JPH06100996A - Grain-oriented silicon steel sheet with ultrahigh magnetic flux density - Google Patents

Grain-oriented silicon steel sheet with ultrahigh magnetic flux density

Info

Publication number
JPH06100996A
JPH06100996A JP4248194A JP24819492A JPH06100996A JP H06100996 A JPH06100996 A JP H06100996A JP 4248194 A JP4248194 A JP 4248194A JP 24819492 A JP24819492 A JP 24819492A JP H06100996 A JPH06100996 A JP H06100996A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
steel sheet
matrix
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4248194A
Other languages
Japanese (ja)
Other versions
JP3098628B2 (en
Inventor
Kunihide Takashima
邦秀 高嶋
Ryutaro Kawamata
竜太郎 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17174604&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06100996(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04248194A priority Critical patent/JP3098628B2/en
Priority to EP93114924A priority patent/EP0588342B1/en
Priority to DE69328998T priority patent/DE69328998T2/en
Priority to KR1019930018614A priority patent/KR0183408B1/en
Publication of JPH06100996A publication Critical patent/JPH06100996A/en
Priority to US08/792,494 priority patent/US5858126A/en
Application granted granted Critical
Publication of JP3098628B2 publication Critical patent/JP3098628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To provide an ultrahigh magnetic flux density grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss after magnetic domain control by specifying the crystalline grain size of the matrix of a silicon steel sheet with specific composition. CONSTITUTION:Si is incorporated, as essential component, into a grain-oriented silicon steel sheet by 2.5-4.0% by weight, and magnetic flux density B8 is regulated to a value as high as >=1.95T. The crystalline grain size of the matrix of the steel sheet is regulated so that the grains of 5-50mm, in a direction perpendicular to cold rolling direction, and 10-300mm, in a cold rolling direction, comprise >=80% by area ratio. Further, the grains including fine crystals of >=5mm average grain size comprise >=50% of the matrix grains. By this method, this steel sheet can greatly contribute to energy saving for electrical equipment, such as transformer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はトランス等の鉄心に用い
られる、鋼板面に{110}〈001〉方位いわゆるゴ
ス方位を高度に発達させた高磁束密度一方向性電磁鋼板
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high magnetic flux density unidirectional electrical steel sheet which is used for an iron core of a transformer or the like and has a highly developed {110} <001> orientation on the surface of the steel sheet.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟質磁性材料とし
て主にトランスその他の電気機器の鉄心材料に使用され
ているもので、特性としては磁気特性、特に励磁特性と
鉄損特性が良好でなくてはならない。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as a soft magnetic material for iron core materials of transformers and other electric equipment. They have good magnetic characteristics, especially excitation characteristics and iron loss characteristics. Must-have.

【0003】この励磁特性を表す指標としては、通常磁
束密度B8 (磁場の強さ800A/mにおける磁束密度)
が用いられている。また鉄損特性を表す指標としてはW
17/5 0 (50Hzで1.7Tまで磁化させたときの単位重
量あたりの鉄損)等が用いられている。
As an index showing this excitation characteristic, a normal magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m)
Is used. In addition, as an index showing the iron loss characteristic, W
17/5 0 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) and the like are used.

【0004】近年省エネルギー、省資源への社会的要求
は益々厳しくなり、一方向性電磁鋼板の鉄損低減、磁化
特性改善への要求も熾烈になってきている。特に鉄損低
減が強く望まれている。
In recent years, social demands for energy saving and resource saving have become more and more strict, and demands for reducing iron loss and improving magnetization characteristics of unidirectional electrical steel sheets have also become strict. In particular, iron loss reduction is strongly desired.

【0005】鉄損は良く知られているように履歴損と渦
電流損からなり、履歴損は鋼板の結晶方位、純度、内部
歪等により左右され、渦電流損には鋼板の電気抵抗、板
厚、結晶粒度、磁区の大きさ、鋼板被膜張力等が大きく
寄与する。
As is well known, iron loss consists of hysteresis loss and eddy current loss. Hysteresis loss depends on the crystal orientation, purity, internal strain, etc. of the steel sheet. The thickness, grain size, magnetic domain size, steel sheet coating tension, etc. make a large contribution.

【0006】それらの中で純度、内部歪の点で古くから
製造技術的に考慮されほぼ限界に達している。電気抵抗
を大きくするためにSi含有量を高めて渦電流損を低減
する試みもなされてはいるが、Si含有量を高めると製
造中および製品での加工性が劣化するため限界がある。
Among them, the purity and the internal strain have been considered from the viewpoint of manufacturing technology for a long time, and the limit has been almost reached. Although attempts have been made to increase the Si content to reduce the eddy current loss in order to increase the electric resistance, increasing the Si content has a limit because workability during manufacturing and products deteriorates.

【0007】板厚を薄くして渦電流損を低減させる試み
も種々なされているが、2次再結晶が基本的に困難にな
る他に変圧器等を加工するに当たり加工手間がかかるの
で同じ鉄損値ならば板厚が厚い方が工業的には優れてい
ると云える。従って板厚の薄手化にも限界がある。
Various attempts have been made to reduce the eddy current loss by reducing the plate thickness, but secondary recrystallization is basically difficult, and it takes time and labor to process a transformer or the like. If the loss value is large, it can be said that a thick plate is industrially superior. Therefore, there is a limit in thinning the plate thickness.

