JP2016145419A - Oriented electrical steel sheet and method therefor - Google Patents

Oriented electrical steel sheet and method therefor Download PDF

Info

Publication number
JP2016145419A
JP2016145419A JP2016015171A JP2016015171A JP2016145419A JP 2016145419 A JP2016145419 A JP 2016145419A JP 2016015171 A JP2016015171 A JP 2016015171A JP 2016015171 A JP2016015171 A JP 2016015171A JP 2016145419 A JP2016145419 A JP 2016145419A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
hot
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016015171A
Other languages
Japanese (ja)
Other versions
JP6168173B2 (en
Inventor
渡辺 誠
Makoto Watanabe
渡辺  誠
高宮 俊人
Toshito Takamiya
俊人 高宮
敬 寺島
Takashi Terajima
寺島  敬
龍一 末廣
Ryuichi Suehiro
龍一 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016145419A publication Critical patent/JP2016145419A/en
Application granted granted Critical
Publication of JP6168173B2 publication Critical patent/JP6168173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oriented electrical steel sheet excellent in film adhesion and iron loss characteristic and a useful manufacturing method therefor.SOLUTION: When an oriented electrical steel sheet is manufactured by hot rolling a steel raw material containing Si:2.0 to 8.0 mass%, cold rolling, decarburization-annealing, applying an annealing separator, and finish annealing, oxygen basis weight of a forsterite film is set at 1.8 to 2.8 g/mas double side, strength ratio of Ti to Mg when X-ray fluorescence analysis is conducted on a surface of the forsterite film (I/I) is set at 0.03 to 0.12 and complexity of a boundary between the forsterite film and ferrite Lis set in a range of 1.1 to 1.9 by setting oxygen basis weight amount after decarburization-annealing of 0.7 to 1.1 g/mas double side, mainly containing MgO, containing at least Ti of 1 to 7%, Na of 20 to 40 ppm based on the whole annealing separator as an additive, and using the annealing separator containing Ba of 5 to 25 ppm in the main agent and/or an additive.SELECTED DRAWING: Figure 4

Description

本発明は、方向性電磁鋼板とその製造方法に関し、具体的には、優れた磁気特性と被膜特性を兼備する方向性電磁鋼板とその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet, and more specifically to a grain-oriented electrical steel sheet having both excellent magnetic properties and coating properties and a method for producing the same.

方向性電磁鋼板は、主にトランスの鉄心材料として使用されることから、磁気特性に優れること、特に鉄損が低いことが強く求められている。そのため、方向性電磁鋼板は、従来、冷間圧延したSi含有鋼板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、MgOを主剤とする焼鈍分離剤を塗布した後、仕上焼鈍において二次再結晶を起こさせ、結晶粒を{110}<001>方位(いわゆる、ゴス方位)に高度に揃える方法で製造している。上記仕上焼鈍は、上記の二次再結晶させる焼鈍と、最高1200℃程度の温度まで昇温する純化処理と合わせて10日間程度を要するため、通常、コイルに巻いた状態で行うバッチ焼鈍により行われている。   The grain-oriented electrical steel sheet is mainly used as a core material of a transformer, so that it is strongly required to have excellent magnetic properties, particularly low iron loss. Therefore, the grain-oriented electrical steel sheet is conventionally subjected to decarburization annealing that also serves as primary recrystallization annealing on the cold-rolled Si-containing steel sheet, and after applying an annealing separator mainly composed of MgO, secondary annealing in finish annealing is performed. Recrystallization is caused, and the crystal grains are manufactured by a method of highly aligning the {110} <001> orientation (so-called Goth orientation). Since the above-mentioned finish annealing requires about 10 days in combination with the above-mentioned annealing for secondary recrystallization and the purification treatment for raising the temperature to a maximum of about 1200 ° C., it is usually performed by batch annealing performed in a state of being wound around a coil. It has been broken.

上記仕上焼鈍中においては、脱炭焼鈍時に鋼板表面に形成されるSiOを主体としたサブスケールと、脱炭焼鈍後に鋼板表面に塗布したMgOを主剤とする焼鈍分離剤が、MgO+SiO→MgSiOの反応を起こし、鋼板表面にガラス質のフォルステライト被膜が形成される。上記フォルステライト被膜は、絶縁性や耐食性を付与することの他に、鋼板表面に引張応力を付与して磁気特性を改善する効果があるため、均一で、密着性に優れることが要求される。 During the above-mentioned finish annealing, a subscale mainly composed of SiO 2 formed on the steel plate surface during decarburization annealing and an annealing separator mainly composed of MgO applied to the steel plate surface after decarburization annealing are MgO + SiO 2 → Mg. 2 A SiO 4 reaction occurs, and a glassy forsterite film is formed on the surface of the steel sheet. The forsterite film is required to be uniform and excellent in adhesiveness because it has the effect of imparting tensile stress to the steel sheet surface to improve magnetic properties in addition to imparting insulation and corrosion resistance.

上記フォルステライト被膜は、地鉄の内部に喰い込んだ形で形成され、鋼板表面に機械的に接着している。しかし、被膜と地鉄との界面の凹凸が激しくなると、凹凸部に残留磁化が生じるため、ヒステリシス損が増加する。そのため、被膜密着性とヒステリシス損は、トレードオフの関係にあり、この二つを両立させることは困難である。   The forsterite film is formed so as to penetrate into the inside of the ground iron, and is mechanically bonded to the steel plate surface. However, when the unevenness at the interface between the coating and the ground iron becomes severe, residual magnetization occurs in the uneven portion, and thus the hysteresis loss increases. Therefore, the film adhesion and the hysteresis loss are in a trade-off relationship, and it is difficult to achieve both of them.

なお、フォルステライト被膜を形成させずに、鋼板表面に直接絶縁被膜を被成する技術も開発されているが、現時点においては、被膜密着性を確保するのが難しく、絶縁性や耐電圧特性、耐食性も不十分である。そのため、フォルステライト被膜を有する方向性電磁鋼板に対するニーズは依然として高い。さらに、近年、省エネルギーに対する要求を背景として、方向性電磁鋼板には、さらなる鉄損特性の改善が求められるようになってきており、ヒステリシス損をさらに低減することは必須の課題となってきている。   In addition, a technology for directly forming an insulating film on the steel sheet surface without forming a forsterite film has been developed, but at the present time, it is difficult to ensure film adhesion, insulation and withstand voltage characteristics, Corrosion resistance is also insufficient. Therefore, the need for grain-oriented electrical steel sheets having a forsterite coating is still high. Furthermore, in recent years, against the demand for energy saving, grain-oriented electrical steel sheets have been required to further improve the iron loss characteristics, and further reducing hysteresis loss has become an essential issue. .

上記課題に対して、フォルステライト被膜を改善する技術が幾つか提案されている。
例えば、特許文献1には、表面から10μm深さの範囲に存在する内部酸化物量を適正化することによって、曲げ密着性を改善する技術が開示されている。また、特許文献2には、フォルステライト被膜のTiとBの目付量、および、これらとNのモル比を適正化することによって、レーザによる磁区細分化処理を施したときの被膜損傷を抑え、鉄損を低減する技術が開示されている。また、特許文献3には、一次被膜(フォルステライト被膜)中にCa,Sr,Baの中から選ばれる1種または複数の元素と希土類元素と硫黄を含む化合物を含有させることによって、一次被膜の根の部分に硫化物を残存させ、強加工下での被膜密着性を改善する技術が開示されている。さらに、特許文献4には、被膜剥離試験後の鋼板側剥離部に観察される下地被膜構成粒子跡の平均粒径を特定することによって、双晶発生率を抑える技術が開示されている。
Several techniques for improving the forsterite film have been proposed for the above problem.
For example, Patent Document 1 discloses a technique for improving bending adhesion by optimizing the amount of internal oxide present in a range of 10 μm depth from the surface. Patent Document 2 discloses that the amount of Ti and B per unit area of the forsterite film, and the molar ratio of these and N are optimized to suppress film damage when the magnetic domain subdivision process is performed by a laser. A technique for reducing iron loss is disclosed. Patent Document 3 discloses that the primary coating (forsterite coating) contains a compound containing one or more elements selected from Ca, Sr, and Ba, a rare earth element, and sulfur. A technique is disclosed in which sulfide remains in the root portion to improve film adhesion under strong processing. Furthermore, Patent Document 4 discloses a technique for suppressing the twinning rate by specifying the average particle diameter of the traces of the underlying coating film forming particles observed at the steel sheet side peeling portion after the film peeling test.

特開2004−238734号公報JP 2004-238734 A 特開平09−184017号公報Japanese Patent Application Laid-Open No. 09-184017 特表2008−062853号公報Special table 2008-062853 gazette 特表2012−076702号公報Special table 2012-076762 gazette

しかしながら、特許文献1に開示の技術は、フォルステライト被膜と地鉄との界面の凹凸が大きくなり過ぎて、磁化した際に鋼板表面に磁極が残留し、ヒステリシス損が却って増加してしまうという問題がある。また、特許文献2に開示の技術は、積鉄心など、歪取焼鈍を行わない用途に限定されることに加え、TiやBとNの関係を狭い範囲内に収める必要があり、また、焼鈍におけるコイルの内巻と外巻あるいは板幅方向での条件変動の影響を受け、コイルの全長全幅に亘って磁気特性を改善するのは困難である。また、特許文献3に開示の技術は、一次被膜の根の部分に硫化物を残存させるために、被膜−地鉄界面の凹凸が激しくなり、却ってヒステリシス損が増加するという問題がある。さらに、特許文献4に開示の技術は、被膜と地鉄界面の凹凸を低減し、双晶などでの破壊の起点を低減することには有効であるが、凹凸が微細過ぎるため、被膜密着性の改善に対しては大きな効果が得られないという問題がある。   However, the technique disclosed in Patent Document 1 has a problem that the unevenness at the interface between the forsterite film and the ground iron becomes too large, and magnetic poles remain on the surface of the steel sheet when magnetized, resulting in an increase in hysteresis loss. There is. Further, the technique disclosed in Patent Document 2 is limited to applications that do not perform strain relief annealing, such as a steel core, and it is necessary to keep the relationship between Ti and B and N within a narrow range. It is difficult to improve the magnetic characteristics over the entire length of the coil under the influence of fluctuations in the conditions of the inner and outer windings of the coil and the sheet width direction. In addition, the technique disclosed in Patent Document 3 has a problem in that since the sulfide remains in the root portion of the primary coating, unevenness at the coating-base metal interface becomes severe, and hysteresis loss increases. Furthermore, although the technique disclosed in Patent Document 4 is effective in reducing the unevenness at the interface between the coating and the ground iron and reducing the starting point of fracture due to twins and the like, the unevenness of the coating is too fine. There is a problem that a large effect cannot be obtained for improvement of the above.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、フォルステライト被膜−地鉄界面の凹凸を適正化することによって、被膜密着性を確保しつつヒステリシス損を低減した方向性電磁鋼板を提供するとともに、その有利な製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to optimize the unevenness of the forsterite film-steel interface, thereby ensuring hysteresis loss while ensuring film adhesion. In addition to providing a grain-oriented electrical steel sheet with reduced content, an advantageous manufacturing method thereof is proposed.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、脱炭焼鈍後の鋼板表層の酸素目付量を適正化するとともに、MgOを主剤とする焼鈍分離剤中に、添加剤として、Tiに加えてNaを極微量適正範囲で添加し、さらにMgOまたは添加物中にBaを適正量含有させることで、フォルステライト被膜−地鉄界面の凹凸を適正化し、被膜密着性を改善しつつヒステリシス損を低減できることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, in addition to optimizing the oxygen basis weight of the steel sheet surface layer after decarburization annealing, in addition to Ti, in addition to Ti, Na is added in an extremely small range as an additive in the annealing separator mainly composed of MgO. It has been found that by containing an appropriate amount of Ba in MgO or an additive, it is possible to optimize the unevenness at the forsterite film-base iron interface and reduce the hysteresis loss while improving film adhesion, leading to the development of the present invention. It was.

