JPH11323437A - Production of thick grain-oriented silicon steel plate - Google Patents

Production of thick grain-oriented silicon steel plate

Info

Publication number
JPH11323437A
JPH11323437A JP12779498A JP12779498A JPH11323437A JP H11323437 A JPH11323437 A JP H11323437A JP 12779498 A JP12779498 A JP 12779498A JP 12779498 A JP12779498 A JP 12779498A JP H11323437 A JPH11323437 A JP H11323437A
Authority
JP
Japan
Prior art keywords
annealing
rolling
temperature
subjected
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12779498A
Other languages
Japanese (ja)
Other versions
JP4261633B2 (en
Inventor
Tomoji Kumano
知二 熊野
Nobunori Fujii
宣憲 藤井
Katsuro Kuroki
克郎 黒木
Hitoshi Yokouchi
仁 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP12779498A priority Critical patent/JP4261633B2/en
Publication of JPH11323437A publication Critical patent/JPH11323437A/en
Application granted granted Critical
Publication of JP4261633B2 publication Critical patent/JP4261633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented silicon steel plate(GO) with low carbon content, inexpensive in the production cost, thick in the product plate thickness and excellent in magnetic properties. SOLUTION: This is the method for producing a GO in which a slab contg. 0.01 to 0.04% C, 2.5 to 4.0% Si, 0.020 to 0.040% acid soluble Al, 0.005 to 0.010% N, at least one kind of S and Se by 0.005 to 0.0150, 0.05 to 0.8% Mn, and the balance Fe with inevitable impurities is heated at <1280 deg.C, is subjected to hot rolling, is subjected to hot rolled sheet annealing and descaling, is subjected to cold rolling for one time, is subjected to decarburizing annealing, is thereafter subjected to nitriding treatment in a gaseous mixture of hydrogen, nitrogen and ammonia in a state in which the strip is run, is then applied with a separation agent for annealing essentially consisting of MgO and is subjected to final finish annealing. The relation between the final total draft (Hf: true strain) in the hot rolling and the final cold rolling ratio (Cr: true strain) lies in -0.25Hf+2.6<=Cr<=-0.25Hf+3.6 and 2.709<=Hf<=3.912.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トランス等の鉄心
として使用される製品厚の厚い一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick grain-oriented electrical steel sheet used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁綱板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが、機器の
小型化、エネルギー損失の減少のために要求される。励
磁特性を表す特性値として、磁場の強さ800A/mに
おける磁束密度B8がJISで規格化されて通常使用さ
れる。又、エネルギ一損失を示す特性値としては、周波
数50Hzで1.7テスラー(T)まで磁化したときの
鋼板1kg当たりのエネルギー損失(鉄損)W17/5 0 もJ
ISで規格化されている。
2. Description of the Related Art Unidirectional electromagnetic ropes are mainly used as iron core materials for transformers and other electric equipment, and have excellent magnetic properties such as excitation characteristics and iron loss characteristics. Required for reduction of energy loss. As a characteristic value representing the excitation characteristic, a magnetic flux density B8 at a magnetic field strength of 800 A / m is standardized by JIS and is usually used. As the characteristic value representing the energy one loss, energy loss (core loss) W 17/5 0 per steel 1kg upon magnetization at a frequency 50Hz to 1.7 Tesla (T) also J
Standardized by IS.

【0003】磁束密度は鉄損の最大支配因子であり、一
般的に磁束密度が高い(大きい)ほど鉄損特性が良好に
なる。又、一般的に磁束密度が高くなると二次再結晶粒
が大きくなり、鉄損が悪化する場合がある。この場合
は、既に広く知られているように、磁区を制御すること
により、二次再結晶の粒径に拘らず鉄損を改善すること
ができる。
[0003] The magnetic flux density is the largest controlling factor of iron loss. Generally, the higher (larger) the magnetic flux density, the better the iron loss characteristics. In general, as the magnetic flux density increases, the size of the secondary recrystallized grains increases, and iron loss may deteriorate. In this case, as already widely known, by controlling the magnetic domain, the iron loss can be improved irrespective of the grain size of the secondary recrystallization.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板表面に{110}、圧
延方向に〈001〉軸をもったいわゆるゴス組織を有し
ている。良好な磁気特性を得るためには、磁化容易軸で
ある〈001〉を圧延方向に高度に揃えることが必要で
ある。このような高磁束密度一方向性電磁鋼板の製造技
術は古くから開発され、わが国ではいわゆるインヒビタ
ーとしてMnS,AlNを用いる方法(特開昭40−1
5644号公報)、MnS,MnSe,Sb等を用いる
方法(特開昭51−13469号公報)等がある。これ
らの場合は、熱延板段階でのインヒビターの完全固溶が
求められ、実際の熱間圧廷時は鋼塊(スラブ)の加熱温
度を1350℃以上にすることが必要である。
[0004] This unidirectional electrical steel sheet has a so-called goss structure having a {110} axis on the steel sheet surface and a <001> axis in the rolling direction caused by secondary recrystallization in the final finish annealing step. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction. The manufacturing technology of such high magnetic flux density unidirectional magnetic steel sheet has been developed for a long time, and in Japan, a method using MnS or AlN as a so-called inhibitor (Japanese Patent Laid-Open No. 40-1).
5644), a method using MnS, MnSe, Sb, and the like (Japanese Patent Application Laid-Open No. 51-13469). In these cases, complete solid solution of the inhibitor is required in the hot rolling process, and it is necessary to set the heating temperature of the steel ingot (slab) to 1350 ° C. or more during actual hot pressing.

【0005】この高温度の加熱には数々の不利、不便な
点がある。このため、この熱延時の鋼塊(スラブ)の加
熱温度を下げる試みが行われている。その一つを開示し
たものとして特開昭59−56522号公報がある。こ
の技術の発展として多くの発明がなされ、インヒビター
形成のために脱炭焼鈍から最終仕上焼鈍の昇温過程で窒
化を行う方法(特開昭62−45285号公報、特開昭
60−179855号公報)、更にはストリップを走行
せしめる状熊下での水素、窒素、アンモニアの混合ガス
を用いた窒化処理を行う方法(寺開平2−77525号
公報、特開平1−82400号公報、特開平3−180
460号公報、特開平6−317592号公報)が提案
された。
[0005] This high temperature heating has a number of disadvantages and disadvantages. For this reason, attempts have been made to lower the heating temperature of the steel ingot (slab) during hot rolling. JP-A-59-56522 discloses one of them. A number of inventions have been made as a development of this technology, and a method of performing nitridation in the process of increasing the temperature from decarburizing annealing to final finish annealing to form inhibitors (Japanese Patent Application Laid-Open Nos. 62-45285 and 60-179855). ), And a method of performing a nitriding treatment using a mixed gas of hydrogen, nitrogen, and ammonia under a condition in which the strip is run (Terakai 2-77525, JP-A-1-82400, JP-A-3-82400). 180
460, JP-A-6-317592) have been proposed.

