JP2009270129A - Grain-oriented electrical steel sheet excellent in magnetic properties and adhesiveness of film, and manufacturing method therefor - Google Patents

Grain-oriented electrical steel sheet excellent in magnetic properties and adhesiveness of film, and manufacturing method therefor Download PDF

Info

Publication number
JP2009270129A
JP2009270129A JP2008118705A JP2008118705A JP2009270129A JP 2009270129 A JP2009270129 A JP 2009270129A JP 2008118705 A JP2008118705 A JP 2008118705A JP 2008118705 A JP2008118705 A JP 2008118705A JP 2009270129 A JP2009270129 A JP 2009270129A
Authority
JP
Japan
Prior art keywords
film
steel sheet
annealing
electrical steel
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118705A
Other languages
Japanese (ja)
Other versions
JP5130488B2 (en
Inventor
Yuji Kubo
祐治 久保
Kenichi Murakami
健一 村上
Hidekazu Nanba
英一 難波
Satoshi Arai
聡 新井
Hodaka Honma
穂高 本間
Norisato Morishige
宣郷 森重
Kazusane Mizukami
和実 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008118705A priority Critical patent/JP5130488B2/en
Publication of JP2009270129A publication Critical patent/JP2009270129A/en
Application granted granted Critical
Publication of JP5130488B2 publication Critical patent/JP5130488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain-oriented electrical steel sheet to be used for an iron core material in electrical machinery and apparatus, which has both of high magnetic properties and an excellent adhesiveness of the film, shows acid resistance even when the forsteritic film is thinned, and can be industrially stably manufactured, and to provide a manufacturing method therefor. <P>SOLUTION: The grain-oriented electrical steel sheet excellent in the magnetic properties and the adhesiveness of the film contains 2 to 5 mass% Si, has the forsteritic film on its surface, and has saturation magnetic flux density B<SB>8</SB>of 1.90 T or more. The forsteritic film contains one or two of Ce and La, and has a color of 1.0 or more but less than 7.0 in terms of yellow degree b<SP>*</SP>in a L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color coordinate system. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、変圧器等の静止誘導器に使用される一方向性電磁鋼板に関する。特に、未反応焼鈍分離剤を除去する時の酸洗に対する耐性のある均一で密着性に優れた被膜と、優れた磁気特性を安定的に有する一方向性電磁鋼板に関する。   The present invention relates to a unidirectional electrical steel sheet used for a static inductor such as a transformer. In particular, the present invention relates to a uniform and excellent adhesive film that is resistant to pickling when removing an unreacted annealing separator and a unidirectional electrical steel sheet that stably has excellent magnetic properties.

一方向性電磁鋼板は、主として、変圧器に代表される静止誘導器に使用される。その満たすべき特性としては、(1) 交流で励磁したときのエネルギー損失、即ち、鉄損(磁束密度1.7T、周波数50Hzのエネルギー損失W17/50で代表される)が小さいこと、(2) 機器の使用励磁域での透磁率が高く、容易に励磁できること、(3) 騒音の原因となる磁歪が小さいこと等があげられる。 Unidirectional electrical steel sheets are mainly used for static inductors represented by transformers. The characteristics to be satisfied are as follows: (1) Energy loss when excited by alternating current, that is, iron loss (represented by energy loss W 17/50 having a magnetic flux density of 1.7 T and a frequency of 50 Hz) is small (2 ) It has high permeability in the excitation range of equipment and can be excited easily. (3) The magnetostriction that causes noise is small.

特に (1) に関しては、変圧器が据え付けられてから廃棄されるまでの長期間にわたって、連続的に励磁され、エネルギー損失を発生し続けることから、変圧器の価値を表わす指標であるT.O.C.(Total Owning Cost)を決定する主要なパラメータとなる。   In particular, regarding (1), T. is an index representing the value of a transformer because it is continuously excited and generates energy loss over a long period from when the transformer is installed until it is discarded. O. C. This is the main parameter that determines (Total Owning Cost).

この一方向性電磁鋼板の鉄損を低減するために、今までに、多くの開発がなされてきた。即ち、(1) ゴス方位と呼ばれる{110}<001>方位への集積を高めること、(2) 電気抵抗を高めるSi等の固溶元素の含有量を高めること、(3) 鋼板の板厚を薄くすること、(4) 鋼板に面張力を与えるセラミック被膜や絶縁被膜を付与すること、(5) 結晶粒の大きさを小さくすること、および、(6) 線状に歪や溝を導入することにより、磁区を細分化すること、等である。   Many developments have been made so far in order to reduce the iron loss of the unidirectional electrical steel sheet. That is, (1) Increasing accumulation in the {110} <001> orientation called Goss orientation, (2) Increasing the content of a solid solution element such as Si that increases electrical resistance, (3) Plate thickness of the steel plate (4) Applying a ceramic coating or insulating coating that imparts surface tension to the steel sheet, (5) Reducing the size of crystal grains, and (6) Introducing strain and grooves in a linear shape By subdividing the magnetic domain.

磁束密度向上のための典型的な技術のひとつに、特許文献1に開示されている製造方法が挙げられる。これは、AlNとMnSを、結晶粒成長を抑制するインヒビターとして機能させ、最終冷延工程における圧下率を80%を超える強圧下とする製造方法である。   One of typical techniques for improving the magnetic flux density is a manufacturing method disclosed in Patent Document 1. This is a manufacturing method in which AlN and MnS function as an inhibitor that suppresses crystal grain growth, and the rolling reduction in the final cold rolling step is over 80%.

この方法により、{110}<001>方位への結晶粒の方位集積度が高まり、B8(励磁力800A/mにおける磁束密度)が1.870T以上の高磁束密度を有する方向性電磁鋼板が得られる。 By this method, the orientational degree of crystal grains in the {110} <001> orientation is increased, and a grain-oriented electrical steel sheet having a high magnetic flux density of B 8 (magnetic flux density at an excitation force of 800 A / m) of 1.870 T or more is obtained. can get.

特に、最近は、省エネルギーの見地から電力損失低減の要求が高まっており、この要求に応えるための鉄損低減の手段として、方向性電磁鋼板の磁束密度を高くすることが望まれていることから、更に、磁束密度を向上させる技術として、例えば、特許文献2では、溶鋼に、100〜5000g/TのBiを添加する方法が開示され、B8が1.95T以上の製品が得られている。 In particular, recently, there is an increasing demand for reducing power loss from the viewpoint of energy saving, and it is desired to increase the magnetic flux density of grain-oriented electrical steel sheets as a means of reducing iron loss to meet this demand. Furthermore, as a technique for improving the magnetic flux density, for example, Patent Document 2 discloses a method of adding 100 to 5000 g / T Bi to molten steel, and a product having B 8 of 1.95 T or more is obtained. .

このような方向性電磁鋼板は、通常、表層に、フォルステライト(Mg2SiO4)を主成分とした絶縁被膜(以下、この被膜全体をフォルステライト質被膜とする)を有している。これは、脱炭焼鈍を行った際に、表層に形成されるSi酸化物と、コイル焼鈍する際に、鋼板同士の融着を阻止するために塗布したMgOを主成分とする焼鈍分離剤とが、仕上焼鈍工程中に、2MgO+SiO2→Mg2SiO4という固相反応を起こすことによって形成される。 Such grain-oriented electrical steel sheets usually have an insulating coating (hereinafter, the entire coating is referred to as a forsterite coating) mainly composed of forsterite (Mg 2 SiO 4 ) on the surface layer. This is because, when performing decarburization annealing, the Si oxide formed on the surface layer, and the annealing separator mainly composed of MgO applied to prevent fusion between the steel plates when coil annealing is performed. However, it is formed by causing a solid phase reaction of 2MgO + SiO 2 → Mg 2 SiO 4 during the finish annealing process.

この被膜は、方向性電磁鋼板に絶縁性を付与することに加えて、被膜と鋼板の熱膨張係数の差、および、被膜の弾性率に基づき発生する熱応力により、鋼板に張力を引加し、鉄損を低下せしめる効果を有する。   In addition to imparting insulation to the grain-oriented electrical steel sheet, this film applies tension to the steel sheet due to the difference in thermal expansion coefficient between the film and the steel sheet and the thermal stress generated based on the elastic modulus of the film. , Has the effect of reducing iron loss.

AlNインヒビターを使用した方向性電磁鋼板の場合、鋼中のAlNが高温で溶解して生じたAlと、鋼板表面のMg2SiO4とが置換反応を起して、一部、MgAl24が生成するが、このMg2AlO4も、張力付与に寄与する。 In the case of a grain-oriented electrical steel sheet using an AlN inhibitor, Al produced by the dissolution of AlN in the steel at a high temperature and Mg 2 SiO 4 on the steel sheet surface undergo a substitution reaction, and partly MgAl 2 O 4 This Mg 2 AlO 4 also contributes to the application of tension.

さらに、上記被膜は、均一で欠陥がなく、かつ、せん断、打ち抜き、および、曲げ加工に耐え得る密着性の優れた被膜であることが要求されており、このような、被膜の特性改善に対しては、焼鈍分離剤にTi化合物を含有させる技術が、数多く開示されている。   Furthermore, the coating film is required to be a uniform and defect-free film with excellent adhesion that can withstand shearing, punching, and bending. In this regard, a number of techniques for incorporating a Ti compound into an annealing separator have been disclosed.

例えば、特許文献3には、Mg化合物100重量部に対し、Ti化合物を、2〜40重量部配合することにより、また、特許文献4には、重質低活性MgO100重量部に対し、2〜20重量部のTiO2を混合することにより、フォルステライト質被膜の均一性と密着性が向上することが開示されている。 For example, Patent Document 3 contains 2 to 40 parts by weight of the Ti compound with respect to 100 parts by weight of the Mg compound, and Patent Document 4 discloses 2 to 2 parts by weight with respect to 100 parts by weight of the heavy low activity MgO. It is disclosed that the uniformity and adhesion of a forsterite film is improved by mixing 20 parts by weight of TiO 2 .

しかしながら、これらの被膜特性と高磁気特性を工業的に両立させる技術は、充分に確立していない。   However, a technique for industrially satisfying these film characteristics and high magnetic characteristics has not been sufficiently established.

また、電磁鋼板を鉄心として積層したときに、高い占積率を得るために、表面が平滑であること、また、フォルステライト質被膜には、厚さも薄いことが望まれる。   In addition, in order to obtain a high space factor when electromagnetic steel sheets are laminated as an iron core, it is desired that the surface is smooth and that the forsterite film is thin.

表面を平滑にするためには、仕上焼鈍の終了後に、未反応の焼鈍分離剤の固着残りがないように、未反応の焼鈍分離剤をきれいに除去することが重要になる。このため、洗浄除去性に優れた焼鈍分離剤も、多く提案されているが、工業的には、水をかけながら、ブラシを用いて機械的に固着分をこすり落としたり、さらには、薄い酸を利用して、MgOの溶解除去を行なうのが通常である。   In order to smooth the surface, it is important to cleanly remove the unreacted annealing separator so that no unreacted annealing separator remains after the finish annealing. For this reason, many annealing separators with excellent cleaning and removing properties have been proposed. However, industrially, the adhesive is mechanically scraped off with a brush while applying water, and a thin acid is further removed. Usually, MgO is dissolved and removed by using the above-mentioned.

特に、非磁性層であるフォルステライト被膜の厚さを、例えば、片面あたりの酸素目付量0.9〜1.2g/m2程度に薄くして、実質的な磁気特性を高めようとする場合、フォルステライト質被膜に欠陥が多く入り易いため、この酸洗工程で、鉄酸化物を形成し、被膜外観不良や密着性劣化を引き起こしたり、この後に、絶縁層としてリン酸アルミニウムとコロイダルシリカを主成分とするスラリーを塗布して焼付ける際に、反応層が生じて、被膜密着性が劣化するという課題があった。 In particular, when the thickness of the forsterite film, which is a non-magnetic layer, is reduced to, for example, about 0.9 to 1.2 g / m 2 per unit area of oxygen to improve substantial magnetic properties. In this pickling process, iron oxide is formed in the forsterite film because it tends to contain many defects. This causes poor coating appearance and poor adhesion. After this, aluminum phosphate and colloidal silica are used as an insulating layer. When applying and baking the slurry as the main component, there was a problem that a reaction layer was formed and the film adhesion deteriorated.

