鋼板は、仕上焼鈍として、窒素ガ
ス25%、水素ガス75%からなる雰囲気ガス中で、8
85℃で24時間加熱する二次再結晶焼鈍を施した後、
水素ガス100%の雰囲気に切り替え、940℃で24
時間加熱する純化焼鈍を施した。仕上焼鈍終了後、水洗
して焼鈍分離剤を除去し、公知のリン酸塩を主成分とす
る絶縁コーティングを付着量3g/m2 となるように両
面に施し、窒素ガス80%、水素ガス20%の雰囲気ガ
ス中で800℃で1分間加熱する平坦化焼鈍をおこなっ
た。得られた鋼板のN含有量とV含有量を化学分析して
測定し、JIS−C−2550に規定される測定方法に
従って磁気特性を測定した。
These steel sheets were subjected to finish annealing in an atmosphere gas consisting of 25% of nitrogen gas and 75% of hydrogen gas.
After performing secondary recrystallization annealing heating at 85 ° C. for 24 hours,
Switch to an atmosphere of 100% hydrogen gas, 24 hours at 940 ° C
Purification annealing for heating for hours was performed. After the finish annealing, the annealing separator is removed by washing with water, and a known insulating coating mainly composed of phosphate is applied to both surfaces so as to have an adhesion amount of 3 g / m 2, and nitrogen gas 80% and hydrogen gas 20 % Flattening annealing at 800 ° C. for 1 minute in an atmosphere gas. The N content and the V content of the obtained steel sheet were measured by chemical analysis, and the magnetic properties were measured according to the measurement method specified in JIS-C-2550.

【0057】表1にこれらの測定結果を示す。Table 1 shows the results of these measurements.

【0058】[0058]

【表1】 [Table 1]

【0059】表1に示されるように、本発明の規定する
焼鈍分離剤を用いて製造された試番1〜6は、V化合物
の添加により十分な純化効果が見られ、鉄損が、目標と
する1.30W/kg以下となっており、磁束密度も良
好であった。これに対し、焼鈍分離剤中にV化合物を添
加しなかった試番7、および、V化合物の添加量が少な
すぎた試番8は脱窒が不十分であり、鉄損(W17/50
が好ましくなかった。V化合物の添加量が多すぎた試番
9は、脱窒は十分におこなわれていたが鋼板中にVが浸
入し、鉄損が悪くなった。アルミナ粉末を静電塗布した
試番10は、脱窒が不十分であり、MgO粉末をスラリ
ーにして塗布した試番11では、二次再結晶焼鈍時の吸
窒が不足したためにインヒビターが不足してゴス方位の
形成が不十分となり、磁束密度が向上しなかったうえ、
脱窒も不十分で鉄損も良くなかった。 (実施例2)実施例1で使用した同一の化学組成の鋼ス
ラブを、加熱温度1180℃、仕上温度820℃で熱延
し、2.3mm厚の熱延板とした。酸洗後、圧下率52
%で冷間圧延して1.1mm厚とし、650℃で12時
間加熱する中間焼鈍を施し、2回目の冷間圧延(圧下率
68%)を施して0.35mm厚とした。この冷延板
に、窒素ガス78%、水素ガス22%からなる非脱炭性
雰囲気ガス中で880℃で30秒間加熱する連続焼鈍を
施して一次再結晶させた。その後、種々の平均粒径のα
−アルミナ粉末と、アルミナ粉末100重量部に対し、
V1.0重量部に相当する量の平均粒径0.5μmのV
25、または、V23粉末との混合物を25重量%含有
する水スラリーを調製し、乾燥後の付着量が5g/m2
となるように、一次再結晶させた鋼板の片面にロールコ
ート法により塗布し、250℃で30秒乾燥させた後コ
イル状に巻取った。
As shown in Table 1, in Test Nos. 1 to 6 produced using the annealing separator specified in the present invention, a sufficient purifying effect was observed by adding the V compound, and the iron loss was reduced to the target value. 1.30 W / kg or less, and the magnetic flux density was also good. On the other hand, in Test No. 7 in which no V compound was added to the annealing separator, and in Test No. 8 in which the amount of the V compound added was too small, denitrification was insufficient and iron loss (W 17/50 )
Was not preferred. In Test No. 9 in which the added amount of the V compound was too large, denitrification was sufficiently performed, but V penetrated into the steel sheet, and the iron loss became worse. In Test No. 10 in which alumina powder was electrostatically applied, the denitrification was insufficient, and in Test No. 11 in which MgO powder was applied in slurry, the inhibitor was insufficient due to insufficient nitrogen absorption during secondary recrystallization annealing. Insufficient formation of Goss orientation resulted in an increase in magnetic flux density,
Denitrification was insufficient and iron loss was not good. (Example 2) A steel slab having the same chemical composition used in Example 1 was hot-rolled at a heating temperature of 1180 ° C and a finishing temperature of 820 ° C to obtain a hot-rolled sheet having a thickness of 2.3 mm. After pickling, rolling reduction 52
%, Was subjected to intermediate annealing by heating at 650 ° C. for 12 hours, and was subjected to a second cold rolling (a reduction of 68%) to a thickness of 0.35 mm. This cold-rolled sheet was subjected to continuous annealing by heating at 880 ° C. for 30 seconds in a non-decarburizing atmosphere gas consisting of 78% of nitrogen gas and 22% of hydrogen gas, to cause primary recrystallization. Then, α of various average particle sizes
-Alumina powder and 100 parts by weight of alumina powder,
V having an average particle size of 0.5 μm corresponding to 1.0 part by weight of V
A water slurry containing 25% by weight of a mixture with 2 O 5 or V 2 S 3 powder was prepared, and the adhesion amount after drying was 5 g / m 2.
Then, it was applied to one side of a steel plate which had been subjected to primary recrystallization by a roll coating method, dried at 250 ° C. for 30 seconds, and wound up in a coil shape.