【0006】又、脱炭焼鈍時の一次再結晶完了後から最
終仕上焼鈍時の二次再結晶完了前までの途中段階での一
次再結晶粒怪を制御する方法(特開平9−294425
号公報、特開平2−96275号公報、特開平2−59
020号公報、特開平1−82393号公報)も堤案さ
れた。ところで、一方向性電磁鋼板は、主に変圧器の鉄
心として積層して使用される。特に大型のパワートラン
スは、その鉄心の積層作業は、手作業となるので、一方
向性電磁鋼板の板厚が厚い程、作業性(生産性)が向上
する。このため厚手(例えば0.40mm超)で、磁気
特性が優れた一方向性電磁鋼板の製造が強く求められて
いた。しかし、一方向性電磁鋼坂の製造においては、製
鋼段階で炭素をある程度含有させることが従来の技術で
は必須であった。炭素を含有させる自的は高温度(11
50℃以上)のスラブ加熱の場合には1)スラブ加熱時
の異常粒成長の防止、2)一次再結晶の集合組織調整の
ための変態相の確保、3)インヒビターの固溶量確保等
がある。この場合、連続鋳造のままでスラブを製造する
条件下では、C量は0.060%以上必要であった。ま
た、本発明のように1230℃未満でのスラプ加熱でス
トリップを走行せしめる状態での窒化処理をする場合で
も上記1)、2)の目的のため炭素をある程度含有する
ことが求められている。この場合は、Cは、0.040
%を越えて必要である。
Further, a method of controlling primary recrystallized grains in an intermediate stage after completion of primary recrystallization at the time of decarburization annealing and before completion of secondary recrystallization at the time of final finish annealing (JP-A-9-294425)
JP, JP-A-2-96275, JP-A-2-59
020, JP-A-1-82393) have also been proposed. By the way, the grain-oriented electrical steel sheets are mainly used by being laminated as an iron core of a transformer. In particular, in the case of a large-sized power transformer, the work of laminating the iron cores is performed manually, and thus the workability (productivity) is improved as the thickness of the unidirectional magnetic steel sheet is increased. For this reason, there has been a strong demand for the production of a unidirectional magnetic steel sheet which is thick (for example, more than 0.40 mm) and has excellent magnetic properties. However, in the production of the unidirectional electromagnetic steel slope, it has been essential in the prior art to contain carbon to some extent at the steelmaking stage. The nature of carbon inclusion is high temperature (11
In the case of slab heating at a temperature of 50 ° C. or more), 1) prevention of abnormal grain growth during slab heating, 2) securing of transformed phase for adjusting texture of primary recrystallization, 3) securing of solid solution amount of inhibitor, etc. is there. In this case, the C amount was required to be 0.060% or more under the condition that the slab was manufactured with continuous casting. Further, even in the case of performing the nitriding treatment in a state where the strip is run by heating the slap at a temperature lower than 1230 ° C. as in the present invention, it is required to contain carbon to some extent for the purposes 1) and 2). In this case, C is 0.040
It is necessary to exceed%.

【0007】一方、一方向性電磁鋼板の最終製品に炭素
が30ppm以上存在すると磁気時効が生じ商品価値が
無くなる。このため脱炭焼鈍工程で強制的に炭素含有量
を30ppm以下とする。この場合、板厚が厚いと脱炭
に時間を要し、生産性が著しく低下し、引いては、コス
ト高となる。このため現在、一方向性電磁鋼板の製品厚
は0.35mmを最大としてJIS等で規格されてい
る。又、炭素含有量を減ずる方法として上記の代替とし
て、熱延加熱前に一度プレローリーング(ブレイクダウ
ン)という結晶粒を細かくする方法が採用されている。
しかしこの場合もコストアップが必然的に生じる。従っ
て、低C化には限界があった。
On the other hand, if carbon is present in the final product of the grain-oriented electrical steel sheet in an amount of 30 ppm or more, magnetic aging occurs and the commercial value is lost. Therefore, the carbon content is forcibly reduced to 30 ppm or less in the decarburizing annealing step. In this case, if the sheet thickness is large, decarburization takes time, productivity is significantly reduced, and the cost is high. For this reason, the product thickness of the grain-oriented electrical steel sheet is currently specified by JIS or the like with a maximum of 0.35 mm. As a method for reducing the carbon content, as an alternative to the above method, a method of once making a crystal grain called pre-rolling (breakdown) before hot rolling and heating is adopted.
However, also in this case, the cost is inevitably increased. Therefore, there is a limit to the reduction in C.

【0008】また、特開平4−323号および特開平4
−324号公報においては、厚手一方向性電磁鋼板の熱
延板焼鈍をしない場合の熱間圧延時の条件を規定してい
る。もちろんこの方法によっても厚い一方向性電滋鋼板
は製造可能である。この場合は、一方向性電磁鋼板の製
造における一次再結晶集合組織の改質のみを行なってい
るのであるが、インヒビターの調整は熱間圧延工程のみ
で行っており磁気特性の安定性及び鉄損の向上に限界が
あった。
Further, Japanese Patent Application Laid-Open Nos. Hei 4-323 and Hei 4-
Japanese Patent Application Laid-Open No. 324-324 specifies the conditions at the time of hot rolling in the case where a hot unidirectional magnetic steel sheet is not hot-rolled. Of course, thick unidirectional steel sheets can also be manufactured by this method. In this case, only the primary recrystallization texture is modified in the production of the grain-oriented electrical steel sheet, but the inhibitor is adjusted only in the hot rolling step, and the stability of magnetic properties and iron loss There was a limit to the improvement of

【0009】[0009]

【発明が解決しようとする課題】上述したように一方向
性電磁鋼板の製造においては必然的に脱炭工程が存在す
るため、厚手材(板厚0.30mm以上)の場合は、脱
炭焼鈍前の炭素舎有量を極力減ずることがその生産性向
上に重要となる。本発明は磁気特性を確保してこの様な
脱炭焼鈍での負荷を軽減するために炭素含有量を減ずる
方法を提供するものである。
As described above, in the production of a grain-oriented electrical steel sheet, a decarburization step is inevitably present. Therefore, in the case of a thick material (thickness of 0.30 mm or more), decarburization annealing is performed. It is important to reduce the previous carbon building capacity as much as possible to improve its productivity. The present invention provides a method for reducing the carbon content in order to secure magnetic properties and reduce the load in such decarburizing annealing.

