JP2650817B2 - Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties - Google Patents

Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties

Info

Publication number
JP2650817B2
JP2650817B2 JP19207492A JP19207492A JP2650817B2 JP 2650817 B2 JP2650817 B2 JP 2650817B2 JP 19207492 A JP19207492 A JP 19207492A JP 19207492 A JP19207492 A JP 19207492A JP 2650817 B2 JP2650817 B2 JP 2650817B2
Authority
JP
Japan
Prior art keywords
annealing
mgo
silicon steel
steel sheet
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19207492A
Other languages
Japanese (ja)
Other versions
JPH0633138A (en
Inventor
宏威 石飛
勝郎 山口
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19207492A priority Critical patent/JP2650817B2/en
Publication of JPH0633138A publication Critical patent/JPH0633138A/en
Application granted granted Critical
Publication of JP2650817B2 publication Critical patent/JP2650817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、トランス等の鉄心に
用いて好適な、(110)<001>方位を主方位とする、磁束密
度の高い一方向性けい素鋼板の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional silicon steel sheet having a high magnetic flux density and having a (110) <001> orientation as a main orientation, which is suitable for use in an iron core of a transformer or the like. is there.

【0002】[0002]

【従来の技術】AlN を主要なインヒビターとし、最終冷
間圧延を80%以上の圧下率で行う一方向性けい素鋼板の
製造方法については、特公昭40-15644号公報に代表され
る、多くの技術が開示されている。このAlN を主要イン
ヒビターとする一方向性けい素鋼板の特徴は、高磁束密
度が得られるところにあるが、一方で2次再結晶粒径が
大きいために、渦電流損が高くなって低鉄損が得られ
ず、また2次再結晶が安定せず磁束密度のばらつきが大
きいという欠点があった。
2. Description of the Related Art A method for producing a grain-oriented silicon steel sheet in which AlN is used as a main inhibitor and the final cold rolling is performed at a rolling reduction of 80% or more is disclosed in Japanese Patent Publication No. 40-15644. Is disclosed. The feature of the grain-oriented silicon steel sheet with AlN as the main inhibitor is that high magnetic flux density can be obtained. On the other hand, the large secondary recrystallized grain size increases the eddy current loss, resulting in low iron loss. Loss was not obtained, secondary recrystallization was not stabilized, and the magnetic flux density had a large variation.

【0003】これらの欠点のうち、渦電流損の低減につ
いては、特公昭57-2252 号公報に開示されたレーザービ
ームを鋼板に照射する方法、また特公昭61-39395号公報
に開示された熱膨張係数の異なる領域を形成する方法等
の、人工的に磁区を細分化する技術により改善されつつ
ある。一方、2次再結晶は同一条件で製造を行っても変
動する、いわば確率現象であるため、その安定化のため
の制御は困難を伴い、特に0.23mm厚以下の薄板の場合で
は、AlN 等のインヒビターは仕上焼鈍中に分解し勝ち
で、その抑制力が不安定になりやすく、したがって2次
再結晶はますます不安定になる。ここに2次再結晶を安
定化させる技術として、特公昭57-9419 号公報及び特開
昭58-217630 号公報には、Sn及び/又はCuを添加する方
法が、また特開昭61-157632 号公報には、SbとCuとを添
加する方法がそれぞれ開示されている。
[0003] Among these drawbacks, reduction of eddy current loss is described by a method of irradiating a steel sheet with a laser beam disclosed in Japanese Patent Publication No. 57-2252 and a method disclosed in Japanese Patent Publication No. 61-39395. Improvements have been made by techniques for artificially subdividing magnetic domains, such as a method of forming regions having different expansion coefficients. On the other hand, secondary recrystallization is a stochastic phenomenon that fluctuates even when manufactured under the same conditions, so it is difficult to control for stabilization. Especially in the case of a thin plate having a thickness of 0.23 mm or less, AlN or the like is used. Inhibitors tend to decompose during finish annealing, and their inhibitory power tends to be unstable, thus making secondary recrystallization more and more unstable. As a technique for stabilizing the secondary recrystallization, Japanese Patent Publication No. 57-9419 and Japanese Patent Application Laid-Open No. 58-217630 disclose a method of adding Sn and / or Cu. Japanese Patent Laid-Open Publication No. H11-181131 discloses methods of adding Sb and Cu, respectively.

【0004】[0004]

【発明が解決しようとする課題】しかし、AlN を主要イ
ンヒビターとし、さらにSbを含有する成分系において
は、sol.AlとSbの両者が脱炭焼鈍において表面濃化し、
表面の酸化を抑制することから、引き続いて行われる最
終仕上焼鈍過程における表面のフォルステライト被膜形
成が不均一になって、密着性の脆弱な被膜となりやすい
傾向があった。
However, in a component system containing AlN as a main inhibitor and further containing Sb, both sol. Al and Sb are concentrated on the surface during decarburization annealing.
Since the oxidation of the surface is suppressed, the formation of a forsterite film on the surface in the subsequent final finish annealing process tends to be non-uniform, which tends to result in a film having weak adhesion.

【0005】このように被膜が劣悪であると、表面の絶
縁抵抗が劣化するばかりでなく、せん断加工や巻トラン
スの製造時に被膜がはく離し、実機特性を大きく損なう
ことになる。また被膜の引張応力が低下することから、
鉄損(渦電流損)特性が劣化するとともに、磁気歪みも
増大して、トランス騒音が大きくなるなど、製品品質に
多大な悪影響を及ぼす。さらに、被膜形成が正常に行わ
れない場合は、表層のインヒビターの挙動に悪影響を及
ぼし、2次再結晶も正常に行われなくなる確率が増え
る。
[0005] When the film is inferior as described above, not only does the insulation resistance of the surface deteriorate, but also the film peels off during the shearing process and the production of the winding transformer, which greatly impairs the characteristics of the actual machine. Also, since the tensile stress of the coating decreases,
Iron loss (eddy current loss) characteristics are degraded, and magnetostriction is increased, thereby increasing transformer noise. Furthermore, when the film formation is not performed normally, the behavior of the inhibitor on the surface layer is adversely affected, and the probability that the secondary recrystallization is not performed normally increases.