特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特開平06−88171号公報Japanese Patent Laid-Open No. 06-88171 特公昭51−12451号公報Japanese Patent Publication No.51-12451 特公昭49−29049号公報Japanese Patent Publication No.49-29049 特開平8−269552号公報JP-A-8-269552 特開平8−295937号公報JP-A-8-295937 特開平9−118921号公報Japanese Patent Laid-Open No. 9-118921 特開平6−179977号公報Japanese Patent Laid-Open No. 6-179777 特開平8−291390号公報JP-A-8-291390 特開平9−184017公報JP-A-9-184017

本発明は、電気機器鉄心材料として使用する方向性電磁鋼板において、良好な磁気特性と優れた被膜密着性を両立させるとともに、フォルステライト質被膜を薄膜化した場合においても、耐酸性を有し、かつ、工業的に安定して製造することが可能な方向性電磁鋼板と、その製造方法を提供することを課題とする。   In the grain-oriented electrical steel sheet used as the electrical equipment iron core material, the present invention achieves both good magnetic properties and excellent film adhesion, and has acid resistance even when the forsterite film is thinned, And it aims at providing the grain-oriented electrical steel sheet which can be manufactured industrially stably, and its manufacturing method.

本発明は上記課題を解決するため、その要旨とするところは、以下の通りである。   In order to solve the above problems, the present invention has the following gist.

(1)質量%で、Si:2〜5%を含有し、鋼板の表面にフォルステライト被膜を有する、飽和磁束密度B8が1.90T以上の一方向性電磁鋼板であって、該フォルステライト質被膜が、CeまたはLaの1種または2種を含有し、かつ、該フォルステライト質被膜の色が、L***系表色系色座標の黄色度b*で1.0以上7.0未満であることを特徴とする磁気特性および被膜密着性に優れた一方向性電磁鋼板。 (1) A unidirectional electrical steel sheet containing, by mass%, Si: 2 to 5%, having a forsterite film on the surface of the steel sheet and having a saturation magnetic flux density B 8 of 1.90 T or more, The material film contains one or two of Ce and La, and the color of the forsterite film is 1.0 or more in terms of yellowness b * of L * a * b * color system color coordinate A unidirectional electrical steel sheet excellent in magnetic properties and coating adhesion, characterized by being less than 7.0.

(2)質量%で、C:0.02〜0.10%、Si:2〜5%、酸可溶性Al:0.010〜0.065%、N:0.003〜0.0150%、SおよびSeのうちから選んだ1種または2種の合計:0.001〜0.040%、Mn:0.02〜0.30%を含有し、残部がFeおよび不可避的不純物からなるスラブを、1280℃以上の温度に加熱し、熱延を行い、焼鈍を施し、酸洗を実施した後、一回または焼鈍を挟んだ二回の冷間圧延を施し、次いで、脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を塗布して、最終仕上焼鈍を施し、一方向性電磁鋼板を製造する製造方法において、MgOを主成分とする焼鈍分離剤の中に、Ti化合物を、MgO質量に対して、TiO2換算で1〜10%、Ce化合物およびLa化合物の1種または2種を、MgO質量に対して、(Ce+La)換算で0.5〜10%添加し、最終仕上焼鈍工程でのコイル昇温速度を、850〜T℃(T=950〜1050)までは13〜50℃/h、T〜1150℃までは3〜13℃/h未満とすることを特徴とする磁気特性および被膜密着性に優れた方向性電磁鋼板の製造方法。 (2) By mass%, C: 0.02-0.10%, Si: 2-5%, acid-soluble Al: 0.010-0.065%, N: 0.003-0.0150%, S And a total of one or two selected from Se: 0.001 to 0.040%, Mn: 0.02 to 0.30%, and the balance comprising Fe and inevitable impurities, After heating to a temperature of 1280 ° C. or higher, performing hot rolling, annealing, pickling, then performing cold rolling twice or once with annealing, followed by decarburization annealing, MgO In the manufacturing method for producing a unidirectional electrical steel sheet by applying an annealing separator having a main component, and performing final finish annealing, the Ti compound is added to the MgO mass in the annealing separator having the main component MgO. respect, 1-10% in terms of TiO 2, one of Ce compound and La compound Alternatively, two types are added in an amount of 0.5 to 10% in terms of (Ce + La) with respect to the mass of MgO, and the coil heating rate in the final finish annealing step is from 850 to T ° C. (T = 950 to 1050). Is 13 to 50 ° C./h, and T to 1150 ° C. is less than 3 to 13 ° C./h. A method for producing a grain-oriented electrical steel sheet excellent in magnetic properties and film adhesion.

(3)前記MgOを主成分とする焼鈍分離剤の中に、硫酸塩を、MgO質量に対して、S換算で0.1〜1%添加することを特徴とする前記(2)に記載の磁気特性および被膜密着性に優れた方向性電磁鋼板の製造方法。   (3) In the annealing separator having MgO as a main component, 0.1 to 1% of sulfate is added in terms of S with respect to the mass of MgO, as described in (2) above A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating adhesion.

(4)前記スラブが、さらに、質量%で、0.0005〜0.0200%のBiを含有することを特徴とする前記(2)または(3)に記載の磁気特性および被膜密着性に優れた方向性電磁鋼板の製造方法。   (4) The slab further contains 0.0005 to 0.0200% Bi in mass%, and is excellent in magnetic properties and film adhesion as described in (2) or (3) above A method for producing a grain-oriented electrical steel sheet.

本発明は、電気機器鉄心材料として使用する方向性電磁鋼板において、その製造工程で、MgOを主成分とした焼鈍分離剤の中に、Ti化合物およびCe化合物、または、La化合物の1種または2種を、適正量加えるとともに、最終仕上焼鈍工程でのコイル昇温速度を850〜T℃(T=950〜1050)までは13〜50℃/h、T〜1150℃までは3〜13℃/hとする二段階熱処理を行うことにより、磁気特性および被膜密着性、さらに、被膜外観に優れた方向性電磁鋼板を提供することができる。   In the grain-oriented electrical steel sheet used as an electrical equipment iron core material, the present invention includes a Ti compound and a Ce compound, or one or two La compounds in an annealing separator mainly composed of MgO in the production process. While adding an appropriate amount of seeds, the coil heating rate in the final finish annealing step is 13-50 ° C / h until 850-T ° C (T = 950-1050), and 3-13 ° C / h until T-1150 ° C. By performing the two-stage heat treatment for h, it is possible to provide a grain-oriented electrical steel sheet that is excellent in magnetic properties and coating adhesion, and further in coating appearance.

また、本発明によれば、焼鈍分離剤への添加剤として、さらに、硫酸塩を用いることにより、被膜特性を、さらに向上させることができるとともに、スラブ中にBiを添加し、磁気特性をより向上させた場合においても、優れた被膜密着性と外観の両立を可能にすることができる。したがって、本発明の効果は、産業上甚大なものである。   In addition, according to the present invention, the coating properties can be further improved by using sulfate as an additive to the annealing separator, and Bi can be added to the slab to further improve the magnetic properties. Even in the case of improvement, it is possible to achieve both excellent film adhesion and appearance. Therefore, the effect of the present invention is very large in industry.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、均一で被膜欠陥の少ない被膜を形成し、良好な被膜密着性と高磁束密度を有する方向性電磁鋼板を製造する技術を開発するため、焼鈍分離剤への添加剤と、仕上焼鈍条件という観点で、以下の実験を行なった。   In order to develop a technology for producing a grain-oriented electrical steel sheet having a uniform coating film with few coating defects and having good film adhesion and high magnetic flux density, the present inventors have added an additive to the annealing separator, The following experiment was conducted from the viewpoint of finish annealing conditions.

真空溶解炉にて、質量%で、C:0.08%、Si:3.25%、Al:0.03%、N:0.008%、S:0.028%、Mn:0.08%の成分組成を有する鋼塊を作製し、1350℃にて1時間の加熱後、熱延を実施した。板厚2.2mmの熱延板に、1140℃、120秒の焼鈍を施し、酸洗を施した後、冷間圧延を実施し、板厚0.22mmの冷延板とした。   In a vacuum melting furnace, by mass, C: 0.08%, Si: 3.25%, Al: 0.03%, N: 0.008%, S: 0.028%, Mn: 0.08 A steel ingot having a component composition of% was prepared, heated at 1350 ° C. for 1 hour, and then hot rolled. A hot-rolled sheet having a thickness of 2.2 mm was annealed at 1140 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.22 mm.

さらに、上記冷延板に、湿水素中で、850℃、100秒の脱炭焼鈍を施し、焼鈍分離剤として、MgOに、MgO質量に対して5%のTiO2を添加した焼鈍分離剤と、さらに、MgOに対して、Ce換算で2%のCeO2を添加した2種類の焼鈍分離剤を水スラリーにて塗布し、種々の加熱条件で仕上焼鈍を実施した。 Further, the cold-rolled sheet was subjected to decarburization annealing at 850 ° C. for 100 seconds in wet hydrogen, and an annealing separator having 5% TiO 2 added to MgO to MgO as an annealing separator. Furthermore, two types of annealing separators with 2% CeO 2 added in terms of Ce to MgO were applied in water slurry, and finish annealing was performed under various heating conditions.

このとき、形成されるフォルステライト質被膜の片面あたりの酸素目付量を1.2g/m2程度になるように、脱炭焼鈍の湿水素条件を調整した。 At this time, the wet hydrogen conditions for the decarburization annealing were adjusted so that the amount of oxygen per one side of the forsterite film formed was about 1.2 g / m 2 .

その後、得られた鋼板を水洗して、未反応焼鈍分離剤を除去した。条件によって、表層フォルステライト質被膜の色が異なっていたことから、ミノルタ製CM2500−d色彩色差計を用いて、被膜の色を測定した。その後、鋼板を、単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とする絶縁膜形成用組成液を塗布し、焼付し、磁束密度B8と、被膜密着性を評価した。   Thereafter, the obtained steel sheet was washed with water to remove the unreacted annealing separator. Since the color of the surface forsterite film was different depending on the conditions, the color of the film was measured using a Minolta CM2500-d color difference meter. Thereafter, the steel plate was sheared to a single plate magnetic measurement size, an insulating film forming composition liquid mainly composed of aluminum phosphate and colloidal silica was applied and baked, and magnetic flux density B8 and film adhesion were evaluated. .

ここで、B8は、50Hzにて800A/mの磁場を付与したときの磁束密度の値であり、高い方が好ましい。被膜密着性は、10mmφの曲率にて曲げ試験を実施した際の被膜残存率であり、高い方が好ましい。評価は、B8≧1.90T、かつ、皮膜残存率90%以上のものを良好と判定した。 Here, B 8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz, and a higher value is preferable. The film adhesion is a film remaining rate when a bending test is performed with a curvature of 10 mmφ, and a higher one is preferable. In the evaluation, B 8 ≧ 1.90T and a film remaining rate of 90% or more were determined to be good.

また、一部の鋼板については、水洗後、70℃の5%HCl水溶液に30秒浸漬して、乾燥した後、外観を観察し、赤錆等の被膜の変質がないものを、酸洗後の表面性状が良好なものと判定した。   Some steel plates were washed with water, immersed in a 5% HCl aqueous solution at 70 ° C. for 30 seconds, dried, then observed for appearance, and those with no coating deterioration such as red rust were washed. It was determined that the surface properties were good.