【0060】その後、仕上焼鈍として、窒素ガス25
%、水素ガス75%からなる雰囲気ガス中で885℃で
24時間加熱する二次再結晶焼鈍と、水素ガス100%
の雰囲気ガス中で940℃で24時間加熱する純化焼鈍
を施した。仕上焼鈍終了後、水洗して焼鈍分離剤を除去
し、実施例1と同様の方法で絶縁コーティングと平坦化
焼鈍をおこなった。得られた鋼板のN含有量とV含有量
を化学分析して測定し、JIS−C−2550に規定さ
れる測定方法に従って磁気特性を測定した。また、焼鈍
分離剤を塗布し乾燥した後の焼鈍分離剤の密着性を下記
の基準で評価した。
Thereafter, as the finish annealing, nitrogen gas 25
% And hydrogen gas at 75% for 24 hours at 885 ° C. and 100% hydrogen gas.
Purification annealing was performed by heating at 940 ° C. for 24 hours in an atmosphere gas of. After the finish annealing, it was washed with water to remove the annealing separating agent, and the insulating coating and the flattening annealing were performed in the same manner as in Example 1. The N content and the V content of the obtained steel sheet were measured by chemical analysis, and the magnetic properties were measured according to the measurement method specified in JIS-C-2550. Further, the adhesion of the annealing separator after applying and drying the annealing separator was evaluated according to the following criteria.

【0061】○:剥離せず、粉塵発生等生じない。:: No peeling, no generation of dust, etc.

【0062】△:若干剥離し、2mg/m3 未満の粉塵
発生。
Δ: Slight peeling, dust generation of less than 2 mg / m 3 .

【0063】(粉塵量の測定はJIS−B−9921の
規定による) ×:2mg/m3 以上の粉塵が発生し、焼鈍分離剤の塗
布ムラが生じる。
(Measurement of the amount of dust is in accordance with the provisions of JIS-B-9921) ×: Dust of 2 mg / m 3 or more is generated, and uneven application of the annealing separator occurs.

【0064】表2に、これらの結果を示す。Table 2 shows the results.

【0065】[0065]

【表2】 [Table 2]

【0066】本発明の規定する条件範囲内で製造された
試番15〜18、20および21は、磁束密度、鉄損と
もに良好であった。
Test Nos. 15 to 18, 20, and 21 manufactured within the condition range specified by the present invention had good magnetic flux density and iron loss.

【0067】焼鈍分離剤の塗布量が多かった試番19で
は、乾燥後コイル状に巻取る際に焼鈍分離剤が剥離して
粉塵が著しく発生し、焼鈍分離剤が剥離した部位では部
分的に鋼板同士の焼き付きが生じた。試番21でも、若
干の焼鈍分離剤の剥離・粉塵発生が見られたが、操業上
問題のないレベルであった。
In Test No. 19, in which the applied amount of the annealing separator was large, dust was remarkably generated when the coil was dried and wound up in a coil shape. Seizure of the steel sheets occurred. In Test No. 21, slight peeling of the annealing separator and generation of dust were observed, but at a level at which there was no problem in operation.