【0006】この発明は、特にAl−Sbを含有する成分系
の一方向性けい素鋼板の製造において憂慮されていた上
記の問題を有利に解決し、安定して被膜特性及び磁気特
性に優れた製品を得ることのできる製造方法を提案する
ことを目的とする。
The present invention advantageously solves the above-mentioned problem which has been particularly concerned in the production of a component-oriented unidirectional silicon steel sheet containing Al-Sb, and has excellent coating characteristics and excellent magnetic characteristics. The purpose is to propose a manufacturing method that can obtain a product.

【0007】[0007]

【課題を解決するための手段】発明者らは、AlN とSbを
インヒビターの必須成分として含有する一方向性けい素
鋼板の製造方法に関し、フォルステライト被膜特性を向
上し、ひいては磁気特性の向上及び安定化を図るべく種
々の検討を行ったところ、特定の性状を有するMgO を、
焼鈍分離剤の主成分として用いることにより前記目的を
達成できることを見出した。この発明は、上記の知見に
由来するものである。
The present invention relates to a method for producing a grain-oriented silicon steel sheet containing AlN and Sb as essential components of an inhibitor. After various studies to stabilize, MgO with specific properties was
It has been found that the object can be achieved by using as a main component of the annealing separator. The present invention is based on the above findings.

【0008】すなわちこの発明は、Si:2.5 〜4.0 wt
%、酸可溶性Al:0.01〜0.05wt%及びSb:0.01〜0.20wt
%を含有するけい素鋼スラブを熱間圧延し、次いで熱延
板焼鈍及び1回又は中間焼鈍を挟む2回の冷間圧延を施
して最終板厚とした後、脱炭・1次再結晶焼鈍を施し、
次いでMgO を主成分とする焼鈍分離剤を塗布した後、仕
上焼鈍を施す一連の製造工程からなる一方向性けい素鋼
板の製造方法において、焼鈍分離剤成分のMgO は、くえ
ん酸活性度が、最終反応率40%の条件で100 〜400 秒、
最終反応率80%の条件で1000〜4000秒であり、しかも水
和水分量が、20℃,60分間の条件で2.5 %以下であり、
さらに平均粒子径が2.5 μm 以下でかつ325 メッシュの
不通過分が5%以下であることを特徴とする被膜特性及
び磁気特性に優れた一方向性けい素鋼板の製造方法であ
る。
[0008] That is, the present invention provides a method for producing Si: 2.5 to 4.0 wt.
%, Acid-soluble Al: 0.01 to 0.05 wt% and Sb: 0.01 to 0.20 wt%
% Of silicon steel slabs containing hot-rolled steel, hot-rolled sheet annealing and cold rolling once or twice with intermediate annealing to obtain the final sheet thickness, then decarburization and primary recrystallization Subject to annealing,
Next, after applying an annealing separator containing MgO as a main component, in a method for manufacturing a grain-oriented silicon steel sheet comprising a series of manufacturing steps of performing finish annealing, MgO of the annealing separator component has a citric acid activity of 100-400 seconds at a final reaction rate of 40%,
1000-4000 seconds at a final reaction rate of 80%, and a hydrated water content of 2.5% or less at 20 ° C. for 60 minutes.
Further, the present invention provides a method for producing a unidirectional silicon steel sheet having excellent coating properties and magnetic properties, characterized in that the average particle diameter is 2.5 μm or less and the non-passage of 325 mesh is 5% or less.

【0009】[0009]

【作用】一方向性けい素鋼板の焼鈍分離剤として用いら
れるMgO に関しては、これまでにも種々の物性のものが
提案されている。例えば、特公昭49-29409号公報には、
かさ重量0.18〜0.30g/ccの重質低活性MgO を、水和量が
1〜4%のスラリーとして塗布することが示されてい
る。また、特公昭52-31296号公報には、SO3 が0.2%以
下、Clが0.04%以下で、かさ重量が0.18〜0.30g/cc、粒
度分布が特定範囲であるMgO について示されている。ま
た、特公昭54-14566号公報には、不純物が特定範囲にあ
りかつ20℃、30分の水和量が8%以下で100 メッシュ通
過325 メッシュ不通過分が1〜20%であるMgO について
示されている。さらに特公昭57-45472号公報には、くえ
ん酸との反応時間で示される、くえん酸活性度が特定範
囲のMgO が提示されている。
As to MgO used as an annealing separator for unidirectional silicon steel sheets, various physical properties have been proposed so far. For example, in Japanese Patent Publication No. 49-29409,
It has been shown that heavy low-activity MgO with a bulk weight of 0.18-0.30 g / cc is applied as a slurry with a hydration of 1-4%. Japanese Patent Publication No. 52-31296 discloses MgO having an SO 3 content of 0.2% or less, a Cl content of 0.04% or less, a bulk weight of 0.18 to 0.30 g / cc, and a particle size distribution in a specific range. Japanese Patent Publication No. 54-14566 discloses that MgO having an impurity in a specific range, a hydration amount of 20% at 30 ° C. for 8 minutes or less, and a 325 mesh non-passing portion of 1% to 20% passing through 100 mesh. It is shown. Furthermore, Japanese Patent Publication No. 57-45472 discloses MgO 2 having a citric acid activity in a specific range, which is indicated by the reaction time with citric acid.

