JP3098628B2 - Ultra high magnetic flux density unidirectional electrical steel sheet - Google Patents

Ultra high magnetic flux density unidirectional electrical steel sheet

Info

Publication number
JP3098628B2
JP3098628B2 JP04248194A JP24819492A JP3098628B2 JP 3098628 B2 JP3098628 B2 JP 3098628B2 JP 04248194 A JP04248194 A JP 04248194A JP 24819492 A JP24819492 A JP 24819492A JP 3098628 B2 JP3098628 B2 JP 3098628B2
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
steel sheet
electrical steel
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04248194A
Other languages
Japanese (ja)
Other versions
JPH06100996A (en
Inventor
邦秀 高嶋
竜太郎 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17174604&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3098628(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04248194A priority Critical patent/JP3098628B2/en
Priority to KR1019930018614A priority patent/KR0183408B1/en
Priority to EP93114924A priority patent/EP0588342B1/en
Priority to DE69328998T priority patent/DE69328998T2/en
Publication of JPH06100996A publication Critical patent/JPH06100996A/en
Priority to US08/792,494 priority patent/US5858126A/en
Application granted granted Critical
Publication of JP3098628B2 publication Critical patent/JP3098628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はトランス等の鉄心に用い
られる、鋼板面に{110}〈001〉方位いわゆるゴ
ス方位を高度に発達させた高磁束密度一方向性電磁鋼板
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high magnetic flux density unidirectional magnetic steel sheet having a {110} <001> direction, a so-called Goss direction, highly developed on a steel sheet surface, which is used for an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟質磁性材料とし
て主にトランスその他の電気機器の鉄心材料に使用され
ているもので、特性としては磁気特性、特に励磁特性と
鉄損特性が良好でなくてはならない。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as a soft magnetic material for core materials of transformers and other electric equipment, and has good magnetic properties, particularly excellent excitation properties and iron loss properties. Must-have.

【0003】この励磁特性を表す指標としては、通常磁
束密度B8 (磁場の強さ800A/mにおける磁束密度)
が用いられている。また鉄損特性を表す指標としてはW
17/5 0 (50Hzで1.7Tまで磁化させたときの単位重
量あたりの鉄損)等が用いられている。
As an index representing the excitation characteristics, a magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used.
Is used. Also, W is an index representing iron loss characteristics.
17/5 0 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) and the like are used.

【0004】近年省エネルギー、省資源への社会的要求
は益々厳しくなり、一方向性電磁鋼板の鉄損低減、磁化
特性改善への要求も熾烈になってきている。特に鉄損低
減が強く望まれている。
[0004] In recent years, social demands for energy saving and resource saving have become increasingly severe, and demands for reduction of iron loss and improvement of magnetic properties of a grain-oriented electrical steel sheet have also become fierce. In particular, reduction of iron loss is strongly desired.

【0005】鉄損は良く知られているように履歴損と渦
電流損からなり、履歴損は鋼板の結晶方位、純度、内部
歪等により左右され、渦電流損には鋼板の電気抵抗、板
厚、結晶粒度、磁区の大きさ、鋼板被膜張力等が大きく
寄与する。
As is well known, iron loss consists of hysteresis loss and eddy current loss. The hysteresis loss depends on the crystal orientation, purity, internal strain, etc. of the steel sheet. Thickness, crystal grain size, size of magnetic domain, steel plate film tension, etc. contribute greatly.

【0006】それらの中で純度、内部歪の点で古くから
製造技術的に考慮されほぼ限界に達している。電気抵抗
を大きくするためにSi含有量を高めて渦電流損を低減
する試みもなされてはいるが、Si含有量を高めると製
造中および製品での加工性が劣化するため限界がある。
[0006] Among them, in terms of purity and internal strain, they have been considered from the viewpoint of manufacturing technology for a long time and have almost reached the limit. Attempts have been made to reduce the eddy current loss by increasing the Si content in order to increase the electrical resistance, but increasing the Si content has limitations since the workability during production and in products is degraded.

【0007】板厚を薄くして渦電流損を低減させる試み
も種々なされているが、2次再結晶が基本的に困難にな
る他に変圧器等を加工するに当たり加工手間がかかるの
で同じ鉄損値ならば板厚が厚い方が工業的には優れてい
ると云える。従って板厚の薄手化にも限界がある。
Various attempts have been made to reduce the eddy current loss by reducing the thickness of the sheet. However, secondary recrystallization is basically difficult, and processing time is required in processing a transformer or the like. If the loss value is large, it can be said that a thicker plate is industrially superior. Therefore, there is a limit in reducing the thickness of the sheet.

【0008】鋼板に被膜張力を付与して鉄損特性を改善
する方法が特公昭51−12451号公報、特公昭53
−28375号公報に記載されているが、これらの張力
効果は方向性に依存し、磁束密度B8 が高いほど大きい
ことがJ.Appl.Phys.,Vol.41,No.7,2
981−2984,June 1970に記載されてい
る。従ってB8 がいわゆる高磁束密度一方向性電磁鋼板
として市販されている1.93T程度では鉄損の向上に
も限界がある。
[0008] A method for improving iron loss characteristics by imparting a coating tension to a steel sheet is disclosed in Japanese Patent Publication Nos.
Are described in -28375 JP, these tension effects depending on the direction of, be large enough magnetic flux density B 8 high J. Appl. Phys., Vol. 7,2
981-2984, June 1970. Thus there is a limit to improvement of the iron loss is about 1.93T to B 8 is commercially available as a so-called high flux density grain-oriented electrical steel sheet.