【0010】よく知られている様に、一方向性電磁鋼板
の脱炭焼鈍工程は連続的に行なわれ次の3つの機能を有
している。すなわち、(1)一次再結晶、(2)脱炭、
(3)表面酸化層の形成の3つの機能である。これら3
つの機能をうまく働かせるためには、注意深い操業が必
要となる。本発明の様に製品厚が厚い場合は、従来
(2)と(3)を経済的に両立させることが困難であっ
た。
[0010] As is well known, the decarburizing annealing process of the grain-oriented electrical steel sheet is performed continuously and has the following three functions. That is, (1) primary recrystallization, (2) decarburization,
(3) The three functions of the formation of the surface oxide layer. These three
Careful operation is required for the two functions to work well. When the product thickness is large as in the present invention, it has been difficult to make both (2) and (3) economically compatible.

【0011】即ち、板厚が厚い場合は、脱炭に要する時
間が長くなる(近似的に脱炭時間は、厚みの2乗に比例
して長くなる)。一方、脱炭雰囲気(酸化性雰囲気)に
長く鋼板を滞留させると表面の酸化層が厚くなり脱炭性
が減じて残存炭素を30ppm以下とすることは非常に
困難となる。また表面の酸化層が著しく厚くなると、2
次再結晶焼鈍後の一次皮膜(フォルステライトを主成分
とする皮膜)に欠陥が生じ商品価値が著しく減じる。こ
のため脱炭焼鈍前の炭素含有量を減ずることが必要とな
る。
That is, when the plate thickness is large, the time required for decarburization becomes longer (approximately, the decarburization time becomes longer in proportion to the square of the thickness). On the other hand, if the steel sheet is retained for a long time in a decarburizing atmosphere (oxidizing atmosphere), the oxidized layer on the surface becomes thicker, the decarburizing property is reduced, and it is very difficult to reduce the residual carbon to 30 ppm or less. Also, when the oxide layer on the surface becomes extremely thick, 2
Defects occur in the primary film (film mainly composed of forsterite) after the secondary recrystallization annealing, and the commercial value is significantly reduced. For this reason, it is necessary to reduce the carbon content before decarburization annealing.

【0012】更に、求められることは、磁気特性のうち
磁束密度のみでなく鉄損も良好な厚手一方向性電磁鋼板
を得ることを低炭素含有量素材で製造することである。
Further, what is required is to produce a thick unidirectional electrical steel sheet having good magnetic properties, not only magnetic flux density but also iron loss, by using a material having a low carbon content.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
について鋭意検討したところ、スラブ加熱温度が128
0℃未満で、脱炭焼鈍後にストリップを走行せしめる状
態下で窒化処理を行なうことを主要技術とする一方向性
電磁鋼板の製造方法において、熱間圧延の仕上げの全圧
下率と最終冷間圧延率の関係を規定することにより炭素
含有量が従来より低くても良好な磁性を有する一方向性
電磁鋼板が製造可能となることを見い出した。
Means for Solving the Problems The present inventors diligently studied the above problems, and found that the slab heating temperature was 128 ° C.
In a method for producing a grain-oriented electrical steel sheet whose main technology is to perform nitriding treatment at a temperature of less than 0 ° C. and in which the strip is run after decarburizing annealing, the total reduction ratio of the hot rolling finish and the final cold rolling It has been found that by defining the relationship of the ratio, it is possible to produce a grain-oriented electrical steel sheet having good magnetism even if the carbon content is lower than before.

【0014】その要旨は以下のとおりである。重量比
で、C:0.010〜0.040%、Si:2.5〜
4.0%、酸可溶性Al:0.020〜0.040%、
N:0.005〜0.010%、S,Seの少なくとも
1種を0.005〜0.015%、Mn:0.05〜
0.8%、残部がFe及び不可避的不純物からなるスラ
ブを1280℃未満の温度で加熱し、熱延を行ない、熱
延板焼鈍を行ない、その後のデスケリーング後、1回の
冷延を行ない、脱炭焼鈍後ストリップを走行せしめる状
態下で水素、窒素、アンモニアの混合ガス中で窒化処理
を行ない、次いでMgOを主成分とする焼鈍分離剤を塗
布して最終仕上焼鈍を施す一方向性電磁鋼板の製造方法
において、熱延での仕上げ圧下率(Hf :真歪み)と最
終冷延率(Cr :真歪み)の関係が、 −0.25Hf+2.6≦Cr ≦−0.25Hf+3.
6 2.709≦Hf≦3.912 であることを特徴とする製品板厚が厚い一方向性電磁鋼
板の製造方法であり、また、前記製品板厚が0.30m
m〜0.65mmであり、更に、前記熱間圧延の仕上げ
入口温度を950〜1150℃、仕上げ出口温度を80
0〜1050℃、巻き取り温度を500〜650℃とす
る製品板厚が厚い一方向性電磁鋼板の製造方法である。
The gist is as follows. By weight ratio, C: 0.010 to 0.040%, Si: 2.5 to
4.0%, acid-soluble Al: 0.020 to 0.040%,
N: 0.005 to 0.010%, at least one of S and Se is 0.005 to 0.015%, Mn: 0.05 to
A slab consisting of 0.8%, the balance being Fe and unavoidable impurities, is heated at a temperature of less than 1280 ° C., hot-rolled, hot-rolled sheet annealing is performed, and after the subsequent deskering, one cold rolling is performed. Unidirectional electrical steel sheet that is subjected to nitriding in a mixed gas of hydrogen, nitrogen, and ammonia while the strip is running after decarburizing annealing, and then applying an annealing separator containing MgO as a main component and performing final finish annealing In the manufacturing method, the relationship between the finish draft in hot rolling (Hf: true strain) and the final cold rolling rate (Cr: true strain) is -0.25Hf + 2.6 ≦ Cr ≦ −0.25Hf + 3.
6 2.709 ≦ Hf ≦ 3.912, which is a method for producing a unidirectional magnetic steel sheet having a large product plate thickness, wherein the product plate thickness is 0.30 m
m to 0.65 mm, and the finishing inlet temperature of the hot rolling is 950 to 1150 ° C and the finishing outlet temperature is 80
This is a method for manufacturing a grain-oriented electrical steel sheet having a thick product thickness of 0 to 1050 ° C and a winding temperature of 500 to 650 ° C.