【0008】鋼板に被膜張力を付与して鉄損特性を改善
する方法が特公昭51−12451号公報、特公昭53
−28375号公報に記載されているが、これらの張力
効果は方向性に依存し、磁束密度B8 が高いほど大きい
ことがJ.Appl.Phys.,Vol.41,No.7,2
981−2984,June 1970に記載されてい
る。従ってB8 がいわゆる高磁束密度一方向性電磁鋼板
として市販されている1.93T程度では鉄損の向上に
も限界がある。
A method for imparting film tension to a steel sheet to improve iron loss characteristics is disclosed in Japanese Examined Patent Publication Nos. 51-12451 and 53.
No. 28375, the tension effect depends on the directionality, and the higher the magnetic flux density B 8 is, the larger the effect is. Appl. Phys., Vol. 41, No. 7, 2
981-2984, June 1970. Therefore, if B 8 is about 1.93T, which is commercially available as a so-called high magnetic flux density grain-oriented electrical steel sheet, improvement in iron loss is limited.

【0009】また磁区の大きさは結晶粒の大きさとも関
係するが、最近人工的に磁区を細分化して鉄損を下げる
技術が特公昭58−5968号公報、特公昭58−26
405号公報等により報告されているが、これらの方法
も鉄損低減効果は磁束密度B8 に依存し、市販品の1.
93T程度では鉄損低減も限界がある。
The size of the magnetic domain is also related to the size of the crystal grain, but recently, a technique for artificially subdividing the magnetic domain to reduce the iron loss is disclosed in Japanese Patent Publication Nos. 58-5968 and 58-26.
As disclosed in Japanese Patent No. 405, etc., the iron loss reducing effect of these methods also depends on the magnetic flux density B 8 and is 1.
At about 93T, there is a limit to iron loss reduction.

【0010】鉄損低減の最も近道の方法に2次再結晶粒
の微細化を図る方法があり、特公昭57−9419号公
報等について報告されているが、一般に2次再結晶粒を
小さくする手段をとると高い磁束密度が得難いと云う現
象があるため結晶粒の微細化も鉄損低減の手段として限
界がある。
[0010] The most shortcut method for reducing iron loss is to reduce the size of secondary recrystallized grains, which has been reported in Japanese Patent Publication No. 57-9419, but generally the secondary recrystallized grains are made smaller. Since there is a phenomenon that it is difficult to obtain a high magnetic flux density if a measure is taken, there is a limit to reducing the iron loss by making the crystal grains fine.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記鉄損低減
の種々の手段に替わる新しい、すなわち残された結晶方
位の改善された超高磁束密度一方向性電磁鋼板を提供す
るものである。
DISCLOSURE OF THE INVENTION The present invention provides a new, that is, an ultrahigh magnetic flux density unidirectional electrical steel sheet having an improved residual crystal orientation, which is an alternative to various means for reducing iron loss.

【0012】[0012]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 1)重量で、Si:2.5〜4.0%を必須成分として
含有し、且つ磁束密度B8 が1.95T以上の極めて高
い値を有する一方向性電磁鋼板であって、マトリックス
の結晶粒径が冷延直角方向50mm以下5mm以上、冷延方
向300mm以下10mm以上のものが面積率で80%以上
を占めることを特徴とする超高磁束密度一方向性電磁鋼
板。
The features of the present invention are as follows. 1) A grain-oriented electrical steel sheet containing Si: 2.5 to 4.0% by weight as an essential component and having an extremely high magnetic flux density B 8 of 1.95 T or more, and a matrix crystal. An ultra-high magnetic flux density unidirectional electrical steel sheet characterized by having an area ratio of 80% or more in a grain size of 50 mm or less and 5 mm or more in the cold rolling direction at right angles to 300 mm or less in the cold rolling direction.

【0013】2)マトリックス粒内に平均粒径5mm以下
の微細結晶を含むものが50%以上を占めることを特徴
とする1)記載の超高磁束密度一方向性電磁鋼板。
2) The ultrahigh magnetic flux density unidirectional electrical steel sheet according to 1), wherein 50% or more of the matrix grains contain fine crystals having an average grain size of 5 mm or less.

【0014】3)マトリックス粒の(110)〔00
1〕方位の圧延面からの傾き角がTD軸回りおよびND
軸回りで5°以内の結晶が面積率で90%以上を占め、
且つマトリックス粒内の微細結晶の(110)〔00
1〕方位の圧延面からの傾き角がTD軸回りおよびND
軸回りで10°以内の結晶が微細粒の90%以上を占め
ることを特徴とする2)記載の超高磁束密度一方向性電
磁鋼板。
3) Matrix grain of (110) [00
1] The tilt angle of the orientation from the rolling surface is around the TD axis and ND
Crystals within 5 ° around the axis occupy 90% or more in area ratio,
In addition, (110) [00 of fine crystals in matrix grains
1] The tilt angle of the orientation from the rolling surface is around the TD axis and ND
The ultrahigh magnetic flux density unidirectional electrical steel sheet according to 2), characterized in that crystals within 10 ° around the axis occupy 90% or more of the fine grains.

【0015】以下本発明の詳細について説明する。本発
明者は鉄損低減のための製品の具備すべき条件について
種々の検討を加え、2.5〜4.0%のSiを含有する
一方向性電磁鋼板の2次再結晶粒のマトリクッスならび
にマトリックス粒内に存在する微細2次再結晶粒を規制
することにより極めて磁束密度の高く、鉄損低減効果の
著しい超高磁束密度一方向性電磁鋼板の開発に成功し
た。
The details of the present invention will be described below. The present inventor has conducted various studies on the conditions that a product for reducing iron loss should have, and has found that the matrix of secondary recrystallized grains of the grain-oriented electrical steel sheet containing 2.5 to 4.0% Si and the matrix. By controlling the fine secondary recrystallized grains existing in the matrix grains, we have succeeded in developing an ultra-high magnetic flux density unidirectional electrical steel sheet with extremely high magnetic flux density and remarkable iron loss reduction effect.

【0016】先ず成分条件について限定理由を説明す
る。Si含有量は製品の電気抵抗を通して鉄損特性を大
きく左右するが、2.5%未満では電気抵抗が小さく渦
電流損が増大するので好ましくない。一方4.0%超で
は加工性が劣化するので製造、製品加工が困難になり好
ましくない。
First, the reasons for limiting the component conditions will be described. The Si content largely affects the iron loss characteristics through the electrical resistance of the product, but if it is less than 2.5%, the electrical resistance is small and the eddy current loss increases, which is not preferable. On the other hand, if it exceeds 4.0%, the workability is deteriorated, which makes manufacturing and product processing difficult, which is not preferable.

【0017】次に磁束密度の限定理由について説明す
る。図1に3%Si含有鋼板の板厚0.30mmの製品を
マクロ後レーザー照射を行い、張力1.5kg/mm2 で磁
気測定したものの磁束密度と鉄損の関係を示す。鉄損W
17/50 が0.30mm製品でも特に優れたと云える0.9
0W/kgを切るようになるのは1.95T以上の場合に限
られるので本発明では磁束密度を1.95T以上に限定
した。
Next, the reason for limiting the magnetic flux density will be described. FIG. 1 shows the relationship between the magnetic flux density and the iron loss of a product of a steel plate containing 3% Si having a plate thickness of 0.30 mm, which was subjected to laser irradiation after macro irradiation and magnetically measured at a tension of 1.5 kg / mm 2 . Iron loss W
17/50 is said to be particularly excellent even for 0.30 mm products 0.9
The magnetic flux density is limited to 1.95 T or more in the present invention, so the magnetic flux density is limited to 1.95 T or more in the present invention.

【0018】次に2次再結晶粒の粒径の限定理由につい
て説明する。先述したように一般に2次再結晶粒径が減
少すると磁束密度が低下するが、本発明者は種々の製造
法で製造した製品の結晶粒径と磁束密度の関係を詳細に
検討し、図2,3に示すような結果を得た。
Next, the reason for limiting the grain size of the secondary recrystallized grains will be described. As described above, the magnetic flux density generally decreases as the secondary recrystallized grain size decreases. However, the present inventor has studied in detail the relationship between the crystal grain size and the magnetic flux density of products manufactured by various manufacturing methods, and FIG. , 3 were obtained.

【0019】結晶粒径は2次再結晶粒のうち冷延方向5
mm以上のマトリックスについて平均した。図2は冷延方
向の結晶粒径と磁束密度の関係で、磁束密度のバラツキ
は大きいが磁束密度が1.95T以上になるのは10mm
以上の場合で10mm未満では1.95Tを超える製品は
得られなかった。
The grain size of the secondary recrystallized grains is 5 in the cold rolling direction.
Averaged for matrices above mm. Fig. 2 shows the relationship between the crystal grain size in the cold rolling direction and the magnetic flux density. The variation in the magnetic flux density is large, but the magnetic flux density above 1.95T is 10 mm.
In the above cases, when the length was less than 10 mm, a product exceeding 1.95T could not be obtained.

【0020】10mm以上の粒径のものでは1.95T未
満のものもあるが1.95T以上の極めて磁束密度の高
い製品が得られることが判る。同様に図3より冷延直角
方向の結晶粒径が5mm以上の粒径の場合に初めて1.9
5T以上の製品になることが判る。
It can be seen that a product having an extremely high magnetic flux density of 1.95 T or more can be obtained although some particles having a particle size of 10 mm or more are less than 1.95 T. Similarly, as shown in FIG. 3, when the grain size in the direction perpendicular to the cold rolling is 5 mm or more, it is 1.9 for the first time.
It turns out that it will be a product of 5T or more.

【0021】次にマトリックス粒中に限界サイズ以上の
大きな結晶粒の存在比率であるが、上記のように10mm
(冷延直角方向では5mm)未満の結晶粒は磁束密度が低
いのでその存在比率が20%を超えると製品全体の磁束
密度にも影響し、1.95Tを超えることが困難になる
ので80%以上に限定した。
Next, regarding the abundance ratio of large crystal grains larger than the limit size in the matrix grains, it is 10 mm as described above.
Since the magnetic grains of less than (5 mm in the direction perpendicular to cold rolling) have a low magnetic flux density, if the abundance ratio exceeds 20%, it will also affect the magnetic flux density of the entire product, making it difficult to exceed 1.95 T, so 80%. Limited to the above.

【0022】マトリックス粒内の微細2次再結晶粒の限
定理由について説明する。図4に3%Si含有鋼板の板
厚0.30mmの製品(張力コーティングつき)の磁束密
度と鉄損の関係を示す。黒丸は粗大2次再結晶粒マトリ
ックス中に5mm以下の粒径の微細2次再結晶粒を含む率
が50%以上の場合で、白丸はそれが50%未満の場合
である。
The reason for limiting the fine secondary recrystallized grains in the matrix grains will be described. FIG. 4 shows the relationship between the magnetic flux density and the iron loss of a product (with a tension coating) having a plate thickness of 0.30 mm containing 3% Si. Black circles are cases where the ratio of fine secondary recrystallized particles having a grain size of 5 mm or less in the coarse secondary recrystallized matrix is 50% or more, and white circles are cases where the ratio is less than 50%.

【0023】図1のレーザー照射材とは異なり磁束密度
と鉄損の間に明瞭な相関はないように見えるが、一部に
はレーザー照射材の鉄損にも匹敵するような優れた製品
が見受けられる。
Unlike the laser-irradiated material shown in FIG. 1, it seems that there is no clear correlation between the magnetic flux density and the iron loss, but there are some excellent products that are comparable to the iron-irradiated material of the laser-irradiated material. Can be seen.

【0024】これらの鉄損の優れた製品について本発明
者らが詳細に調査した結果、図中に区別したように粗大
2次再結晶粒マトリックス中に5mm以下の微細2次再結
晶粒を含むものが50%以上の場合にのみ鉄損が0.9
5W/kg以下の優れた製品が得られていることが判明し
た。
As a result of a detailed investigation by the present inventors on these products having excellent iron loss, as shown in the figure, the coarse secondary recrystallized grain matrix contains fine secondary recrystallized grains of 5 mm or less. Iron loss is 0.9 only when the content is 50% or more
It was found that an excellent product of 5 W / kg or less was obtained.

【0025】従って本発明では微細2次再結晶を含む確
率を50%以上に限定する。この鉄損低減のメカニズム
については必ずしも明確ではないが、本発明者は磁束密
度が極めて高い本発明対象の超高磁束密度一方向性電磁
鋼板においては、微細2次再結晶粒を含まない場合は磁
壁が結晶粒を突き抜けて連続し、磁区が粗大化するのに
対し、微細結晶粒を含む場合にはその微細結晶から新た
な磁区が発生し、磁区細分化効果を生んでいるものと推
定している。
Therefore, in the present invention, the probability of including fine secondary recrystallization is limited to 50% or more. Although the mechanism for reducing the iron loss is not always clear, the present inventors have found that in the ultrahigh magnetic flux density unidirectional electrical steel sheet of the present invention, which has an extremely high magnetic flux density, when fine secondary recrystallized grains are not included. It is presumed that, while the domain walls continue to penetrate through the crystal grains and the magnetic domains become coarser, when fine crystal grains are included, new magnetic domains are generated from the fine crystals, producing the domain refinement effect. ing.

【0026】製品の磁束密度と2次再結晶粒の方位に関
係のあることは周知のことであるが、本発明のようにマ
トリックス粗大2次再結晶粒と結晶内に更に微細2次再
結晶粒を含むような場合についての方位分布について明
確にされたものはなかった。特に本発明のように1.9
5T以上の超高磁束密度一方向性電磁鋼板についての方
位分布の公知例は全くなかった。
It is well known that there is a relation between the magnetic flux density of the product and the orientation of the secondary recrystallized grains, but as in the present invention, the matrix coarse secondary recrystallized grains and finer secondary recrystallized grains within the crystals are present. There was no clarification of the orientation distribution in the case of containing grains. Especially as in the present invention, 1.9
There was no known example of orientation distribution for an ultra-high magnetic flux density grain-oriented electrical steel sheet of 5T or more.

【0027】そこで本発明者は本発明材について詳細な
方位測定を行って以下のような新規知見を得ることに成
功した。即ち、マトリックス粒の(110)〔001〕
方位の圧延面からの傾き角がTD軸回りおよびND軸回
りで5°以内の結晶が面積率で90%以上を占め、且つ
マトリックス粒内の微細2次再結晶粒の(110)〔0
01〕方位の圧延面からの傾き角がTD軸回りおよびN
D軸回りで10°以内の結晶が微細2次再結晶粒の90
%以上を占めることが必要であることを知見した。
Therefore, the present inventor succeeded in obtaining the following new knowledge by performing detailed azimuth measurement on the material of the present invention. That is, (110) [001] of matrix grains
Crystals having an orientation angle of 5 ° or less about the TD axis and about the ND axis occupy 90% or more in area ratio, and the fine secondary recrystallized grains (110) [0
01] azimuth angle from the rolling surface is about TD axis and N
Crystals within 10 ° around the D axis are 90% of fine secondary recrystallized grains.
It was found that it is necessary to occupy at least%.

【0028】マトリックス粒の方位分散が理想ゴス方位
から5°を超える結晶が10°超存在すると得られた製
品の磁束密度は1.95T未満となり、また同じように
微細2次再結晶粒の方位分散が理想ゴス方位から10°
を超えると同様に磁束密度が1.95T未満となる。以
上の点から本発明の範囲に限定する。
When the crystal having the orientation dispersion of the matrix grains exceeding 5 ° from the ideal Goth orientation exists over 10 °, the magnetic flux density of the obtained product becomes less than 1.95T, and similarly, the orientation of the fine secondary recrystallized grains is the same. Dispersion is 10 ° from the ideal Goth direction
Similarly, the magnetic flux density becomes less than 1.95T. From the above points, the scope of the present invention is limited.

【0029】次に本発明の超高磁束密度一方向性電磁鋼
板の製造方法について述べる。先ず第1の条件は素材成
分であるがC:0.03〜0.15%、Si:2.5〜
4.0%、Mn:0.02〜0.80%、S:0.04
0%以下、酸可溶性Al:0.010〜0.065%、
N:0.0030〜0.0150%を基本成分として含
有し、更にBiを0.0005〜0.05%を含有する
ことを必須要件とする。その他必要に応じてSn:0.
05〜0.50%、Cu:0.01〜0.10%含有す
ることは許される。その他通常の一方向性電磁鋼板製造
に用いられるインヒビター元素を補助的に用いることも
妨げるものではない。
Next, a method for manufacturing the super high magnetic flux density grain-oriented electrical steel sheet of the present invention will be described. First, the first condition is the material composition, but C: 0.03 to 0.15%, Si: 2.5 to
4.0%, Mn: 0.02-0.80%, S: 0.04
0% or less, acid-soluble Al: 0.010 to 0.065%,
It is essential to contain N: 0.0030 to 0.0150% as a basic component and further contain Bi in an amount of 0.0005 to 0.05%. In addition, Sn: 0.
It is allowed to contain 05 to 0.50% and Cu: 0.01 to 0.10%. It does not hinder the supplementary use of other inhibitor elements that are usually used in the production of grain-oriented electrical steel sheets.

【0030】本製造法の特徴はBi添加にある。Biは
0.0005%未満では製品の磁束密度向上効果が小さ
く、且つ2次再結晶粒径が小さく方向性もよくない。一
方0.05%超では磁束密度向上効果が飽和するととも
に熱延時に端部割れを生ずるので好ましくない。
The feature of this manufacturing method lies in the addition of Bi. When Bi is less than 0.0005%, the effect of improving the magnetic flux density of the product is small, the secondary recrystallized grain size is small, and the directionality is not good. On the other hand, if it exceeds 0.05%, the effect of improving the magnetic flux density is saturated, and end cracking occurs during hot rolling, which is not preferable.

【0031】Biが2次再結晶に何故影響をおよぼし磁
束密度を極めて高くし、更に2次再結晶粒の形状を変化
させるかはよく判らないが、本発明者はBi添加による
主インヒビターである窒化物、硫化物の析出状態を変化
させていること、あるいはBi自身の粒界偏析によるイ
ンヒビター効果ではないかと推察している。溶解、鋳
造、熱延は一方向性電磁鋼板製造に用いられている通常
の方法でよい。
Although it is not clear why Bi affects secondary recrystallization and makes the magnetic flux density extremely high and further changes the shape of secondary recrystallized grains, the present inventor is the main inhibitor by addition of Bi. It is speculated that the precipitation state of nitrides and sulfides may be changed, or that the inhibitor effect may be due to the segregation of grain boundaries of Bi itself. Melting, casting, and hot rolling may be the usual methods used for producing unidirectional electrical steel sheets.

【0032】熱延板は必要に応じ熱延板焼鈍を施す。こ
の焼鈍は1段冷延法の場合は熱延板で施し、2段以上の
冷延法の場合は最終冷延前の焼鈍を指す。焼鈍は950
〜1200℃で30秒〜30分間の焼鈍を行い、必要に
応じ急冷処理を施してもよい。
The hot rolled sheet is annealed as necessary. This annealing is performed with a hot-rolled sheet in the case of the one-stage cold rolling method, and refers to annealing before the final cold rolling in the case of the two-stage or more cold rolling method. Annealing is 950
It may be annealed at ˜1200 ° C. for 30 seconds to 30 minutes, and may be subjected to a quenching treatment if necessary.

【0033】冷延は1段もしくは2段以上のステージで
行うが、高磁束密度一方向性電磁鋼板であることから最
終冷延の圧延率は65〜95%の強圧下冷延が好まし
い。最終冷延以外のステージの圧延率は特に規定しなく
てもよい。この冷延法であるが必要に応じて特公昭54
−13846号公報記載の時効冷延を施すことは有益で
ある。
Cold rolling is carried out in one stage or in two or more stages, but since it is a high magnetic flux density unidirectional electrical steel sheet, it is preferable to carry out high pressure cold rolling with a rolling ratio of final cold rolling of 65 to 95%. The rolling ratio of stages other than final cold rolling may not be specified. This cold rolling method is used, but if necessary,
It is useful to perform the aging cold rolling described in Japanese Patent No. 13846.

【0034】最終製品板厚に圧延した冷延板を続いて通
常の方法で脱炭焼鈍を行う。脱炭焼鈍の条件は特に規定
しないが、好ましくは700〜900℃の温度範囲で3
0秒〜30分間の湿潤な水素または水素と窒素の混合雰
囲気で行うのがよい。
The cold-rolled sheet rolled to the final product sheet thickness is subsequently decarburized and annealed by a usual method. The conditions of decarburization annealing are not particularly specified, but preferably 3 in the temperature range of 700 to 900 ° C.
It is preferable to perform the treatment in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen for 0 seconds to 30 minutes.

【0035】脱炭焼鈍後の鋼板表面には2次再結晶焼鈍
における焼き付き防止およびグラス被膜生成のため通常
の方法で通常のMgOを主成分とする焼鈍分離剤を塗布
する。引き続く2次再結晶焼鈍は1000℃以上の温度
で5時間以上、水素または窒素またはそれらの混合雰囲
気で行えばよい。
On the surface of the steel sheet after decarburization annealing, an ordinary annealing separating agent containing MgO as a main component is applied by a usual method for preventing seizure in secondary recrystallization annealing and for forming a glass film. The subsequent secondary recrystallization annealing may be performed at a temperature of 1000 ° C. or higher for 5 hours or more in an atmosphere of hydrogen or nitrogen or a mixed atmosphere thereof.

【0036】2次再結晶焼鈍後の鋼板は引き続き余分の
焼鈍分離剤を除去後、コイル巻ぐせを矯正するための連
続焼鈍を行い、同時に絶縁被膜(張力付与被膜を兼ね
る)を塗布、焼き付ける。更に必要に応じてレーザー照
射等の磁区細分化処理を施す。磁区細分化の方法は特に
限定する必要はない。
After the secondary recrystallization annealing, the excess annealing separator is removed from the steel sheet, followed by continuous annealing for straightening the coil winding. Further, magnetic domain subdivision processing such as laser irradiation is performed if necessary. The method of subdividing the magnetic domains is not particularly limited.

【0037】以上本発明の超高磁束密度一方向性電磁鋼
板の製造法について述べたが、製造法はこの方法に限ら
れるわけではなく、Si含有の規制を除けば如何なるイ
ンヒビター元素を用いる方法でも、またプロセス条件も
上記方法にこだわるものではない。
The manufacturing method of the ultra-high magnetic flux density grain-oriented electrical steel sheet of the present invention has been described above. However, the manufacturing method is not limited to this method, and any method of using any inhibitor element except for the regulation of Si content can be used. Also, the process conditions are not limited to the above method.

【0038】[0038]

【実施例】【Example】

(実施例1)C:0.06〜0.09%、Si:3.0
〜3.35%、Mn:0.08%、S:0.025%、
酸可溶性Al:0.020〜0.035%、N:0.0
08%、Sn:0〜0.15%、Cu:0.05%およ
びBi:0.0005〜0.05%を含有しその他不可
避不純物からなる電磁鋼板用スラブを1320℃に加熱
後直ちに熱延し2.3mmの熱延板とした。
(Example 1) C: 0.06 to 0.09%, Si: 3.0
~ 3.35%, Mn: 0.08%, S: 0.025%,
Acid soluble Al: 0.020 to 0.035%, N: 0.0
Immediately after hot rolling the slab for electrical steel sheets containing 08%, Sn: 0 to 0.15%, Cu: 0.05% and Bi: 0.0005 to 0.05% and other unavoidable impurities at 1320 ° C. A hot rolled sheet of 2.3 mm was prepared.

【0039】冷延は0.30mmおよび0.23mmまで行
い、0.30mmは1ステージ冷延、0.23mmは最終冷
延率を87.5%とする2ステージの冷延を行った。一
部の物は冷延のパス間に200℃での時効処理を5回施
した。
Cold rolling was performed up to 0.30 mm and 0.23 mm, 0.30 mm was subjected to 1-stage cold rolling, and 0.23 mm was subjected to 2-stage cold rolling with a final cold rolling rate of 87.5%. Some of the products were aged at 200 ° C. five times during the cold rolling pass.

【0040】最終冷延前に1120℃×2分の高温焼鈍
を行った。冷延板を引き続き850℃で脱炭焼鈍を行
い、MgOを主成分とする焼鈍分離剤を塗布後、120
0℃の2次再結晶焼鈍を行った。
Before the final cold rolling, high temperature annealing of 1120 ° C. × 2 minutes was performed. The cold-rolled sheet was subsequently subjected to decarburization annealing at 850 ° C., and after applying an annealing separating agent containing MgO as a main component, 120
Secondary recrystallization annealing was performed at 0 ° C.

【0041】焼鈍分離剤の残物を除去後60×300mm
の磁気測定試料を剪断し、850℃で歪取り焼鈍を行
い、続いて絶縁被膜の塗布、焼き付けを行った。一部の
試料は更に5mm間隔でレーザー照射を行って磁気測定に
供した。磁気測定試料を強酸でマクロ後結晶粒径等を測
定した。
After removing the residue of the annealing separator 60 × 300 mm
The magnetic measurement sample of No. 1 was sheared, strain relief annealing was performed at 850 ° C., and subsequently an insulating coating was applied and baked. Some of the samples were further irradiated with laser at 5 mm intervals and subjected to magnetic measurement. The magnetic measurement sample was measured with a strong acid after macro to measure the crystal grain size and the like.

【表1】 [Table 1]

【0042】試料番号1,6,7,8は何れも素材成分
としBiが含有されていなく、且つ磁束密度も1.95
T未満で鉄損特性もレーザー照射の有無にかかわらず
0.30mmおよび0.23mmの従来製品の域を超えてい
ない。試料番号2,3は素材成分としてBiを含有し、
磁束密度も1.95Tを超え、且つマトリックスの粗大
粒面積率が80%を超えているのでレーザー照射後の鉄
損が0.90W/kgをはるかにきる0.30mm厚の製品と
しては素晴らしい特性と云える。
Sample Nos. 1, 6, 7 and 8 do not contain Bi as a material component and have a magnetic flux density of 1.95.
When it is less than T, the iron loss characteristic does not exceed the range of 0.30 mm and 0.23 mm of the conventional product regardless of the presence or absence of laser irradiation. Sample Nos. 2 and 3 contain Bi as a material component,
The magnetic flux density is over 1.95T, and the coarse grain area ratio of the matrix is over 80%, so the iron loss after laser irradiation is much better than 0.90W / kg, which is a wonderful property for a 0.30mm thick product. Can be said.

【0043】試料番号4,5はBiを含有し、磁束密度
が1.95T以上でありマトリックスの粗大粒面積率も
80%を超え、更にマトリックス粗大粒に含まれる微細
2次再結晶粒の存在率も50%を超えているので磁区制
御なしでの鉄損が0.95W/kg以下の0.30mm厚の製
品としては優れた特性が得られている。
Sample Nos. 4 and 5 contain Bi, the magnetic flux density is 1.95 T or more, the coarse grain area ratio of the matrix exceeds 80%, and the fine secondary recrystallized grains contained in the coarse matrix grains are present. Since the ratio also exceeds 50%, excellent characteristics are obtained as a product of 0.30 mm thickness with an iron loss of 0.95 W / kg or less without magnetic domain control.

【0044】試料番号9,10,11も板厚0.23mm
製品であるが0.30mm製品と同様にBi含有、マトリ
ックス粗大粒面積率とも本発明範囲を満足しているので
0.23mm厚製品のレーザー照射磁区制御材として極め
て優れた製品である。
Sample Nos. 9, 10 and 11 also have a plate thickness of 0.23 mm
Although it is a product, it has an excellent Bi content and a matrix coarse grain area ratio satisfying the range of the present invention as in the case of the 0.30 mm product, and thus is a very excellent product as a laser irradiation domain control material for a 0.23 mm thick product.

【0045】(実施例2)実施例1と同様な製造法で製
造した0.30mm厚の製品を得た。磁気特性を測定後強
酸でマクロ後ラウエ法で各結晶粒の方位を測定した。結
果を表2に示す。
Example 2 A 0.30 mm thick product manufactured by the same manufacturing method as in Example 1 was obtained. After measuring the magnetic properties, the orientation of each crystal grain was measured by the Laue method after macro with strong acid. The results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から明らかなように磁束密度B8
1.95T以上の試料では理想ゴス方位すなわち{11
0}〈001〉からの回転角がマトリックスで5°以
下、微細結晶で10°以下の面積率が何れも90%以上
である。
As is clear from Table 2, in the sample having the magnetic flux density B 8 of 1.95 T or more, the ideal Goss orientation, ie, {11
The area ratio where the rotation angle from 0} <001> is 5 ° or less in the matrix and 10 ° or less in the fine crystals is 90% or more.

【0048】[0048]

【発明の効果】本発明の超高磁束密度一方向性電磁鋼板
は従来製品に比べて磁束密度が極めて高く、磁区制御後
の鉄損が0.30mm製品で0.90W/kg以下のように極
めて優れているのみならず、方位のよい微細2次再結晶
粒を適度に含んだ場合は磁区制御なしでも0.95W/kg
以下の優れた製品であり、トランス等の電気機器の省エ
ネルギーに寄与するところ極めて大きいと云える。
The ultra-high magnetic flux density grain-oriented electrical steel sheet of the present invention has an extremely high magnetic flux density as compared with the conventional product, and the iron loss after controlling the magnetic domain is 0.90 W / kg or less in the 0.30 mm product. Not only extremely excellent, but also 0.95W / kg without magnetic domain control when it contains fine secondary recrystallized grains with good orientation.
It can be said that the following excellent products are extremely large in that they contribute to energy saving of electric devices such as transformers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鉄損と磁束密度との関係の図表であ
る。
FIG. 1 is a chart showing a relationship between iron loss and magnetic flux density according to the present invention.

【図2】磁束密度と冷延方向結晶粒径との関係の図表で
ある。
FIG. 2 is a chart showing the relationship between magnetic flux density and crystal grain size in the cold rolling direction.

【図3】磁束密度と冷延直角方向結晶粒径との関係の図
表である。
FIG. 3 is a diagram showing a relationship between magnetic flux density and crystal grain size in the cold rolling right-angle direction.