【0010】ところで、最終仕上焼鈍によって形成する
フォルステライト被膜は、脱炭・1次再結晶焼鈍の際
に、鋼板表層に生成する酸化物(SiO2、Fe2SiO4 等)
と、焼鈍分離剤として塗布されたMgO との固相反応によ
って生成するものであるから、MgO の物性のみならず、
この鋼板表層の酸化物層の性状の影響を強く受ける。す
なわち、酸化物の量が不足すると、不均一で密着性の悪
い被膜しか生成しない。また、酸化物のうち、鉄酸化物
の量が多すぎると、ピンホール状に地鉄の露出した、極
めて品質の悪い被膜ができてしまう。
By the way, the forsterite film formed by the final finish annealing is an oxide (SiO 2 , Fe 2 SiO 4, etc.) generated in the surface layer of the steel sheet during the decarburization / first recrystallization annealing.
Is generated by a solid phase reaction with MgO applied as an annealing separating agent, so that not only physical properties of MgO but also
It is strongly affected by the properties of the oxide layer on the surface of the steel sheet. That is, if the amount of the oxide is insufficient, only a non-uniform and poorly adhered film is generated. If the amount of iron oxide in the oxide is too large, a very poor quality coating in which the base iron is exposed in a pinhole shape is formed.

【0011】ここにおいて、AlN を主要インヒビターと
し、かつSbを含有する成分系の一方向性けい素鋼の製造
にあたって、前述のようなこれまでに提案されたMgO
は、活性すぎて、安定して良好な被膜を形成することが
困難であった。その理由は、前述したようにAlN を主要
インヒビターとし、かつSbを含有する成分系のけい素鋼
が、脱炭・1次再結晶焼鈍において酸化されにくいこと
に起因する。そこで、酸化量を増加させるべく脱炭焼鈍
の温度や雰囲気の露点を高めると、酸化層中の鉄酸化物
が増加するから、最終仕上焼鈍で形成するフォルステラ
イト被膜は、劣悪にならざるを得なかった。
Here, in the production of a unidirectional silicon steel containing AlN as a main inhibitor and containing Sb, MgO which has been proposed so far as described above is used.
Was too active to form a good coating stably. The reason for this is that, as described above, silicon steel of a component system containing AlN 2 as a main inhibitor and containing Sb is not easily oxidized in decarburization / primary recrystallization annealing. Therefore, if the decarburizing annealing temperature and the dew point of the atmosphere are increased to increase the oxidation amount, the iron oxide in the oxidized layer increases, so that the forsterite film formed in the final finish annealing must be inferior. Did not.

【0012】これらのことから、発明者らはAl−Sbを含
有する成分系の一方向性けい素鋼板の焼鈍分離剤に供す
るMgO の好適な物性について種々の検討を行い、その結
果、従来知られているものよりも、さらに低活性である
MgO が好適なことを見出した。
[0012] From these facts, the present inventors have conducted various studies on suitable physical properties of MgO to be used as an annealing separator for a component-oriented unidirectional silicon steel sheet containing Al-Sb. Is even less active than
MgO has been found to be suitable.

【0013】脱炭・1次再結晶焼鈍において酸化し難い
素材に対し、より低活性なMgO が被膜形成に関して好適
であることは、一見、矛盾した現象のようにみえる。し
かしながら、その理由は、以下のとおりと考えられる。
焼鈍分離剤を塗布され、コイル状に巻かれたけい素鋼板
が仕上焼鈍される際、昇温過程の800 ℃付近まではMgO
の水和水分が徐々に放出されるため、コイル層間がウェ
ットな状態に保たれる。このとき、鋼板表面は、H2O に
より、いわゆる追加酸化を受けるわけであるが、その酸
化量は、脱炭・1次再結晶焼鈍により生成した酸化層の
性状に左右される。Al−Sbを含有する成分系の一方向性
けい素鋼では、表層に生成している酸化量が少ないため
に、この追加酸化の際は鉄酸化物を多く生成する。ここ
に生成した鉄酸化物のうち、FeO は、MgO と固溶してx
FeO ・yMgO をつくり、高温でのフォルステライト被膜
形成に悪影響を及ぼす。またFe2SiO4 もMgO と固溶して
フォルステライト(Mg2SiO4 )に移行しつつ、FeOを遊
離するため、同様な悪影響をもたらす。また、脱炭・1
次再結晶焼鈍のときから表層へのAlやSbの濃化が不均一
に起こること、コイル層間のH2O 分圧も不均一であるこ
と等の理由のため、この追加酸化自体も不均一になる傾
向があり、この点でも被膜の均一性に悪影響があった。
At first glance, it seems like a contradictory phenomenon that MgO having lower activity is more suitable for forming a film for a material which is hardly oxidized in decarburization / first recrystallization annealing. However, the reason is considered as follows.
When a silicon steel sheet wound in a coil shape with an annealing separator applied is finish annealed, MgO is used up to around 800 ° C during the temperature rise process.
Is gradually released, so that the coil layers are kept in a wet state. At this time, the surface of the steel sheet is subjected to so-called additional oxidation by H 2 O, and the amount of the oxidation depends on the properties of the oxide layer generated by the decarburization / primary recrystallization annealing. In a component-oriented unidirectional silicon steel containing Al-Sb, since the amount of oxidation generated in the surface layer is small, a large amount of iron oxide is generated during this additional oxidation. Among the iron oxides generated here, FeO forms a solid solution with MgO and x
Produces FeO.yMgO and has an adverse effect on forsterite film formation at high temperatures. In addition, Fe 2 SiO 4 also dissolves with MgO to form forsterite (Mg 2 SiO 4 ) and releases FeO, thereby causing the same adverse effect. In addition, decarburization 1
The additional oxidation itself is also non-uniform due to the uneven concentration of Al and Sb in the surface layer from the time of the next recrystallization annealing, and the non-uniform H 2 O partial pressure between the coil layers. , Which also had an adverse effect on the uniformity of the coating.