【0068】比較材として試験した、アルミナの平均粒
径が0.5μmに満たない焼鈍分離剤を用いた試番1
2、13、および、焼鈍分離剤の塗布量が少なすぎた試
番14は磁束密度、鉄損とも、悪かった。吸窒が十分行
われず、安定した二次再結晶に必要なインヒビター形成
が行われなかったためゴス方位の集積度が低くなったと
考えられる。また、アルミナの平均粒径が10μmを超
えた試番22および23では、焼鈍分離剤の剥離・粉塵
発生と共に塗布ムラが生じた。さらにアルミナ粉末の鋼
板への押し込み等が生じ、鋼板表面に凹凸が生じ磁気特
性が劣った。
Test No. 1 using an annealing separator having an average alumina particle size of less than 0.5 μm, which was tested as a comparative material
Sample Nos. 2, 13 and 14 where the amount of the applied annealed separating agent was too small were poor in both magnetic flux density and iron loss. It is considered that the degree of integration of Goss orientation was lowered because the nitrogen absorption was not sufficiently performed and the inhibitor required for stable secondary recrystallization was not formed. In Test Nos. 22 and 23 in which the average particle size of alumina exceeded 10 μm, coating unevenness occurred along with peeling of the annealing separator and generation of dust. Further, the alumina powder was pushed into the steel plate, etc., and the surface of the steel plate became uneven, resulting in poor magnetic properties.

【0069】(実施例3)実施例1で使用した同一の化
学組成の鋼スラブを、実施例2と同一の条件で熱延して
2.3mm厚の熱延板とし、酸洗後、実施例2と同一の
条件で中間焼鈍を挟む2回の冷間圧延を施して0.35
mm厚の冷延板とし、実施例2と同一の条件で連続焼鈍
を施して一次再結晶させた。その後、平均粒径3μmの
α−アルミナ粉末と、アルミナ粉末100重量部に対
し、V1重量部に相当する量の平均粒径0.5μmのV
25粉末との混合物を30重量%含有する水スラリーを
調製し、一次再結晶させた鋼板片面に、乾燥後の付着量
が5g/m2 となるようにロールコート法により塗布
し、250℃で30秒乾燥させた後コイルとし仕上焼鈍
を実施した。仕上焼鈍は窒素ガス25%、水素ガス75
%からなる雰囲気ガス中で、870℃で24時間加熱す
る二次再結晶焼鈍を実施後、水素ガス100%の雰囲気
に切り替えて870〜1100℃の温度範囲で5〜50
時間純化焼鈍した。仕上焼鈍終了後、実施例1と同様の
方法で絶縁コーティングと平坦化焼鈍をおこなった。得
られた鋼板の鉄損W17/50 を、JIS−C−2550に
規定される測定方法に従って測定した。
(Example 3) A steel slab having the same chemical composition used in Example 1 was hot-rolled under the same conditions as in Example 2 to obtain a hot-rolled sheet having a thickness of 2.3 mm. Under the same conditions as in Example 2, two cold rollings with an intermediate anneal were performed to obtain 0.35
A cold-rolled sheet having a thickness of mm was subjected to continuous annealing under the same conditions as in Example 2 to cause primary recrystallization. Then, an α-alumina powder having an average particle diameter of 3 μm and V powder having an average particle diameter of 0.5 μm in an amount corresponding to 1 part by weight of V with respect to 100 parts by weight of the alumina powder.
A water slurry containing 30% by weight of a mixture with 2 O 5 powder was prepared and applied to one side of a steel sheet which had been primary recrystallized by a roll coating method so that the adhesion amount after drying was 5 g / m 2. After drying at 30 ° C. for 30 seconds, it was made into a coil and subjected to finish annealing. Finish annealing: nitrogen gas 25%, hydrogen gas 75
% In an atmosphere gas consisting of 870 ° C. for 24 hours, and then switched to an atmosphere of 100% hydrogen gas and a temperature range of 870 to 1100 ° C. for 5 to 50 hours.
Time purification annealing. After finishing annealing, insulating coating and flattening annealing were performed in the same manner as in Example 1. The iron loss W 17/50 of the obtained steel sheet was measured according to a measurement method specified in JIS-C-2550.

【0070】表3に、得られた鉄損を示した。Table 3 shows the obtained iron loss.

【0071】[0071]

【表3】 [Table 3]

【0072】表3に示されているように、900℃以上
の温度で、式で計算される時間以上の焼鈍時間で純化
焼鈍した場合には良好な鉄損が得られた。一方、比較の
ためにおこなった、純化焼鈍温度が900℃に満たなか
った試番24、25、あるいは、純化焼鈍温度が900
℃以上であっても、焼鈍時間が式で求められる時間に
満たなかった試番26、30および35では鉄損が1.
30W/kgを超えた。純化焼鈍温度が1100℃であ
った試番39〜41では、鉄損が好ましくなかった。
As shown in Table 3, when iron was purified and annealed at a temperature of 900 ° C. or more for an annealing time longer than the time calculated by the equation, good iron loss was obtained. On the other hand, for comparison, trial Nos. 24 and 25 in which the purification annealing temperature was less than 900 ° C., or the purification annealing temperature of 900
Even if the temperature is not less than ℃, the iron loss is 1.C in the test numbers 26, 30 and 35 in which the annealing time was less than the time required by the formula.
It exceeded 30 W / kg. In sample numbers 39 to 41 in which the purification annealing temperature was 1100 ° C., iron loss was not preferable.

【0073】[0073]

【発明の効果】本発明の規定する、アルミナ粉末にV化
合物を混合した焼鈍分離剤は、水とのスラリーとして塗
布できるので、塗布作業が容易である。この焼鈍分離剤
は、鋼板表面にグラス皮膜を生成しないので、高Mn系
珪素鋼を仕上焼鈍する際の鋼の純化が容易におこなえ
る。このため、仕上焼鈍が低温、短時間で可能となり、
磁気特性に優れた高Mn系珪素鋼を用いた一方向性電磁
鋼板が容易に製造できる。
According to the present invention, the annealing separator prepared by mixing the V compound with the alumina powder can be applied as a slurry with water, so that the application operation is easy. Since this annealing separator does not form a glass film on the surface of the steel sheet, the steel can be easily purified at the time of finish annealing high Mn silicon steel. For this reason, finish annealing becomes possible at low temperature and in a short time,
A grain-oriented electrical steel sheet using a high Mn-based silicon steel excellent in magnetic properties can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼鈍分離剤へのV化合物の添加量と、製品の鉄
損およびN含有量との関係を示した図である。
FIG. 1 is a graph showing the relationship between the amount of a V compound added to an annealing separator and the iron loss and N content of a product.