【図4】鉄損と磁束密度との関係の図表である。FIG. 4 is a chart showing the relationship between iron loss and magnetic flux density.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量で、Si:2.5〜4.0%を必須
成分として含有し、且つ磁束密度B8 が1.95T以上
の極めて高い値を有する一方向性電磁鋼板であって、マ
トリックスの結晶粒径が冷延直角方向50mm以下5mm以
上、冷延方向300mm以下10mm以上のものが面積率で
80%以上を占めることを特徴とする超高磁束密度一方
向性電磁鋼板。
1. A unidirectional electrical steel sheet which contains Si: 2.5 to 4.0% by weight as an essential component and has an extremely high magnetic flux density B 8 of 1.95 T or more, An ultra-high magnetic flux density unidirectional electrical steel sheet characterized in that the crystal grain size of the matrix is 50 mm or less in the direction perpendicular to cold rolling and 5 mm or more and the area ratio is 80 mm or more in the direction of 300 mm or less in the cold rolling direction.
【請求項2】 マトリックス粒内に平均粒径5mm以下の
微細結晶を含むものが50%以上を占めることを特徴と
する請求項1記載の超高磁束密度一方向性電磁鋼板。
2. The super high magnetic flux density unidirectional electrical steel sheet according to claim 1, wherein 50% or more of the matrix grains contain fine crystals having an average grain size of 5 mm or less.
【請求項3】 マトリックス粒の(110)〔001〕
方位の圧延面からの傾き角がTD軸回りおよびND軸回
りで5°以内の結晶が面積率で90%以上を占め、且つ
マトリックス粒内の微細結晶の(110)〔001〕方
位の圧延面からの傾き角がTD軸回りおよびND軸回り
で10°以内の結晶が微細粒の90%以上を占めること
を特徴とする請求項2記載の超高磁束密度一方向性電磁
鋼板。
3. A matrix grain of (110) [001].
The crystal having an orientation angle of 5 ° or less about the TD axis and the ND axis within 5 ° occupies 90% or more in area ratio, and the rolled surface of the (110) [001] orientation of fine crystals in matrix grains 3. The ultrahigh magnetic flux density unidirectional electrical steel sheet according to claim 2, wherein crystals having an inclination angle of 10 ° or less about the TD axis and about the ND axis occupy 90% or more of the fine grains.
JP04248194A 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3098628B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04248194A JP3098628B2 (en) 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet
EP93114924A EP0588342B1 (en) 1992-09-17 1993-09-16 Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
DE69328998T DE69328998T2 (en) 1992-09-17 1993-09-16 Grain-oriented electrical sheets and material with a very high magnetic flux density and process for producing them
KR1019930018614A KR0183408B1 (en) 1992-09-17 1993-09-16 Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing the same
US08/792,494 US5858126A (en) 1992-09-17 1997-01-31 Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04248194A JP3098628B2 (en) 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH06100996A true JPH06100996A (en) 1994-04-12
JP3098628B2 JP3098628B2 (en) 2000-10-16

Family

ID=17174604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04248194A Expired - Lifetime JP3098628B2 (en) 1992-09-17 1992-09-17 Ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3098628B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110298A (en) * 1997-07-17 2000-08-29 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
WO2013058239A1 (en) * 2011-10-20 2013-04-25 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
US9290824B2 (en) 2011-08-18 2016-03-22 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
WO2019245044A1 (en) * 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
WO2020158893A1 (en) * 2019-01-31 2020-08-06 Jfeスチール株式会社 Grain-oriented electrical steel sheet and iron core using same
US11959149B2 (en) 2019-01-31 2024-04-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and iron core using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130488B2 (en) * 2008-04-30 2013-01-30 新日鐵住金株式会社 Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110298A (en) * 1997-07-17 2000-08-29 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
US9290824B2 (en) 2011-08-18 2016-03-22 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
WO2013058239A1 (en) * 2011-10-20 2013-04-25 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
JP5610084B2 (en) * 2011-10-20 2014-10-22 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JPWO2013058239A1 (en) * 2011-10-20 2015-04-02 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
US9805851B2 (en) 2011-10-20 2017-10-31 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing the same
WO2019245044A1 (en) * 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
KR20210010526A (en) * 2018-06-21 2021-01-27 닛폰세이테츠 가부시키가이샤 Directional electromagnetic steel plate with excellent magnetic properties
JPWO2019245044A1 (en) * 2018-06-21 2021-06-17 日本製鉄株式会社 Directional electrical steel sheet with excellent magnetic properties
RU2763924C1 (en) * 2018-06-21 2022-01-11 Ниппон Стил Корпорейшн Sheet of electrical steel with oriented grain structure exhibiting excellent magnetic properties
US11512360B2 (en) 2018-06-21 2022-11-29 Nippon Steel Corporation Grain-oriented electrical steel sheet with excellent magnetic characteristics
WO2020158893A1 (en) * 2019-01-31 2020-08-06 Jfeスチール株式会社 Grain-oriented electrical steel sheet and iron core using same
JPWO2020158893A1 (en) * 2019-01-31 2021-02-18 Jfeスチール株式会社 Directional electromagnetic steel sheet and iron core using it
US11959149B2 (en) 2019-01-31 2024-04-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and iron core using same

Also Published As

Publication number Publication date
JP3098628B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
KR100266552B1 (en) High magnetic flux density low iron loss grainoriented electromagnetic steel sheet and a method for making
JP3212376B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3656913B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
KR0183408B1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing the same
JP3098628B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
JP3956621B2 (en) Oriented electrical steel sheet
JP2004332031A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH10102149A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP2000160305A (en) Grain oriented silicon steel sheet excellent in workability and magnetic property and its manufacture
KR960003900B1 (en) Process for the production of oriented electrical steel sheet having excellent magnetic properties
JP3885480B2 (en) Method for producing grain-oriented electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP3215177B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3215178B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JPH0257125B2 (en)
JP3479984B2 (en) Unidirectional silicon steel sheet having stable magnetic properties and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13