すなわち、本発明は、フォルステライト被膜を有する方向性電磁鋼板であって、上記フォルステライト被膜の酸素目付量が両面で1.8〜2.8g/m、上記フォルステライト被膜の表面を蛍光X線分析したときのMgに対するTiの強度比(ITi/IMg)が0.03〜0.12、上記フォルステライト被膜断面における被膜と地鉄との界面の複雑度Lが1.1〜1.9の範囲にあることを特徴とする方向性電磁鋼板である。 That is, the present invention is a grain-oriented electrical steel sheet having a forsterite film, wherein the forsterite film has an oxygen basis weight of 1.8 to 2.8 g / m 2 on both sides, and the surface of the forsterite film is fluorescent X The strength ratio of Ti to Mg (I Ti / I Mg ) in the line analysis is 0.03 to 0.12, and the complexity L c of the interface between the coating and the ground iron in the forsterite coating cross section is 1.1 to 1.1. It is a grain-oriented electrical steel sheet characterized by being in the range of 1.9.

また、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0050mass%未満を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法を提案する。 Moreover, this invention is C: 0.002-0.10 mass%, Si: 2.0-8.0mass%, Mn: 0.005-1.0mass%, Al: less than 0.01 mass%, N: 0 A steel material containing less than .0050 mass%, S: less than 0.0050 mass% and Se: less than 0.0050 mass%, the balance being Fe and unavoidable impurities is hot-rolled into a hot-rolled sheet, and hot-rolled sheet annealed Or after performing hot-rolled sheet annealing, the final thickness of the cold-rolled sheet is obtained by cold rolling at least once with intermediate or intermediate annealing, followed by decarburization annealing that also serves as primary recrystallization annealing. After that, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator is applied to the steel sheet surface and finish annealing, the oxygen basis weight after decarburization annealing is 0.7 to 1.1 g / m on both sides. 2 and the above annealing separator In addition, MgO is the main agent, and as an additive, at least the Ti compound is 1 to 7 mass% in terms of Ti and the Na compound is 20 to 40 massppm in terms of Na, Ca, Sr, Mn, Mo, Fe, and Cu as additives. , Zn, Ni, Al, K, Li, Sb oxides, hydroxides, sulfates, carbonates, nitrates, borates, chlorides and sulfides. The total content in terms of metal is 0.1 to 5 mass%, and the main component and / or the additive contains Ba in the range of 5 to 25 massppm. A method for manufacturing grain-oriented electrical steel sheets is proposed.

また、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法を提案する。 Moreover, this invention is C: 0.002-0.10 mass%, Si: 2.0-8.0mass%, Mn: 0.005-1.0mass%, Se: 0.003-0.030mass% and / Or S: 0.002 to 0.03 mass%, and the remainder of the steel material consisting of Fe and inevitable impurities is hot-rolled to form a hot-rolled sheet, without performing hot-rolled sheet annealing or hot-rolled sheet After annealing, make a cold-rolled sheet with the final thickness by one or more cold rollings with intermediate annealing, and after decarburization annealing that also serves as primary recrystallization annealing, then anneal separation on the steel sheet surface In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying an agent and finish annealing, the oxygen basis weight after decarburization annealing is 0.7 to 1.1 g / m 2 on both sides, and the annealing separator , MgO as the main agent, annealing separator as additive At least Ti compound is 1-7 mass% in terms of Ti and Na compound is 20-40 massppm in terms of Na, Ca, Sr, Mn, Mo, Fe, Cu, Zn, Ni, Al, K, Li, Sb. Containing 0.1 to 5 mass% of one or more selected from oxides, hydroxides, sulfates, carbonates, nitrates, borates, chlorides and sulfides in terms of the metal equivalent And the thing containing Ba in the range of 5-25 massppm in the said main ingredient and / or an additive is used, The manufacturing method of the grain-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned is proposed.

また、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法を提案する。 Moreover, this invention is C: 0.002-0.10 mass%, Si: 2.0-8.0mass%, Mn: 0.005-1.0mass%, Al: 0.010-0.050mass%, and N: 0.003 to 0.020 mass%, and the remainder of the steel material consisting of Fe and inevitable impurities is hot-rolled to form a hot-rolled sheet, and without performing hot-rolled sheet annealing or hot-rolled sheet annealing. After the application, the steel sheet is subjected to decarburization annealing that also serves as primary recrystallization annealing, and then the annealing separator is applied to the surface of the steel sheet. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of coating and finish annealing, the oxygen basis weight after decarburization annealing is 0.7 to 1.1 g / m 2 on both sides, and the annealing separator is MgO. As the main ingredient and as an additive to the entire annealing separator On the other hand, at least Ti compound is 1 to 7 mass% in terms of Ti and Na compound is 20 to 40 massppm in terms of Na, and oxides of Ca, Sr, Mn, Mo, Fe, Cu, Zn, Ni, Al, K, Li, and Sb One or more selected from hydroxides, sulfates, carbonates, nitrates, borates, chlorides and sulfides in a total of 0.1 to 5 mass% in terms of the metal, and The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the main component and / or the additive contains Ba in a range of 5 to 25 massppm.

また、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法を提案する。 Moreover, this invention is C: 0.002-0.10 mass%, Si: 2.0-8.0mass%, Mn: 0.005-1.0mass%, Al: 0.010-0.050mass%, A steel material containing N: 0.003-0.020 mass%, Se: 0.003-0.030 mass% and / or S: 0.002-0.03 mass%, with the balance being Fe and inevitable impurities. Hot-rolled into hot-rolled sheet, and after hot-rolled sheet annealing or after hot-rolled sheet annealing, cold-rolled sheet with final thickness by one or more cold rolling sandwiching intermediate annealing In the method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator is applied to the steel sheet surface after finishing decarburization annealing also serving as primary recrystallization annealing and finish annealing is performed. The basis weight is 0.7 to 1 on both sides. and g / m 2, 20~40massppm as the annealing separator of MgO and the main agent, in at least Ti compound Na converted 1~7Mass% and Na compounds terms of Ti relative to the entire annealing separator as additive, Ca , Sr, Mn, Mo, Fe, Cu, Zn, Ni, Al, K, Li, Sb oxides, hydroxides, sulfates, carbonates, nitrates, borates, chlorides and sulfides One or two or more types selected are contained in a total of 0.1 to 5 mass% in terms of the metal, and one containing Ba in the range of 5 to 25 massppm in the main agent and / or additive is used. The manufacturing method of the grain-oriented electrical steel sheet according to claim 1 is proposed.

また、本発明における上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTi:0.0005〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel raw material in this invention is further Ni: 0.010-1.50 mass%, Cr: 0.01-0.50 mass%, Cu: 0.01-0.50 mass%. , P: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005 -0.100 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass%, Nb: 0.0010-0.0100 mass%, V: 0.001-0.010 mass% and Ti: It contains 1 type, or 2 or more types chosen from 0.0005-0.010 mass%, It is characterized by the above-mentioned.

本発明によれば、フォルステライト被膜の密着性を損なうことなく被膜−地鉄界面の凹凸を低減して、鉄損特性を改善することができる。   According to the present invention, it is possible to improve the iron loss characteristics by reducing the unevenness of the coating-base iron interface without impairing the adhesion of the forsterite coating.

焼鈍分離剤に含まれるNa,Baが、鉄損およびフォルステライト被膜の密着性に及ぼす影響を示すグラフである。It is a graph which shows the influence which Na and Ba contained in an annealing separation agent have on the iron loss and the adhesion of a forsterite film. 焼鈍分離剤に含まれるNa,Baが、フォルステライト被膜に及ぼす影響を観察した断面写真である。It is the cross-sectional photograph which observed the influence which Na and Ba contained in an annealing separation agent exert on a forsterite film. フォルステライト被膜−地鉄界面の複雑度Lを説明する図であるIt is a diagram illustrating a base steel interface complexity L c - forsterite film 焼鈍分離剤に含まれるNa,Baが、フォルステライト被膜−地鉄界面の複雑度Lおよびフォルステライト被膜中に侵入するTi量に及ぼす影響を示すグラフである。Na contained in the annealing separator, Ba is forsterite film - is a graph showing the effect on Ti amount penetrating into the base steel interface complexity L c and forsterite film.