【0009】また磁区の大きさは結晶粒の大きさとも関
係するが、最近人工的に磁区を細分化して鉄損を下げる
技術が特公昭58−5968号公報、特公昭58−26
405号公報等により報告されているが、これらの方法
も鉄損低減効果は磁束密度B8 に依存し、市販品の1.
93T程度では鉄損低減も限界がある。
Although the size of magnetic domains is also related to the size of crystal grains, a technique for artificially subdividing magnetic domains to reduce iron loss has recently been disclosed in Japanese Patent Publication Nos. 58-5968 and 58-26.
Has been reported by 405 JP etc., also iron loss reducing effect of these methods is dependent on the magnetic flux density B 8, the commercially available 1.
At about 93T, there is a limit in reducing iron loss.

【0010】鉄損低減の最も近道の方法に2次再結晶粒
の微細化を図る方法があり、特公昭57−9419号公
報等について報告されているが、一般に2次再結晶粒を
小さくする手段をとると高い磁束密度が得難いと云う現
象があるため結晶粒の微細化も鉄損低減の手段として限
界がある。
[0010] The shortest way to reduce iron loss is to reduce the size of secondary recrystallized grains, which is reported in Japanese Patent Publication No. 57-9419 and the like. Since there is such a phenomenon that it is difficult to obtain a high magnetic flux density if measures are taken, there is a limit to miniaturization of crystal grains as a means for reducing iron loss.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記鉄損低減
の種々の手段に替わる新しい、すなわち残された結晶方
位の改善された超高磁束密度一方向性電磁鋼板を提供す
るものである。
SUMMARY OF THE INVENTION The present invention is to provide a new magnetic steel sheet having an ultra-high magnetic flux density and an improved remaining crystal orientation, which is an alternative to the various means for reducing the iron loss.

【0012】[0012]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 1)重量で、Si:2.5〜4.0%を必須成分として
含有し、且つ磁束密度B8 が1.95T以上の極めて高
い値を有する一方向性電磁鋼板であって、結晶粒径が冷
延直角方向50mm以下5mm以上、冷延方向300mm以下
10mm以上のマトリックス粒が面積率で80%以上を占
めることを特徴とする超高磁束密度一方向性電磁鋼板。
The features of the present invention are as follows. 1) by weight, Si: contains 2.5 to 4.0% as an essential component, and the magnetic flux density B 8 is a grain-oriented electrical steel sheet having a very high value of more than 1.95 T, the grain size An ultra-high magnetic flux density unidirectional electrical steel sheet, characterized in that matrix grains occupying an area ratio of 80% or more of 50 mm or less and 5 mm or more in a direction perpendicular to the cold rolling direction and 300 mm or less and 10 mm or more in the cold rolling direction.

【0013】2)マトリックス粒内に平均粒径5mm以下
の微細結晶を含むマトリックス粒が50%以上を占める
ことを特徴とする1)記載の超高磁束密度一方向性電磁
鋼板。
2) The ultra-high magnetic flux density unidirectional electrical steel sheet according to 1), wherein matrix grains containing fine crystals having an average grain size of 5 mm or less occupy 50% or more in the matrix grains .

【0014】3)マトリックス粒の(110)〔00
1〕方位の圧延面からの傾き角がTD軸回りおよびND
軸回りで5°以内の結晶が面積率で90%以上を占め、
且つマトリックス粒内の微細結晶の(110)〔00
1〕方位の圧延面からの傾き角がTD軸回りおよびND
軸回りで10°以内の結晶が面積率で微細粒の90%以
上を占めることを特徴とする2)記載の超高磁束密度一
方向性電磁鋼板。
3) (110) [00]
1] The inclination angle of the azimuth from the rolling surface is around the TD axis and ND
Crystals within 5 ° around the axis account for 90% or more in area ratio,
And (110) [00] of fine crystals in the matrix grains.
1] The inclination angle of the azimuth from the rolling surface is around the TD axis and ND
2. The ultra-high magnetic flux density unidirectional electrical steel sheet according to 2), wherein crystals within 10 ° around the axis occupy 90% or more of the fine grains in area ratio .

【0015】以下本発明の詳細について説明する。本発
明者は鉄損低減のための製品の具備すべき条件について
種々の検討を加え、2.5〜4.0%のSiを含有する
一方向性電磁鋼板の2次再結晶粒のマトリクッスならび
にマトリックス粒内に存在する微細2次再結晶粒を規制
することにより極めて磁束密度の高く、鉄損低減効果の
著しい超高磁束密度一方向性電磁鋼板の開発に成功し
た。
The details of the present invention will be described below. The present inventor has made various studies on the conditions to be provided for a product for reducing iron loss, and has investigated the matrix of secondary recrystallized grains and the recrystallized grains of a grain-oriented electrical steel sheet containing 2.5 to 4.0% of Si. By controlling the fine secondary recrystallized grains present in the matrix grains, we succeeded in developing an ultra-high magnetic flux density unidirectional electrical steel sheet with extremely high magnetic flux density and a remarkable effect of reducing iron loss.