【図2】本発明の焼鈍分離剤を用いて仕上焼鈍した場合
の、純化焼鈍温度と時間が鉄損に影響する状況を示す図
である。
FIG. 2 is a view showing a situation in which the purification annealing temperature and time affect iron loss when finish annealing is performed using the annealing separator of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一方向性電磁鋼板の仕上焼鈍に用いる焼鈍
分離剤であって、平均粒径が0.5〜10μmのアルミ
ナ粉末と、アルミナ粉末100重量部に対して、V:
0.1〜10重量部に相当する量のV化合物との混合組
成物で実質的に構成されている焼鈍分離剤。
1. An annealing separator used for finish annealing of a grain-oriented electrical steel sheet, comprising: an alumina powder having an average particle size of 0.5 to 10 μm;
An annealing separator substantially consisting of a mixed composition with a V compound in an amount corresponding to 0.1 to 10 parts by weight.
【請求項2】化学組成が重量%で、C:0.01%以
下、Si:1.5〜4%、Mn:1〜4%、酸可溶性A
l:0.003〜0.03%、N:0.001〜0.0
1%、残部:Feおよび不可避的不純物よりなり、不可
避的不純物としてのSが0.015%以下である鋼素材
を熱間圧延し、一回または中間焼鈍を含む二回の冷間圧
延を施した後、非脱炭性雰囲気中で連続焼鈍する一次再
結晶焼鈍を施し、825℃〜925℃での二次再結晶焼
鈍と900℃〜1050℃での純化焼鈍からなる仕上焼
鈍を施す一方向性電磁鋼板の製造方法において、請求項
1に記載の焼鈍分離剤をスラリーとし、一次再結晶焼鈍
後の鋼板に、乾燥後の塗布量が0.5〜10g/m2
範囲内となるように塗布して乾燥させ、下記の式で求
められる時間を純化焼鈍時間の下限とする純化焼鈍を施
す一方向性電磁鋼板の製造方法。 tmin.=(1120−T)/10・・・ 但し、tmin.:純化焼鈍時間の下限(時間)、 T:純化焼鈍温度(℃)。
2. Chemical composition in weight%, C: 0.01% or less, Si: 1.5-4%, Mn: 1-4%, acid soluble A
l: 0.003 to 0.03%, N: 0.001 to 0.0
1%, balance: steel material consisting of Fe and unavoidable impurities and having S as an unavoidable impurity of 0.015% or less is hot-rolled and subjected to one or two cold rolling operations including intermediate annealing. After that, a primary recrystallization annealing for continuous annealing in a non-decarburizing atmosphere is performed, and a finish annealing including a secondary recrystallization annealing at 825 ° C. to 925 ° C. and a purification annealing at 900 ° C. to 1050 ° C. is performed. In the method for producing a conductive magnetic steel sheet, the annealing separator according to claim 1 is used as a slurry, and the coated amount after drying on the steel sheet after primary recrystallization annealing is in the range of 0.5 to 10 g / m 2. A method for producing a grain-oriented electrical steel sheet which is subjected to purification annealing with the time determined by the following formula as the lower limit of the purification annealing time. t min. = (1120−T) / 10 where t min . : lower limit (time) of the purification annealing time, T: purification annealing temperature (° C.).
JP9324087A 1997-11-26 1997-11-26 Production of separation agent for annealing and grain oriented silicon steel sheet Pending JPH11158555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9324087A JPH11158555A (en) 1997-11-26 1997-11-26 Production of separation agent for annealing and grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9324087A JPH11158555A (en) 1997-11-26 1997-11-26 Production of separation agent for annealing and grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH11158555A true JPH11158555A (en) 1999-06-15

Family

ID=18162018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9324087A Pending JPH11158555A (en) 1997-11-26 1997-11-26 Production of separation agent for annealing and grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH11158555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030105A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Annealing separation agent for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP2015052589A (en) * 2013-08-07 2015-03-19 Jfeスチール株式会社 Estimation method of oriented electromagnetic steel sheet and manufacturing method of oriented electromagnetic steel sheet
JP2022514938A (en) * 2018-12-19 2022-02-16 ポスコ Annealing Separator Composition for Electrical Steel Sheets, Manufacturing Methods for Electrical Steel Sheets and Electrical Steel Sheets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030105A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Annealing separation agent for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP2015052589A (en) * 2013-08-07 2015-03-19 Jfeスチール株式会社 Estimation method of oriented electromagnetic steel sheet and manufacturing method of oriented electromagnetic steel sheet
JP2022514938A (en) * 2018-12-19 2022-02-16 ポスコ Annealing Separator Composition for Electrical Steel Sheets, Manufacturing Methods for Electrical Steel Sheets and Electrical Steel Sheets

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
US5571342A (en) Decarburized steel sheet for thin oriented silicon steel sheet having improved coating/magnetic characteristics and method of producing the same
JP2650817B2 (en) Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties
JP2683036B2 (en) Annealing agent
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH11158555A (en) Production of separation agent for annealing and grain oriented silicon steel sheet
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JP4422385B2 (en) Method for producing grain-oriented electrical steel sheet
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
US5269853A (en) Decarburized steel sheet for thin oriented silicon steel sheet having improved coating/magnetic characteristics and method of producing the same
JP4427225B2 (en) Method for producing grain-oriented electrical steel sheet
JP4422384B2 (en) Method for producing grain-oriented electrical steel sheet
KR920010227B1 (en) Coating agents for annealing of the electric steel sheet
KR20190077773A (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same
JP3056895B2 (en) Method for forming forsterite insulating coating on grain-oriented electrical steel sheet
JPH04259329A (en) Production of grain-oriented silicon steel sheet excellent in blankability
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JPH0730396B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3885257B2 (en) Method for producing grain-oriented electrical steel sheet
JP2762111B2 (en) Method for producing unidirectional silicon steel sheet for forming good forsterite insulating film in coil state