まず、本発明を開発する契機となった実験について説明する。
<実験1>
C:0.065mass%、Si:3.44mass%、Mn:0.08mass%、Al:0.03mass%およびN:0.008mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1410℃の温度に再加熱し、熱間圧延して板厚2.4mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚の1.8mmとし、1120℃×80秒の中間焼鈍を施した後、200℃温度で温間圧延して最終板厚0.23mmの冷延板とした。
次いで、上記冷延板に、一次再結晶焼鈍を兼ねて、50vol%H−50vol%N、露点55℃の湿潤雰囲気下で840℃×100秒の脱炭焼鈍を施した。なお、このときの脱炭焼鈍後の酸素目付量は両面で0.9g/mであった。なお、上記酸素目付量は、脱炭焼鈍後の鋼板全体(全厚)の酸素量を化学分析により求め、単位面積あたりの目付量に換算した値である。
その後、上記鋼板表面に、酸化マグネシウムMgOを主剤とし、添加剤として焼鈍分離剤全体に対して、酸化チタンをTi換算で5mass%、水酸化ストロンチウムをSr換算で3mass%、水酸化ナトリウムをNa換算で0〜60massppm含有し、さらに、不純物としてBaを種々の濃度で含有するMgOを使用することによりBaを焼鈍分離剤全体に対して0〜35massppmの範囲で種々に変化して含有する焼鈍分離剤(スラリー)を鋼板表面に塗布し、乾燥した。なお、上記MgO、酸化チタンおよび水酸化ストロンチウム中に含まれるNa濃度および酸化チタン、水酸化ストロンチウム中に含まれるBa濃度を分析したところ、いずれも検出限界以下であった。
次いで、上記鋼板に、二次再結晶させてから、水素雰囲気下で1200℃×7時間の純化処理を行う仕上焼鈍を施した後、未反応の焼鈍分離剤を除去し、絶縁被膜液を塗布し、絶縁被膜の焼付けと形状矯正を兼ねた平坦化焼鈍を800℃×30秒で施し、方向性電磁鋼板とした。
First, an experiment that triggered the development of the present invention will be described.
<Experiment 1>
Steel containing C: 0.065 mass%, Si: 3.44 mass%, Mn: 0.08 mass%, Al: 0.03 mass% and N: 0.008 mass%, and a steel slab by a continuous casting method After that, it was reheated to a temperature of 1410 ° C., hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm, subjected to hot-rolled sheet annealing at 1050 ° C. × 60 seconds, and then subjected to primary cold rolling and intermediate The plate thickness was set to 1.8 mm, and after intermediate annealing at 1120 ° C. for 80 seconds, it was warm-rolled at a temperature of 200 ° C. to obtain a cold-rolled plate having a final thickness of 0.23 mm.
Next, the cold-rolled sheet was subjected to decarburization annealing at 840 ° C. for 100 seconds in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 55 ° C. also serving as primary recrystallization annealing. At this time, the oxygen basis weight after decarburization annealing was 0.9 g / m 2 on both sides. The oxygen basis weight is a value obtained by calculating the oxygen amount of the entire steel sheet (total thickness) after decarburization annealing by chemical analysis and converting it into a basis weight per unit area.
After that, magnesium oxide MgO is the main ingredient on the steel sheet surface, titanium oxide is 5 mass% in terms of Ti, strontium hydroxide is 3 mass% in terms of Sr, and sodium hydroxide is Na in terms of additives as an additive. An annealing separator containing variously varying Ba in the range of 0 to 35 massppm with respect to the whole annealing separator by using MgO containing various concentrations of Ba as impurities. (Slurry) was applied to the surface of the steel sheet and dried. When the Na concentration contained in the MgO, titanium oxide and strontium hydroxide and the Ba concentration contained in the titanium oxide and strontium hydroxide were analyzed, all were below the detection limit.
Next, the steel sheet is subjected to secondary recrystallization, and then subjected to finish annealing in a hydrogen atmosphere at a temperature of 1200 ° C. for 7 hours, after which the unreacted annealing separator is removed and an insulating coating solution is applied. Then, flattening annealing that combines the baking of the insulating coating and the shape correction was performed at 800 ° C. for 30 seconds to obtain a grain-oriented electrical steel sheet.

斯くして得た方向性電磁鋼板について、鉄損W17/50と、被膜密着性(曲げ剥離径)を測定し、その結果を図1に示した。
図1(a)から、鉄損W17/50は、焼鈍分離剤中のBa含有量が30massppm未満において良好となること、ただし、Ba含有量が低い場合でも、Na添加量が20〜40massppmの範囲から外れて、高過ぎたり低過ぎたりしたときには、鉄損が増加していることがわかる。
また、図1(b)から、被膜密着性は、Na添加量が高い方ほど良好となるが、Ba含有量には適正範囲があり、5〜25massppmの範囲で良好であるが、その範囲より低過ぎても高過ぎても、被膜密着性が劣る傾向となることがわかる。
これらの結果から、BaおよびNaは、極微量ではあるが、それぞれ適正範囲に収めて添加することで、鉄損特性と被膜密着性とを両立できることがわかる。
For the grain- oriented electrical steel sheet thus obtained, iron loss W 17/50 and film adhesion (bending peel diameter) were measured, and the results are shown in FIG.
From FIG. 1 (a), the iron loss W 17/50 is good when the Ba content in the annealing separator is less than 30 massppm. However, even when the Ba content is low, the Na addition amount is 20 to 40 massppm. When it is out of range and is too high or too low, it can be seen that the iron loss increases.
Also, from FIG. 1 (b), the film adhesion becomes better as the amount of Na added is higher, but the Ba content has an appropriate range, which is good in the range of 5 to 25 massppm, but from that range. It can be seen that the film adhesion tends to be inferior if it is too low or too high.
From these results, it can be seen that, although Ba and Na are in very small amounts, both iron loss characteristics and film adhesion can be achieved by adding them within appropriate ranges.

<実験2>
次に、上記のような結果が得られた原因を調査するため、仕上焼鈍によって形成されたフォルステライト被膜と地鉄との界面形状、フォルステライト被膜中へのTi侵入量およびフォルステライト被膜の酸素目付量を測定した。なお、上記酸素目付量は、フォルステライト被膜形成後、即ち、上記実験1で得られた鋼板の表面から絶縁被膜を除去した鋼板全体(全厚)の酸素量を化学分析で求め、単位面積あたりの目付量に換算した値である。
ここで、上記フォルステライト被膜と地鉄との界面形状は、光学顕微鏡を用いて倍率1000倍で観察した。
また、フォルステライト被膜中へのTi侵入量については、フォルステライト被膜形成後、即ち、上記実験1で得られた鋼板の表面から絶縁被膜を除去した表面を蛍光X線分析し、得られたTi強度ITiをMg強度IMgで規格化した(ITi/IMg)を求めた。
<Experiment 2>
Next, in order to investigate the cause of the above results, the interface shape between the forsterite film and the ground iron formed by finish annealing, the amount of Ti intrusion into the forsterite film, and the oxygen of the forsterite film The basis weight was measured. The amount of oxygen per unit area was determined by chemical analysis after the formation of the forsterite film, that is, the oxygen content of the entire steel sheet (total thickness) from which the insulating film had been removed from the surface of the steel sheet obtained in Experiment 1 above. It is the value converted into the basis weight of.
Here, the interface shape between the forsterite film and the ground iron was observed with an optical microscope at a magnification of 1000 times.
Further, regarding the amount of Ti penetration into the forsterite film, after the formation of the forsterite film, that is, the surface obtained by removing the insulating film from the surface of the steel plate obtained in Experiment 1 above, the X-ray fluorescence analysis was performed. The strength I Ti was normalized with the Mg strength I Mg (I Ti / I Mg ).

図2に、フォルステライト被膜の断面写真と、Ti侵入量および酸素目付量の調査結果を示した。
図2から、NaもBaも含有していない条件(a)では、被膜と地鉄との界面が平坦で、Tiの侵入量(ITi/IMg)も低いことがわかる。
これに対して、Baのみを含有する条件(b)では、被膜と地鉄との界面の凹凸が激しくなっているが、Tiの侵入量(ITi/IMg)については無添加の条件(a)より若干高まるものの大きな変化はない。酸素目付量については、Baを含有することによって若干低下する傾向にある。
また、Naのみを添加した条件(c)では、被膜と地鉄との界面の凹凸は、条件(a)と大きな違いはないが、Tiの侵入量(ITi/IMg)が著しく高くなっている。酸素目付量は、他の2条件と大きな変化はないが、若干増大する傾向にある。
また、BaとNaの両方を含有する条件(d)では、被膜と地鉄との界面の凹凸が大きくなり、Tiの侵入量(ITi/IMg)も高くなる。
これらの結果から、Baを含有すると、被膜と地鉄との界面の凹凸が大きくなり、鉄損が増大し、密着性は向上する傾向にあり、一方、Naを添加すると、Tiの侵入量(ITi/IMg)が増加して鉄損特性が向上し、密着性が改善する傾向にある、したがって、鉄損を改善するには、被膜の凹凸を平坦にすること、密着性を改善するには、被膜と地鉄との界面の凹凸と被膜中のTi量を増やすことが有効であると示唆される。
FIG. 2 shows a cross-sectional photograph of the forsterite film, and the results of investigating the amount of Ti penetration and the amount of oxygen per unit area.
FIG. 2 shows that under the condition (a) in which neither Na nor Ba is contained, the interface between the coating and the ground iron is flat, and the amount of intrusion of Ti (I Ti / I Mg ) is low.
On the other hand, in the condition (b) containing only Ba, the unevenness at the interface between the coating and the ground iron is intense, but the intrusion amount of Ti (I Ti / I Mg ) a) Although it is slightly higher, there is no significant change. The oxygen weight per unit area tends to be slightly reduced by containing Ba.
In addition, in the condition (c) in which only Na is added, the unevenness at the interface between the coating and the ground iron is not significantly different from the condition (a), but the intrusion amount of Ti (I Ti / I Mg ) is remarkably high. ing. The amount of oxygen is not greatly different from the other two conditions, but tends to increase slightly.
Further, in the condition (d) containing both Ba and Na, the unevenness at the interface between the coating and the ground iron becomes large, and the amount of Ti penetration (I Ti / I Mg ) also becomes high.
From these results, when Ba is contained, unevenness at the interface between the coating and the ground iron increases, iron loss increases, and the adhesion tends to improve. On the other hand, when Na is added, the amount of intrusion of Ti ( I Ti / I Mg ) increases to improve the iron loss characteristics and the adhesion tends to improve. Therefore, to improve the iron loss, the unevenness of the coating is made flat and the adhesion is improved. It is suggested that it is effective to increase the unevenness of the interface between the coating and the ground iron and the amount of Ti in the coating.

<実験3>
次に、上記<実験2>の写真観察では、フォルステライト被膜と地鉄との界面の凹凸を定性的にしか評価できないため、図3に示した方法で、界面の凹凸を数値化した。具体的には、上記1000倍の光学顕微鏡の断面写真から、鋼板表面に平行な長さL(=50μm)の線分における被膜−地鉄界面の長さLを画像処理装置で測定し、これをLで規格化した値(L/L)を界面の複雑度Lと定義して数値化した。なお、図2の(a)や(d)の写真の被膜上部から遊離した粒子については、この測定においては考慮しなかった。
<Experiment 3>
Next, in the photographic observation of <Experiment 2>, since the unevenness at the interface between the forsterite film and the ground iron can be evaluated only qualitatively, the unevenness at the interface was quantified by the method shown in FIG. Specifically, from the cross-sectional photograph of the above-mentioned 1000 times optical microscope, the length L of the coating-base metal interface in the line segment of length L 0 (= 50 μm) parallel to the steel sheet surface is measured with an image processing device, The value (L / L 0 ) normalized by L 0 was defined as the interface complexity L c and quantified. In this measurement, the particles released from the upper part of the coating in the photographs (a) and (d) of FIG. 2 were not considered.

図4に、BaおよびNaの含有量と、界面の複雑度L(=L/L)およびTi侵入量(ITi/IMg)との関係を示した。図4(a)から、Baを含有することによって、界面の複雑度Lは大きくなるが、Na添加の影響は小さいこと、また、図4(b)から、Naを添加することによってTi濃化量(ITi/IMg)は増大するが、Na添加の影響は小さいことがわかる。
以上の結果から、焼鈍分離剤中に極微量のNaの添加と、MgO中に微量に存在するBaにより、鉄損特性と被膜密着性を両立することができることがわかった。
FIG. 4 shows the relationship between the Ba and Na contents, the interface complexity L c (= L / L 0 ), and the Ti penetration amount (I Ti / I Mg ). Figure 4 (a), by containing Ba, but the greater complexity of L c of the interface, the influence of Na added is small, also, from FIG. 4 (b), Ti concentrated by the addition of Na It can be seen that the amount of conversion (I Ti / I Mg ) increases, but the influence of Na addition is small.
From the above results, it was found that both iron loss characteristics and film adhesion can be achieved by adding an extremely small amount of Na in the annealing separator and Ba existing in a trace amount in MgO.