【0016】先ず成分条件について限定理由を説明す
る。Si含有量は製品の電気抵抗を通して鉄損特性を大
きく左右するが、2.5%未満では電気抵抗が小さく渦
電流損が増大するので好ましくない。一方4.0%超で
は加工性が劣化するので製造、製品加工が困難になり好
ましくない。
First, the reasons for limiting the component conditions will be described. The Si content greatly affects the iron loss characteristics through the electric resistance of the product, but if it is less than 2.5%, the electric resistance is small and the eddy current loss increases, which is not preferable. On the other hand, if the content exceeds 4.0%, the workability is deteriorated, so that production and product processing become difficult, which is not preferable.

【0017】次に磁束密度の限定理由について説明す
る。図1に3%Si含有鋼板の板厚0.30mmの製品を
マクロ後レーザー照射を行い、張力1.5kg/mm2 で磁
気測定したものの磁束密度と鉄損の関係を示す。鉄損W
17/50 が0.30mm製品でも特に優れたと云える0.9
0W/kgを切るようになるのは1.95T以上の場合に限
られるので本発明では磁束密度を1.95T以上に限定
した。
Next, the reason for limiting the magnetic flux density will be described. FIG. 1 shows the relationship between the magnetic flux density and iron loss of a 3% Si-containing steel sheet having a thickness of 0.30 mm, which was subjected to laser irradiation after macro irradiation and magnetically measured at a tension of 1.5 kg / mm 2 . Iron loss W
17/50 is 0.90 which is said to be particularly excellent even for 0.30mm products
In the present invention, the magnetic flux density is limited to 1.95 T or more, since it is only below 1.95 T that the current is reduced below 0 W / kg.

【0018】次に2次再結晶粒の粒径の限定理由につい
て説明する。先述したように一般に2次再結晶粒径が減
少すると磁束密度が低下するが、本発明者は種々の製造
法で製造した製品の結晶粒径と磁束密度の関係を詳細に
検討し、図2,3に示すような結果を得た。
Next, the reason for limiting the particle size of the secondary recrystallized grains will be described. As described above, the magnetic flux density generally decreases as the secondary recrystallized grain size decreases. However, the present inventor studied in detail the relationship between the crystal grain size and the magnetic flux density of products manufactured by various manufacturing methods, and FIG. , 3 were obtained.

【0019】結晶粒径は2次再結晶粒のうち冷延方向5
mm以上のマトリックスについて平均した。図2は冷延方
向の結晶粒径と磁束密度の関係で、磁束密度のバラツキ
は大きいが磁束密度が1.95T以上になるのは10mm
以上の場合で10mm未満では1.95Tを超える製品は
得られなかった。
The crystal grain size of the secondary recrystallized grains is 5 in the cold rolling direction.
Averaged for matrices ≥ mm. FIG. 2 shows the relationship between the crystal grain size in the cold rolling direction and the magnetic flux density. The variation in the magnetic flux density is large, but the magnetic flux density becomes 1.95 T or more at 10 mm.
In the above case, if it is less than 10 mm, a product exceeding 1.95 T could not be obtained.

【0020】10mm以上の粒径のものでは1.95T未
満のものもあるが1.95T以上の極めて磁束密度の高
い製品が得られることが判る。同様に図3より冷延直角
方向の結晶粒径が5mm以上の粒径の場合に初めて1.9
5T以上の製品になることが判る。
Some of the particles having a particle diameter of 10 mm or more have a particle diameter of less than 1.95 T, but it is understood that a product having an extremely high magnetic flux density of 1.95 T or more can be obtained. Similarly, FIG. 3 shows that the crystal grain size in the direction perpendicular to the cold rolling direction is 1.9 for the first time when the grain size is 5 mm or more.
It turns out that it becomes a product of 5T or more.

【0021】次にマトリックス粒中に限界サイズ以上の
大きな結晶粒の存在比率であるが、上記のように10mm
(冷延直角方向では5mm)未満の結晶粒は磁束密度が低
いのでその存在比率が20%を超えると製品全体の磁束
密度にも影響し、1.95Tを超えることが困難になる
ので80%以上に限定した。
Next, the ratio of the presence of large crystal grains larger than the critical size in the matrix grains is 10 mm as described above.
Crystal grains less than (5 mm in the direction perpendicular to cold rolling) have a low magnetic flux density, so if their abundance exceeds 20%, it also affects the magnetic flux density of the whole product, and it becomes difficult to exceed 1.95T, so that 80% Limited to the above.