仕上焼鈍は、窒素75%−水素25%含有雰囲気で、850℃まで50℃/hにて昇温し、その後、850℃から1200℃までの昇温速度を、表1のA〜Eに示すように、5〜25℃/hの範囲で変更し、さらに、F〜Jに示すように、15℃/hから10℃/hへ昇温速度を切り替え、その切り替え温度を、925〜1075℃とした。また、温度が1200℃に到達した後は、水素100%中20時間で、保定焼鈍した。   In the finish annealing, the temperature is increased from 850 ° C. to 50 ° C./h in an atmosphere containing 75% nitrogen and 25% hydrogen, and then the temperature increase rate from 850 ° C. to 1200 ° C. is shown in A to E of Table 1. Thus, the temperature is changed in the range of 5 to 25 ° C./h, and further, as shown in F to J, the heating rate is switched from 15 ° C./h to 10 ° C./h, and the switching temperature is changed to 925 to 1075 ° C. It was. Further, after the temperature reached 1200 ° C., the holding annealing was performed in 100% hydrogen for 20 hours.

表1に結果を示す。仕上焼鈍の加熱速度を変更したA〜Eにおいては、加熱速度10℃/h以下でB8≧1.90Tとなり、磁束密度は良好となる。しかしながら、10℃/h以下でTiO2のみの添加では、被膜密着性は劣化し、酸洗後の表面性状も不良であることから、磁束密度と被膜密着性の双方を両立させる条件は存在しなかった。 Table 1 shows the results. In A to E in which the heating rate of the finish annealing is changed, B 8 ≧ 1.90 T at a heating rate of 10 ° C./h or less, and the magnetic flux density is good. However, when only TiO 2 is added at 10 ° C./h or less, the film adhesion deteriorates and the surface properties after pickling are also poor, so there is a condition for achieving both the magnetic flux density and the film adhesion. There wasn't.

また、CeO2を添加すると、被膜密着性は改善されるものの、酸洗後の表面性状は、不良なままであった。15℃/hから10℃/hへの切り替え温度を変更したF〜Jにおいては、切り替え温度T=950〜1050℃であるG、H、Iにおいて、B8≧1.90Tで、かつ、被膜残存率90%が両立し、高磁束密度および良好な被膜密着性が両立することが解る。 Further, when CeO 2 was added, the film adhesion was improved, but the surface properties after pickling remained poor. In F to J in which the switching temperature from 15 ° C./h to 10 ° C./h is changed, B 8 ≧ 1.90 T in G, H, and I where the switching temperature T = 950 to 1050 ° C. It can be seen that the residual rate of 90% is compatible, and high magnetic flux density and good film adhesion are compatible.

但し、TiO2のみ添加のものでは、酸洗後の表面性状は不十分であったが、CeO2を添加したものは、良好であることも解った。 However, the surface properties after pickling were insufficient when only TiO 2 was added, but it was also found that those with CeO 2 added were good.

特に、酸洗後の表面性状の良好なものは、いずれも、フォルステライト質被膜が黄色をしており、色彩色差計を用いて、反射物体の三刺激値X、Y、Z(JIS Z 8722(1982))を測定し、JIS Z 8729(1980)に規定されているうちのL***表色を行ったところ、いずれも、色座標の黄色度b*が1.0より大きいものが、酸洗に対する耐性が良いことが判明した。 In particular, in all of the good surface properties after pickling, the forsterite film has a yellow color, and the tristimulus values X, Y, and Z (JIS Z 8722) of the reflective object are measured using a color difference meter. (1982)) was measured, and the L * a * b * color specification specified in JIS Z 8729 (1980) was performed. In any case, the yellowness b * of the color coordinates was greater than 1.0. The product was found to have good resistance to pickling.

この黄色を呈するフォルステライト質被膜のX線回折測定から、被膜中にTiNが存在することが確認されたが、得られるb*値と、TiNのX線回折ピーク強度やTi目付量との間に、明確な相関は得られなかった。 X-ray diffraction measurement of this yellow forsterite coating confirmed that TiN was present in the coating. Between the obtained b * value and the TiN X-ray diffraction peak intensity and Ti basis weight, However, no clear correlation was obtained.

例えば、化学分析により、表1のH1およびH2のTi目付量とN目付量を測定したところ、H1は、それぞれ、片面あたり0.158g/m2、0.061g/m2、H2は0.123g/m2、0.051g/m2と、黄色度が高い方が、必ずしも、TiやN量が高いわけではなかった。 For example, by chemical analysis, measurement of the Ti basis weight and N basis weight of the H1 and H2 of Table 1, H1, each, per side 0.158g / m 2, 0.061g / m 2, H2 0. 123 g / m 2, and 0.051 g / m 2, the higher yellowness is necessarily did not mean high Ti and N content.

その原因は明確ではないが、TiNは、化学量論組成の場合に金色を呈するのに対し、TiNの面心立方結晶格子内に、過剰のNやOが入り込むと、茶色に変色していき、黄色度が低下することから、化学量論的なTiNを形成しているかどうか、および、TiNの被膜中存在比率が、b*を決定するにあたり重要であると考えられる。 Although the cause is not clear, TiN exhibits a golden color in the case of a stoichiometric composition, whereas when excessive N or O enters the face-centered cubic crystal lattice of TiN, it will turn brown. Since the yellowness decreases, it is considered that whether or not the stoichiometric TiN is formed and the abundance ratio of TiN in the coating are important in determining b * .

被膜中のTiN形成は、単純に、添加剤のTiO2と仕上焼鈍雰囲気中のN2との反応では形成されない。このことは、未反応焼鈍分離剤中にはTiNが観察されず、TiO2が還元されて生じたTi23とMgOとの複合酸化物であるMgTi24が観察されることからも解る。つまり、TiNの生成には、TiO2のTiまでの還元と、活性なNとの反応が必要である。 TiN formation in the coating is not simply formed by reaction of the additive TiO 2 with N 2 in the finish annealing atmosphere. This is because TiN is not observed in the unreacted annealing separator, and MgTi 2 O 4 which is a composite oxide of Ti 2 O 3 and MgO generated by reduction of TiO 2 is observed. I understand. That is, the formation of TiN requires reduction of TiO 2 to Ti and reaction with active N.

TiO2をTiまで還元するためには、非常に酸化されやすい金属による脱酸反応が有効であり、AlNインヒビターが高温で鋼中に固溶して形成される鋼中のAlは、その候補である。つまり、表層に拡散してきたAlが地鉄表面でTiO2の還元を起こす。または、FeとTiO2との間の平衡で鋼中に固溶するTiの影響も考えられる。 In order to reduce TiO 2 to Ti, a deoxidation reaction with a metal that is very easily oxidized is effective, and Al in steel formed by dissolving an AlN inhibitor in steel at a high temperature is a candidate. is there. In other words, Al diffused to the surface layer causes reduction of TiO 2 on the surface of the ground iron. Or the influence of Ti which dissolves in steel in the equilibrium between Fe and TiO 2 is also considered.

いずれにせよ、地鉄界面で形成されるTiとの反応によるために、TiN自身も、地鉄界面に存在すると思われ、実際に電子顕微鏡等で観察すると、TiNは、地鉄と接触して存在することが確認される。   In any case, due to the reaction with Ti formed at the iron-iron interface, TiN itself seems to exist at the iron-iron interface. When actually observed with an electron microscope, TiN is in contact with the iron It is confirmed that it exists.

このようなTiNは、α−Feとの格子整合性がよいことから密着性も高く、また、地鉄露出部を覆うことにより、耐酸性に効果があるという特徴を有すると考えられる。   Such TiN is considered to have a feature that it has high adhesion due to its good lattice matching with α-Fe, and has an effect of acid resistance by covering the exposed portion of the ground iron.

また、被膜を蛍光X線分析または化学分析することにより、被膜中に、CeやLaが存在することも確認されることから、フォルステライト質被膜に、TiやCe、Laが入り込み、カラーセンターとなって、黄色呈色の発現要因となっている、または、Ce、Laが鋼中Sと反応して形成するCeやLaの硫化物が、黄色呈色の発現要因となっている可能性も否定できない。   In addition, it is confirmed by the fluorescent X-ray analysis or chemical analysis of the coating that Ce and La are present in the coating. Therefore, Ti, Ce, and La enter the forsterite coating, Therefore, it is possible that yellow coloration is caused, or Ce and La sulfide formed by reaction of Ce and La with S in steel may cause yellow coloration. I can't deny it.

但し、いずれにせよ、黄色を呈するフォルステライト被膜であると、酸洗浄における被膜性状と、被膜密着性および磁気特性に優れることが確認され、フォルステライト質被膜の特性として、黄色度b*が、直接的な判断指標となる。 However, in any case, it is confirmed that the yellow forsterite film has excellent film properties in acid cleaning, film adhesion, and magnetic properties. As a characteristic of the forsterite film, the yellowness b * is It becomes a direct judgment index.

以上より、本発明者らは、TiO2とCeO2を含有する焼鈍分離剤を塗布した後に、仕上焼鈍加熱速度を、前半を比較的速くし、途中から緩昇温とすることにより、黄色度b*が高く、未反応焼鈍分離剤を除去する時の酸洗での耐性を有し、被膜密着性に優れ、かつ、磁気特性も両立できることを新規に知見し、本発明を完成させた。 From the above, the present inventors applied the annealing separator containing TiO 2 and CeO 2, and then set the finish annealing heating rate relatively fast in the first half and gradually increasing the temperature from the middle, thereby increasing the yellowness. The present inventors completed the present invention by newly discovering that b * is high, resistance to pickling when removing the unreacted annealing separator, excellent film adhesion, and magnetic properties can be achieved.

Figure 2009270129
Figure 2009270129

続いて、本発明における実施形態について、以下に説明する。   Subsequently, embodiments of the present invention will be described below.

まず、含有成分について詳細に説明する。なお、%は質量%を意味する。   First, the components contained will be described in detail. In addition,% means the mass%.

Siは、電気抵抗を高め、鉄損を下げる上で重要な元素である。含有量が5%を超えると、冷間圧延時に、材料が割れ易くなり、圧延不可能となる。一方、Si量を下げ過ぎると、電気抵抗が小さくなり、製品における鉄損が増加してしまうため、下限は2%とする。好ましい下限は2.5%であるが、さらに好ましい範囲は2.8〜3.5%である。   Si is an important element for increasing electrical resistance and reducing iron loss. When the content exceeds 5%, the material is easily broken during cold rolling, and rolling is impossible. On the other hand, if the Si amount is too low, the electrical resistance decreases and the iron loss in the product increases, so the lower limit is made 2%. A preferred lower limit is 2.5%, but a more preferred range is 2.8 to 3.5%.

Cの役割は、種々存在するが、少な過ぎると、スラブ加熱時の結晶粒径が大きくなり過ぎ、製品の鉄損が増加してしまう。また、多過ぎると、中間工程である脱炭焼鈍において、長時間の焼鈍を余儀なくされ、生産性が低下する。このため、下限は0.02%、上限は0.10%とする。この範囲内で、より適正な範囲は0.05〜0.09%である。   Although there are various roles of C, if it is too small, the crystal grain size at the time of slab heating becomes too large and the iron loss of the product increases. Moreover, when too much, in the decarburization annealing which is an intermediate process, long-time annealing will be forced and productivity will fall. Therefore, the lower limit is 0.02%, and the upper limit is 0.10%. Within this range, a more appropriate range is 0.05 to 0.09%.

酸可溶性AlとNは、結合して、インヒビターとして機能するAlNを形成させるために必須の元素である。酸可溶性Alの範囲は0.010〜0.065%、Nの範囲は0.003〜0.015%とする。これらの下限値未満では、AlNのインヒビターとしての機能が弱過ぎて、二次再結晶を生じず、一方、上限値を超えると、二次再結晶温度が高くなり過ぎて、二次再結晶不良を生じてしまう。この範囲で、より適正な量は、酸可溶性Alは0.020〜0.035%、Nは0.006〜0.010%である。   Acid-soluble Al and N are essential elements for bonding to form AlN that functions as an inhibitor. The range of acid-soluble Al is 0.010 to 0.065%, and the range of N is 0.003 to 0.015%. Below these lower limits, the function of AlN as an inhibitor is too weak and does not cause secondary recrystallization. On the other hand, when the upper limit is exceeded, the secondary recrystallization temperature becomes too high, resulting in poor secondary recrystallization. Will occur. In this range, the more appropriate amounts are 0.020 to 0.035% for acid-soluble Al and 0.006 to 0.010% for N.