上記理由について、本発明者らは以下のように考えている。
まず、Ba(Ba2+イオン)が、被膜密着性に及ぼす影響について説明する。
脱炭焼鈍によって鋼板表層に形成されるサブスケールは、主に非晶質のSiO粒子が鋼板表層中に分散した形態をとっている。このSiOは、密度が約2.2g/cmで、地鉄の約7.7g/cmと比べて低い。そのため、脱炭焼鈍によって低密度のSiOが形成されると、鋼板表層部は膨張する。脱炭焼鈍後の鋼板は、その後、焼鈍分離剤を鋼板表面に塗布して仕上焼鈍を施されるが、この仕上焼鈍中に、上記SiO粒子は地鉄表層側に移動し、濃化する。その結果、地鉄表層から、膨張の原因となっていた低密度の粒子がなくなり、それを緩和するため、フォルステライト被膜に圧縮応力が働き、被膜と地鉄との界面に凹凸が形成される。
The present inventors consider the following reason as follows.
First, the effect of Ba (Ba 2+ ions) on film adhesion will be described.
The subscale formed on the steel sheet surface layer by decarburization annealing mainly takes a form in which amorphous SiO 2 particles are dispersed in the steel sheet surface layer. The SiO 2 is a density of about 2.2 g / cm 3, less than about 7.7 g / cm 3 of the base steel. Therefore, when low density SiO 2 is formed by decarburization annealing, the steel sheet surface layer portion expands. The steel plate after decarburization annealing is then subjected to finish annealing by applying an annealing separator to the surface of the steel plate, and during this finish annealing, the SiO 2 particles move to the surface layer side and concentrate. . As a result, the low-density particles that caused the expansion disappeared from the surface layer of the ground iron, and in order to relieve it, compressive stress acts on the forsterite film, and irregularities are formed at the interface between the film and the ground iron. .

ここで、Ba(Ba2+イオン)は、非晶質SiOのSi−O間の結合を切断することにより、SiOの可動度を高めて表層濃化(地鉄表面への濃化)を促進する働きがある。Baが無添加のときには、SiOの表層濃化が緩やかに進行するため、Feの拡散も同時に起こり、表面応力が発生しにくくなる結果、界面の凹凸は小さくなるが、Baを添加すると、SiOが速やかに表層濃化するため、圧縮応力が発生して、フォルステライト被膜と地鉄との界面の変形が起こり、凹凸が形成されやすくなる。被膜−地鉄界面に凹凸が形成された状態では、被膜が地鉄にめり込んでいるため、曲げ応力を加えたときでも密着性が確保される。 Here, Ba (Ba 2+ ions) increases the mobility of SiO 2 by cutting the bond between amorphous SiO 2 and Si—O, thereby concentrating the surface layer (concentration on the surface of the steel). There is work to promote. When Ba is not added, the surface layer concentration of SiO 2 proceeds slowly, so that diffusion of Fe occurs simultaneously and surface stress is less likely to occur. As a result, the unevenness of the interface is reduced, but when Ba is added, SiO 2 Since the surface layer 2 is rapidly concentrated, compressive stress is generated, and the interface between the forsterite film and the ground iron is deformed, so that irregularities are easily formed. In the state in which irregularities are formed at the coating-base metal interface, the coating is indented into the base metal, so that adhesion is ensured even when bending stress is applied.

ただし、Baには、焼鈍分離剤の主剤をなすMgO中に含まれるMg(Mg2+イオン)やO(O2−イオン)の仕上焼鈍中における体拡散を抑える働きもある。そのため、Baが多量に含有されていると、被膜の形成が抑制されて被膜形成不良を起こし、密着性も低下する。そのため、被膜密着性に対しては、Ba含有量には適正範囲がある。 However, Ba also has a function of suppressing body diffusion during finish annealing of Mg (Mg 2+ ions) and O (O 2− ions) contained in MgO which is the main component of the annealing separator. Therefore, when Ba is contained in a large amount, the formation of the film is suppressed, the film formation is poor, and the adhesion is also lowered. Therefore, there is an appropriate range for the Ba content with respect to film adhesion.

上記のBaの効果は、Baが焼鈍分離剤の主剤であるMgOや添加剤中に含まれているときに特に効果的に発現する。というのは、Ba化合物を、主剤であるMgOや添加剤と混合してスラリー化するときに添加すると、スラリー内でBa化合物が凝集して不均一に分布するため局所的にしかBaの添加効果が得られない。これに対して、Baが主剤であるMgOや添加剤中に不純物のように均一な状態で含まれている場合には、上記のような不均一分布となり難いため、極微量であってもBaの添加効果が均一に発現させることができるからである。   The effect of the Ba is particularly effective when Ba is contained in MgO, which is the main component of the annealing separator, and in the additive. This is because, when a Ba compound is added to a slurry by mixing with MgO, which is a main ingredient, and an additive, the Ba compound aggregates in the slurry and is unevenly distributed, so the effect of adding Ba only locally. Cannot be obtained. On the other hand, when Ba is contained in MgO as a main agent or an additive in a uniform state like impurities, it is difficult to achieve the non-uniform distribution as described above. This is because the effect of adding can be uniformly expressed.

Baの鉄損に対する影響についても、上記と同様に説明することができる。
つまり、Baの含有量を増やすと、被膜−地鉄界面の凹凸が増大する。このような状態で磁化させると、界面の凹凸部で残留磁化が発生し、ヒステリシス損が増大する。したがって、Baの過度な含有は、鉄損を劣化させるため、Ba添加量には上限が存在する。
The influence of Ba on iron loss can be explained in the same manner as described above.
That is, when the content of Ba is increased, the unevenness at the coating film-iron interface increases. When magnetized in such a state, residual magnetization is generated at the uneven portion of the interface, and hysteresis loss increases. Therefore, excessive inclusion of Ba degrades iron loss, so there is an upper limit to the amount of Ba added.

次に、Na(Naイオン)の被膜密着性改善効果について説明する。
Naは、他の金属イオンと容易に結合して、低融点化合物を形成する。焼鈍分離剤中には、Mg2+やTi4+などの金属イオンがイオン結合して化合物として存在しているが、Naの添加によりMg2+,Ti4+イオンの一部が溶融し、液相拡散によって鋼板表面まで速やかに到達して、フォルステライト被膜を形成する。そのため、Naを添加すると、フォルステライト被膜中にTiが侵入しやすくなり、被膜中のTi濃度が高まる。このTiには、フォルステライト被膜の粒界に濃化して被膜強度を高める働きがあるため、被膜密着性が高まる。
Next, the coating adhesion improving effect of Na (Na + ions) will be described.
Na easily binds to other metal ions to form a low melting point compound. In the annealing separator, metal ions such as Mg 2+ and Ti 4+ are present as a compound by ionic bonding, but by adding Na, a part of the Mg 2+ and Ti 4+ ions are melted by liquid phase diffusion. A forsterite film is formed by quickly reaching the steel plate surface. Therefore, when Na is added, Ti easily penetrates into the forsterite film, and the Ti concentration in the film increases. Since this Ti has a function of increasing the film strength by concentrating on the grain boundary of the forsterite film, the film adhesion is enhanced.

Naの磁気特性に対する影響については、上記のように、Naの添加により被膜中へのTiの侵入が促進され、Ti濃度が高まるが、Tiは、被膜強度を高め、引張張力付与効果を高める効果があるため、渦電流損が低下して鉄損が改善される。ただし、Naを添加し過ぎると、Tiの侵入が促進され過ぎ、地鉄にまでTiが侵入するため、却って鉄損の増大を招く。そのため、Na添加量にも適正範囲が存在する。   Regarding the influence on the magnetic properties of Na, as described above, the penetration of Ti into the coating is promoted by the addition of Na, and the Ti concentration increases. However, Ti increases the strength of the coating and enhances the effect of imparting tensile tension. Therefore, eddy current loss is reduced and iron loss is improved. However, when Na is added too much, the penetration of Ti is promoted too much, and Ti penetrates into the ground iron, leading to an increase in iron loss. Therefore, there is an appropriate range for the amount of Na added.

前述したように、Baの効果は主剤であるMgO中や添加剤中に含まれているときに最も効果的に発現する。しかし、Naの場合、スラリー化するときにNa化合物として添加しても所望の効果を発現させることができる。その理由は十分に明確になっていないが、Naの添加量はBaのように微量ではないことと、Na化合物は低融点であるため、仕上焼鈍中に溶融し、拡散して分布が均一化するためであると考えられる。   As described above, the effect of Ba is most effectively manifested when it is contained in MgO, which is the main agent, or in the additive. However, in the case of Na, a desired effect can be exhibited even if it is added as a Na compound when slurrying. The reason for this is not clear enough, but the amount of Na added is not as small as Ba, and the Na compound has a low melting point, so it melts and diffuses during finish annealing to make the distribution uniform. It is thought that it is to do.

次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.002〜0.10mass%
Cは、0.002mass%未満であると、Cによる粒界強化効果が失われ、スラブに割れが生じるなどして製造に支障を来たすようになる。一方、0.10mass%を超えると、製造工程の脱炭焼鈍において、磁気時効の起こらない0.005mass%以下に低減することが難しくなる。よって、Cは0.002〜0.10mass%の範囲とする。好ましくは0.010〜0.080mass%の範囲である。
Next, the component composition of the steel material (slab) used for manufacture of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.002-0.10 mass%
If C is less than 0.002 mass%, the grain boundary strengthening effect due to C is lost, and cracks occur in the slab, which hinders production. On the other hand, when it exceeds 0.10 mass%, it becomes difficult to reduce to 0.005 mass% or less at which no magnetic aging occurs in decarburization annealing in the manufacturing process. Therefore, C is in the range of 0.002 to 0.10 mass%. Preferably it is the range of 0.010-0.080 mass%.

Si:2.0〜8.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、8.0mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.0〜8.0mass%の範囲とする。好ましくは2.5〜4.5mass%の範囲である。
Si: 2.0 to 8.0 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.0 mass%, it is not sufficient. On the other hand, if it exceeds 8.0 mass%, the workability is lowered and it is difficult to roll and manufacture. Therefore, Si is set to a range of 2.0 to 8.0 mass%. Preferably it is the range of 2.5-4.5 mass%.

Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.005mass%未満では十分ではなく、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とする。好ましくは0.02〜0.20mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.005 mass%, it is not sufficient. On the other hand, if it exceeds 1.0 mass%, the magnetic flux density of the product plate is lowered. Therefore, Mn is set to a range of 0.005 to 1.0 mass%. Preferably it is the range of 0.02-0.20 mass%.