【0022】マトリックス粒内の微細2次再結晶粒の限
定理由について説明する。図4に3%Si含有鋼板の板
厚0.30mmの製品(張力コーティングつき)の磁束密
度と鉄損の関係を示す。黒丸は粗大2次再結晶粒マトリ
ックス中に5mm以下の粒径の微細2次再結晶粒を含む率
が50%以上の場合で、白丸はそれが50%未満の場合
である。
The reason for limiting the fine secondary recrystallized grains in the matrix grains will be described. FIG. 4 shows the relationship between the magnetic flux density and the iron loss of a 3% Si-containing steel sheet having a thickness of 0.30 mm (with a tension coating). The solid circles indicate the case where the ratio of fine secondary recrystallized grains having a particle size of 5 mm or less in the coarse secondary recrystallized grain matrix is 50% or more, and the white circles indicate the case where it is less than 50%.

【0023】図1のレーザー照射材とは異なり磁束密度
と鉄損の間に明瞭な相関はないように見えるが、一部に
はレーザー照射材の鉄損にも匹敵するような優れた製品
が見受けられる。
Unlike the laser-irradiated material shown in FIG. 1, there seems to be no clear correlation between the magnetic flux density and the iron loss, but in some cases, there are excellent products comparable to the iron loss of the laser-irradiated material. Can be seen.

【0024】これらの鉄損の優れた製品について本発明
者らが詳細に調査した結果、図中に区別したように粗大
2次再結晶粒マトリックス中に5mm以下の微細2次再結
晶粒を含むものが50%以上の場合にのみ鉄損が0.9
5W/kg以下の優れた製品が得られていることが判明し
た。
As a result of a detailed investigation conducted by the present inventors on these products having excellent iron loss, as shown in the figure, the coarse secondary recrystallized grain matrix contains fine secondary recrystallized grains of 5 mm or less in the matrix. Iron loss is 0.9 only when the content is 50% or more
It turned out that an excellent product of 5 W / kg or less was obtained.

【0025】従って本発明では、結晶粒径の大きい2次
再結晶マトリックス粒が微細2次再結晶を含む確率を5
0%以上に限定する。この鉄損低減のメカニズムについ
ては必ずしも明確ではないが、本発明者は磁束密度が極
めて高い本発明対象の超高磁束密度一方向性電磁鋼板に
おいては、微細2次再結晶粒を含まない場合は磁壁が結
晶粒を突き抜けて連続し、磁区が粗大化するのに対し、
微細結晶粒を含む場合にはその微細結晶から新たな磁区
が発生し、磁区細分化効果を生んでいるものと推定して
いる。
Therefore, in the present invention, the secondary particles having a large crystal grain size are used.
The probability that the recrystallized matrix grains contain fine secondary recrystallization is 5
Limited to 0% or more. Although the mechanism of this iron loss reduction is not necessarily clear, the present inventor has found that in the case of the ultra-high magnetic flux density unidirectional magnetic steel sheet of the present invention having an extremely high magnetic flux density, in the case where fine secondary recrystallized grains are not included, While the domain wall penetrates through the crystal grains and continues, and the magnetic domain becomes coarse,
It is presumed that when a fine crystal grain is included, a new magnetic domain is generated from the fine crystal, thereby producing a magnetic domain refining effect.

【0026】製品の磁束密度と2次再結晶粒の方位に関
係のあることは周知のことであるが、本発明のようにマ
トリックス粗大2次再結晶粒と結晶内に更に微細2次再
結晶粒を含むような場合についての方位分布について明
確にされたものはなかった。特に本発明のように1.9
5T以上の超高磁束密度一方向性電磁鋼板についての方
位分布の公知例は全くなかった。
It is well known that there is a relationship between the magnetic flux density of the product and the orientation of the secondary recrystallized grains. Nothing was clarified about the orientation distribution for the case including grains. In particular, as in the present invention, 1.9.
There was no known example of the orientation distribution of the ultra-high magnetic flux density unidirectional magnetic steel sheet of 5T or more.

【0027】そこで本発明者は本発明材について詳細な
方位測定を行って以下のような新規知見を得ることに成
功した。即ち、マトリックス粒の(110)〔001〕
方位の圧延面からの傾き角がTD軸回りおよびND軸回
りで5°以内の結晶が面積率で90%以上を占め、且つ
マトリックス粒内の微細2次再結晶粒の(110)〔0
01〕方位の圧延面からの傾き角がTD軸回りおよびN
D軸回りで10°以内の結晶が微細2次再結晶粒の90
%以上を占めることが必要であることを知見した。
Therefore, the present inventor has succeeded in obtaining the following new knowledge by performing detailed orientation measurement on the material of the present invention. That is, (110) [001] of the matrix particles
Crystals having an orientation angle of 5 ° or less around the TD axis and the ND axis from the rolling surface occupy 90% or more in area ratio, and (110) [0] of fine secondary recrystallized grains in the matrix grains.
01] of the azimuth from the rolled surface around the TD axis and N
Crystals within 10 ° around the D axis are 90% of fine secondary recrystallized grains.
It was found that it was necessary to account for more than%.

【0028】マトリックス粒の方位分散が理想ゴス方位
から5°を超える結晶が面積率で10%超存在すると得
られた製品の磁束密度は1.95T未満となり、また同
じように微細2次再結晶粒の方位分散が理想ゴス方位か
ら10°を超えると同様に磁束密度が1.95T未満と
なる。以上の点から本発明の請求範囲に限定する。
When crystals having an orientation dispersion of matrix grains exceeding 5 ° from the ideal Goss orientation are present in an area ratio of more than 10% , the magnetic flux density of the obtained product is less than 1.95 T, and the fine secondary recrystallization is similarly performed. When the orientation dispersion of the grains exceeds 10 ° from the ideal Goss orientation, the magnetic flux density becomes less than 1.95T similarly. From the above points, the scope of the present invention is limited.

【0029】次に本発明の超高磁束密度一方向性電磁鋼
板の製造方法について述べる。先ず第1の条件は素材成
分であるがC:0.03〜0.15%、Si:2.5〜
4.0%、Mn:0.02〜0.80%、S:0.04
0%以下、酸可溶性Al:0.010〜0.065%、
N:0.0030〜0.0150%を基本成分として含
有し、更にBiを0.0005〜0.05%を含有する
ことを必須要件とする。その他必要に応じてSn:0.
05〜0.50%、Cu:0.01〜0.10%含有す
ることは許される。その他通常の一方向性電磁鋼板製造
に用いられるインヒビター元素を補助的に用いることも
妨げるものではない。
Next, a method for producing the ultra-high magnetic flux density unidirectional magnetic steel sheet of the present invention will be described. First, the first condition is a material component, but C: 0.03 to 0.15%, Si: 2.5 to
4.0%, Mn: 0.02 to 0.80%, S: 0.04
0% or less, acid-soluble Al: 0.010 to 0.065%,
N: 0.0030 to 0.0150% is contained as a basic component, and Bi must be contained to 0.0005 to 0.05% as an essential requirement. In addition, Sn: 0.
It is permissible to contain 0.05 to 0.50% and Cu: 0.01 to 0.10%. In addition, it does not prevent the use of an inhibitor element used in the production of a normal grain-oriented electrical steel sheet.

【0030】本製造法の特徴はBi添加にある。Biは
0.0005%未満では製品の磁束密度向上効果が小さ
く、且つ2次再結晶粒径が小さく方向性もよくない。一
方0.05%超では磁束密度向上効果が飽和するととも
に熱延時に端部割れを生ずるので好ましくない。
The feature of this production method lies in the addition of Bi. If Bi is less than 0.0005%, the effect of improving the magnetic flux density of the product is small, and the secondary recrystallized grain size is small and the directionality is not good. On the other hand, if it exceeds 0.05%, the effect of improving the magnetic flux density is saturated, and end cracks occur during hot rolling, which is not preferable.

【0031】Biが2次再結晶に何故影響をおよぼし磁
束密度を極めて高くし、更に2次再結晶粒の形状を変化
させるかはよく判らないが、本発明者はBi添加による
主インヒビターである窒化物、硫化物の析出状態を変化
させていること、あるいはBi自身の粒界偏析によるイ
ンヒビター効果ではないかと推察している。溶解、鋳
造、熱延は一方向性電磁鋼板製造に用いられている通常
の方法でよい。
It is not clear why Bi influences the secondary recrystallization, increases the magnetic flux density and further changes the shape of the secondary recrystallized grains, but the present inventor is the main inhibitor by adding Bi. It is presumed that the precipitation state of nitrides and sulfides is changed, or that the effect is an inhibitory effect due to segregation of grain boundaries of Bi itself. Melting, casting and hot rolling may be the usual methods used in the production of unidirectional magnetic steel sheets.

【0032】熱延板は必要に応じ熱延板焼鈍を施す。こ
の焼鈍は1段冷延法の場合は熱延板で施し、2段以上の
冷延法の場合は最終冷延前の焼鈍を指す。焼鈍は950
〜1200℃で30秒〜30分間の焼鈍を行い、必要に
応じ急冷処理を施してもよい。
The hot rolled sheet is subjected to hot rolled sheet annealing as required. In the case of the one-stage cold rolling method, this annealing is performed with a hot-rolled sheet, and in the case of the two or more-stage cold rolling method, the annealing before final cold rolling is indicated. Annealing is 950
Annealing may be performed at 秒 1200 ° C. for 30 seconds to 30 minutes, and a quenching treatment may be performed if necessary.

【0033】冷延は1段もしくは2段以上のステージで
行うが、高磁束密度一方向性電磁鋼板であることから最
終冷延の圧延率は65〜95%の強圧下冷延が好まし
い。最終冷延以外のステージの圧延率は特に規定しなく
てもよい。この冷延法であるが必要に応じて特公昭54
−13846号公報記載の時効冷延を施すことは有益で
ある。
The cold rolling is performed in one stage or two or more stages. However, since it is a high magnetic flux density unidirectional magnetic steel sheet, the final cold rolling is preferably performed under high-pressure cold rolling at a rolling reduction of 65 to 95%. The rolling rates of stages other than the final cold rolling need not be particularly defined. This cold rolling method is to be used if necessary.
It is advantageous to apply the aging cold rolling described in JP-A-13846.

【0034】最終製品板厚に圧延した冷延板を続いて通
常の方法で脱炭焼鈍を行う。脱炭焼鈍の条件は特に規定
しないが、好ましくは700〜900℃の温度範囲で3
0秒〜30分間の湿潤な水素または水素と窒素の混合雰
囲気で行うのがよい。
The cold-rolled sheet rolled to the final product thickness is subsequently subjected to decarburization annealing by a conventional method. The conditions for the decarburization annealing are not particularly specified, but are preferably in the temperature range of 700 to 900 ° C.
It is preferable to carry out in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen for 0 seconds to 30 minutes.

【0035】脱炭焼鈍後の鋼板表面には2次再結晶焼鈍
における焼き付き防止およびグラス被膜生成のため通常
の方法で通常のMgOを主成分とする焼鈍分離剤を塗布
する。引き続く2次再結晶焼鈍は1000℃以上の温度
で5時間以上、水素または窒素またはそれらの混合雰囲
気で行えばよい。
The surface of the steel sheet after the decarburizing annealing is coated with an ordinary annealing separator containing MgO as a main component by an ordinary method to prevent seizure in the secondary recrystallization annealing and to form a glass film. Subsequent secondary recrystallization annealing may be performed at a temperature of 1000 ° C. or more for 5 hours or more in an atmosphere of hydrogen, nitrogen, or a mixture thereof.

【0036】2次再結晶焼鈍後の鋼板は引き続き余分の
焼鈍分離剤を除去後、コイル巻ぐせを矯正するための連
続焼鈍を行い、同時に絶縁被膜(張力付与被膜を兼ね
る)を塗布、焼き付ける。更に必要に応じてレーザー照
射等の磁区細分化処理を施す。磁区細分化の方法は特に
限定する必要はない。
The steel sheet after the secondary recrystallization annealing is continuously subjected to continuous annealing for correcting coil winding after removing an excessive annealing separating agent, and at the same time, an insulating film (also serving as a tension applying film) is applied and baked. Further, if necessary, a magnetic domain refining treatment such as laser irradiation is performed. There is no particular limitation on the method of magnetic domain subdivision.

【0037】以上本発明の超高磁束密度一方向性電磁鋼
板の製造法について述べたが、製造法はこの方法に限ら
れるわけではなく、Si含有の規制を除けば如何なるイ
ンヒビター元素を用いる方法でも、またプロセス条件も
上記方法にこだわるものではない。
Although the method for producing the ultra-high magnetic flux density unidirectional electrical steel sheet of the present invention has been described above, the production method is not limited to this method, and any method using an inhibitor element except for the regulation of Si content can be used. The process conditions are not limited to the above method.

【0038】[0038]

【実施例】【Example】

(実施例1)C:0.06〜0.09%、Si:3.0
〜3.35%、Mn:0.08%、S:0.025%、
酸可溶性Al:0.020〜0.035%、N:0.0
08%、Sn:0〜0.15%、Cu:0.05%およ
びBi:0.0005〜0.05%を含有しその他不可
避不純物からなる電磁鋼板用スラブを1320℃に加熱
後直ちに熱延し2.3mmの熱延板とした。
(Example 1) C: 0.06 to 0.09%, Si: 3.0
-3.35%, Mn: 0.08%, S: 0.025%,
Acid-soluble Al: 0.020 to 0.035%, N: 0.0
A slab for an electromagnetic steel sheet containing 08%, Sn: 0 to 0.15%, Cu: 0.05% and Bi: 0.0005 to 0.05%, and other unavoidable impurities, is hot-rolled immediately after heating to 1320 ° C. Then, a 2.3 mm hot rolled sheet was obtained.

【0039】冷延は0.30mmおよび0.23mmまで行
い、0.30mmは1ステージ冷延、0.23mmは最終冷
延率を87.5%とする2ステージの冷延を行った。一
部の物は冷延のパス間に200℃での時効処理を5回施
した。
The cold rolling was performed to 0.30 mm and 0.23 mm, and 0.30 mm was subjected to one-stage cold rolling, and 0.23 mm was subjected to two-stage cold rolling at a final cold rolling rate of 87.5%. Some of them were aged 5 times at 200 ° C. between the cold rolling passes.

【0040】最終冷延前に1120℃×2分の高温焼鈍
を行った。冷延板を引き続き850℃で脱炭焼鈍を行
い、MgOを主成分とする焼鈍分離剤を塗布後、120
0℃の2次再結晶焼鈍を行った。
Before final cold rolling, high temperature annealing was performed at 1120 ° C. × 2 minutes. The cold rolled sheet was continuously decarburized at 850 ° C., and after applying an annealing separator containing MgO as a main component,
A second recrystallization annealing at 0 ° C. was performed.

【0041】焼鈍分離剤の残物を除去後60×300mm
の磁気測定試料を剪断し、850℃で歪取り焼鈍を行
い、続いて絶縁被膜の塗布、焼き付けを行った。一部の
試料は更に5mm間隔でレーザー照射を行って磁気測定に
供した。磁気測定試料を強酸でマクロ後結晶粒径等を測
定した。
After removing the residue of the annealing separator, 60 × 300 mm
Was sheared and subjected to strain relief annealing at 850 ° C., followed by application and baking of an insulating film. Some of the samples were further subjected to laser irradiation at 5 mm intervals for magnetic measurement. The macroscopic measurement of the magnetic measurement sample with a strong acid was followed by measurement of the crystal grain size and the like.

【表1】 [Table 1]

【0042】試料番号1,6,7,8は何れも素材成分
としBiが含有されていなく、且つ磁束密度も1.95
T未満で鉄損特性もレーザー照射の有無にかかわらず
0.30mmおよび0.23mmの従来製品の域を超えてい
ない。試料番号2,3は素材成分としてBiを含有し、
磁束密度も1.95Tを超え、且つマトリックスの粗大
粒面積率が80%を超えているのでレーザー照射後の鉄
損が0.90W/kgをはるかにきる0.30mm厚の製品と
しては素晴らしい特性と云える。
Sample Nos. 1, 6, 7, and 8 were all made of a material component containing no Bi and having a magnetic flux density of 1.95.
Below T, the iron loss characteristics do not exceed the range of conventional products of 0.30 mm and 0.23 mm regardless of laser irradiation. Sample Nos. 2 and 3 contain Bi as a material component,
The magnetic flux density also exceeds 1.95T and the matrix coarse area ratio exceeds 80%, so the iron loss after laser irradiation is much less than 0.90W / kg. I can say

【0043】試料番号4,5はBiを含有し、磁束密度
が1.95T以上でありマトリックスの粗大粒面積率も
80%を超え、更にマトリックス粗大粒が、微細2次再
結晶粒を含む確率(表1では微細結晶の存在率として示
した)も50%を超えているので磁区制御なしでの鉄
損が0.95W/kg以下の0.30mm厚の製品としては優
れた特性が得られている。
[0043] Sample No. 4 and 5 contain Bi, coarse grains area ratio of the matrix and the magnetic flux density is 1.95T or more even more than 80%, more matrix coarse grains, the probability of including a secondary recrystallization grains fine (Table 1 shows the percentage of fine crystals.
) Exceeds 50%, so that excellent characteristics are obtained as a 0.30 mm thick product having an iron loss of 0.95 W / kg or less without magnetic domain control.

【0044】試料番号9,10,11も板厚0.23mm
製品であるが0.30mm製品と同様にBi含有、マトリ
ックス粗大粒面積率とも本発明範囲を満足しているので
0.23mm厚製品のレーザー照射磁区制御材として極め
て優れた製品である。
Sample numbers 9, 10, and 11 were also 0.23 mm thick.
Although it is a product, the Bi content and the matrix coarse grain area ratio satisfy the range of the present invention similarly to the 0.30 mm product, so that it is a very excellent product as a laser irradiation magnetic domain control material for a 0.23 mm thick product.

【0045】(実施例2)実施例1と同様な製造法で製
造した0.30mm厚の製品を得た。磁気特性を測定後強
酸でマクロ後ラウエ法で各結晶粒の方位を測定した。結
果を表2に示す。
(Example 2) A 0.30 mm thick product manufactured by the same manufacturing method as in Example 1 was obtained. After measuring the magnetic properties, the orientation of each crystal grain was measured by the Laue method after macro with a strong acid. Table 2 shows the results.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から明らかなように磁束密度B8
1.95T以上の試料では理想ゴス方位すなわち{11
0}〈001〉からの回転角がマトリックスで5°以
下、微細結晶で10°以下の面積率が何れも90%以上
である。
As is apparent from Table 2, in the sample having a magnetic flux density B 8 of 1.95 T or more, the ideal Goss orientation, ie, Δ11
The rotation angle from 0 <001> is 5 ° or less in the matrix, and the area ratio of 10 ° or less in the fine crystal is 90% or more.

【0048】[0048]

【発明の効果】本発明の超高磁束密度一方向性電磁鋼板
は従来製品に比べて磁束密度が極めて高く、磁区制御後
の鉄損が0.30mm製品で0.90W/kg以下のように極
めて優れているのみならず、方位のよい微細2次再結晶
粒を適度に含んだ場合は磁区制御なしでも0.95W/kg
以下の優れた製品であり、トランス等の電気機器の省エ
ネルギーに寄与するところ極めて大きいと云える。
The ultra-high magnetic flux density grain-oriented electrical steel sheet of the present invention has an extremely high magnetic flux density as compared with the conventional product, and the iron loss after controlling the magnetic domain is 0.90 W / kg or less for the 0.30 mm product. Not only is it excellent, but also contains moderate secondary recrystallized grains with good orientation, 0.95 W / kg without magnetic domain control
These are the following excellent products, which can be said to be extremely large in contributing to the energy saving of electrical equipment such as transformers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鉄損と磁束密度との関係の図表であ
る。
FIG. 1 is a table showing the relationship between iron loss and magnetic flux density according to the present invention.

【図2】磁束密度と冷延方向結晶粒径との関係の図表で
ある。
FIG. 2 is a table showing a relationship between a magnetic flux density and a crystal grain size in a cold rolling direction.

【図3】磁束密度と冷延直角方向結晶粒径との関係の図
表である。
FIG. 3 is a table showing a relationship between a magnetic flux density and a crystal grain diameter in a direction perpendicular to cold rolling.

【図4】鉄損と磁束密度との関係の図表である。FIG. 4 is a chart showing the relationship between iron loss and magnetic flux density.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 303 H01F 1/16 C21D 8/12 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00 303 H01F 1/16 C21D 8/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量で、Si:2.5〜4.0%を必須
成分として含有し、且つ磁束密度B8 が1.95T以上
の極めて高い値を有する一方向性電磁鋼板であって、結
晶粒径が冷延直角方向50mm以下5mm以上、冷延方向3
00mm以下10mm以上のマトリックス粒が面積率で80
%以上を占めることを特徴とする超高磁束密度一方向性
電磁鋼板。
1. A grain-oriented electrical steel sheet containing 2.5 to 4.0% of Si as an essential component by weight and having a very high magnetic flux density B 8 of 1.95 T or more, The crystal grain size is 50mm or less in the direction perpendicular to the cold rolling 5mm or more, cold rolling direction 3
80 mm or less and 10 mm or more matrix particles are 80
% Of ultra-high magnetic flux density unidirectional electrical steel sheet.
【請求項2】 マトリックス粒内に平均粒径5mm以下の
微細結晶を含むマトリックス粒が50%以上を占めるこ
とを特徴とする請求項1記載の超高磁束密度一方向性電
磁鋼板。
2. The ultra-high magnetic flux density grain- oriented electrical steel sheet according to claim 1, wherein matrix grains containing fine crystals having an average grain size of 5 mm or less in the matrix grains account for 50% or more.
【請求項3】 マトリックス粒の(110)〔001〕
方位の圧延面からの傾き角がTD軸回りおよびND軸回
りで5°以内の結晶が面積率で90%以上を占め、且つ
マトリックス粒内の微細結晶の(110)〔001〕方
位の圧延面からの傾き角がTD軸回りおよびND軸回り
で10°以内の結晶が面積率で微細粒の90%以上を占
めることを特徴とする請求項2記載の超高磁束密度一方
向性電磁鋼板。
3. The matrix grains of (110) [001]
A crystal whose inclination angle from the rolling surface within 5 ° around the TD axis and the ND axis occupies 90% or more in area ratio, and the (110) [001] direction rolling surface of the fine crystal in the matrix grains. 3. The ultra-high magnetic flux density unidirectional electrical steel sheet according to claim 2, wherein crystals having an inclination angle of about 10 ° or less around the TD axis and the ND axis occupy 90% or more of the fine grains in terms of area ratio .
JP04248194A 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3098628B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04248194A JP3098628B2 (en) 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet
KR1019930018614A KR0183408B1 (en) 1992-09-17 1993-09-16 Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing the same
EP93114924A EP0588342B1 (en) 1992-09-17 1993-09-16 Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
DE69328998T DE69328998T2 (en) 1992-09-17 1993-09-16 Grain-oriented electrical sheets and material with a very high magnetic flux density and process for producing them
US08/792,494 US5858126A (en) 1992-09-17 1997-01-31 Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04248194A JP3098628B2 (en) 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH06100996A JPH06100996A (en) 1994-04-12
JP3098628B2 true JP3098628B2 (en) 2000-10-16

Family

ID=17174604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04248194A Expired - Lifetime JP3098628B2 (en) 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3098628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270129A (en) * 2008-04-30 2009-11-19 Nippon Steel Corp Grain-oriented electrical steel sheet excellent in magnetic properties and adhesiveness of film, and manufacturing method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69810852T2 (en) * 1997-07-17 2003-06-05 Kawasaki Steel Co Grain-oriented electrical steel sheet with excellent magnetic properties and its manufacturing process
JP5360272B2 (en) 2011-08-18 2013-12-04 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
WO2013058239A1 (en) * 2011-10-20 2013-04-25 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
JP7307354B2 (en) * 2018-06-21 2023-07-12 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic properties
WO2020158893A1 (en) * 2019-01-31 2020-08-06 Jfeスチール株式会社 Grain-oriented electrical steel sheet and iron core using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270129A (en) * 2008-04-30 2009-11-19 Nippon Steel Corp Grain-oriented electrical steel sheet excellent in magnetic properties and adhesiveness of film, and manufacturing method therefor

Also Published As

Publication number Publication date
JPH06100996A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
JP3212376B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3098628B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
JP3656913B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
KR930004849B1 (en) Electrcal steel sheet having a good magnetic property and its making process
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2888324B2 (en) Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0673509A (en) Grain oriented silicon steel sheet excellent in magnetic property and its production
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3215178B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP3215177B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP3479984B2 (en) Unidirectional silicon steel sheet having stable magnetic properties and method of manufacturing the same
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH10121212A (en) Grain-oriented silicon steel sheet and its production
JPH11323437A (en) Production of thick grain-oriented silicon steel plate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13