【0015】[0015]

【発明の実施の形態】以下に本発明を詳細に説明する。
先ず、本発明において炭素(C)の含有量の範囲を制限
する理由を述べる。前述のように、一方向性電磁鋼板の
製造においては、Cのある程度の含有が必須である。本
発明においては、この目的は、1)一次再結晶の集合組
織調整のための変態相の存在、2)γ層中でのインヒビ
ターの固溶量確保である。本発明においては、この目的
を従来のC含有量より少ない範囲で良好な磁気特性を得
るために熱延での仕上げスタンドの全圧下率及び冷間圧
延率を規定する。しかし1)、2)の変態相の存在のた
めには0.01%以上のCが必要となる。更に上限値は
磁気特性の立場からは0.10%の炭素まで含有しても
何ら問題は生じない。しかし本発明のように、製品板厚
が比較的厚い場合は、脱炭焼鈍での脱炭時間が著しく長
くなり工業生産に適していない。このため上限は0.0
4%とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reason for limiting the range of the content of carbon (C) in the present invention will be described. As described above, in the production of a grain-oriented electrical steel sheet, the inclusion of C to some extent is essential. In the present invention, the objectives are 1) the presence of a transformed phase for adjusting the texture of the primary recrystallization, and 2) ensuring the solid solution amount of the inhibitor in the γ layer. In the present invention, the total rolling reduction and the cold rolling reduction of the finishing stand in hot rolling are defined in order to obtain good magnetic properties in a range smaller than the conventional C content. However, 0.01% or more of C is required for the presence of the transformation phases 1) and 2). Further, from the viewpoint of magnetic properties, even if the upper limit is contained up to 0.10% of carbon, no problem occurs. However, when the product sheet thickness is relatively thick as in the present invention, the decarburization time in the decarburization annealing becomes extremely long, which is not suitable for industrial production. Therefore, the upper limit is 0.0
4%.

【0016】以下実験結果に基づいて説明する。図1
は、熱間圧延の仕上げスタンドの全圧下率(真歪み)、
最終冷延率(真歪み)と磁性(B8 )の関係を示す。こ
の場合の条件は次の通りである。C:0.035〜0.
038%、Si:2.9〜3.10%、酸可溶性Al:
0.026〜0.028%、N:0.0078〜0.0
83%、Sを0.0065〜0.0075%、Mn:
0.08〜0.1.1%、残部がFe及び不可避的不純
物からなるスラブを1140〜1160℃の温度で加熱
し、熱延を行なった。その後、1120℃で120秒の
熱延板焼鈍を行ない、その後30℃/秒の早さで冷却
し、デスケリーング後、180〜230℃に2分間以上
2パス保持する1回の冷延を行ない、脱脂後、830〜
850℃で90〜200秒の脱炭焼鈍後、ストリップを
走行せしめる状態下で水素、窒素、アンモニアの混合ガ
ス中で窒化後全窒素の量が0.019〜0.022%と
なるような窒化処理を行ない、次いでMgOを主成分と
する焼鈍分離剤を塗布し、N2 =25%,H2 =75%
の雰囲気下で、10〜20℃/時間で650℃〜120
0℃まで昇温し、その後1200℃で20時間以上、H
2 =100%で純化焼鈍行った。その後、通常用いられ
る絶縁張力コーティングの塗布と平滑化処理を行った。
この場合,粗バー厚み(ti :仕上げ入り口厚み)を3
0,50,70,90,110,130mmとし、仕上
げ出口厚み(to :熱延鋼帯厚み)を1.6、2.0、
2.4、3.0、4.0、5.0、6.0mmとし最終
製品厚みを0.35mmとした。図1に示したように、
最終冷延率(真歪み):Crは、仕上冷延全圧下率(真
歪み):Hfに大きく影響され、実験結果からB8
1.86(T)以上を達成する範囲を数式化すると、−
0.25Hf+2.6≦Cr≦−0.25Hf+3.6
の式で求められることが分った。なお、Hfは2.70
9≦Hf≦3.912であることが実験結果から求めら
れ、前述の各式で求められた範囲が製品板厚が厚い0.
30〜0.65mmの場合でも確実にB8 ≧1.86以
上を達成できることになる。
A description will be given below based on experimental results. FIG.
Is the total rolling reduction (true strain) of the hot rolling finishing stand,
The relationship between the final cold rolling rate (true strain) and the magnetism (B 8 ) is shown. The conditions in this case are as follows. C: 0.035-0.
038%, Si: 2.9-3.10%, acid-soluble Al:
0.026 to 0.028%, N: 0.0078 to 0.0
83%, S is 0.0065 to 0.0075%, Mn:
A slab consisting of 0.08 to 0.1.1%, the balance being Fe and unavoidable impurities, was heated at a temperature of 1140 to 1160 ° C and hot rolled. Thereafter, a hot-rolled sheet is annealed at 1120 ° C. for 120 seconds, and then cooled at a rate of 30 ° C./second. After deskelling, one cold rolling is performed at 180 to 230 ° C. for 2 minutes or more for 2 passes. After degreasing, 830-
After decarburizing annealing at 850 ° C. for 90 to 200 seconds, nitriding in a mixed gas of hydrogen, nitrogen, and ammonia after running the strip so that the total amount of nitrogen becomes 0.019 to 0.022% after nitriding. After treatment, an annealing separator containing MgO as a main component is applied, and N 2 = 25% and H 2 = 75%
Under an atmosphere of 650 ° C. to 120 ° C. at 10 to 20 ° C./hour.
The temperature was raised to 0 ° C., and then H
Purification annealing was performed at 2 = 100%. Thereafter, application of a commonly used insulating tension coating and smoothing treatment were performed.
In this case, the coarse bar thickness (ti: the thickness of the finished entrance) is 3
0, 50, 70, 90, 110 and 130 mm, and the finish outlet thickness (to: hot rolled steel strip thickness) is 1.6, 2.0,
The final product thickness was set to 2.4, 3.0, 4.0, 5.0, 6.0 mm and 0.35 mm. As shown in FIG.
Final cold-rolling rate (true strain): Cr is greatly affected by the final cold-rolling total rolling rate (true strain): Hf. From the experimental results, the range in which B 8 achieves 1.86 (T) or more is expressed as a formula. , −
0.25Hf + 2.6 ≦ Cr ≦ −0.25Hf + 3.6
It can be found that Hf is 2.70.
It is determined from the experimental results that 9 ≦ Hf ≦ 3.912, and the range determined by each of the above-described equations is 0.
Even in the case of 30 to 0.65 mm, B 8 ≧ 1.86 or more can be surely achieved.