上記C,SiおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とに分けられる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNは、それぞれAl:0.010〜0.050mass%、N:0.003〜0.020mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用する場合には、前述した量のMnと、S:0.002〜0.030mass%およびSe:0.003〜0.030mass%のうちの1種または2種を含有させるのが好ましい。それぞれの添加量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上記上限値を超えると、インヒビター形成成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらす。なお、AlN系とMnS・MnSe系のインヒビターは併用して用いてもよい。
Components other than C, Si and Mn are classified into cases where an inhibitor is used and cases where no inhibitor is used in order to cause secondary recrystallization.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are Al: 0.010 to 0.050 mass%, N: 0.003, respectively. It is preferable to make it contain in the range of -0.020 mass%. In the case of using an MnS / MnSe-based inhibitor, one or two of the above-mentioned amounts of Mn and S: 0.002-0.030 mass% and Se: 0.003-0.030 mass%. It is preferable to contain. If the amount of each additive is less than the above lower limit value, the inhibitor effect cannot be sufficiently obtained.On the other hand, if the amount exceeds the above upper limit value, the inhibitor-forming component remains undissolved during slab heating, resulting in a decrease in magnetic properties. Bring. AlN and MnS / MnSe inhibitors may be used in combination.

一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0050mass%未満に低減した鋼素材を用いるのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor forming components, is reduced as much as possible, Al: less than 0.01 mass%, N : It is preferable to use a steel material reduced to less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: less than 0.0050 mass%.

なお、本発明の方向性電磁鋼板は、上記成分以外の残部はFeおよび不可避的不純物である。ただし、磁気特性の改善を目的として、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn;0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTi:0.0005〜0.010mass%のうちから選ばれる1種または2種以上を適宜添加してもよい。   In the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, for the purpose of improving magnetic properties, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0 .50 mass%, Sb: 0.005-0.50 mass%, Sn; 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass%, Nb: 0.0010-0.0100 mass%, V: 0.001-0.010 mass%, and Ti: 0.0005-0. One or more selected from 010 mass% may be added as appropriate.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、常法の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは常法に従い、例えば、インヒビター成分を含有する場合には、1400℃程度の温度に再加熱し、一方、インヒビター成分を含まない場合は、1300℃以下の温度に再加熱した後、従来公知の条件で熱間圧延に供する。なお、インヒビター成分を含有しない場合には、連続鋳造後、再加熱することなく直ちに熱間圧延に供してもよい。また、薄鋳片の場合には、熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
A steel material (slab) may be manufactured by a conventional ingot-bundling rolling method or a continuous casting method after melting the steel having the above-described component composition by a conventional refining process, or directly. A thin slab having a thickness of 100 mm or less may be manufactured by a casting method. According to a conventional method, for example, when the inhibitor component is contained, the slab is reheated to a temperature of about 1400 ° C. On the other hand, when the inhibitor component is not contained, after reheating to a temperature of 1300 ° C or lower, It is subjected to hot rolling under known conditions. In addition, when not containing an inhibitor component, you may use for a hot rolling immediately after continuous casting, without reheating. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the subsequent process may be performed as it is.

次いで、上記熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶の発達が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり整粒の一次再結晶組織を得ることが難しくなる。   Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. The temperature of this hot rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of a sized particle, and the development of secondary recrystallization will be inhibited. On the other hand, if the temperature exceeds 1150 ° C., the grain size after hot-rolled sheet annealing becomes too coarse, and it becomes difficult to obtain a primary recrystallized structure of sized particles.

熱間圧延後あるいは上記熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、一次再結晶組織におけるGoss核が減少して製品板の磁気特性が低下する傾向がある。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなる。   The hot-rolled sheet after hot rolling or after the hot-rolled sheet annealing is made into a cold-rolled sheet having a final thickness by one or more cold rollings or two or more cold rollings sandwiching the intermediate annealing. The temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. When the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing become fine, the Goss nuclei in the primary recrystallized structure are reduced, and the magnetic properties of the product plate tend to be lowered. On the other hand, when it exceeds 1200 ° C., the crystal grains become too coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of grain size.

また、最終板厚とする冷間圧延(最終冷間圧延)は、冷間圧延時の鋼板温度を100〜300℃の温度に昇温して行う温間圧延とすることや、冷間圧延の途中で100〜300℃の温度で時効処理を1回または複数回施すことが、一次再結晶集合組織を改善し、磁気特性を向上させるのに有効である。   Moreover, the cold rolling (final cold rolling) which makes the final plate thickness is a warm rolling performed by raising the steel plate temperature during cold rolling to a temperature of 100 to 300 ° C, It is effective to improve the primary recrystallization texture and improve the magnetic properties by performing aging treatment one or more times at a temperature of 100 to 300 ° C. during the course.

最終板厚とした冷延板は、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。この焼鈍温度は700〜900℃、保持時間は30〜300秒の範囲とするのが好ましい。焼鈍温度が700℃未満、もしくは、保持時間が30秒未満では、脱炭が不十分となったり、一次再結晶粒径が小さ過ぎたりして磁気特性が劣化する。一方、焼鈍温度が900℃を超えたり、保持時間が300秒を超えたりすると、一次再結晶粒径が大きくなり過ぎて磁気特性が劣化する。   The cold-rolled sheet having the final thickness is then subjected to decarburization annealing that also serves as primary recrystallization annealing. The annealing temperature is preferably 700 to 900 ° C., and the holding time is preferably 30 to 300 seconds. When the annealing temperature is less than 700 ° C. or the holding time is less than 30 seconds, the decarburization becomes insufficient, the primary recrystallized grain size is too small, and the magnetic properties are deteriorated. On the other hand, if the annealing temperature exceeds 900 ° C. or the holding time exceeds 300 seconds, the primary recrystallized grain size becomes too large and the magnetic properties deteriorate.

上記脱炭焼鈍においては、鋼板の表層にサブスケールを形成させるが、そのサブスケールの酸素目付量は、両面で0.7〜1.1g/mの低い範囲に抑えることが必要である。表層に形成されるサブスケール中のSiOは低密度であるため、鋼板表層と中心層の間に応力を付与する効果を有するが、酸素目付量が多いと、仕上焼鈍中における地鉄からのSiOの消失により、フォルステライト被膜に圧縮応力が加わり、SiO粒子が抜けた空隙部に被膜が入り込み、被膜と地鉄との界面の凹凸が激しくなるため、鉄損が劣化する。逆に、少な過ぎると、フォルステライト被膜の形成量が不足して、被膜の密着性が低下する。 In the decarburization annealing, a subscale is formed on the surface layer of the steel sheet, and the oxygen basis weight of the subscale needs to be suppressed to a low range of 0.7 to 1.1 g / m 2 on both sides. Since SiO 2 in the subscale formed on the surface layer has a low density, it has the effect of imparting stress between the steel sheet surface layer and the center layer. However, if the amount of oxygen is large, Due to the disappearance of SiO 2 , compressive stress is applied to the forsterite coating, the coating enters the voids from which the SiO 2 particles are removed, and the unevenness at the interface between the coating and the ground iron becomes severe, resulting in deterioration of iron loss. On the other hand, if the amount is too small, the amount of forsterite film formed is insufficient, and the adhesion of the film decreases.

上記脱炭焼鈍した鋼板は、その後、鋼板表面に焼鈍分離剤を塗布する。この焼鈍分離剤は、主剤として少なくとも50mass%以上のMgOを含み、さらに、添加剤として、焼鈍分離剤全体に対して、Ti化合物をTi換算で1〜7mass%、Na化合物をNa換算で20〜40massppm含有し、磁気特性や被膜特性を改善するため、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%の範囲で含有し、さらに、Baを主剤および/または添加剤中に、焼鈍分離剤全体に対して5〜25massppmの範囲で含有することが必要である。   Thereafter, the decarburized and annealed steel sheet is applied with an annealing separator on the steel sheet surface. This annealing separator contains at least 50 mass% MgO as a main agent, and further, as an additive, the Ti compound is 1 to 7 mass% in terms of Ti and the Na compound is 20 to 20 in terms of Na with respect to the entire annealing separator. Containing 40 massppm to improve magnetic properties and coating properties, Ca, Sr, Mn, Mo, Fe, Cu, Zn, Ni, Al, K, Li, Sb oxides, hydroxides, sulfates, carbonates 1 or 2 or more selected from nitrates, borates, chlorides and sulfides in a range of 0.1 to 5% by mass in terms of the metal, and further contains Ba as the main agent and / or In an additive, it is necessary to contain in the range of 5-25 massppm with respect to the whole annealing separation agent.

ここで、上記Ti化合物の種類は特に限定されず、酸化物や塩化物、硫酸塩、硝酸塩、チタン酸塩、水酸化物などを用いることができる。添加量が上記下限値より少ないと、フォルステライト被膜中に含有されるべきTi量が少なくなって密着性が低下し、逆に、上記上限値より多いと、鋼中にまで浸Tiして鉄損特性が低下する。   Here, the kind of Ti compound is not particularly limited, and oxides, chlorides, sulfates, nitrates, titanates, hydroxides, and the like can be used. If the addition amount is less than the above lower limit value, the amount of Ti to be contained in the forsterite film is reduced and the adhesiveness is lowered. Loss characteristics are reduced.

また、Na化合物も、種類は特に限定されず、酸化物や塩化物、硫酸塩、硝酸塩、水酸化物などを用いることができる。添加量が上記上限値より多いと、鋼中に浸Tiが発生し、また、上記下限値より低いと、被膜形成が不十分となり、鉄損特性や被膜密着性が低下する。   The kind of Na compound is not particularly limited, and oxides, chlorides, sulfates, nitrates, hydroxides, and the like can be used. When the addition amount is larger than the above upper limit value, immersion Ti is generated in the steel, and when it is lower than the lower limit value, film formation becomes insufficient, and iron loss characteristics and film adhesion are deteriorated.

また、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物の添加量は、該金属換算の合計で0.1mass%よりも少ないと、添加効果が十分ではなく、一方、5mass%よりも多いと、添加効果が強すぎ、却って磁気特性や被膜が劣化する。   In addition, oxides, hydroxides, sulfates, carbonates, nitrates, borates, chlorides and sulfides of Ca, Sr, Mn, Mo, Fe, Cu, Zn, Ni, Al, K, Li, and Sb When the total amount in terms of metal is less than 0.1 mass%, the effect of addition is not sufficient. On the other hand, when the amount is more than 5 mass%, the effect of addition is too strong, and the magnetic properties and the film are deteriorated. .

また、Baは、フォルステライト被膜−地鉄界面に適度の凹凸を形成させるために必要であり、上記上限値より多いと、界面の凹凸が激しくなり、鉄損特性が低下する。逆に、上記下限値より少ないと、界面の凹凸が少な過ぎて、被膜密着性が低下する。   Further, Ba is necessary for forming appropriate irregularities at the forsterite film-steel interface, and if it exceeds the above upper limit, the irregularities at the interface become severe and the iron loss characteristics deteriorate. On the other hand, when the amount is less than the lower limit, there are too few irregularities on the interface, and the film adhesion is lowered.

ここで、上記Baは、主剤であるMgO中および/または添加剤中に含有させることが重要である。含有させる方法としては、例えば、MgO中に含有させる場合には、製造原料であるMg(OH)の段階でBa化合物を添加し、その後、焼成する方法がある。なお、添加剤中に含ませる場合も同様の方法で含有させることができる。 Here, it is important to contain the Ba in the main agent MgO and / or in the additive. As a method of inclusion, for example, in the case of inclusion in MgO, there is a method in which a Ba compound is added at the stage of Mg (OH) 2 which is a production raw material and then fired. In addition, also when making it contain in an additive, it can be made to contain by the same method.

上記焼鈍分離剤を塗布、乾燥した鋼板は、その後、コイルに巻き取った状態で仕上焼鈍を施し、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させる。上記仕上焼鈍は、二次再結晶を発現させるためには800℃以上の温度に昇温することが、また、二次再結晶を完了させるためには1100℃の温度まで昇温することが好ましい。また、フォルステライト被膜を形成させたり、純化処理を施したりするためには、上記二次再結晶焼鈍に引き続いて1200℃程度の温度まで昇温するのが好ましい。   The steel sheet coated and dried with the above annealing separator is then subjected to finish annealing in a state of being wound around a coil to develop a secondary recrystallized structure highly accumulated in the Goss orientation and to form a forsterite film. . In the finish annealing, it is preferable to raise the temperature to 800 ° C. or higher in order to develop secondary recrystallization, and it is preferable to raise the temperature to 1100 ° C. in order to complete the secondary recrystallization. . In order to form a forsterite film or to perform a purification treatment, it is preferable to raise the temperature to about 1200 ° C. following the secondary recrystallization annealing.

上記仕上焼鈍を施した鋼板は、その後、水洗やブラッシング、酸洗等で、鋼板表面に付着した未反応の焼鈍分離剤を除去した後、平坦化焼鈍を施して、最終製品である方向性電磁鋼板とする。   The steel sheet subjected to the above finish annealing is then subjected to planarization annealing after removing unreacted annealing separator adhering to the steel sheet surface by washing, brushing, pickling, etc. A steel plate is used.

上記のようにして製造した本発明の方向性電磁鋼板は、下地被膜(フォルステライト被膜)の酸素目付量が1.8〜2.8g/m、鋼板表面を蛍光X線分析したときのMgに対するTiの強度比(ITi/IMg)が0.03〜0.12、フォルステライト被膜と地鉄との界面の複雑度Lが1.1〜1.9の範囲において鉄損特性と被膜特性とが優れるものとなる。
酸素目付量が1.8g/m未満では、フォルステライト被膜の形成量が少な過ぎ、外部応力により被膜が破壊され易くなって密着性が低下し、一方、2.8g/mより多いと、仕上焼鈍中に形成されるフォルステライトが過剰となるため、フォルステライト被膜と地鉄との界面の凹凸が十分に形成されず、密着性が保てなくなる。
また、(ITi/IMg)が0.03未満では、フォルステライト被膜中へのTiの侵入量が不足しているため、被膜密着性が劣り、一方、0.12を超えると、Tiが浸入し過ぎて、鋼中にも浸Tiして、鉄損特性が低下する。
さらに、界面の複雑度Lは、1.1未満では十分な被膜密着性が得られず、一方、1.9を超えると、界面の凹凸が激しくなり過ぎて、鉄損特性が低下する。
The grain-oriented electrical steel sheet of the present invention produced as described above has an oxygen basis weight of 1.8 to 2.8 g / m 2 for the base coating (forsterite coating), and Mg when the steel plate surface is subjected to fluorescent X-ray analysis. When the strength ratio of Ti to I (I Ti / I Mg ) is 0.03 to 0.12, and the complexity L c of the interface between the forsterite coating and the ground iron is 1.1 to 1.9, The film properties are excellent.
If the oxygen basis weight is less than 1.8 g / m 2 , the amount of forsterite coating formed is too small, and the coating tends to be broken by external stress, resulting in a decrease in adhesion, while if it exceeds 2.8 g / m 2. Since the forsterite formed during the finish annealing becomes excessive, unevenness at the interface between the forsterite coating and the ground iron is not sufficiently formed, and the adhesion cannot be maintained.
Further, when (I Ti / I Mg ) is less than 0.03, the amount of Ti entering the forsterite film is insufficient, and thus the film adhesion is inferior. It penetrates too much and also enters Ti in the steel, so that the iron loss characteristics deteriorate.
Furthermore, if the interface complexity Lc is less than 1.1, sufficient film adhesion cannot be obtained. On the other hand, if it exceeds 1.9, the unevenness of the interface becomes excessive, and the iron loss characteristics deteriorate.

なお、鉄損をより低減するためには、磁区細分化処理を施すことが有効である。処理方法としては、一般的に実施されている、最終製品板にレーザや電子ビーム、プラズマを照射して線状または点状の熱歪や衝撃歪を導入したり、ローラ等で加圧して線状または点状の溝や歪を付与したりする方法、最終板厚に冷間圧延した以降の中間工程で、鋼板表面にエッチング加工を施して溝等を形成する方法等を用いることができる。   In order to further reduce the iron loss, it is effective to perform a magnetic domain refinement process. As a processing method, generally, a final product plate is irradiated with a laser, an electron beam, or plasma to introduce linear or dotted thermal strain or impact strain, or is pressed by a roller or the like to perform linear processing. Or a method of imparting a groove or strain in the form of dots or a method of forming grooves or the like by etching the steel plate surface in an intermediate step after cold rolling to the final plate thickness.

C:0.070mass%、Si:3.43mass%、Mn:0.08mass%、Al:0.007mass%、N:0.003mass%およびS:0.002mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを連続鋳造法で製造し、1250℃の温度に再加熱した後、熱間圧延して板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延して1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚0.23mmの冷延板とし、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。
ここで、上記脱炭焼鈍は、50vol%H−50vol%N、露点50〜65℃の湿潤雰囲気下で、840℃の温度に100秒間保持し、露点を変えて酸素目付量を表1に示したように変化させた。なお、上記酸素目付量は、脱炭焼鈍後の鋼板全体(全厚)の酸素量を化学分析して求め、単位面積当たりの目付量に換算して得た値である。
次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して、TiOをTi換算で2mass%添加し、硫酸Naの添加量およびTiO中に含まれるBa濃度を種々に変化させることにより、焼鈍分離剤全体に対するNaおよびBaの含有量を表1に示したように種々に変化させた焼鈍分離剤をスラリー状にして塗布、乾燥した後、二次再結晶焼鈍させてから、1200℃×10時間の純化処理を行う仕上焼鈍を施し、方向性電磁鋼板とした。なお、上記仕上焼鈍の雰囲気は、純化処理における1200℃保定時はH、昇温時(二次再結晶焼鈍時を含む)および降温時はNとした。
C: 0.070 mass%, Si: 3.43 mass%, Mn: 0.08 mass%, Al: 0.007 mass%, N: 0.003 mass%, and S: 0.002 mass%, the balance being Fe and inevitable A steel slab having a component composition consisting of mechanical impurities is manufactured by a continuous casting method, reheated to a temperature of 1250 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm. After hot-rolled sheet annealing, first cold rolled to an intermediate sheet thickness of 1.8 mm, subjected to intermediate annealing at 1100 ° C. × 20 seconds, then secondary cold rolled to a final sheet thickness of 0.23 mm The steel sheet was then subjected to decarburization annealing that also served as primary recrystallization annealing.
Here, the decarburization annealing is performed in 50 vol% H 2 -50 vol% N 2 , in a humid atmosphere with a dew point of 50 to 65 ° C., maintained at a temperature of 840 ° C. for 100 seconds, and the dew point is changed to show the oxygen basis weight. It was changed as shown in. The oxygen basis weight is a value obtained by chemically analyzing the oxygen amount of the entire steel sheet (total thickness) after decarburization annealing and converting it to a basis weight per unit area.
Next, on the surface of the steel sheet after the above decarburization annealing, MgO is the main agent, and 2 mass% of TiO 2 is added as an additive to the entire annealing separator in terms of Ti, and the amount of Na sulfate added and included in TiO 2 By changing the Ba concentration to be varied, the annealing separator having various contents of Na and Ba with respect to the whole annealing separator as shown in Table 1 was applied in slurry form, dried, After the next recrystallization annealing, finish annealing was performed to perform a purification treatment at 1200 ° C. for 10 hours to obtain a grain-oriented electrical steel sheet. The atmosphere of the finish annealing was H 2 when maintained at 1200 ° C. in the purification treatment, and N 2 when the temperature was raised (including the time of secondary recrystallization annealing) and when the temperature was lowered.

Figure 2016145419
Figure 2016145419

斯くして得た各種方向性電磁鋼板について、被膜特性(酸素目付量、Ti侵入量(ITi/IMg)、界面複雑度L)、磁気特性(鉄損W17/50)および被膜密着性(曲げ剥離径)を調査し、その結果を表1に併記した。なお、フォルステライト被膜の酸素目付量は、仕上焼鈍後の鋼板全体(全厚)の酸素量を化学分析して求め、単位面積当たりの目付量に換算することにより測定した。
同表から、本発明を適用することで、被膜密着性に優れ、かつ、磁気特性にも優れる方向性電磁鋼板を製造し得ることがわかる。
With respect to the various grain- oriented electrical steel sheets thus obtained, the coating properties (oxygen basis weight, Ti penetration amount (I Ti / I Mg ), interface complexity L c ), magnetic properties (iron loss W 17/50 ), and coating adhesion The properties (bending peel diameter) were investigated, and the results are also shown in Table 1. The oxygen basis weight of the forsterite film was measured by chemically analyzing the oxygen amount of the entire steel sheet (total thickness) after finish annealing and converting it to the basis weight per unit area.
From the table, it can be seen that by applying the present invention, a grain-oriented electrical steel sheet having excellent film adhesion and excellent magnetic properties can be produced.

表2に記載の各種成分組成を有し、残部がFeおよび不可避的不純物からなるNo.1〜19の鋼スラブを連続鋳造法で製造し、1380℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板とし、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。なお、上記脱炭焼鈍は、50vol%H−50vol%N、露点55℃の湿潤雰囲気下で、840℃の温度に100秒間保持した。
次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主剤とし、添加剤として、焼鈍分離剤全体に対して、TiOをTi換算で2mass%、水酸化カルシウムをCa換算で3mass%含有し、NaおよびBaを表2に示したように種々の濃度で含有する焼鈍分離剤をスラリー状にして鋼板表面に塗布した。なお、上記焼鈍分離剤中のNaの濃度は、硫酸Naの添加量を変えることで、また、Ba濃度は、水酸化カルシウム中に不純物として含まれるBa濃度を種々に変化させることで調製した。
次いで、上記焼鈍分離剤を塗布した鋼板は、二次再結晶させてから、1220℃×4時間の純化処理を行う仕上焼鈍を施し、方向性電磁鋼板とした。なお、上記仕上焼鈍の雰囲気は、純化処理する1220℃保定時はH、昇温時(二次再結晶焼鈍時を含む)および降温時はArとした。
No. 1 having various component compositions shown in Table 2 with the balance being Fe and inevitable impurities. 1 to 19 steel slabs are manufactured by a continuous casting method, reheated to a temperature of 1380 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 2.0 mm, and annealed at 1030 ° C. for 10 seconds. Then, cold rolling was performed to obtain a cold-rolled sheet having a final thickness of 0.23 mm, and then decarburization annealing that also served as primary recrystallization annealing was performed. Incidentally, the decarburization annealing, 50vol% H 2 -50vol% N 2, under a humid atmosphere with a dew point of 55 ° C., and held for 100 seconds at a temperature of 840 ° C..
Next, on the steel sheet surface after the decarburization annealing, MgO is the main agent, and as an additive, 2 mass% of TiO2 in terms of Ti and 3 mass% of calcium hydroxide in terms of Ca are contained with respect to the entire annealing separator, As shown in Table 2, annealing separators containing various concentrations of Na and Ba were applied in the form of a slurry to the steel sheet surface. The Na concentration in the annealing separator was prepared by changing the amount of Na sulfate added, and the Ba concentration was prepared by variously changing the Ba concentration contained as an impurity in calcium hydroxide.
Next, the steel sheet coated with the annealing separator was subjected to secondary recrystallization, and then subjected to finish annealing for 1220 ° C. for 4 hours to obtain a grain-oriented electrical steel sheet. The atmosphere of the finish annealing was H 2 at the time of 1220 ° C. holding for purification, and Ar at the time of temperature rise (including the time of secondary recrystallization annealing) and at the time of temperature fall.

Figure 2016145419
Figure 2016145419

上記のようにして得た各種方向性電磁鋼板について、実施例1と同様にして、被膜特性(酸素目付量、Ti侵入量(ITi/IMg)、界面複雑度L)および磁気特性(鉄損W17/50)を調査し、その結果を表2に示した。同表から、本発明の成分組成を満たし、かつ、本発明に適合する製造方法で製造された鋼板は、いずれも良好な被膜密着性と磁気特性が両立できていることがわかる。 About the various grain-oriented electrical steel sheets obtained as described above, in the same manner as in Example 1, film properties (weight per unit area, Ti penetration amount (I Ti / I Mg ), interface complexity L c ) and magnetic properties ( The iron loss W 17/50 ) was investigated, and the results are shown in Table 2. From the table, it can be seen that all the steel sheets that satisfy the component composition of the present invention and are manufactured by the manufacturing method suitable for the present invention can achieve both good film adhesion and magnetic properties.

C:0.060mass%、Si:3.38mass%、Mn:0.06mass%、Al:0.017mass%、N:0.008mass%およびSe:0.015mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを連続鋳造法で製造し、1400℃の温度に再加熱した後、熱間圧延して板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延して1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚0.23mmの冷延板とし、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。
ここで、上記脱炭焼鈍は、50vol%H−50vol%N、露点55℃の湿潤雰囲気下で、840℃の温度に100秒間保持して酸素目付量が1.0m/gとなるようなサブスケールを形成させた。なお、上記酸素目付量は、脱炭焼鈍後の鋼板全体(全厚)の酸素量を化学分析して求め、単位面積当たりの目付量に換算して得た値である。
次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して、TiOをTi換算で5mass%、硫酸NaをNa換算で25massppm、および、微量元素としてBaを焼鈍分離剤全体に対して表3に示した量を含有する各種添加剤を添加した焼鈍分離剤をスラリー状にして塗布、乾燥させた。ここで、Baは添加剤の製造工程の途中で添加することにより含有させた。
その後、二次再結晶焼鈍させてから、1200℃×10時間の純化処理を行う仕上焼鈍を施し、方向性電磁鋼板とした。なお、上記仕上焼鈍の雰囲気は、純化処理における1200℃保定時はH、昇温時(二次再結晶焼鈍時を含む)および降温時はNとした。
C: 0.060 mass%, Si: 3.38 mass%, Mn: 0.06 mass%, Al: 0.017 mass%, N: 0.008 mass%, and Se: 0.015 mass%, the balance being Fe and inevitable A steel slab having a component composition consisting of mechanical impurities is manufactured by a continuous casting method, reheated to a temperature of 1400 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm. After hot-rolled sheet annealing, first cold rolled to an intermediate sheet thickness of 1.8 mm, subjected to intermediate annealing at 1100 ° C. × 20 seconds, then secondary cold rolled to a final sheet thickness of 0.23 mm The steel sheet was then subjected to decarburization annealing that also served as primary recrystallization annealing.
Here, the decarburization annealing is performed in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 55 ° C. and maintained at a temperature of 840 ° C. for 100 seconds, so that the oxygen basis weight becomes 1.0 m 2 / g. Such a subscale was formed. The oxygen basis weight is a value obtained by chemically analyzing the oxygen amount of the entire steel sheet (total thickness) after decarburization annealing and converting it to a basis weight per unit area.
Next, on the surface of the steel sheet after the decarburization annealing, MgO is the main agent, and TiO 2 is 5 mass% in terms of Ti, Na sulfate is 25 massppm in terms of Na, and trace elements as an additive with respect to the entire annealing separator. An annealing separator to which Ba was added with various additives containing the amounts shown in Table 3 with respect to the entire annealing separator was applied in slurry form and dried. Here, Ba was added by being added during the manufacturing process of the additive.
Then, after carrying out secondary recrystallization annealing, the finish annealing which performs the refinement | purification process of 1200 degreeC x 10 hours was given, and it was set as the grain-oriented electrical steel sheet. The atmosphere of the finish annealing was H 2 when maintained at 1200 ° C. in the purification treatment, and N 2 when the temperature was raised (including the time of secondary recrystallization annealing) and when the temperature was lowered.

Figure 2016145419
Figure 2016145419

斯くして得た各種方向性電磁鋼板について、被膜特性(酸素目付量、Ti侵入量(ITi/IMg)、界面複雑度(L)、磁気特性(鉄損W17/50)および被膜密着性(曲げ剥離径)を調査し、その結果を表3に併記した。なお、フォルステライト被膜の酸素目付量は、仕上焼鈍後の鋼板全体(全厚)の酸素量を化学分析して求め、単位面積当たりの目付量に換算することにより求めた。
同表から、本発明を適用することで、被膜密着性に優れ、かつ、磁気特性にも優れる方向性電磁鋼板を製造し得ることがわかる。
With respect to the various grain-oriented electrical steel sheets thus obtained, the film properties (oxygen weight per unit area, Ti penetration amount (I Ti / I Mg ), interface complexity (L c ), magnetic properties (iron loss W 17/50 ) and coating The adhesion (bending peel diameter) was investigated, and the results are also shown in Table 3. The oxygen basis weight of the forsterite coating was obtained by chemical analysis of the oxygen content of the entire steel sheet (total thickness) after finish annealing. It was determined by converting to a basis weight per unit area.
From the table, it can be seen that by applying the present invention, a grain-oriented electrical steel sheet having excellent film adhesion and excellent magnetic properties can be produced.

Claims (6)

フォルステライト被膜を有する方向性電磁鋼板であって、上記フォルステライト被膜の酸素目付量が両面で1.8〜2.8g/m、上記フォルステライト被膜の表面を蛍光X線分析したときのMgに対するTiの強度比(ITi/IMg)が0.03〜0.12、上記フォルステライト被膜断面における被膜と地鉄との界面の複雑度Lが1.1〜1.9の範囲にあることを特徴とする方向性電磁鋼板。 A grain-oriented electrical steel sheet having a forsterite coating, wherein the oxygen basis weight of the forsterite coating is 1.8 to 2.8 g / m 2 on both sides, and the surface of the forsterite coating is measured by fluorescent X-ray analysis. The strength ratio of Ti to I (I Ti / I Mg ) is 0.03 to 0.12, and the complexity L c of the interface between the coating and the ground iron in the forsterite coating cross section is 1.1 to 1.9. A grain-oriented electrical steel sheet characterized by being. C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0050mass%未満を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、
上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
C: 0.002-0.10 mass%, Si: 2.0-8.0 mass%, Mn: 0.005-1.0 mass%, Al: less than 0.01 mass%, N: less than 0.0050 mass%, S : Steel content less than 0.0050 mass% and Se: less than 0.0050 mass%, with the balance being Fe and inevitable impurities, hot-rolled into hot-rolled sheet, without performing hot-rolled sheet annealing or heat After performing the sheet annealing, the steel sheet surface is subjected to decarburization annealing that also serves as the primary recrystallization annealing after the cold rolling of the final sheet thickness by one or more cold rollings sandwiching the intermediate annealing. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying an annealing separator and finishing annealing,
The oxygen basis weight after decarburization annealing is 0.7 to 1.1 g / m 2 on both sides,
As the annealing separator, MgO is the main agent, and as an additive, at least Ti compound is 1 to 7 mass% in terms of Ti and Na compound is 20 to 40 massppm in terms of Na, Ca, Sr, Mn, Mo with respect to the whole annealing separator. , Fe, Cu, Zn, Ni, Al, K, Li, Sb oxide, hydroxide, sulfate, carbonate, nitrate, borate, chloride and sulfide A total of 0.1 to 5 mass% of the total amount in terms of the metal is used, and a material containing Ba in the range of 5 to 25 massppm in the main agent and / or additive is used. A method for producing the grain-oriented electrical steel sheet according to 1.
C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、
上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
C: 0.002-0.10 mass%, Si: 2.0-8.0 mass%, Mn: 0.005-1.0 mass%, Se: 0.003-0.030 mass% and / or S: 0.00. Hot-rolled steel material containing 002-0.03 mass% and the balance of Fe and inevitable impurities as a hot-rolled sheet, after performing hot-rolled sheet annealing or hot-rolled sheet annealing, After cold rolling at the final thickness by one or more cold rollings with intermediate annealing, decarburization annealing that also serves as primary recrystallization annealing is applied, and then an annealing separator is applied to the surface of the steel sheet. In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps for annealing,
The oxygen basis weight after decarburization annealing is 0.7 to 1.1 g / m 2 on both sides,
As the annealing separator, MgO is the main agent, and as an additive, at least Ti compound is 1 to 7 mass% in terms of Ti and Na compound is 20 to 40 massppm in terms of Na, Ca, Sr, Mn, Mo with respect to the whole annealing separator. , Fe, Cu, Zn, Ni, Al, K, Li, Sb oxide, hydroxide, sulfate, carbonate, nitrate, borate, chloride and sulfide A total of 0.1 to 5 mass% of the total amount in terms of the metal is used, and a material containing Ba in the range of 5 to 25 massppm in the main agent and / or additive is used. A method for producing the grain-oriented electrical steel sheet according to 1.
C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、
上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
C: 0.002 to 0.10 mass%, Si: 2.0 to 8.0 mass%, Mn: 0.005 to 1.0 mass%, Al: 0.010 to 0.050 mass%, and N: 0.003 A steel material containing 0.020 mass%, the balance being Fe and inevitable impurities, is hot-rolled to form a hot-rolled sheet, and after being subjected to hot-rolled sheet annealing or hot-rolled sheet annealing, once Alternatively, a cold-rolled sheet having a final thickness is formed by cold rolling at least twice with intermediate annealing, and after decarburization annealing that also serves as primary recrystallization annealing, an annealing separator is applied to the steel sheet surface and finish annealing is performed. In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps,
The oxygen basis weight after decarburization annealing is 0.7 to 1.1 g / m 2 on both sides,
As the annealing separator, MgO is the main agent, and as an additive, at least Ti compound is 1 to 7 mass% in terms of Ti and Na compound is 20 to 40 massppm in terms of Na, Ca, Sr, Mn, Mo with respect to the whole annealing separator. , Fe, Cu, Zn, Ni, Al, K, Li, Sb oxide, hydroxide, sulfate, carbonate, nitrate, borate, chloride and sulfide A total of 0.1 to 5 mass% of the total amount in terms of the metal is used, and a material containing Ba in the range of 5 to 25 massppm in the main agent and / or additive is used. A method for producing the grain-oriented electrical steel sheet according to 1.
C:0.002〜0.10mass%、Si:2.0〜8.0mass%、Mn:0.005〜1.0mass%、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
脱炭焼鈍後の酸素目付量を両面で0.7〜1.1g/mとし、
上記焼鈍分離剤として、MgOを主剤とし、添加剤として焼鈍分離剤全体に対して少なくともTi化合物をTi換算で1〜7mass%およびNa化合物をNa換算で20〜40massppm、Ca,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Al,K,Li,Sbの酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、ホウ酸塩、塩化物および硫化物のうちから選ばれる1種または2種以上を該金属換算の合計で0.1〜5mass%含有し、かつ、上記主剤中および/または添加剤中にBaを5〜25massppmの範囲で含有するものを用いることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
C: 0.002 to 0.10 mass%, Si: 2.0 to 8.0 mass%, Mn: 0.005 to 1.0 mass%, Al: 0.010 to 0.050 mass%, N: 0.003 A steel material containing 0.020 mass%, Se: 0.003-0.030 mass% and / or S: 0.002-0.03 mass%, the balance being Fe and unavoidable impurities is hot-rolled to heat After the hot-rolled sheet annealing or hot-rolled sheet annealing, the final sheet thickness is cold-rolled by one or more cold rollings, and the primary recrystallization annealing is performed. In the manufacturing method of grain-oriented electrical steel sheet comprising a series of steps of applying annealing separator to the steel sheet surface and finishing annealing after performing decarburization annealing that also serves as
The oxygen basis weight after decarburization annealing is 0.7 to 1.1 g / m 2 on both sides,
As the annealing separator, MgO is the main agent, and as an additive, at least Ti compound is 1 to 7 mass% in terms of Ti and Na compound is 20 to 40 massppm in terms of Na, Ca, Sr, Mn, Mo with respect to the whole annealing separator. , Fe, Cu, Zn, Ni, Al, K, Li, Sb oxide, hydroxide, sulfate, carbonate, nitrate, borate, chloride and sulfide A total of 0.1 to 5 mass% of the total amount in terms of the metal is used, and a material containing Ba in the range of 5 to 25 massppm in the main agent and / or additive is used. A method for producing the grain-oriented electrical steel sheet according to 1.
上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTi:0.0005〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項2〜5のいずれか1項に記載の方向性電磁鋼板の製造方法。