Mnは、二次再結晶を左右するインヒビターと呼ばれるMnSおよび/またはMnSeを形成する重要な元素である。0.02%未満では、二次再結晶を生じさせるのに必要なMnSおよび/またはMnSeの絶対量が不足するので好ましくない。また、0.30%を超えた場合は、スラブ加熱時の固溶が困難になるばかりでなく、熱延時の析出サイズが粗大化し易く、インヒビターとしての最適サイズ分布が損なわれて、好ましくない。   Mn is an important element forming MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS and / or MnSe necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.30%, not only solid solution during slab heating becomes difficult, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

Sおよび/またはSeは、上述したMnと、MnSおよび/またはMnSeを形成する重要な元素であり、合計で0.001〜0.040%添加する。上記範囲を逸脱すると、充分なインヒビター効果が得られない。   S and / or Se is an important element that forms Mn and MnS and / or MnSe described above, and is added in a total amount of 0.001 to 0.040%. If it deviates from the above range, a sufficient inhibitor effect cannot be obtained.

AlN、MnS、および/または、MnSe以外のインヒビター構成元素として、Bi(特許文献5、参照)を添加することにより、高磁束密度を達成する技術が存在する。Biの範囲は、0.0005〜0.0200%である。下限値未満では、高磁束密度化に効果がなく、上限値を超えても、磁束密度向上効果は飽和するのみならず、被膜密着性の劣化を引き起こしてしまう。この範囲で、より適正な量は、0.0010〜0.0100%である。   There is a technique for achieving a high magnetic flux density by adding Bi (see Patent Document 5) as an inhibitor constituent element other than AlN, MnS, and / or MnSe. The range of Bi is 0.0005 to 0.0200%. If it is less than the lower limit, there is no effect in increasing the magnetic flux density. Even if the upper limit is exceeded, the effect of improving the magnetic flux density is not only saturated, but also the film adhesion is deteriorated. In this range, a more appropriate amount is 0.0010 to 0.0100%.

また、他のインヒビター構成元素として、Te、Cu、B、Pb、Mo、Sb、Sn、Ti、V等が存在するが、これらを添加しても構わない。   Moreover, Te, Cu, B, Pb, Mo, Sb, Sn, Ti, V, etc. exist as other inhibitor constituent elements, but these may be added.

続いて、各工程条件について述べる。   Subsequently, each process condition will be described.

上記のごとく成分組成を調整した方向性電磁鋼板製造用の溶鋼を、通常の方法で鋳造する。特に、鋳造方法に限定はない。次いで、通常の熱間圧延によって熱延コイルに圧延する。   The molten steel for producing grain-oriented electrical steel sheets with the component composition adjusted as described above is cast by a normal method. In particular, the casting method is not limited. Then, it is rolled into a hot rolled coil by ordinary hot rolling.

通常は、AlNと、MnSまたはMnSeのインヒビター成分を充分に溶体化するために、1280℃以上の高温でスラブ加熱を行う。スラブ加熱温度の上限は、特に規定しないが、1450℃以下であることが、設備対策上、好ましい。また、この範囲内で、より好ましい温度域は、1300℃以上であり、さらに、1330℃以上が、より適正である。   Usually, slab heating is performed at a high temperature of 1280 ° C. or higher in order to sufficiently dissolve AlN and an inhibitor component of MnS or MnSe. Although the upper limit of the slab heating temperature is not particularly defined, it is preferably 1450 ° C. or less from the viewpoint of equipment. Further, within this range, a more preferable temperature range is 1300 ° C. or higher, and 1330 ° C. or higher is more appropriate.

上述のスラブ片を、引き続く熱間圧延により、熱延板とする。この熱延板の板厚は、後述の冷間圧延率と関連するため、特に規定をするものではないが、通常1.8〜3.0mmとする。熱延板は、直ちに、または、短時間の焼鈍を経て冷間圧延される。この焼鈍は、750〜1200℃の温度域で30秒〜10分間行なわれ、製品の磁気特性を高めるために有効である。冷間圧延は、最終冷延圧下率80%以上95%以下で行なえばよい。さらに、焼鈍を挟み2回の冷間圧延を実施してもよい。   The above-mentioned slab piece is made into a hot-rolled sheet by subsequent hot rolling. The thickness of the hot-rolled sheet is not particularly specified because it is related to the cold rolling rate described later, but is usually 1.8 to 3.0 mm. The hot-rolled sheet is cold-rolled immediately or after being annealed for a short time. This annealing is performed in the temperature range of 750 to 1200 ° C. for 30 seconds to 10 minutes, and is effective for enhancing the magnetic properties of the product. Cold rolling may be performed at a final cold rolling reduction rate of 80% to 95%. Further, cold rolling may be performed twice with annealing.

脱炭焼鈍は、水素−窒素含有湿潤雰囲気中にて実施し、Cを、磁気時効劣化のない20ppm以下に低減し、同時に、冷延したストリップを一次再結晶させ、二次再結晶の準備をする。脱炭焼鈍に先立ち、前段で、特許文献6、7に開示されるように、80℃/sec以上の加熱速度で再結晶させることも、鉄損を向上させるために好ましい。この後、MgOを主成分とする焼鈍分離剤のスラリーを塗布し、コイル巻き取りを行う。   Decarburization annealing is performed in a hydrogen-nitrogen-containing wet atmosphere, C is reduced to 20 ppm or less without magnetic aging deterioration, and at the same time, the cold-rolled strip is subjected to primary recrystallization to prepare for secondary recrystallization. To do. Prior to decarburization annealing, it is preferable to recrystallize at a heating rate of 80 ° C./sec or more in the previous stage in order to improve iron loss. Then, the slurry of the annealing separator which has MgO as a main component is apply | coated, and coil winding is performed.

そして、巻き取ったコイルに、バッチ式の仕上焼鈍を施し、その後、巻きほどき、未反応焼鈍分離剤を除去した後、リン酸アルミニウムとコロイダルシリカを主成分とする絶縁膜形成用組成液を塗布して、焼付を行い、方向性電磁鋼板の製品を完成させる。   The wound coil is subjected to batch-type finish annealing, and then unwound to remove the unreacted annealing separator, and then an insulating film forming composition liquid mainly composed of aluminum phosphate and colloidal silica. Apply and bake to complete the product of grain-oriented electrical steel sheet.

前記仕上焼鈍は、方向性電磁鋼板の製造の上で最も重要な、良好な二次再結晶を発現させる工程であり、通常は、水素−窒素混合雰囲気にて実施する。850℃の焼鈍までは、生産性の観点から、20〜100℃/hの範囲で、比較的早く焼鈍するのが好ましい。   The finish annealing is a step of expressing good secondary recrystallization, which is most important in the manufacture of grain-oriented electrical steel sheets, and is usually performed in a hydrogen-nitrogen mixed atmosphere. From the viewpoint of productivity, it is preferable to anneal relatively quickly in the range of 20 to 100 ° C./h until annealing at 850 ° C.

引き続く850℃から1150℃までの温度域で、二次再結晶を発現させた後、1150〜1200℃の温度で20時間程度の焼鈍を実施し、N、SまたはSe等を、鋼板外に放散することにより、製品板の磁気特性を良好なものとする。   In the subsequent temperature range from 850 ° C. to 1150 ° C., secondary recrystallization was developed, followed by annealing at a temperature of 1150 to 1200 ° C. for about 20 hours, and N, S, Se, etc. were diffused outside the steel plate. As a result, the magnetic properties of the product plate are improved.

ここで、仕上焼鈍後のフォルステライト被膜の黄色度b*が1.0〜7.0の範囲になるようにするためには、焼鈍分離剤への添加剤として、Ti化合物が重要である。この場合、Ti化合物を、TiO2換算で1〜10%の範囲で添加することが望ましい。TiO2換算での添加量が1%未満であると、十分なb*を呈するためのTi供給が不足し、耐酸性や被膜密着性が得られない。 Here, in order for the yellowness b * of the forsterite film after finish annealing to be in the range of 1.0 to 7.0, a Ti compound is important as an additive to the annealing separator. In this case, the Ti compound, it is desirable to add in the range of 1-10% in terms of TiO 2. When the amount added in terms of TiO 2 is less than 1%, the supply of Ti for exhibiting sufficient b * is insufficient, and acid resistance and film adhesion cannot be obtained.

また、10%を超えると、Tiの鋼中への拡散により、製品板の鉄損特性が劣化するので、Ti化合物の添加量を、上記の範囲に限定する。より好ましい範囲は2〜8%、さらに好ましい範囲は3〜5%である。Ti化合物の形態としては、TiO2、Ti35、Ti23、TiO、Ti(OH)4等が挙げられる。 On the other hand, if it exceeds 10%, the iron loss characteristic of the product plate deteriorates due to diffusion of Ti into the steel, so the amount of Ti compound added is limited to the above range. A more preferable range is 2 to 8%, and a further preferable range is 3 to 5%. Examples of the form of the Ti compound include TiO 2 , Ti 3 O 5 , Ti 2 O 3 , TiO, and Ti (OH) 4 .

さらに、焼鈍分離剤中に、CeおよびLa化合物を、(Ce+La)換算で0.5〜10質量%含有させることも、フォルステライト被膜のb*を1.0〜7.0にするための必須要件である。0.5質量%未満では、十分なb*に到達せず、10%を超えると、逆に、b*が小さくなる。(Ce+La)換算として、好適には1〜8質量%、さらに好ましくは、1〜4質量%である。 In addition, it is essential to contain 0.5 to 10% by mass of Ce and La compound in terms of (Ce + La) in the annealing separator so that the b * of the forsterite film is 1.0 to 7.0. It is a requirement. If it is less than 0.5% by mass, sufficient b * is not reached, and if it exceeds 10%, conversely, b * becomes small. As (Ce + La) conversion, it is preferably 1 to 8% by mass, and more preferably 1 to 4% by mass.

CeおよびLaの機能は明確ではないが、次のように考えられる。b*の原因が化学量論TiNによるとした場合、Tiが、別の化合物として損失されないことや、TiN中に、不純物が混入しないことが必要である。 The functions of Ce and La are not clear, but are considered as follows. If the cause of b * is stoichiometric TiN, it is necessary that Ti is not lost as another compound and that no impurities are mixed into TiN.

CeやLaの酸化物(仕上焼鈍中にCeおよびLa化合物はMgOに含まれる水分により酸化物状態になると考えられる)が存在すると、仕上焼鈍中に、還元雰囲気によるTiO2の還元を抑制する。これは、TiO2の還元が進行すると、酸化物の酸素欠損により、色が白から灰色、黒色に変わっていくのに対し、仕上焼鈍途中の焼鈍分離剤の色を調査した際に、CeやLa化合物の添加で、黒色化が抑制されていることから解る。 When there is an oxide of Ce or La (Ce and La compounds are considered to be in an oxide state due to moisture contained in MgO during finish annealing), the reduction of TiO 2 by the reducing atmosphere is suppressed during finish annealing. This is because when the reduction of TiO 2 proceeds, the color changes from white to gray and black due to oxygen deficiency of the oxide, whereas when the color of the annealing separator during the final annealing is investigated, Ce and It turns out that blackening is suppressed by addition of La compound.