【0017】次に、冷間圧延における最終圧延率につい
て述べる。そもそも、一方向性電磁鋼板の製造において
良好な磁気特性(方向性の良好なGoss方位を有する
2次再結晶集合組織)を得るためには、脱炭焼鈍後の一
次再結晶集合組織の適正化及びインヒビター強度の確保
が必要である。従来から一方向性電磁鋼板の製造におい
て一次再結晶集合組織を適正化するためには、熱間圧延
後最終冷間圧延の間にある程度の変態相が必要とされて
いた。このために炭素を含有させている。ところが、1
280℃未満のスラブ加熱法においては一次再結晶集合
組織の適正化の程度が少なくても良いことを見い出し
た。この適正化程度は定量的には原勢らの対応粒界理論
(例えば特公平1−26155、日本金属学会誌第59
号、第9号(1995)917−924)によって評価
できる。即ちGoss方位粒({110}〈001〉)
とΣ9対応方位粒がある少量でも存在しその値が全Σ9
方位関係の分布の中で一番大きい(強い)と良好なGo
ss方位が2次再結晶する。しかし、このGoss方位
発現の安定性及びシャープさはインヒビターの強度に依
存する。
Next, the final rolling reduction in cold rolling will be described. In the first place, in order to obtain good magnetic properties (secondary recrystallized texture having a good directionality of Goss orientation) in the production of a grain-oriented electrical steel sheet, the primary recrystallized texture after decarburization annealing must be optimized. In addition, it is necessary to secure the inhibitor strength. Conventionally, in order to optimize the primary recrystallization texture in the production of a grain-oriented electrical steel sheet, a certain degree of transformation phase has been required during the final cold rolling after hot rolling. For this purpose, carbon is contained. However, 1
It has been found that in the slab heating method at a temperature lower than 280 ° C., the degree of optimization of the primary recrystallization texture may be small. This degree of optimization is quantitatively determined by the corresponding group boundary theory of the original group (for example, Japanese Patent Publication No. 1-255155, Journal of the Japan Institute of Metals No. 59).
No. 9 (1995) 917-924). That is, Goss orientation grains ({110} <001>)
And a small amount of # 9 corresponding orientation grains exist and their values are all $ 9
The largest (strong) and good Go in the distribution of the orientation relationship
The ss orientation undergoes secondary recrystallization. However, the stability and sharpness of the expression of the Goss orientation depend on the inhibitor strength.

【0018】本発明による方法では、このインヒビター
強度を任意にストリップ窒化として制御できるため良好
なGoss方位粒のみを選択的に発現できることを見い
出した。このGoss方位粒に対するΣ9値を全分布で
最大とする方法としては、主に冷間圧延前集合組織、粒
サイズ、及び冷間圧延率がある。一次再結晶集合組織に
大きな影響を及ぼす因子は、熱延での全仕上げ圧延率と
最終冷間圧延率である。本発明者らは冷間圧延前集合組
織を適正化することにより、冷間圧延率も低減できるこ
とを見い出した。冷間圧延前集合組織は、成分、熱延条
件に大きく影響されることは周知である。本発明の重要
な要素は上記原理に基づいて、熱間圧延での仕上げ全圧
下率を規定することにより冷間圧延率を低減できること
を見い出したことである。
In the method according to the present invention, it has been found that since the inhibitor strength can be arbitrarily controlled as strip nitriding, only good Goss orientation grains can be selectively expressed. Methods for maximizing the Σ9 value for this Goss orientation grain in the entire distribution mainly include a texture before cold rolling, a grain size, and a cold rolling rate. Factors that greatly affect the primary recrystallization texture are the overall finish rolling reduction in hot rolling and the final cold rolling reduction. The present inventors have found that the cold rolling reduction can be reduced by optimizing the texture before cold rolling. It is well known that the texture before cold rolling is greatly affected by components and hot rolling conditions. An important element of the present invention is that, based on the above principle, it has been found that the cold rolling reduction can be reduced by defining the finished total draft in hot rolling.

【0019】次に、板厚を制限する理由を述べる。製品
板厚が0.30mm未満の場含C含有量を0.040%
以上としても0.070%以下であれば、脱炭焼鈍にお
いて30ppm以下の炭素までの脱炭は律速的でなく表
面酸化層形成が律速的であり、低炭素とするメリッ卜は
少ない。このため板厚は、0.30mm以上とする。ま
た板厚が0.30mm未満であれば炭素量が少ないと一
次再結晶集合組織を充分に適正にしないと、2次再結晶
焼鈍時のインヒビター(主にAlN)の劣化度が速くな
り良好なGoss方位粒が得られなくなる。もちろん、
2次再結晶時の雰囲気を制御してインヒビターの分解を
抑制し、良好なGoss方位粒を得ることは可能である
が、この場合フォルステライトを主成分とする一次皮膜
に欠陥が多発して歩留が著しく低下する。
Next, the reason for limiting the plate thickness will be described. 0.040% when the product thickness is less than 0.30mm
If it is not more than 0.070%, decarburization to carbon of 30 ppm or less is not rate-limiting in decarburization annealing, and the formation of a surface oxide layer is rate-limiting. For this reason, the plate thickness is set to 0.30 mm or more. If the sheet thickness is less than 0.30 mm, and if the amount of carbon is small, the primary recrystallization texture is not adequately adjusted, the degree of deterioration of the inhibitor (mainly AlN) during the secondary recrystallization annealing is increased, and good results are obtained. Goss orientation grains cannot be obtained. of course,
It is possible to control the atmosphere at the time of secondary recrystallization to suppress the decomposition of the inhibitor and obtain good Goss orientation grains. Retention significantly decreases.

【0020】一方、板厚の上限の0.65mmは、これ
以上の板厚では、生産性を確保するためにはC合有量を
0.010%未満としなければならないためである。C
含有量を0.010%未満とすると、フォルステライ卜
を主成分とする一次皮膜の形成を良好に行なわしめてか
つ良好なGoss方位の2次再結晶を安定化することは
困難である。
On the other hand, the upper limit of the sheet thickness of 0.65 mm is that if the sheet thickness is more than this, the C content must be less than 0.010% in order to secure productivity. C
If the content is less than 0.010%, it is difficult to favorably form a primary film containing forsterite as a main component and to stabilize the secondary recrystallization in a good Goss orientation.