【0014】このように、フォルステライト被膜へ悪影
響を及ぼす原因は、MgO の水和水分に由来する追加酸化
とその不均一さである。そこで、この発明に従い、より
低活性のMgO を用いることにより、この追加酸化を抑制
することが可能になるから、Al−Sbを含有する成分系の
一方向性けい素鋼でも均一、良好な被膜を形成し得るも
のと考えられる。
As described above, the cause of the adverse effect on the forsterite film is the additional oxidation derived from the hydrated water of MgO and its unevenness. Thus, according to the present invention, it is possible to suppress this additional oxidation by using lower activity MgO 2, so that even unidirectional silicon steel containing Al—Sb can be coated uniformly and well. It is considered that the following can be formed.

【0015】またAlN を主要インヒビターとする一方向
性けい素鋼の2次再結晶温度は、インヒビターの抑制力
が強いために900 〜1000℃付近であり、MnS やMnSeを主
要インヒビターとするけい素鋼の2次再結晶温度800 〜
900 ℃に比べて高い。このため、仕上焼鈍中の表面酸化
は、インヒビターの分解や粗大化を左右し、2次再結晶
挙動にも強く影響する。したがって、追加酸化が多い
と、表面被膜のみならず、磁気特性も著しく劣化させる
ことが多い。それ故に、Al−Sbを含有する成分系の一方
向性けい素鋼の製造においては、低活性MgO の使用が磁
気特性の安定化の観点からも重要である。
The secondary recrystallization temperature of a unidirectional silicon steel containing AlN as a main inhibitor is around 900 to 1000 ° C. due to the strong inhibitory power of the inhibitor. Secondary recrystallization temperature of steel 800 ~
Higher than 900 ° C. For this reason, surface oxidation during finish annealing affects the decomposition and coarsening of the inhibitor, and strongly affects the secondary recrystallization behavior. Therefore, if the amount of additional oxidation is large, not only the surface coating but also the magnetic properties often deteriorate significantly. Therefore, in the production of a component-oriented unidirectional silicon steel containing Al-Sb, the use of low-activity MgO is important from the viewpoint of stabilization of magnetic properties.

【0016】以上の知見をもとに、種々の実験を行った
ところ、MgO の好適な活性度は、くえん酸活性度及び水
和水分量によって示し得ることが分かった。まずくえん
酸活性度の評価法について述べる。 1) 0.4規定のくえん酸水溶液100cm3をビーカーにとり、
30℃に保つ。ビーカ内には磁気回転子を入れておく。 2) 秤量したMgO をビーカー内に投入する。MgO の投入
量は、所望の最終反応率によって変え、最終反応率が40
%の場合は、2.00 g、80%の場合は1.00 gとする。(
0.4規定のくえん酸水溶液100cm3は、0.8 g のMgO と反
応する。) 3)MgO をビーカー内に投入した時から正確に10秒後にス
ターラーのスイッチを入れ、磁気回転子を回転させる。
この間、液温は30℃±1℃に保つ。 4)スラリーのpHが8.0 になった時点を反応終了とし、Mg
O を投入した時からの時間を計り、その秒数をくえん酸
活性度とする。
Based on the above findings, various experiments were conducted, and it was found that the suitable activity of MgO can be indicated by the citric acid activity and the amount of water of hydration. First, the evaluation method of citric acid activity will be described. 1) 0.4 takes define the aqueous acid solution 100 cm 3 citric beaker,
Keep at 30 ° C. The magnetic rotor is put in the beaker. 2) Put the weighed MgO into the beaker. The amount of MgO charged depends on the desired final conversion, with a final conversion of 40.
% Is 2.00 g, and 80% is 1.00 g. (
100 cm 3 of a 0.4N aqueous citric acid solution reacts with 0.8 g of MgO. 3) Turn on the stirrer exactly 10 seconds after MgO is put into the beaker, and rotate the magnetic rotor.
During this time, the liquid temperature is kept at 30 ° C. ± 1 ° C. 4) The reaction was terminated when the pH of the slurry reached 8.0.
Measure the time from when O was injected, and let the number of seconds be citric acid activity.

【0017】このようにして評価するくえん酸活性度に
おいて、従来、一方向性けい素鋼の焼鈍分離剤として用
いられていたMgO は、例えば前掲特公昭57-45472号公報
に示されたMgO では、低活性と雖もくえん酸活性度が最
終反応率40%の場合に約40〜80秒であって、この発明の
MgO よりも活性度が高いものであった。なお、特公平4
-25349号公報には、焼鈍分離剤として、MgO にCaO とB
とを添加し、くえん酸活性度が60〜250 秒であるもの
が、一方向性電磁鋼板の優れたグラス被膜や磁気特性に
有効である旨、述べられているが、この発明のMgO は、
最終反応率40%でのくえん酸活性度だけでなく、80%で
のくえん酸活性度も考慮する点が特徴である。すなわ
ち、MgO の調製条件次第で活性度分布は変化し、くえん
酸最終反応率40%での活性度が同一であっても、活性度
分布が狭いものは80%でのくえん酸活性度の値の増加割
合が小さいことは、前掲特公昭57-45472号公報に記載さ
れたとおりであり、ここにおいて、この発明で用いるMg
O は、最終反応率80%におけるくえん酸活性度が1000〜
4000秒と広い活性度分布を有するものである。
In the citric acid activity evaluated in this way, MgO conventionally used as an annealing separator for unidirectional silicon steel is, for example, MgO disclosed in the above-mentioned JP-B-57-45472. The citric acid activity is about 40 to 80 seconds when the final reaction rate is 40% even though the activity is low.
The activity was higher than that of MgO. In addition, Tokuhei 4
No. -25349 discloses that CaO and B are added to MgO as annealing separators.
It is stated that citric acid activity of 60 to 250 seconds is effective for excellent glass coating and magnetic properties of a grain-oriented electrical steel sheet, but MgO of the present invention is
The feature is that not only the citric acid activity at a final reaction rate of 40% but also the citric acid activity at 80% is considered. In other words, the activity distribution changes depending on the preparation conditions of MgO. Even if the activity at the final citric acid reaction rate of 40% is the same, the one with a narrow activity distribution is the value of citric acid activity at 80%. Is small as described in Japanese Patent Publication No. 57-45472, cited above, wherein the Mg used in the present invention is used.
O: Citric acid activity at a final conversion of 80% is 1000-
It has a wide activity distribution of 4000 seconds.

【0018】以上のようなくえん酸活性度が、最終反応
率40%の条件で100 秒未満、最終反応率80%の条件で10
00秒未満の活性度分布の場合には、活性すぎて不均一で
欠陥の多い被膜しか生成しない。また、最終反応率40%
の条件で400 秒を超え、最終反応率80%の条件で4000秒
を超える活性度分布の場合には、MgO の反応性が低すぎ
て、薄く、粗雑な、密着性の悪い被膜しか生成しない。
より好適な活性度分布は、最終反応率40%の条件で150
〜350 秒、最終反応率80%の条件で1500〜3500秒であ
る。
As described above, the citric acid activity is less than 100 seconds at a final reaction rate of 40%, and 10% at a final reaction rate of 80%.
In the case of an activity distribution of less than 00 seconds, only a film which is too active and is non-uniform and has many defects is generated. The final reaction rate is 40%
If the activity distribution exceeds 400 seconds under the conditions of above and 4000 seconds under the condition of the final reaction rate of 80%, the reactivity of MgO is too low and only a thin, coarse, poorly adhered film is formed. .
A more suitable activity distribution is 150% at a final conversion of 40%.
It is 1500 to 3500 seconds under the conditions of ~ 350 seconds and a final reaction rate of 80%.

【0019】この発明に従うくえん酸活性度のMgO の製
造にあたっては、原料物質(例えば水酸化マグネシウ
ム、炭酸マグネシウム、塩基性炭酸マグネシウム等)の
焼成において、950 ℃以上の高温で焼成した、異なる活
性度のものを混合する方法や、バッチ炉焼成によって、
焼成炉内の温度分布を調整することにより、目的とする
活性度分布のMgO を得ることができる。
In the production of MgO with citric acid activity according to the present invention, in the firing of raw materials (eg, magnesium hydroxide, magnesium carbonate, basic magnesium carbonate, etc.), different activities fired at a high temperature of 950 ° C. or more are used. By the method of mixing things and batch furnace firing,
By adjusting the temperature distribution in the firing furnace, MgO 2 having the desired activity distribution can be obtained.

【0020】さらにMgO の活性度に関しては、20℃、60
分間の条件における水和水分量が2.5 %以下である必要
がある。2.5 %を超える水和水分量では、最終仕上焼鈍
中の追加酸化が多くなって、被膜、磁気特性ともに不良
となる。
Further, with respect to the activity of MgO, the temperature was 20 ° C., 60 ° C.
The amount of water of hydration under the condition of one minute must be 2.5% or less. If the hydrated water content exceeds 2.5%, additional oxidation during the final finish annealing increases, and both the coating and the magnetic properties become poor.

【0021】さらに均一な被膜を得るために、MgO 粒
は、平均粒子径が2.5 μm 以下であることを必要とす
る。フォルステライト被膜形成反応は、鋼板表面の酸化
物(SiO2、Fe2SiO4 )とMgO との固相反応であるため、
MgO の粒子径の影響を強く受ける。平均粒子径が2.5 μ
m を超えると、この固相反応が不均一となって良好な被
膜が得られない。また同様な理由から、MgO の粒度分布
に関し、325 メッシュの不通過分が5%以下であること
が、所期した製品品質を得るために必要であり、不通過
分が5%を超えると、被膜が不均一となる。
In order to obtain a more uniform coating, the MgO particles need to have an average particle size of 2.5 μm or less. Since the forsterite film forming reaction is a solid-phase reaction between MgO and oxides (SiO 2 , Fe 2 SiO 4 ) on the steel sheet surface,
It is strongly influenced by the particle size of MgO. 2.5 μm average particle size
If m is exceeded, the solid phase reaction becomes non-uniform and a good film cannot be obtained. For the same reason, regarding the particle size distribution of MgO, it is necessary that the non-passage of 325 mesh is 5% or less in order to obtain the expected product quality. If the non-passage exceeds 5%, The coating becomes uneven.

【0022】この発明の焼鈍分離剤としては、分離剤に
通常添加される成分、例えば、TiO2やチタン酸塩、ほう
酸又はほう酸塩、Sr化合物、Mn化合物等を添加すること
は何ら差し支えない。
As the annealing separator of the present invention, it is possible to add components normally added to the separator, for example, TiO 2 , titanate, boric acid or borate, Sr compound, Mn compound and the like.

【0023】次にこの発明の製造方法を適用するけい素
鋼素材の成分組成範囲を限定理由は次のとおりである。 Si:2.5 〜4.0 wt% Si量が2.5 wt%に満たないと、良好な鉄損が得られず、
一方4.0 wt%を超えると冷間圧延性が著しく劣化するた
め、2.5 〜4.0 wt%の範囲とした。 酸可溶性Al:0.01〜0.05wt% 酸可溶性Alは、インヒビターとしてのAlN を形成するた
めに必要であり、含有量を0.01〜0.05wt%の範囲とす
る。酸可溶性Alの含有量が、0.01wt%に満たないと、イ
ンヒビターとしての作用が低下して、製品の磁束密度の
低下を招き、一方0.05wt%を超えると、2次再結晶が不
安定になる。 Sb:0.01〜0.20wt% Sbは、1次再結晶集合組織を改善し、(110)<001>方位結
晶粒の成長性を良好にし、磁気特性を安定して向上させ
るために必要であり、Sb量が0.01wt%未満では、その効
果が乏しく、一方0.20wt%を超えると、脱炭性やフォル
ステライト被膜形成性を損なうため、0.01〜0.20wt%の
範囲とする。
Next, the reasons for limiting the component composition range of the silicon steel material to which the production method of the present invention is applied are as follows. Si: 2.5 to 4.0 wt% If the amount of Si is less than 2.5 wt%, good iron loss cannot be obtained.
On the other hand, if the content exceeds 4.0 wt%, the cold rolling property is remarkably deteriorated, so the content is set in the range of 2.5 to 4.0 wt%. Acid-soluble Al: 0.01 to 0.05 wt% Acid-soluble Al is necessary to form AlN 2 as an inhibitor, and its content is in the range of 0.01 to 0.05 wt%. If the content of acid-soluble Al is less than 0.01 wt%, the action as an inhibitor is reduced, leading to a decrease in the magnetic flux density of the product, while if it exceeds 0.05 wt%, secondary recrystallization becomes unstable. Become. Sb: 0.01 to 0.20 wt% Sb is necessary for improving the primary recrystallization texture, improving the growth of (110) <001> oriented crystal grains, and stably improving the magnetic properties. If the Sb content is less than 0.01 wt%, the effect is poor, while if it exceeds 0.20 wt%, the decarburizing property and the forsterite film forming property are impaired, so the content is set in the range of 0.01 to 0.20 wt%.

【0024】鋼成分としては、この他、Cを0.02〜0.12
wt%程度と、インヒビター構成成分としてNを通常の範
囲(0.004 〜0.01wt%程度)で含有するものであり、さ
らに必要に応じて、Mn、S、Se等を含有してもよい。そ
の含有量は、それぞれ、Mn:0.03〜0.15wt%程度、Sお
よび/又はSeを合計で0.01〜0.05wt%程度ある。さら
に、2次再結晶を、磁気特性上、より有利なものとする
ために、CuやSnなどを、それぞれ0.02〜0.20 wt%程
度、0.02〜0.20wt%程度含有させることも可能である。
In addition to the above, as a steel component, C is 0.02 to 0.12.
It contains about wt% and N as an inhibitor component in the usual range (about 0.004 to 0.01 wt%), and may further contain Mn, S, Se, etc., if necessary. The content thereof is about 0.03 to 0.15 wt% of Mn, and about 0.01 to 0.05 wt% of S and / or Se in total. Further, in order to make the secondary recrystallization more advantageous in terms of magnetic properties, Cu, Sn, and the like can be contained at about 0.02 to 0.20 wt% and about 0.02 to 0.20 wt%, respectively.

【0025】次に製造工程については、上記の成分組成
に調整したけい素鋼素材を、通常1400℃以上の高温に加
熱したのち、公知の方法によって、板厚2〜3mm程度の
熱延母板とする。次いで900 〜1200℃の温度範囲で熱延
板焼鈍を施し、酸洗したのち、1回の冷間圧延、または
900 〜1200℃の温度範囲で焼鈍を挟む2回以上の冷間圧
延によって、最終板厚0.15〜0.35mm程度の冷延板に仕上
げるが、この冷間圧延で最終板厚に仕上げる際の冷延率
は80〜95%の範囲が望ましい。この最終冷延板は脱脂し
たのち、湿水素雰囲気中で800 〜900 ℃の温度範囲で脱
炭焼鈍してC量を0.003 wt%以下にする。その後MgO を
主成分とする焼鈍分離剤を塗布した後、ドライH2雰囲気
1100〜1250℃の高温で、仕上焼鈍を行う。そして最後に
絶縁コーティングを施して一方向性けい素鋼板製品とす
る。
Next, in the manufacturing process, the silicon steel material adjusted to the above-mentioned composition is heated to a high temperature of usually 1400 ° C. or more, and then a hot rolled base plate having a thickness of about 2 to 3 mm is formed by a known method. And Next, hot-rolled sheet annealing is performed in a temperature range of 900 to 1200 ° C., and after pickling, one cold rolling or
Cold rolling with a final thickness of about 0.15 to 0.35 mm is performed by cold rolling two or more times with annealing at a temperature in the range of 900 to 1200 ° C. The rate is preferably in the range of 80-95%. After degreased, the final cold-rolled sheet is decarburized and annealed in a wet hydrogen atmosphere at a temperature in the range of 800 to 900 ° C. to reduce the C content to 0.003 wt% or less. Then, after applying an annealing separator mainly composed of MgO, dry H 2 atmosphere
Finish annealing is performed at a high temperature of 1100 to 1250 ° C. Finally, an insulating coating is applied to form a unidirectional silicon steel sheet product.

【0026】[0026]