In addition to the above component composition, the steel material further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.00. 005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.100 mass% B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass%, Nb: 0.0010-0.0100 mass%, V: 0.001-0.010 mass%, and Ti: 0.0005 The grain-oriented electrical steel sheet according to any one of claims 2 to 5, comprising one or more selected from -0.010 mass%. Production method.

JP2016015171A 2015-01-30 2016-01-29 Oriented electrical steel sheet and manufacturing method thereof Active JP6168173B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016206 2015-01-30
JP2015016206 2015-01-30

Publications (2)

Publication Number Publication Date
JP2016145419A true JP2016145419A (en) 2016-08-12
JP6168173B2 JP6168173B2 (en) 2017-07-26

Family

ID=56685923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015171A Active JP6168173B2 (en) 2015-01-30 2016-01-29 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6168173B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021241A1 (en) 2016-07-25 2018-02-01 三菱ケミカル株式会社 Catalyst, acrylic acid production method, and catalyst production method
JP2018066061A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Directional electromagnetic steel sheet, and manufacturing method thereof
KR101869455B1 (en) * 2016-12-19 2018-06-20 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
CN111406126A (en) * 2017-11-28 2020-07-10 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
JPWO2020218607A1 (en) * 2019-04-25 2020-10-29
CN113227413A (en) * 2018-12-27 2021-08-06 杰富意钢铁株式会社 Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
CN113260720A (en) * 2019-01-08 2021-08-13 日本制铁株式会社 Grain-oriented electromagnetic steel sheet, method for producing same, and annealing separator
CN113286901A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113631734A (en) * 2019-03-29 2021-11-09 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN113981196A (en) * 2021-11-02 2022-01-28 无锡普天铁心股份有限公司 Annealing separant for improving quality of ultrahigh magnetic induction oriented silicon steel bottom layer and preparation method and application thereof
JP2022512570A (en) * 2018-09-27 2022-02-07 ポスコ Annealing Separator Composition for Electrical Steel Sheets, Manufacturing Methods for Electrical Steel Sheets and Electrical Steel Sheets
JP2022514795A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method
JP2022514792A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method
JP2022515235A (en) * 2018-12-19 2022-02-17 ポスコ Directional electrical steel sheet and its manufacturing method
RU2777448C1 (en) * 2019-04-25 2022-08-04 Ниппон Стил Корпорейшн Tape core and method for its manufacture
WO2023068236A1 (en) * 2021-10-20 2023-04-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240108A (en) * 1984-05-14 1985-11-29 Kawasaki Steel Corp Superlow iron loss grain oriented silicon steel plate and manufacture thereof
JPH0941153A (en) * 1995-08-02 1997-02-10 Nippon Steel Corp Separation agent at annealing, excellent in reactivity, and production of grain oriented silicon steel sheet using the same
JP2000355717A (en) * 1999-06-15 2000-12-26 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP2008127634A (en) * 2006-11-21 2008-06-05 Nippon Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2009270129A (en) * 2008-04-30 2009-11-19 Nippon Steel Corp Grain-oriented electrical steel sheet excellent in magnetic properties and adhesiveness of film, and manufacturing method therefor
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240108A (en) * 1984-05-14 1985-11-29 Kawasaki Steel Corp Superlow iron loss grain oriented silicon steel plate and manufacture thereof
JPH0941153A (en) * 1995-08-02 1997-02-10 Nippon Steel Corp Separation agent at annealing, excellent in reactivity, and production of grain oriented silicon steel sheet using the same
JP2000355717A (en) * 1999-06-15 2000-12-26 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP2008127634A (en) * 2006-11-21 2008-06-05 Nippon Steel Corp Method for manufacturing grain-oriented electrical steel sheet
JP2009270129A (en) * 2008-04-30 2009-11-19 Nippon Steel Corp Grain-oriented electrical steel sheet excellent in magnetic properties and adhesiveness of film, and manufacturing method therefor
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021241A1 (en) 2016-07-25 2018-02-01 三菱ケミカル株式会社 Catalyst, acrylic acid production method, and catalyst production method
JP2018066061A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Directional electromagnetic steel sheet, and manufacturing method thereof
JP2020063510A (en) * 2016-10-18 2020-04-23 Jfeスチール株式会社 Directional electromagnetic steel sheet, and manufacturing method thereof
KR101869455B1 (en) * 2016-12-19 2018-06-20 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same
WO2018117599A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
CN111406126A (en) * 2017-11-28 2020-07-10 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US11473176B2 (en) 2017-11-28 2022-10-18 Jfe Steel Corporation Oriented electrical steel sheet and method for producing same
JP2022512570A (en) * 2018-09-27 2022-02-07 ポスコ Annealing Separator Composition for Electrical Steel Sheets, Manufacturing Methods for Electrical Steel Sheets and Electrical Steel Sheets
JP7133708B2 (en) 2018-09-27 2022-09-08 ポスコ Annealing separation agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
US11685962B2 (en) 2018-09-27 2023-06-27 Posco Co., Ltd Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP2022514792A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method
JP2022515235A (en) * 2018-12-19 2022-02-17 ポスコ Directional electrical steel sheet and its manufacturing method
JP7365416B2 (en) 2018-12-19 2023-10-19 ポスコ カンパニー リミテッド Grain-oriented electrical steel sheet and its manufacturing method
JP2022514795A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method
CN113227413A (en) * 2018-12-27 2021-08-06 杰富意钢铁株式会社 Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
CN113260720A (en) * 2019-01-08 2021-08-13 日本制铁株式会社 Grain-oriented electromagnetic steel sheet, method for producing same, and annealing separator
CN113286901A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113631734A (en) * 2019-03-29 2021-11-09 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN113631734B (en) * 2019-03-29 2023-03-10 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
KR20210137205A (en) * 2019-03-29 2021-11-17 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
KR102568156B1 (en) 2019-03-29 2023-08-17 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and production method therefor
US11742140B2 (en) 2019-04-25 2023-08-29 Nippon Steel Corporation Wound core and method for producing same
RU2777448C1 (en) * 2019-04-25 2022-08-04 Ниппон Стил Корпорейшн Tape core and method for its manufacture
JP7115634B2 (en) 2019-04-25 2022-08-09 日本製鉄株式会社 Wound core and manufacturing method thereof
JPWO2020218607A1 (en) * 2019-04-25 2020-10-29
WO2020218607A1 (en) * 2019-04-25 2020-10-29 日本製鉄株式会社 Wound iron core and method for producing same
WO2023068236A1 (en) * 2021-10-20 2023-04-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN113981196A (en) * 2021-11-02 2022-01-28 无锡普天铁心股份有限公司 Annealing separant for improving quality of ultrahigh magnetic induction oriented silicon steel bottom layer and preparation method and application thereof

Also Published As

Publication number Publication date
JP6168173B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP6168173B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP3064607B1 (en) Grain oriented electrical steel sheet having excellent magnetic characteristics and coating adhesion
EP2746410B1 (en) Method of producing grain-oriented electrical steel sheet
EP2878687B1 (en) Method for producing grain-oriented electrical steel sheet
CN107849656B (en) Method for producing grain-oriented electromagnetic steel sheet
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101620763B1 (en) Grain-oriented electrical steel sheet and method of producing the same
CA2900111C (en) Method for producing grain-oriented electrical steel sheet
US10988822B2 (en) Grain-oriented electrical steel sheet and method for manufacturing same
WO2018021332A1 (en) Hot-rolled steel sheet for grain-oriented magnetic steel sheet and production method therefor, and production method for grain-oriented magnetic steel sheet
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP6191568B2 (en) Method for producing grain-oriented electrical steel sheet
JP6579078B2 (en) Method for producing grain-oriented electrical steel sheet
JP6225759B2 (en) Method for producing grain-oriented electrical steel sheet
JP6028933B2 (en) Method for producing grain-oriented electrical steel sheet
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP2014173098A (en) Method of producing grain-oriented magnetic steel sheet
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
WO2021085421A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP5200363B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2020122210A (en) Annealing separator and method for producing grain-oriented electrical steel sheet
JP2011111653A (en) Method for producing grain-oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6168173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250