【0021】次に熱間圧延時の温度について述べる。本
発明では、スラブの加熱温度が1280℃未満と低く、
このためAlN等いわゆるインヒビターの大部分は析出
している。この析出を更に行なわしめるためには、仕上
入口温度を950〜1150℃、仕上げ出口温度を80
0〜1050℃、巻き取り温度を500〜650℃とす
る必要がある。望ましくは、仕上入口温度は975〜1
015℃、仕上げ出ロ温度は850〜975℃、巻き取
り温度は525〜600℃である。
Next, the temperature during hot rolling will be described. In the present invention, the heating temperature of the slab is lower than 1280 ° C,
Therefore, most of so-called inhibitors such as AlN are precipitated. In order to further carry out this precipitation, the finish inlet temperature is set to 950 to 1150 ° C., and the finish outlet temperature is set to 80
It is necessary to set the winding temperature to 0 to 1050 ° C and the winding temperature to 500 to 650 ° C. Preferably, the finishing inlet temperature is 975 to 1
015 ° C, the finishing temperature is 850 to 975 ° C, and the winding temperature is 525 to 600 ° C.

【0022】次に,本発明において出発材とする電磁鋼
スラブの成分組成の限定理由は、以下のとおりである。
Cは、0.010〜0.040%とした。0.010%
未満の場合は前述した。また0.040%を越えると脱
炭工程での生産性が著しく阻害され本発明の目的から外
れる。
Next, the reasons for limiting the component composition of the magnetic steel slab used as the starting material in the present invention are as follows.
C was set to 0.010 to 0.040%. 0.010%
If it is less than the above, it is described above. On the other hand, if it exceeds 0.040%, the productivity in the decarburization step is remarkably impaired, deviating from the object of the present invention.

【0023】Siはその含有量が2.5%未満になる
と、良好な鉄損が得られない。また4.0%を超える
と、脆性のために冷間圧延等室温での鋼板処理が困難に
なる。S及びSeは、0.015%以下、望ましくは
0.013%以下である。1280℃以下のスラブ加熱
温度で熱延板を製造し、その後熱延板焼鈍、冷間圧延の
後での、ストリップ窒化等による脱炭焼鈍工程以降のイ
ンヒビターの作り込みで製造する一方向性電磁鋼板で
は、多量のS、Seは一次再結晶粒の粒成長を妨げ有害
であるためである。0,005%未満では、熱延での繰
業上の不可避的変動要素(スキッド上及び間の温度履歴
差、圧延速度の加速による熱延温度の変動等)により、
一次再結晶粒の粒成長に場所的変動が生じ易くなり工業
的に安定的に製品が製造できない。
If the content of Si is less than 2.5%, good iron loss cannot be obtained. On the other hand, if it exceeds 4.0%, it becomes difficult to treat the steel sheet at room temperature such as cold rolling due to brittleness. S and Se are 0.015% or less, preferably 0.013% or less. A unidirectional electromagnetic device manufactured by manufacturing a hot-rolled sheet at a slab heating temperature of 1280 ° C. or less, and then manufacturing an inhibitor after a decarburizing annealing step by strip nitriding after hot-rolled sheet annealing and cold rolling. This is because, in a steel sheet, a large amount of S and Se hinders the growth of primary recrystallized grains and is harmful. If it is less than 0.005%, due to unavoidable fluctuation factors in the operation in hot rolling (difference in temperature history on and between skids, fluctuation of hot rolling temperature due to acceleration of rolling speed, etc.),
Locational fluctuations are likely to occur in the grain growth of the primary recrystallized grains, and a product cannot be manufactured stably industrially.

【0024】AlはNと結合してAlNを形成するが、
本発明においては、後工程即ち一次再結晶完了後に鋼を
窒化することにより(Al,Si)Nを形成せしめるこ
とを必須としているから、フリーのAlが一定量以上必
要である。そのため、酸可溶性Alとして0.020〜
0.040%添加する。Mnは、その含有量が少な過ぎ
ると二次再結晶が不安定となり、一方、多過ぎると一次
皮膜(フォルステライトを主成分とするいわゆるグラス
皮膜)の欠陥率が高くなる。適正な含有量は0.05〜
0.8%である。好ましくは、0.070〜0.3%で
ある。
Al combines with N to form AlN,
In the present invention, since it is essential to form (Al, Si) N by nitriding the steel after the post-process, ie, after the completion of the primary recrystallization, a certain amount of free Al is required. Therefore, 0.020-
Add 0.040%. If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, the defect rate of the primary coating (a so-called glass coating containing forsterite as a main component) increases. The appropriate content is 0.05-
0.8%. Preferably, it is 0.070 to 0.3%.

【0025】Nは0.005%未満では二次再結晶粒の
発達が悪くなる。一方0.010%を超えるとブリスタ
ーと呼ばれる鋼板のふくれが発生する。Pは、一次再結
晶集合組織を改善する効果が報告されている。低Pで
は、この効果が少なく、また製鋼コス卜的にコストアッ
プになるので下限は0.02%とする。上限について
は、0.30%を超えるとPは粒界偏析して脆性破壊を
起しやすくなり、工業的な生産が困難になる。好ましく
は0.30%以下である。
If N is less than 0.005%, the development of secondary recrystallized grains becomes worse. On the other hand, if it exceeds 0.010%, blisters of the steel plate called blisters are generated. It has been reported that P improves the primary recrystallization texture. At a low P, the effect is small and the cost is increased in terms of steelmaking cost. Therefore, the lower limit is set to 0.02%. With respect to the upper limit, if it exceeds 0.30%, P segregates at the grain boundary and brittle fracture is likely to occur, and industrial production becomes difficult. Preferably it is 0.30% or less.