この還元抑制が、TiO2によるフォルステライト質被膜形成の触媒作用を抑制するために、フォルステライト質被膜の形成を遅らせる。被膜が形成されないことにより、雰囲気から鋼中へのN拡散が促進され、TiN形成のために必要な活性なN源が増加するとともに、MgOとTiO2の複合酸化物形成によるTi源の損失も抑制される。 This suppression of reduction delays the formation of the forsterite film in order to suppress the catalytic action of forsterite film formation by TiO 2 . The absence of a coating promotes N diffusion from the atmosphere into the steel, increases the number of active N sources necessary for TiN formation, and also causes loss of Ti sources due to the formation of composite oxides of MgO and TiO 2. It is suppressed.

その結果、高温下でTiO2が鋼中Alで還元され、鋼中Nと反応することにより、安定なTiNが形成される。一方、CeやLaの酸化物の量が多すぎると、高温下でのTiO2のAlによる還元自体も抑制し、TiN形成を阻止することとなるため、適正な量範囲が存在すると考えられる。 As a result, TiO 2 is reduced with Al in the steel at a high temperature, and reacts with N in the steel to form stable TiN. On the other hand, when the amount of Ce or La oxide is too large, the reduction of TiO 2 with Al at high temperature is suppressed and TiN formation is prevented, so that it is considered that there is an appropriate amount range.

Ce化合物としては、CeO2、Ce23、Ce(OH)4、Ce23、Ce(SO42・nH2O(nは0以上の数)、Ce2(SO43・nH2O(nは0以上の数)等が挙げられ、La化合物としては、La23、La2(SO43・nH2O(nは0以上の数)等が挙げられるが、どの形態であっても、どのように組み合わせて使用してもよい。 Examples of the Ce compound include CeO 2 , Ce 2 O 3 , Ce (OH) 4 , Ce 2 S 3 , Ce (SO 4 ) 2 .nH 2 O (n is a number of 0 or more), Ce 2 (SO 4 ) 3. NH 2 O (n is a number of 0 or more), etc., and La compounds include La 2 O 3 , La 2 (SO 4 ) 3 .nH 2 O (n is a number of 0 or more), etc. However, any form may be used in any combination.

また、Ceおよび/またはLa化合物を焼鈍分離剤に添加して形成したフォルステライト質被膜を、例えば、RIGAKU製ZSX−100E蛍光X線分析装置で、4kWのX線源を照射すると、CeおよびLaのL線位置に有意のピークが発現し、被膜形成反応に、これらの化合物が寄与し、結果として、被膜内に取り込まれていることがわかる。   Further, when a forsterite film formed by adding a Ce and / or La compound to an annealing separator is irradiated with a 4 kW X-ray source using, for example, a ZSX-100E X-ray fluorescence analyzer manufactured by RIGAKU, Ce and La It can be seen that a significant peak appears at the position of the L line, and these compounds contribute to the film formation reaction, and as a result, are incorporated into the film.

さらに、焼鈍分離剤中に、硫酸塩を、S換算で0.1〜1%を添加することは、b*を高める上で、より効果的である。これは、硫酸塩が仕上焼鈍中に還元されて生成するSが、高温で、TiO2の還元剤として機能するからと考えられる。 Furthermore, adding 0.1 to 1% of sulfate in terms of S in the annealing separator is more effective in increasing b * . This is presumably because S produced by reduction of sulfate during finish annealing functions as a reducing agent for TiO 2 at high temperatures.

0.1%未満では、十分な添加効果はみられず、一方、添加量が多く、1%を超えると、インヒビター成分に影響を与え、二次再結晶不良等の磁気特性劣化を引き起こすことから、1%以下が望ましい。硫酸塩としては、MgSO4、Al2(SO43、(NH42SO4、SrSO4、Sb2(SO43などが挙げられる。 If the amount is less than 0.1%, a sufficient addition effect is not observed. On the other hand, if the amount is more than 1%, the inhibitor component is affected and causes deterioration of magnetic properties such as poor secondary recrystallization. 1% or less is desirable. Examples of the sulfate include MgSO 4 , Al 2 (SO 4 ) 3 , (NH 4 ) 2 SO 4 , SrSO 4 , Sb 2 (SO 4 ) 3 and the like.

さらに、仕上焼鈍においては、高温下での雰囲気中酸素量を安定化するために、MgO中の水分除去を目的として、二次再結晶焼鈍前に、700℃以下の低温で、水素濃度を20%以上とした還元雰囲気で保持する脱水工程を付与することが望ましい。   Further, in the finish annealing, in order to stabilize the amount of oxygen in the atmosphere at a high temperature, the hydrogen concentration is set to 20 ° C. at a low temperature of 700 ° C. or lower before the secondary recrystallization annealing for the purpose of removing moisture in MgO. It is desirable to provide a dehydration step for maintaining the atmosphere in a reducing atmosphere of at least%.

続いて、本発明において、もう一つの根幹をなす、仕上焼鈍の850℃から1150℃の温度域におけるコイル加熱条件について述べる。T=950〜1050とし、850〜T℃までの加熱速度は、13℃/h以上50℃/h以下、T〜1150℃までの加熱速度は、3℃/h以上13℃/h未満とした。   Subsequently, in the present invention, coil heating conditions in the temperature range of 850 ° C. to 1150 ° C. of finish annealing, which is another basis, will be described. T = 950 to 1050, the heating rate from 850 to T ° C. is from 13 ° C./h to 50 ° C./h, and the heating rate from T to 1150 ° C. is from 3 ° C./h to less than 13 ° C./h. .

前半部分の850〜T℃における加熱速度を13℃/h以上50℃/h以下と、比較的高くする理由は、13℃/h未満の場合では、被膜が劣化し、b*も高くならないからである。また、50℃/hを超える場合、数トン規模のコイルを、この温度域で加熱する際、焼鈍設備への負担が大きくなり過ぎるという問題がある。 The reason why the heating rate at 850 to T ° C. in the first half part is relatively high at 13 ° C./h or more and 50 ° C./h or less is that when it is less than 13 ° C./h, the film deteriorates and b * does not increase. It is. Moreover, when it exceeds 50 degreeC / h, when heating a coil of several tons scale in this temperature range, there exists a problem that the burden to an annealing facility becomes large too much.

この加熱速度範囲において、より適正な範囲は15〜40℃/hであり、さらに好ましくは、20〜30℃/hである。   In this heating rate range, a more appropriate range is 15 to 40 ° C / h, and more preferably 20 to 30 ° C / h.

また、実機コイルの各部位において昇温速度は異なるが、900〜950℃までの滞在時間は、200分以下となることが好ましい。   Moreover, although the temperature increase rate differs in each site | part of an actual machine coil, it is preferable that the residence time to 900-950 degreeC will be 200 minutes or less.

前半部分の加熱速度を遅くすることは、比較的低温での在炉時間が長くなり、TiO2を、低温で、MgOとの複合酸化物等の形成で消費することや、Ce、La化合物の酸素放出反応が低温で進み、TiO2の還元抑制効果を十分に発現できないことにより、高温でのTiN形成を阻害し、被膜劣化やb*低下につながるものと考えられる。 Decreasing the heating rate of the first half part increases the in-furnace time at a relatively low temperature, consumes TiO 2 at a low temperature by forming a complex oxide with MgO, and the Ce and La compounds. It is considered that the oxygen release reaction proceeds at a low temperature and the effect of suppressing the reduction of TiO 2 cannot be sufficiently exhibited, thereby inhibiting the formation of TiN at a high temperature, leading to film deterioration and b * reduction.

また、後半部分のT〜1150℃における加熱速度を3℃/h以上13℃/h未満と、比較的遅くする理由は、3℃/h未満では、あまりにも長時間の焼鈍となり生産性が悪くなるからであり、一方、13℃/h以上の場合、磁束密度が劣位となるからである。   Moreover, the reason for relatively slowing the heating rate at T to 1150 ° C. in the latter half part from 3 ° C./h to less than 13 ° C./h is that if it is less than 3 ° C./h, the annealing is too long and the productivity is poor. On the other hand, if it is 13 ° C./h or more, the magnetic flux density is inferior.

磁束密度が劣位となる理由は、金属学的現象である二次再結晶が安定して生じないためである。特に、この傾向は、スラブ加熱における均熱が不十分である箇所への影響が大きく、実機にて、コイル内磁気特性偏差の原因となってしまう。この加熱速度範囲において、より適正な範囲は、5〜12℃/hであり、さらに好ましくは、7〜12℃/hである。   The reason why the magnetic flux density is inferior is that secondary recrystallization, which is a metallographic phenomenon, does not occur stably. In particular, this tendency has a great influence on a portion where the soaking in the slab heating is insufficient, and causes a deviation in the magnetic characteristics in the coil in the actual machine. In this heating rate range, a more appropriate range is 5 to 12 ° C / h, and more preferably 7 to 12 ° C / h.

加熱速度切り替え温度T℃は、T=950〜1050とした。この理由は、950℃未満では、被膜密着性が劣化し、b*も低くなり、1050℃を超えると、磁束密度が劣化するためである。Tの範囲において、より適正な範囲は、T=975〜1025である。 The heating rate switching temperature T ° C. was T = 950 to 1050. The reason for this is that when the temperature is lower than 950 ° C., the adhesiveness of the film is deteriorated, and b * is lowered, and when the temperature is higher than 1050 ° C., the magnetic flux density is deteriorated. In the range of T, a more appropriate range is T = 975 to 1025.

以上の工程で形成されたフォルステライト質被膜のb*の測定は、市販の色彩色差計を用いて行なう。本発明は、ミノルタ製CM2500−dを用いた測定結果に基づいている。被膜の黄色度b*が1.0未満の場合、未反応焼鈍分離剤を除去するための酸洗での被膜性状劣化が生じ、7.0を超えると、絶縁性に課題が生じる。より好ましくは、1.5〜6.5、さらに好ましくは、2〜6の範囲である。 The b * of the forsterite film formed by the above process is measured using a commercially available color difference meter. The present invention is based on measurement results using a Minolta CM 2500-d. When the yellowness b * of the film is less than 1.0, the film properties are deteriorated by pickling to remove the unreacted annealing separator, and when it exceeds 7.0, there is a problem in insulation. More preferably, it is 1.5-6.5, More preferably, it is the range of 2-6.

多くの場合、最終仕上焼鈍後、フォルステライト質被膜の上に、さらに、絶縁被膜を施す。特に、燐酸塩とコロイダルシリカを主体とする絶縁膜形成用組成液を鋼板面に塗布し、焼付けることによって得られる絶縁被膜は、鋼板に対する付与張力が大きく、さらなる鉄損改善に有効である。   In many cases, after the final finish annealing, an insulating film is further applied on the forsterite film. In particular, an insulating coating obtained by applying an insulating film forming composition liquid mainly composed of phosphate and colloidal silica to a steel sheet surface and baking it has a large applied tension to the steel sheet and is effective for further improving iron loss.

また、ここで形成する絶縁被膜が無色透明のクリヤ膜であれば、この状態での黄色度b*の値は、フォルステライト質被膜のb*の値と大きな差異は生じない。 Further, if the insulating film formed here is a colorless and transparent clear film, the value of yellowness b * in this state does not greatly differ from the value of b * of the forsterite film.

さらに、必要に応じ、上記一方向性電磁鋼板に、レーザー照射、プラズマ照射、歯型ロールやエッチングによる溝加工等のいわゆる磁区細分化処理を施すことが望ましい。   Furthermore, it is desirable to subject the unidirectional electrical steel sheet to so-called magnetic domain subdivision treatment such as laser irradiation, plasma irradiation, groove processing by a tooth roll or etching, if necessary.

フォルステライト質被膜のTiおよびNに関しては、例えば、特許文献8において、フォルステライト質被膜を含めた鋼板のTi濃度(質量%)が、N濃度(質量%)に対して1.2〜2倍の範囲であることを特徴とする方向性けい素鋼板が提案されている。   Regarding Ti and N of the forsterite coating, for example, in Patent Document 8, the Ti concentration (mass%) of the steel sheet including the forsterite coating is 1.2 to 2 times the N concentration (mass%). A grain-oriented silicon steel sheet characterized by the following range has been proposed.