【実施例】【Example】

実施例1 C:0.060 wt%、Si:3.12wt%、Mn:0.075 wt%、Se:
0.023 wt%、酸可溶性Al:0.024 wt%、N:0.0084wt
%、Sb:0.032 wt%を含有し、残部は実質的にFeの組成
からなるけい素鋼スラブを1420℃で20分間加熱後、熱間
圧延により2.3 mm厚の熱延板とした。この熱延板を、10
50℃で2分間加熱したあと、ミスト噴射により急冷し、
次いで冷間圧延を施して0.30mmに仕上げた。この冷間圧
延後は、H245%−N255%,露点63℃の雰囲気中で840
℃、4分間の脱炭・1次再結晶焼鈍を行った。この板か
ら、多数のテストピースを切り出し、焼鈍分離剤をスラ
リー状態で塗布後乾燥させた。この時の焼鈍分離剤とし
て、MgO は表1に示す種々の特性を有するものを用い、
さらに添加物としてTiO22%をそれぞれに添加した。な
お、MgO の物性は、MgO 製造時の焼成条件と粉砕条件と
を変更して変化させた。焼鈍分離剤を塗布した鋼板は、
H2雰囲気で1200℃、20時間の仕上焼鈍に供した。
Example 1 C: 0.060 wt%, Si: 3.12 wt%, Mn: 0.075 wt%, Se:
0.023 wt%, acid soluble Al: 0.024 wt%, N: 0.0084 wt
%, Sb: 0.032 wt%, the remainder being a silicon steel slab substantially composed of Fe, heated at 1420 ° C. for 20 minutes, and then hot-rolled into a 2.3 mm-thick hot-rolled sheet. This hot rolled sheet is
After heating at 50 ℃ for 2 minutes, quench by mist spray,
Then, it was subjected to cold rolling to finish to 0.30 mm. After this cold rolling, 840% in an atmosphere of H 2 45% -N 2 55% and a dew point of 63 ° C.
Decarburization and primary recrystallization annealing were performed at 4 ° C. for 4 minutes. A large number of test pieces were cut out from this plate, and an annealing separator was applied in a slurry state and dried. MgO having various properties shown in Table 1 was used as an annealing separator at this time.
Further, 2% of TiO 2 was added as an additive. The physical properties of MgO were changed by changing the calcination conditions and pulverization conditions during the production of MgO. Steel sheet coated with annealing separator
The sample was subjected to finish annealing at 1200 ° C. for 20 hours in an H 2 atmosphere.

【0027】[0027]

【表1】 [Table 1]

【0028】かくして得られた製品の被膜外観、被膜密
着性及び磁気特性を表1に併記する。ここに平均粒子径
は、光透過法により測定したものであり、また被膜密着
性は、被膜がはく離しない最小曲げ直径で示す。表1か
ら明らかなように、適合例においては、外観、密着性と
も良好で、磁気特性も優れた製品が得られている。
Table 1 also shows the coating appearance, coating adhesion and magnetic properties of the product thus obtained. Here, the average particle diameter is measured by a light transmission method, and the adhesion of the coating film is represented by a minimum bending diameter at which the coating film does not peel off. As is clear from Table 1, in the applicable example, a product having good appearance and adhesion and excellent magnetic properties is obtained.

【0029】実施例2 C:0.062 wt%、Si:3.09wt%、Mn:0.076 wt%、Se:
0.021 wt%、S:0.004 wt%、酸可溶性Al:0.025 wt
%、N:0.0080wt%、Sb:0.030 wt%、Mo:0.02wt%、
Cu:0.01wt%、Sn:0.10wt%を含有し、残部は実質的に
Feの組成からなるけい素鋼スラブを1420℃で20分間加熱
後、熱間圧延により2.0 mm厚の熱延板とした。この熱延
板を、1050℃で2分間加熱したあと、ミスト噴射により
急冷し、次いで冷間圧延を施して0.23mmに仕上げた。こ
の冷間圧延後は、H255%−N245%,露点65℃の雰囲気中
で830 ℃、3分間の脱炭・1次再結晶焼鈍を行った。こ
の板から、多数のテストピースを切り出し、焼鈍分離剤
をスラリー状態で塗布後乾燥させた。この時の焼鈍分離
剤として、MgO は表2に示す種々の特性を有するものを
用い、さらに添加物としてSrSO4 :1%、MnO2:1.5 %
を、それぞれに添加した。焼鈍分離剤を塗布した鋼板
は、H2雰囲気で1200℃、10時間の仕上焼鈍に供した。
Example 2 C: 0.062 wt%, Si: 3.09 wt%, Mn: 0.076 wt%, Se:
0.021 wt%, S: 0.004 wt%, acid-soluble Al: 0.025 wt
%, N: 0.0080 wt%, Sb: 0.030 wt%, Mo: 0.02 wt%,
Cu: 0.01wt%, Sn: 0.10wt%, with the balance substantially
A silicon steel slab having a Fe composition was heated at 1420 ° C. for 20 minutes, and then hot-rolled into a hot-rolled sheet having a thickness of 2.0 mm. This hot-rolled sheet was heated at 1050 ° C. for 2 minutes, rapidly cooled by mist injection, and then cold-rolled to a finish of 0.23 mm. After this cold rolling, decarburization and primary recrystallization annealing were performed at 830 ° C. for 3 minutes in an atmosphere of H 2 55% -N 2 45% and a dew point of 65 ° C. A large number of test pieces were cut out from this plate, and an annealing separator was applied in a slurry state and dried. As the annealing separator at this time, MgO having various properties shown in Table 2 was used, and SrSO 4 : 1% and MnO 2 : 1.5% as additives.
Was added to each. The steel sheet coated with the annealing separator was subjected to finish annealing at 1200 ° C. for 10 hours in an H 2 atmosphere.

【0030】[0030]

【表2】 [Table 2]

【0031】かくして得られた製品の被膜外観、被膜密
着性及び磁気特性を表2に併記する。平均粒子径及び被
膜密着性の測定は、実施例1と同様である。表2から明
らかなように、適合例においては、外観、密着性とも良
好で、磁気特性も優れた製品が得られている。
The appearance, adhesion and magnetic properties of the film of the product thus obtained are also shown in Table 2. The measurement of the average particle diameter and the coating adhesion is the same as in Example 1. As is clear from Table 2, in the applicable example, a product having good appearance and adhesion and excellent magnetic properties is obtained.