【0026】Sn,Sbは従来からいわれている如く、
一次再結晶集合組織において{110}〈001〉方位
粒を増加させる効果があるとともに、硫化物を均一に析
出する効果がある。従って、本発明では、Cu−S,M
n―Sの如き硫化物の析出を均一に制御する効果が増長
される。更に、Sn,Sbを多く添加すると、脱炭焼鈍
時の酸化がされ難く、また―次再結晶粒成長し離くなる
傾向かある。このため、脱炭焼鈍温度を従来の820〜
840℃より20℃程度上げざるを得ない。このこと
は、一方向性電磁鋼板の一次被膜形成を容易ならしめる
方向である。また、Sb,Sn添加により二次再結晶粒
径が小さくなるため、添加なしと比べて鉄損(特に低磁
場鉄損)が良好となる。一方、Sb又はSnが0.02
%未満であると、二次再結晶粒があまり小さくならな
い。また、Sb又はSnが0.30%を超えると、脱炭
焼鈍後の窒化処理が困難となり、工業生産に適していな
い。
Sn and Sb are, as conventionally known,
The primary recrystallization texture has the effect of increasing the grain size of the {110} <001> orientation and has the effect of uniformly depositing sulfide. Therefore, in the present invention, Cu-S, M
The effect of uniformly controlling the precipitation of sulfide such as nS is enhanced. Furthermore, when Sn and Sb are added in a large amount, oxidation during decarburization annealing is difficult to occur, and the secondary recrystallized grains tend to grow apart. For this reason, the decarburization annealing temperature is set to 820 to
It has to be raised by about 20 ° C. from 840 ° C. This is a direction that facilitates the formation of the primary coating of the grain-oriented electrical steel sheet. In addition, since the secondary recrystallized grain size is reduced by adding Sb and Sn, iron loss (particularly, low magnetic field iron loss) is improved as compared with no addition. On the other hand, if Sb or Sn is 0.02
%, The secondary recrystallized grains are not so small. On the other hand, when Sb or Sn exceeds 0.30%, nitriding treatment after decarburizing annealing becomes difficult, which is not suitable for industrial production.

【0027】Crは、フォルステライト皮膜形成に必要
な脱炭焼鈍後の酸素量を確保するために添加される。
0.02%より少ないと酸素量が極端に少なくなる。ま
た0.30%を超えると酸素量が極端に増加し、良好な
フォルステライトが形成されなくなる。また磁束密度も
低下する。Cuが0.03%未満であると磁気特性の向
上効果が少ない。また0.5%を超えると、Cu−Sの
柝出物が粗大化して、効果が減じる。更に、熱間圧延時
に、いわゆる“Cuヘゲ”という庇の発生頻度が急激に
増大する。好ましくは、0.05〜0.10%である。
Cr is added in order to secure an oxygen amount after decarburization annealing necessary for forming a forsterite film.
If it is less than 0.02%, the amount of oxygen becomes extremely small. On the other hand, if it exceeds 0.30%, the amount of oxygen increases extremely, and good forsterite cannot be formed. Also, the magnetic flux density decreases. When Cu is less than 0.03%, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 0.5%, the size of the Cu-S precipitate becomes coarse and the effect is reduced. In addition, the frequency of occurrence of so-called “Cu scabs” during hot rolling sharply increases. Preferably, it is 0.05 to 0.10%.

【0028】Niは0.03%未満だと効果が少なく
0.3%を超えても特開平5−306410号公報に示
されているように効果はあるが、高価となる。CrとN
iの添加は、本発現の効果を更に向上させるものであ
り、コスト的に見合う量だけの添加で良い。次に熱延板
焼鈍の必要性について述べる。既に述べたように、特開
平4−323号公報および特開平4−324号公報にお
いては、熱延板焼鈍を施さない場合の熱延条件を規定し
ている。この場合、熱延で、熱延板焼鈍を代替させてい
る。しかし、この場合、一次再結晶集合組織的にはGo
ss方位が少なく、対応粒界理論によると最終製品の粒
径が大きくなり鉄損が劣る傾向がある。―次再結晶集合
組織でのGoss方位粒の量を確保し、最終製品の粒径
を小さくし、鉄損を向上させるのに有効な手段は、熱延
板焼鈍を行なうことである。事実、上述の両特許公報に
おいては磁束密度は向上するとの記載が有るが、鉄損向
上に関する記載はない。
If the content of Ni is less than 0.03%, the effect is small, and if it exceeds 0.3%, the effect is obtained as shown in JP-A-5-306410, but it is expensive. Cr and N
The addition of i further improves the effect of the present expression, and may be added in an amount that is commensurate with cost. Next, the necessity of hot-rolled sheet annealing will be described. As described above, JP-A-4-323 and JP-A-4-324 specify the hot-rolling conditions when hot-rolled sheet annealing is not performed. In this case, hot rolling is substituted for hot rolled sheet annealing. However, in this case, the primary recrystallization texture is Go
The ss orientation is small, and according to the corresponding grain boundary theory, the particle size of the final product tends to be large and the iron loss tends to be inferior. An effective means for securing the amount of Goss-oriented grains in the next recrystallization texture, reducing the grain size of the final product, and improving iron loss is to perform hot-rolled sheet annealing. In fact, in both of the above-mentioned patent publications, there is a description that the magnetic flux density is improved, but there is no description about the iron loss improvement.

【0029】[0029]

【実施例】次に本発明の実施例を示す。表1に示す成分
の鋼塊を通常の方法で製造し1100〜1175℃でス
ラブを加熱後、仕上げ入口温度を975〜1125℃、
仕上げ圧延での全圧下率を真歪みで1.764〜4.0
30とし、仕上げ出口温度を825〜1025℃、巻き
取り温度を525〜625℃とした熱間圧延で厚み1.
6〜6.0mmに仕上げた。
Next, examples of the present invention will be described. After producing a steel ingot of the components shown in Table 1 by a usual method and heating the slab at 1100 to 1175 ° C, the finishing inlet temperature was set to 975 to 1125 ° C,
Total rolling reduction in finish rolling is 1.764 to 4.0 in true strain.
30 and hot rolling at a finishing outlet temperature of 825 to 1025C and a winding temperature of 525 to 625C.
Finished to 6-6.0 mm.

【0030】その後、1120℃x2分の熱延板焼鈍を
行ない、酸洗後180〜220℃で最低2パスの温間圧
延を行なって0.22〜0.65mmに冷間圧延した。
その後、一次再結晶平均粒径を22〜24μmとするた
めに,820〜850℃で、N2 :25%、H2 :75
%の雰囲気ガス中で、露点62℃で70秒〜150秒の
脱炭一次再結晶焼鈍を行なった。その後、全窒素含有量
を195〜210ppm とするストリップ窒化処理を行な
いMgOを主成分とする暁鈍分離剤を塗布し、仕上げ焼
鈍を行なった。この仕上焼鈍は10〜20℃/時間で昇
温し、雰囲気は、N2 :25%、H2 :75%とした。
Thereafter, hot-rolled sheet annealing was performed at 1120 ° C. for 2 minutes, and after pickling, cold rolling was performed at a minimum of two passes at 180 to 220 ° C. to 0.22 to 0.65 mm.
Then, at 820-850 ° C., N 2 : 25%, H 2 : 75 in order to make the primary recrystallization average particle size 22-22 μm.
The decarburization primary recrystallization annealing was carried out at a dew point of 62 ° C. for 70 seconds to 150 seconds in an atmosphere gas of 50%. Thereafter, strip nitriding treatment was carried out to a total nitrogen content of 195 to 210 ppm, and an annealing separator containing MgO as a main component was applied, followed by finish annealing. In this finish annealing, the temperature was raised at 10 to 20 ° C./hour, and the atmosphere was N 2 : 25% and H 2 : 75%.