これは、N比率を高くすることで、鋼中への侵入Tiを抑制し、鋼中へのTi化合物の残存を抑えて、曲げ特性や歪取焼鈍後の鉄損劣化を避けるというものであるが、ここでは、被膜の色については言及されておらず、また、過剰なN比率から、TiNが形成されていても、b*は低いと想定され、結局、本発明とは異なるものである。 This is to increase the N ratio to suppress intrusion Ti into the steel, suppress the remaining Ti compound in the steel, and avoid bending characteristics and iron loss deterioration after strain relief annealing. However, the color of the coating is not mentioned here, and b * is assumed to be low even if TiN is formed due to an excessive N ratio, which is different from the present invention. .

特許文献9では、フォルステライト質被膜がMg2SiO4およびTiNを主体とすることを特徴とし、TiNの重量比が1〜30%であることや、TiN(200)ピークI1とMg2SiO4(211)ピークI0との強度比I1/I0が3/100以上50/100以下であることにより、張力効果により鉄損低減効果があり、かつ、被膜密着性を付与する方向性けい素鋼板が提案されている。 Patent Document 9 is characterized in that the forsterite film is mainly composed of Mg 2 SiO 4 and TiN, the weight ratio of TiN is 1 to 30%, and TiN (200) peak I 1 and Mg 2 SiO. 4 (211) When the intensity ratio I 1 / I 0 to the peak I 0 is 3/100 or more and 50/100 or less, there is an effect of reducing iron loss due to the tension effect, and the directionality to provide film adhesion Silicon steel sheets have been proposed.

ここでは、黄色味について言及されているが、その程度については記載されておらず、また、製造方法についても、分離剤塗布後の巻き取り張力や、ベースプレートの開孔率、ガス導入量による制御等で行い、また、張力による鉄損低下を狙ったもので、磁束密度、薄膜化での耐酸性の効果は不明である。   Here, the yellowish color is mentioned, but the degree is not described, and the manufacturing method is also controlled by the winding tension after application of the separating agent, the opening rate of the base plate, and the amount of gas introduced. In addition, the aim is to lower the iron loss due to tension, and the effect of acid resistance on the magnetic flux density and thinning is unknown.

特に、Mg2SiO4(211)ピークについては、TiN(111)ピークと位置がほぼ同じであることから、TiNとMg2SiO4のみを関係付けることには、必ずしもつながらない。 In particular, since the position of the Mg 2 SiO 4 (211) peak is substantially the same as that of the TiN (111) peak, it is not always possible to relate only TiN and Mg 2 SiO 4 .

特許文献10では、フォルステライト質被膜の酸素目付量:2.5〜4.5g/m2、Ti目付量:0.25〜0.90g/m2、Ti/Nモル比:1.2以下、および、フォルステライト粒子の平均粒径:0.5μm以下を満たしてなることを特徴とする高磁束密度一方向性けい素鋼板のフォルステライト被膜が提案されている。しかし、ここでも、被膜の色については記載されていない。 In Patent Document 10, the oxygen basis weight of the forsterite coating: 2.5 to 4.5 g / m 2 , the Ti basis weight: 0.25 to 0.90 g / m 2 , and the Ti / N molar ratio: 1.2 or less A forsterite film of a high magnetic flux density unidirectional silicon steel sheet characterized by satisfying an average particle size of forsterite particles of 0.5 μm or less has been proposed. However, here too, the color of the coating is not described.

また、特許文献5には、「AlN+MnS(Se)を主インヒビターとし、Biを0.0005〜0.05%含有し、強圧下率を特徴とする通常の一方向性電磁鋼板の製造にあたり、二次再結晶仕上げ焼鈍工程において、900〜1150℃の温度区間における加熱速度を15〜50℃/hとし、従来より速い加熱速度で行う」技術が開示されている。   In addition, Patent Document 5 states that “In producing a normal unidirectional electrical steel sheet containing AlN + MnS (Se) as a main inhibitor and containing 0.0005 to 0.05% Bi and characterized by a high rolling reduction ratio, In the next recrystallization finish annealing step, the heating speed in the temperature range of 900 to 1150 ° C. is set to 15 to 50 ° C./h, and the technique is performed at a higher heating speed than before.

しかしながら、本発明は、加熱温度域を2つに分割し、後半を3〜13℃/h未満の比較的遅い加熱速度にて実施することにより、安定した高い磁束密度と、良好な皮膜密着性および耐酸性を満たすものであり、技術の差異は明白である。   However, the present invention divides the heating temperature range into two, and implements the latter half at a relatively slow heating rate of less than 3-13 ° C./h, thereby providing a stable high magnetic flux density and good film adhesion. The difference in technology is obvious.

真空溶解炉にて、質量%で、C:0.07%、Si:3.2%、Al:0.03%、N:0.009%、S:0.025%、Mn:0.08%、Bi:0.0035%の成分を有する鋼塊を作製し、1360℃にて1時間加熱した後、熱延を施した。板厚2.7mmの熱延板に、1100℃、100秒の焼鈍を施し、酸洗を施した後、冷間圧延を施し、板厚0.27mmの冷延板とした。   In a vacuum melting furnace, in mass%, C: 0.07%, Si: 3.2%, Al: 0.03%, N: 0.009%, S: 0.025%, Mn: 0.08 A steel ingot having a component of%, Bi: 0.0035% was prepared, heated at 1360 ° C. for 1 hour, and then hot rolled. A hot-rolled sheet having a thickness of 2.7 mm was annealed at 1100 ° C. for 100 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.27 mm.

冷延板に、湿水素中で、840℃、110秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤に、表2に示す組成の添加剤を添加した水スラリーと塗布した。   The cold-rolled sheet was subjected to decarburization annealing at 840 ° C. for 110 seconds in wet hydrogen, and coated with an aqueous separator in which an additive having the composition shown in Table 2 was added to an annealing separator mainly composed of MgO.

仕上焼鈍は、窒素75%−水素25%含有雰囲気中で、850℃まで50℃/hにて昇温し、その後、850℃から1020℃までの昇温速度を25℃/hとし、1020℃から1150℃までを10℃/hとして、その後、1150℃で20時間保定焼鈍して、実施した。   In the finish annealing, the temperature is increased from 850 ° C. to 50 ° C./h in an atmosphere containing 75% nitrogen and 25% hydrogen, and then the temperature increase rate from 850 ° C. to 1020 ° C. is 25 ° C./h. From 1 to 1150 ° C. was set to 10 ° C./h, and then subjected to holding annealing at 1150 ° C. for 20 hours.

焼鈍後の鋼板を、水洗した後、色彩色差計でb*を測定した。さらに、上記鋼板を単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁膜形成用液を塗布し、焼付し、磁束密度B8、被膜密着性を評価した。さらに、一部は、水洗後、5%HCl70℃水溶液に30秒浸漬し、乾燥した後、表面性状を確認した。結果を、表3に示す。 The steel plate after annealing was washed with water, and b * was measured with a color difference meter. Further, the steel sheet was sheared to a single-plate magnetic measurement size, an insulating film forming liquid mainly composed of aluminum phosphate and colloidal silica was applied and baked, and magnetic flux density B 8 and film adhesion were evaluated. Further, a part was washed with water, immersed in a 5% HCl 70 ° C. aqueous solution for 30 seconds, dried, and then surface properties were confirmed. The results are shown in Table 3.

ここで、B8は、50Hzにて800A/mの磁場を付与したときの磁束密度の値であり、被膜密着性は、10mmφの曲率にて曲げ試験を実施した際の皮膜残存率である。評価は、B8≧1.90Tで、かつ、被膜残存率90%の以上ものを良好と判定した。耐酸性評価は、赤錆の発生等の被膜の変質がないものを良好と判定した。 Here, B 8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz, and the film adhesion is a film remaining rate when a bending test is performed with a curvature of 10 mmφ. Evaluation determined that B 8 ≧ 1.90T and the film remaining rate of 90% or more was good. In the acid resistance evaluation, it was determined that a coating having no alteration such as occurrence of red rust was good.

なお、得られたフォルステライト質被膜を化学分析したところ、酸素目付量は、片面あたり0.9〜1.0g/m2であり、また、LaまたはCe化合物を焼鈍分離剤に添加した電磁鋼板のフォルステライト質被膜には、いずれも、蛍光X線による被膜組成分析で、CeまたはLaの存在が確認された。 In addition, when the obtained forsterite film was chemically analyzed, the oxygen basis weight was 0.9 to 1.0 g / m 2 per side, and an electrical steel sheet in which La or Ce compound was added to the annealing separator. In the forsterite films, the presence of Ce or La was confirmed by film composition analysis by fluorescent X-rays.

Figure 2009270129
Figure 2009270129

Figure 2009270129
Figure 2009270129

真空溶解炉にて、質量%で、C:0.07%、Si:3.3%、Al:0.03%、N:0.009%、S:0.025%、Mn:0.08%、Bi:0〜0.025%の成分を有する鋼塊を作製し、1320℃と1360℃にて1時間加熱した後、熱延を施した。板厚2.3mmの熱延板に、1100℃、100秒の焼鈍を施し、酸洗を施した後、冷間圧延を施し、板厚0.22mmの冷延板とした。   In a vacuum melting furnace, in mass%, C: 0.07%, Si: 3.3%, Al: 0.03%, N: 0.009%, S: 0.025%, Mn: 0.08 %, Bi: A steel ingot having a component of 0 to 0.025% was prepared, heated at 1320 ° C. and 1360 ° C. for 1 hour, and then hot rolled. A hot-rolled sheet having a thickness of 2.3 mm was annealed at 1100 ° C. for 100 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.22 mm.

冷延板に、湿水素中で、840℃、110秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤に、MgO質量に対して4%のTiO2と、La換算で4%のLa23と、S換算で0.5%の(NH42SO4を添加した水スラリーを塗布し、種々の加熱条件で、1190℃、20時間の仕上焼鈍を実施した。 The cold-rolled sheet was decarburized and annealed at 840 ° C. for 110 seconds in wet hydrogen, and the annealing separator containing MgO as the main component was 4% TiO 2 with respect to the MgO mass, and 4% in terms of La. Of La 2 O 3 and 0.5% (NH 4 ) 2 SO 4 in terms of S were applied, and a final annealing was performed at 1190 ° C. for 20 hours under various heating conditions.

焼鈍後の鋼板を、水洗した後、色彩色差計でb*を測定した。上記鋼板を単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁膜形成用液を塗布し、焼付し、磁束密度B8、被膜密着性を評価した。一部は、水洗後、5%HCl70℃水溶液に30秒浸漬し、乾燥後、表面性状を確認した。 The steel plate after annealing was washed with water, and b * was measured with a color difference meter. The steel sheet was sheared to a single-plate magnetic measurement size, and an insulating film forming liquid mainly composed of aluminum phosphate and colloidal silica was applied and baked to evaluate magnetic flux density B 8 and film adhesion. A portion was washed with water, immersed in a 5% HCl 70 ° C. aqueous solution for 30 seconds, dried, and then surface properties were confirmed.

なお、仕上焼鈍は、窒素50%−水素50%含有雰囲気中で、850℃まで50℃/hにて昇温し、その後、850℃から1010℃までの昇温速度を25℃/hとし、1010℃から1190℃までを10℃/hとしたもの(サイクル1)と、850〜1190℃までを20℃/hにて一定の加熱速度としたもの(サイクル2)の2種類のサイクルで加熱し、温度が1190℃に到達した後、100%水素中で15時間保定して行った。   In the finish annealing, the temperature is increased from 850 ° C. to 50 ° C./h in an atmosphere containing 50% nitrogen and 50% hydrogen, and then the temperature increase rate from 850 ° C. to 1010 ° C. is set to 25 ° C./h. Heating is performed in two cycles: 1010 ° C to 1190 ° C from 10 ° C / h (cycle 1) and 850 to 1190 ° C at a constant heating rate of 20 ° C / h (cycle 2). Then, after the temperature reached 1190 ° C., it was maintained in 100% hydrogen for 15 hours.

ここで、B8は、50Hzにて800A/mの磁場を付与したときの磁束密度の値であり、被膜密着性は、10mmφの曲率にて曲げ試験を実施した際の皮膜残存率である。評価は、B8≧1.90Tで、かつ、被膜残存率90%の以上ものを良好と判定した。耐酸性評価は、赤錆の発生等の被膜の変質がないものを、良好と判定した。 Here, B 8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz, and the film adhesion is a film remaining rate when a bending test is performed with a curvature of 10 mmφ. Evaluation determined that B 8 ≧ 1.90T and the film remaining rate of 90% or more was good. In the acid resistance evaluation, a film having no alteration such as red rust was determined to be good.

2種類のスラブ加熱温度の材料を使用したのは、工場での実スラブにおいては、位置によって、スラブ加熱温度に偏差が生じることがあるので、実コイルでの適合性という観点で、評価を行ったからである。表4に、結果を示す。   Two types of slab heating temperature materials are used. In actual slabs at the factory, deviations may occur in the slab heating temperature depending on the position. Therefore, evaluation is performed from the viewpoint of compatibility with actual coils. This is because the. Table 4 shows the results.

両スラブ加熱温度材において、B8≧1.90Tで、かつ、被膜密着性90%が両立する条件は、Bi量が200ppm以下で、かつ、サイクル1であるAからFまでであり、さらに、B8≧1.91Tを満足するより特性が良好なものは、Bi量が5〜200ppm以下で、かつ、サイクル1であるBからFまでであった。 In both slab heating temperature materials, the condition that B 8 ≧ 1.90T and the film adhesion 90% are compatible is that the Bi amount is 200 ppm or less and the cycle 1 is from A to F, Those having better characteristics than satisfying B 8 ≧ 1.91T were from Bi to 5-200 ppm in Bi and from cycle B to F.

なお、得られたフォルステライト質被膜を化学分析したところ、酸素目付量は、片面あたり、いずれも、0.85〜0.95g/m2であり、また、フォルステライト質被膜には、蛍光X線による被膜組成分析で、Laの存在が確認された。 When the obtained forsterite film was chemically analyzed, the amount of oxygen per unit area was 0.85 to 0.95 g / m 2 for each side, and the forsterite film had a fluorescent X The presence of La was confirmed by the film composition analysis using lines.

Figure 2009270129
Figure 2009270129

真空溶解炉にて、質量%で、C:0.06%、Si:3.2%、Al:0.03%、N:0.008%、S:0.003%、Se:0.0200%、Mn:0.08%の成分を有する鋼塊を作製し、1420℃にて0.5時間加熱した後、熱延を施した。板厚0.22mmの熱延板に、1000℃、120秒の焼鈍を施し、酸洗を施した後、中間焼鈍を挟む二回の冷間圧延を施して、板厚0.23mmの冷延板とした。   In a vacuum melting furnace, by mass%, C: 0.06%, Si: 3.2%, Al: 0.03%, N: 0.008%, S: 0.003%, Se: 0.0200 %, Mn: A steel ingot having a component of 0.08% was prepared, heated at 1420 ° C. for 0.5 hours, and then hot rolled. A hot-rolled sheet having a thickness of 0.22 mm is annealed at 1000 ° C. for 120 seconds, pickled, and then cold-rolled twice with a thickness of 0.23 mm by performing cold rolling twice with intermediate annealing. A board was used.

冷延板に、湿潤水素中で、850℃、120秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤に、MgO質量に対して5%TiO2と、Ce換算で2%Ce(OH)4と、S換算で0.4%のSrSO4を添加した水スラリーを塗布し、種々の加熱条件で、仕上焼鈍を実施した。 The cold-rolled sheet is subjected to decarburization annealing at 850 ° C. for 120 seconds in wet hydrogen. An annealing separator mainly composed of MgO is 5% TiO 2 with respect to the mass of MgO and 2% Ce in terms of Ce. (OH) 4 and water slurry added with 0.4% SrSO 4 in terms of S were applied, and finish annealing was performed under various heating conditions.

焼鈍後の鋼板を、水洗した後、色彩色差計でb*を測定した。さらに、上記鋼板を単板磁気測定用サイズに剪断し、リン酸マグネシウムとコロイダルシリカを主成分とした絶縁膜形成用液を塗布し、焼付し、磁束密度B8、被膜密着性を評価した。さらに、一部は、水洗後、5%HCl70℃水溶液に30秒浸漬し、乾燥後、表面性状を確認した。 The steel plate after annealing was washed with water, and b * was measured with a color difference meter. Further, the steel sheet was sheared to a single-plate magnetic measurement size, an insulating film forming liquid mainly composed of magnesium phosphate and colloidal silica was applied, and baked to evaluate the magnetic flux density B 8 and the film adhesion. Further, a part was washed with water, immersed in a 5% HCl 70 ° C. aqueous solution for 30 seconds, dried, and then surface properties were confirmed.

なお、仕上焼鈍は、窒素25%−水素75%含有雰囲気中で、850℃まで50℃/hにて昇温し、その後、850℃から1020℃までの昇温速度(前段加熱速度)をVf℃/h、1020℃から1200℃までを10℃/hとし、温度が1200℃に到達後、100%水素中で30時間保定して行った。   In the finish annealing, the temperature is increased from 850 ° C. to 50 ° C./h in an atmosphere containing 25% nitrogen and 75% hydrogen, and then the heating rate (previous heating rate) from 850 ° C. to 1020 ° C. is set to Vf. The temperature was set to 10 ° C./h from 1020 ° C. to 1200 ° C., and after the temperature reached 1200 ° C., it was maintained in 100% hydrogen for 30 hours.

ここで、B8は、50Hzにて800A/mの磁場を付与したときの磁束密度の値であり、被膜密着性は、10mmφの曲率にて曲げ試験を実施した際の皮膜残存率である。評価は、B8≧1.90Tで、かつ、被膜残存率90%の以上ものを良好と判定した。耐酸性評価は、赤錆の発生等の被膜の変質がないものを、良好と判定した。 Here, B 8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz, and the film adhesion is a film remaining rate when a bending test is performed with a curvature of 10 mmφ. Evaluation determined that B 8 ≧ 1.90T and the film remaining rate of 90% or more was good. In the acid resistance evaluation, a film having no alteration such as red rust was determined to be good.

表5に、結果を示す。B8>1.90Tで、かつ、被膜密着性90%が両立する条件は、Vfが13以上50以下の範囲であるBからFであった。このうち、Vfが15以上30以下であるBからDは、B8≧1.91Tとなるため、より良好で、さらに、Vfが15以上25以下のB、Cは、B8≧1.92Tとなり、最も好ましい。 Table 5 shows the results. The conditions under which B 8 > 1.90T and film adhesion 90% are compatible were B to F in which Vf is in the range of 13 to 50. Among these, B to D in which Vf is 15 or more and 30 or less is better because B 8 ≧ 1.91T, and B and C in which Vf is 15 or more and 25 or less are B 8 ≧ 1.92T. And is most preferable.

なお、得られたフォルステライト質被膜を化学分析したところ、酸素目付量は、片面あたり、いずれも、0.9〜1.1g/m2であり、また、フォルステライト質被膜には蛍光X線による被膜組成分析で、Ceの存在が確認された。 When the obtained forsterite film was chemically analyzed, the amount of oxygen per unit area was 0.9 to 1.1 g / m 2 for each side, and the forsterite film had fluorescent X-rays. The presence of Ce was confirmed by the film composition analysis according to.

Figure 2009270129
Figure 2009270129

真空溶解炉にて、質量%で、C:0.06%、Si:3.3%、Al:0.03%、N:0.009%、S:0.004%、Se:0.0180%、Mn:0.08%、Bi:0.0042%の成分を有する鋼塊を作製し、1410℃にて0.5時間加熱した後、熱延を施した。板厚0.26mmの熱延板に、1020℃、120秒間の焼鈍を施し、酸洗を施した後、冷間圧延を施して、板厚0.27mmの冷延板とした。   In a vacuum melting furnace, in mass%, C: 0.06%, Si: 3.3%, Al: 0.03%, N: 0.009%, S: 0.004%, Se: 0.0180 Steel ingots having components of%, Mn: 0.08%, Bi: 0.0042% were prepared, heated at 1410 ° C. for 0.5 hours, and then hot rolled. A hot-rolled sheet having a thickness of 0.26 mm was annealed at 1020 ° C. for 120 seconds, pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.27 mm.

冷延板に、800℃まで、310℃/sで通電加熱法により昇温した後、湿潤水素中で、830℃、120秒の脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤に、MgO質量に対して3%のTiO2と、Ce換算1%のCeO2を添加した水スラリーを塗布し、種々の加熱条件で、仕上焼鈍を施した。 The cold-rolled sheet is heated up to 800 ° C. by an electric heating method at 310 ° C./s, and then decarburized and annealed in wet hydrogen at 830 ° C. for 120 seconds to form an annealing separator mainly composed of MgO. Then, a water slurry containing 3% TiO 2 and 1% Ce converted CeO 2 with respect to the mass of MgO was applied, and finish annealing was performed under various heating conditions.

焼鈍後鋼板を、水洗した後、色彩色差計で、b*を測定した。さらに、上記鋼板を単板磁気測定用サイズに剪断し、リン酸アルミニウムとコロイダルシリカを主成分とした絶縁膜形成用組成液を塗布し、焼付し、磁束密度B8、被膜密着性を評価した。さらに、一部は、水洗後、5%塩酸70℃水溶液に30秒浸漬し、乾燥後、表面性状を確認した。 After annealing, the steel sheet was washed with water, and b * was measured with a color difference meter. Further, the steel sheet was sheared to a single-plate magnetic measurement size, and an insulating film forming composition liquid mainly composed of aluminum phosphate and colloidal silica was applied and baked to evaluate magnetic flux density B 8 and film adhesion. . Furthermore, a part was washed with water, immersed in a 70% aqueous solution of 5% hydrochloric acid for 30 seconds, dried, and then surface properties were confirmed.

なお、仕上焼鈍は、窒素75%−水素25%含有雰囲気中で、850℃まで40℃/hにて昇温し、その後、850℃から990℃までの昇温速度を15℃/hとし、990℃から1200℃までの昇温速度(後段加熱速度)をVl℃/hとし、温度が1200℃到達した後、100%水素中で20時間保定して行った。   In the finish annealing, the temperature is increased from 850 ° C. to 40 ° C./h in an atmosphere containing 75% nitrogen and 25% hydrogen, and then the rate of temperature increase from 850 ° C. to 990 ° C. is set to 15 ° C./h. The rate of temperature increase from 990 ° C. to 1200 ° C. (second-stage heating rate) was Vl ° C./h. After the temperature reached 1200 ° C., the temperature was maintained in 100% hydrogen for 20 hours.

ここで、B8は、50Hzにて800A/mの磁場を付与したときの磁束密度の値であり、被膜密着性は、10mmφの曲率にて曲げ試験を実施した際の皮膜残存率である。評価は、B8≧1.90Tで、かつ、被膜残存率90%の以上ものを、良好と判定した。耐酸性評価は、赤錆の発生等の被膜の変質がないものを、良好と判定した。 Here, B 8 is a magnetic flux density value when a magnetic field of 800 A / m is applied at 50 Hz, and the film adhesion is a film remaining rate when a bending test is performed with a curvature of 10 mmφ. Evaluation determined that B 8 ≧ 1.90T and the film remaining rate of 90% or more were good. In the acid resistance evaluation, a film having no alteration such as red rust was determined to be good.

表6に、結果を示す。B8≧1.90Tで、かつ、被膜密着性95%が両立する条件は、Vlが3以上13未満の範囲であるAからEであった。このうち、Vlが5以上12以下であるBからEは、B8≧1.94Tとなるため、より良好で、さらに、Vlが7以上12以下のCからEは、B8≧1.95Tとなり、最も好ましい。 Table 6 shows the results. The conditions under which B 8 ≧ 1.90T and film adhesion 95% are compatible were A to E in which Vl is in the range of 3 or more and less than 13. Among these, B to E in which Vl is 5 or more and 12 or less is more favorable because B 8 ≧ 1.94T, and further, C to E in which Vl is 7 to 12 is B 8 ≧ 1.95T. And is most preferable.

なお、得られたフォルステライト質被膜を化学分析したところ、酸素目付量は、片面あたり、いずれも1.0〜1.1g/m2であり、また、フォルステライト質被膜には、蛍光X線による被膜組成分析でCeの存在が確認された。 When the obtained forsterite film was chemically analyzed, the amount of oxygen per unit area was 1.0 to 1.1 g / m 2 on one side, and the forsterite film had fluorescent X-rays. The presence of Ce was confirmed by coating composition analysis by

Figure 2009270129
Figure 2009270129

Claims (4)

質量%で、Si:2〜5%を含有し、鋼板の表面にフォルステライト質被膜を有する、飽和磁束密度B8が1.90T以上の一方向性電磁鋼板であって、該フォルステライト質被膜が、CeおよびLaの1種または2種を含有し、かつ、該フォルステライト質被膜の色が、L***系表色系色座標の黄色度b*で1.0以上7.0未満であることを特徴とする磁気特性および被膜密着性に優れた一方向性電磁鋼板。 A unidirectional electrical steel sheet containing, by mass%, Si: 2 to 5%, having a forsterite film on the surface of the steel sheet and having a saturation magnetic flux density B 8 of 1.90 T or more, the forsterite film Contains one or two of Ce and La, and the color of the forsterite coating is 1.0 or more in terms of yellowness b * of L * a * b * color system color coordinates. A unidirectional electrical steel sheet excellent in magnetic properties and film adhesion, characterized by being less than 0. 質量%で、C:0.02〜0.10%、Si:2〜5%、酸可溶性Al:0.010〜0.065%、N:0.003〜0.0150%、SおよびSeのうちから選んだ1種または2種の合計:0.001〜0.040%、Mn:0.02〜0.30%を含有し、残部がFeおよび不可避的不純物からなるスラブを、1280℃以上の温度に加熱し、熱延を行い、焼鈍を施し、酸洗を実施した後、一回または焼鈍を挟んだ二回の冷間圧延を施し、次いで、脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を塗布して、最終仕上焼鈍を施し、一方向性電磁鋼板を製造する製造方法において、MgOを主成分とする焼鈍分離剤の中に、Ti化合物を、MgO質量に対して、TiO2換算で1〜10%、Ce化合物およびLa化合物の1種または2種を、MgO質量に対して、(Ce+La)換算で0.5〜10%添加し、最終仕上焼鈍工程でのコイル昇温速度を、850〜T℃(T=950〜1050)までは13〜50℃/h、T〜1150℃までは3〜13℃/h未満とすることを特徴とする磁気特性および被膜密着性に優れた方向性電磁鋼板の製造方法。 In mass%, C: 0.02 to 0.10%, Si: 2 to 5%, acid-soluble Al: 0.010 to 0.065%, N: 0.003 to 0.0150%, S and Se A slab containing one or two selected from among: 0.001 to 0.040%, Mn: 0.02 to 0.30%, with the balance being Fe and inevitable impurities, 1280 ° C or higher After performing hot rolling, annealing, pickling, and cold rolling twice or sandwiching annealing, then decarburizing annealing and MgO as the main component In the manufacturing method for producing a unidirectional electrical steel sheet by applying an annealing separator and applying final finish annealing, the Ti compound is added to the MgO mass in the annealing separator mainly composed of MgO. , 1-10% in terms of TiO 2, one of Ce compound and La compound or The seed is added in an amount of 0.5 to 10% in terms of (Ce + La) with respect to the MgO mass, and the coil heating rate in the final finish annealing step is 13 to 850 to T ° C. (T = 950 to 1050). The manufacturing method of the grain-oriented electrical steel sheet excellent in the magnetic characteristics and film adhesiveness characterized by being set to less than 3-13 degrees C / h from 50 degrees C / h and T-1150 degrees C. 前記MgOを主成分とする焼鈍分離剤の中に、硫酸塩を、MgO質量に対して、S換算で0.1〜1%添加することを特徴とする請求項2記載の磁気特性および被膜密着性に優れた方向性電磁鋼板の製造方法。   The magnetic properties and film adhesion according to claim 2, wherein 0.1 to 1% of sulfate is added in terms of S to the mass of MgO in the annealing separator mainly composed of MgO. For producing a grain-oriented electrical steel sheet having excellent properties. 前記スラブが、さらに、質量%で、0.0005〜0.0200%のBiを含有することを特徴とする請求項2または3に記載の磁気特性および被膜密着性に優れた方向性電磁鋼板の製造方法。   The slab further contains 0.0005 to 0.0200% Bi in mass%, The grain-oriented electrical steel sheet having excellent magnetic properties and coating adhesion according to claim 2 or 3 Production method.
JP2008118705A 2008-04-30 2008-04-30 Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same Active JP5130488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118705A JP5130488B2 (en) 2008-04-30 2008-04-30 Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118705A JP5130488B2 (en) 2008-04-30 2008-04-30 Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009270129A true JP2009270129A (en) 2009-11-19
JP5130488B2 JP5130488B2 (en) 2013-01-30

Family

ID=41436951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118705A Active JP5130488B2 (en) 2008-04-30 2008-04-30 Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same

Country Status (1)

Country Link
JP (1) JP5130488B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077618A (en) * 2011-09-29 2013-04-25 Taiyo Yuden Co Ltd Soft magnetic alloy assembly and electronic component using the same
WO2016104813A1 (en) * 2014-12-24 2016-06-30 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
JP2016145419A (en) * 2015-01-30 2016-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and method therefor
EP3199649A4 (en) * 2014-09-26 2018-07-04 JFE Steel Corporation Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
JP2019536893A (en) * 2016-09-29 2019-12-19 バオシャン アイアン アンド スティール カンパニー リミテッド Low iron loss directional silicon steel product for low noise transformer and method of manufacturing the same
WO2020145318A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
WO2020145316A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
WO2020145321A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
JP2023507952A (en) * 2019-12-18 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141830A (en) * 1983-12-29 1985-07-26 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JPH06192743A (en) * 1992-12-28 1994-07-12 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in film property and magnetic property
JPH08269552A (en) * 1995-03-28 1996-10-15 Nippon Steel Corp Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JPH11241120A (en) * 1997-12-24 1999-09-07 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having uniform forsterite film
JP3098628B2 (en) * 1992-09-17 2000-10-16 新日本製鐵株式会社 Ultra high magnetic flux density unidirectional electrical steel sheet
JP2002302718A (en) * 2001-04-06 2002-10-18 Kawasaki Steel Corp Method for producing grain oriented electromagnetic steel sheet and annealing separating agent for the same
JP2004238734A (en) * 2003-01-15 2004-08-26 Nippon Steel Corp Unidirectional electromagnetic steel sheet with ultrahigh magnetic flux density and excellent in high-magnetic-field core loss and coating film characteristics
JP2005256158A (en) * 2004-02-10 2005-09-22 Nippon Steel Corp Separation agent for annealing, and method for manufacturing grain-oriented electromagnetic steel sheet by using it
WO2006126660A1 (en) * 2005-05-23 2006-11-30 Nippon Steel Corporation Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141830A (en) * 1983-12-29 1985-07-26 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JP3098628B2 (en) * 1992-09-17 2000-10-16 新日本製鐵株式会社 Ultra high magnetic flux density unidirectional electrical steel sheet
JPH06192743A (en) * 1992-12-28 1994-07-12 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in film property and magnetic property
JPH08269552A (en) * 1995-03-28 1996-10-15 Nippon Steel Corp Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JPH11241120A (en) * 1997-12-24 1999-09-07 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having uniform forsterite film
JP2002302718A (en) * 2001-04-06 2002-10-18 Kawasaki Steel Corp Method for producing grain oriented electromagnetic steel sheet and annealing separating agent for the same
JP2004238734A (en) * 2003-01-15 2004-08-26 Nippon Steel Corp Unidirectional electromagnetic steel sheet with ultrahigh magnetic flux density and excellent in high-magnetic-field core loss and coating film characteristics
JP2005256158A (en) * 2004-02-10 2005-09-22 Nippon Steel Corp Separation agent for annealing, and method for manufacturing grain-oriented electromagnetic steel sheet by using it
WO2006126660A1 (en) * 2005-05-23 2006-11-30 Nippon Steel Corporation Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077618A (en) * 2011-09-29 2013-04-25 Taiyo Yuden Co Ltd Soft magnetic alloy assembly and electronic component using the same
US10889875B2 (en) 2014-09-26 2021-01-12 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
EP3199649A4 (en) * 2014-09-26 2018-07-04 JFE Steel Corporation Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
EP3517637A1 (en) * 2014-09-26 2019-07-31 JFE Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
US10697038B2 (en) 2014-09-26 2020-06-30 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
WO2016104813A1 (en) * 2014-12-24 2016-06-30 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
JPWO2016104813A1 (en) * 2014-12-24 2017-04-27 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
US10626474B2 (en) 2014-12-24 2020-04-21 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
US11174526B2 (en) 2014-12-24 2021-11-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
JP2016145419A (en) * 2015-01-30 2016-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and method therefor
JP2019536893A (en) * 2016-09-29 2019-12-19 バオシャン アイアン アンド スティール カンパニー リミテッド Low iron loss directional silicon steel product for low noise transformer and method of manufacturing the same
US11633808B2 (en) 2016-09-29 2023-04-25 Baoshan Iron & Steel Co., Ltd. Silicon steel product with low iron loss for low-noise transformer, and manufacturing method thereof
WO2020145316A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
KR20210064336A (en) 2019-01-08 2021-06-02 닛폰세이테츠 가부시키가이샤 Grain-grained electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and annealing separator used for manufacturing grain-oriented electrical steel sheet
KR20210096235A (en) 2019-01-08 2021-08-04 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet, a method for manufacturing a grain-oriented electrical steel sheet, and an annealing separator used for manufacturing a grain-oriented electrical steel sheet
KR20210096237A (en) 2019-01-08 2021-08-04 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet, a method for manufacturing a grain-oriented electrical steel sheet, and an annealing separator used for manufacturing a grain-oriented electrical steel sheet
WO2020145321A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
JPWO2020145316A1 (en) * 2019-01-08 2021-11-25 日本製鉄株式会社 Annealing separator used for manufacturing grain-oriented electrical steel sheets, grain-oriented electrical steel sheets, and grain-oriented electrical steel sheets.
WO2020145318A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet
JP7288202B2 (en) 2019-01-08 2023-06-07 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for producing grain-oriented electrical steel sheet, and annealing separator used for producing grain-oriented electrical steel sheet
JP2023507952A (en) * 2019-12-18 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof
JP7465975B2 (en) 2019-12-18 2024-04-11 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP5130488B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5130488B2 (en) Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same
JP5230194B2 (en) Oriented electrical steel sheet having excellent coating adhesion and method for producing the same
EP2096185B1 (en) Unidirectionally grain oriented electromagnetic steel sheet having excellent film adhesion, and method for manufacturing the same
JP6168173B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4916847B2 (en) Manufacturing method of unidirectional electrical steel sheet
WO2012017689A1 (en) Grain-oriented magnetic steel sheet and process for producing same
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020145319A1 (en) Method for manufacturing oriented electromagnetic steel sheet, and oriented electromagnetic steel sheet
JP7235058B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2000355717A (en) Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
JP7269505B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7352108B2 (en) grain-oriented electrical steel sheet
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102583464B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7230930B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
RU2768932C1 (en) Method of producing electrotechnical steel sheet with oriented grain structure
JP7151792B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102576381B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2024162442A1 (en) Method for producing grain-oriented electrical steel sheet
WO2020162608A1 (en) Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP2022097004A (en) Grain oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5130488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350