【0032】[0032]

【発明の効果】この発明の一方向性けい素鋼板の製造方
法は、焼鈍分離剤の成分としてのMgOとして、くえん酸
活性度が、最終反応率40%の条件で100 〜400 秒、最終
反応率80%の条件で1000〜4000秒であり、しかも水和水
分量が、20℃,60分間の条件で2.5 %以下であり、さら
に平均粒子径が2.5 μm 以下でかつ325 メッシュの不通
過分が5%以下であるものを用いることにより、Al及び
Sbを含有する成分系の鋼板の製造において均一で密着性
の優れた被膜を有し、かつ磁気特性の優れた製品を安定
して得ることができる。
According to the method for producing a grain-oriented silicon steel sheet of the present invention, as the MgO as a component of the annealing separator, the citric acid activity is 100 to 400 seconds at a final reaction rate of 40%, and the final reaction rate is 40%. It is 1000-4000 seconds under the condition of 80%, and the hydrated water content is 2.5% or less under the condition of 20 ° C. for 60 minutes, and the average particle diameter is 2.5 μm or less and 325 mesh is not passed. Is 5% or less by using Al and
In the production of an Sb-containing steel sheet, a product having a uniform and excellent adhesion film and excellent magnetic properties can be stably obtained.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si:2.5 〜4.0 wt%、酸可溶性Al:0.01
〜0.05wt%及びSb:0.01〜0.20wt%を含有するけい素鋼
スラブを熱間圧延し、次いで熱延板焼鈍及び1回又は中
間焼鈍を挟む2回の冷間圧延を施して最終板厚とした
後、脱炭・1次再結晶焼鈍を施し、次いでMgO を主成分
とする焼鈍分離剤を塗布した後、仕上焼鈍を施す一連の
製造工程からなる一方向性けい素鋼板の製造方法におい
て、 焼鈍分離剤成分のMgO は、くえん酸活性度が、最終反応
率40%の条件で100 〜400 秒、最終反応率80%の条件で
1000〜4000秒であり、しかも水和水分量が、20℃,60分
間の条件で2.5 %以下であり、さらに平均粒子径が2.5
μm 以下でかつ325 メッシュの不通過分が5%以下であ
ることを特徴とする被膜特性及び磁気特性に優れた一方
向性けい素鋼板の製造方法。
1. Si: 2.5-4.0 wt%, acid-soluble Al: 0.01
A hot rolled silicon steel slab containing 0.050.05 wt% and Sb: 0.01-0.20 wt%, and then subjected to hot rolled sheet annealing and cold rolling twice, once or once with intermediate annealing And then subjecting it to decarburization / primary recrystallization annealing, then applying an annealing separator containing MgO as a main component, and then performing finish annealing. The MgO of the annealing separator component has a citric acid activity of 100-400 seconds at a final reaction rate of 40% and a final reaction rate of 80%.
1000 to 4000 seconds, and the hydrated water content is 2.5% or less at 20 ° C. for 60 minutes, and the average particle size is 2.5% or less.
A method for producing a grain-oriented silicon steel sheet having excellent coating properties and magnetic properties, characterized in that the thickness is not more than μm and the non-passage of 325 mesh is not more than 5%.
JP19207492A 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties Expired - Lifetime JP2650817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19207492A JP2650817B2 (en) 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19207492A JP2650817B2 (en) 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties

Publications (2)

Publication Number Publication Date
JPH0633138A JPH0633138A (en) 1994-02-08
JP2650817B2 true JP2650817B2 (en) 1997-09-10

Family

ID=16285205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19207492A Expired - Lifetime JP2650817B2 (en) 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties

Country Status (1)

Country Link
JP (1) JP2650817B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169853A1 (en) 2016-03-30 2017-10-05 タテホ化学工業株式会社 Magnesium oxide for annealing separator, and grain-oriented electromagnetic steel sheet
US11001907B2 (en) 2016-03-30 2021-05-11 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
US11566297B2 (en) 2016-03-30 2023-01-31 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
US11591232B2 (en) 2016-03-30 2023-02-28 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088241A (en) * 1996-09-11 1998-04-07 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in film characteristic
KR100946069B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
JP4698448B2 (en) * 2006-03-13 2011-06-08 新日本製鐵株式会社 MgO for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with excellent magnetic properties and glass coating properties using the same
KR100762436B1 (en) * 2006-10-18 2007-10-02 주식회사 포스코 Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same
KR101762341B1 (en) 2015-12-18 2017-07-27 주식회사 포스코 Annealing separating agent for oriented electrical steel, oriented electrical steel, and method for manufacturing oriented electrical steel
JP7181441B1 (en) 2021-03-31 2022-11-30 タテホ化学工業株式会社 Magnesium oxide for annealing separator and grain-oriented electrical steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169853A1 (en) 2016-03-30 2017-10-05 タテホ化学工業株式会社 Magnesium oxide for annealing separator, and grain-oriented electromagnetic steel sheet
US11001907B2 (en) 2016-03-30 2021-05-11 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
US11097955B2 (en) 2016-03-30 2021-08-24 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separator, and grain-oriented electromagnetic steel sheet
US11566297B2 (en) 2016-03-30 2023-01-31 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
US11591232B2 (en) 2016-03-30 2023-02-28 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet

Also Published As

Publication number Publication date
JPH0633138A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2007239009A (en) Method for manufacturing grain-oriented silicon steel sheet
JP2009270129A (en) Grain-oriented electrical steel sheet excellent in magnetic properties and adhesiveness of film, and manufacturing method therefor
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2650817B2 (en) Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties
JP2005290446A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and in characteristics of coating
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP3301629B2 (en) Method for producing oriented silicon steel sheet having metallic luster and excellent magnetic properties
JP2006503189A (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JPH06192743A (en) Production of grain-oriented silicon steel sheet excellent in film property and magnetic property
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JP2002194445A (en) Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
KR100544615B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
WO2024162442A1 (en) Method for producing grain-oriented electrical steel sheet
US20220228232A1 (en) Oriented electrical steel sheet and manufacturing method therefor
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP2003268452A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with adequate magnetic property and mirror plane