【0031】その後、1200℃で20時間、H2 :1
00%の純化焼鈍を行なった。その後、通常用いられる
張力コーティングの塗布と平滑化処理を行なった。本発
明実施例で得た磁気特性を、熱延条件、板厚、冷延条件
とともに表2に示した。本発明の方法によるものは、い
ずれも良好な磁気特性を示している。
Thereafter, H 2 : 1 at 1200 ° C. for 20 hours.
A purification annealing of 00% was performed. Thereafter, application of a commonly used tension coating and smoothing treatment were performed. The magnetic properties obtained in the examples of the present invention are shown in Table 2 together with the hot rolling conditions, sheet thickness, and cold rolling conditions. All of the methods according to the present invention show good magnetic properties.

【表1】 [Table 1]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上述べたように、本発明は熱延での仕
上げ全圧下率(Hf:真歪み)と最終冷延率(Cr:真
歪み)の関係を実験式で求めた特定の範囲で操業するこ
とにより製品板厚が0.30〜0.65mmと厚い場合
においてもC含有量を低減することができ、一方向性電
磁鋼板の製品コストを低減できることが可能となる。
As described above, according to the present invention, the relationship between the total rolling reduction (Hf: true strain) and the final cold-rolling rate (Cr: true strain) in hot rolling is determined in a specific range obtained by an empirical formula. The C content can be reduced even when the product sheet thickness is as large as 0.30 to 0.65 mm by operating at, and the product cost of the grain-oriented electrical steel sheet can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱間圧延仕上げスタンドの全圧下率(Hf:真
歪み)、最終冷延率(Cr:真歪み)と磁束密度
(B8 )の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the total draft (Hf: true strain), the final cold-rolling rate (Cr: true strain), and the magnetic flux density (B 8 ) of a hot rolling finishing stand.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 (72)発明者 横内 仁 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Katsuro Kuroki, Nippon Steel Plant Design Co., Ltd., 46-46 Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture 1. Inside Nippon Steel Corporation Yawata Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C:0.010〜0.040%、 Si:2.5〜4.0%、 酸可溶性Al:0.020〜0.040%、 N:0.005〜0.010%、 S、Seの少なくとも1種を0.005〜0.015
%、 Mn:0.05〜0.3%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱間圧延を行ない、熱延板焼
鈍を行ない、その後のデスケリーング後、1回の冷間圧
延を行ない、脱炭焼純後ストリップを走行せしめる状態
下で水素、窒素、アンモニアの混合ガス中て窒化処理を
行ない、次いでMgOを主成分とする焼鈍分離剤を塗布
して最終仕上焼鈍を施す一方向性電磁鋼板の製造方法に
おいて、熱延での仕上げ全圧下率(Hf :真歪み)と最
終冷延率(Cr :真歪み)の関係が、 −0.25Hf+2.6≦Cr≦−0.25Hf+3.
6 2.709≦Hf≦3.912 であることを特徴とする製品板厚が厚い一方向性電磁鋼
板の製造方法。
1. A weight ratio of C: 0.010 to 0.040%, Si: 2.5 to 4.0%, acid-soluble Al: 0.020 to 0.040%, N: 0.005 to 0.010%, at least one of S and Se is 0.005 to 0.015
%, Mn: 0.05 to 0.3%, the balance being 128 slabs composed of Fe and inevitable impurities.
After heating at a temperature of less than 0 ° C., hot rolling is performed, hot-rolled sheet annealing is performed, and then after deskering, one cold rolling is performed, and after decarburizing and sintering, hydrogen and nitrogen are allowed to run under stripping conditions. In a method for producing a grain-oriented electrical steel sheet in which a nitriding treatment is performed in a mixed gas of ammonia and then an annealing separator containing MgO as a main component is applied and final finish annealing is performed, the final total draft in hot rolling ( Hf: true strain) and the final cold-rolling rate (Cr: true strain) are: -0.25Hf + 2.6 ≦ Cr ≦ −0.25Hf + 3.
6. A method for producing a grain-oriented electrical steel sheet having a large product sheet thickness, wherein 2.709 ≦ Hf ≦ 3.912.
【請求項2】 前記製品板厚が0.30mm〜0.65
mmであることを特徴とする請求項1記載の製品板厚の
厚い一方向性電磁鋼板の製造方法。
2. The product thickness is 0.30 mm to 0.65.
2. The method according to claim 1, wherein the thickness of the product is 0.1 mm.
【請求項3】 熱間圧延の仕上げ入口温度を950〜1
150℃、仕上げ出口温度を800〜1050℃、巻き
取り温度を500〜650℃とすることを特徴とする請
求項1記載の製品板厚の厚い一方向性電磁鋼板の製造方
法。
3. The finishing inlet temperature of hot rolling is set to 950-1.
The method for producing a unidirectional magnetic steel sheet having a thick product sheet according to claim 1, wherein the finishing temperature is 150 ° C, the finishing outlet temperature is 800 to 1050 ° C, and the winding temperature is 500 to 650 ° C.
JP12779498A 1998-05-11 1998-05-11 Manufacturing method of unidirectional electrical steel sheet Expired - Fee Related JP4261633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12779498A JP4261633B2 (en) 1998-05-11 1998-05-11 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12779498A JP4261633B2 (en) 1998-05-11 1998-05-11 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH11323437A true JPH11323437A (en) 1999-11-26
JP4261633B2 JP4261633B2 (en) 2009-04-30

Family

ID=14968848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12779498A Expired - Fee Related JP4261633B2 (en) 1998-05-11 1998-05-11 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4261633B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102456A1 (en) 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
JP2012188733A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Manufacturing method for grain-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102456A1 (en) 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
JP2012188733A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Manufacturing method for grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4261633B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JPH11124628A (en) Production of grain oriented silicon steel sheet of which product sheet is thick
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0257125B2 (en)
JP4163773B2 (en) Method for producing grain-oriented electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees