WO2023068236A1 - Grain-oriented electromagnetic steel sheet and method for producing same - Google Patents

Grain-oriented electromagnetic steel sheet and method for producing same Download PDF

Info

Publication number
WO2023068236A1
WO2023068236A1 PCT/JP2022/038635 JP2022038635W WO2023068236A1 WO 2023068236 A1 WO2023068236 A1 WO 2023068236A1 JP 2022038635 W JP2022038635 W JP 2022038635W WO 2023068236 A1 WO2023068236 A1 WO 2023068236A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
annealing
basis weight
steel sheet
Prior art date
Application number
PCT/JP2022/038635
Other languages
French (fr)
Japanese (ja)
Inventor
誠 渡邉
拓弥 山田
敬 寺島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023513545A priority Critical patent/JPWO2023068236A1/ja
Publication of WO2023068236A1 publication Critical patent/WO2023068236A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is a grain-oriented electrical steel sheet mainly used for iron cores of transformers, electric motors, generators, etc., especially iron cores of small generators and small electric motors, or winding cores and EI cores.
  • the present invention relates to a grain-oriented electrical steel sheet in which twinning is unlikely to occur even when subjected to shearing or the like, and a method for producing the same.
  • Grain-oriented and non-oriented electrical steel sheets are widely used as iron core materials for various transformers, electric motors, generators, etc.
  • grain-oriented electrical steel sheets are highly concentrated in the ⁇ 110 ⁇ 001> orientation known as the Goss orientation, so they have high magnetic flux density and low iron loss. It is characterized by having good iron loss characteristics, which directly leads to the reduction of energy loss.
  • grain-oriented electrical steel sheets When such grain-oriented electrical steel sheets are used to manufacture iron cores for small generators and small electric motors, or EI cores, etc., they are subjected to a leveler process for correcting the shape of the coil, followed by punching or shearing. often do However, during the leveler treatment, punching, and shearing, the steel sheet may undergo twinning deformation, resulting in cracking, chipping, or warping, which may cause manufacturing troubles. Also, when manufacturing a wound core, twinning may occur when a steel sheet is wound and deformed into a core shape, degrading the magnetic properties.
  • Patent Document 1 by reducing S and N in the raw material components and adding 0.5 to 5.0 mass% of the SO 3 component mass of the SO 3 compound to the annealing separator, twinning is achieved. Techniques for suppressing the generation have been proposed.
  • Patent Document 2 describes a technique for forming a forsterite coating with excellent coating properties by including a Ti compound in an annealing separator, wherein the Ti concentration of the steel sheet including the forsterite coating is 1 with respect to the N concentration. Techniques have been proposed to prevent cracking during shearing and bending by reducing N in the steel to a range of 0.0 to 2.0 times.
  • Patent Document 3 discloses a technique for reducing the number of origins of twinning by refining the secondary recrystallized grain size in the direction perpendicular to rolling (C direction) and reducing the unevenness of the film/base iron interface. It is
  • Refining the secondary grain size in the direction perpendicular to rolling, as described in Patent Document 3, is effective in reducing twins. , the secondary recrystallized grains are coarsened, so there is room for improvement in that strict control is required.
  • the present invention has been made in view of the above-mentioned circumstances of the prior art.
  • a grain-oriented electrical steel sheet that does not suffer from cracking or chipping due to twinning deformation even in applications that undergo strong processing, such as iron cores and winding cores of small generators, and that does not deteriorate in magnetic properties. to propose.
  • the inventors have developed a grain-oriented electrical steel sheet having good coating properties, which has a Ti-containing forsterite coating as a base coating formed by applying an annealing separator containing a Ti compound. Extensive experiments were conducted, and measures to reduce the twinning rate compared to the conventional technology were examined. As a result, it was found that the oxygen basis weight of the undercoat and the amount of Ti contained in the undercoat have a great effect on the occurrence of twins. The inventors have newly found that it is effective to increase the oxygen basis weight and limit the amount of Ti in the undercoat, and have developed the present invention. That is, the gist and configuration of the present invention are as follows.
  • a steel slab having a chemical composition containing 0.005 to 0.03 mass% and the balance being Fe and unavoidable impurities is hot-rolled to form a hot-rolled sheet, and the hot-rolled sheet is subjected to one or intermediate annealing.
  • a cold-rolled sheet is obtained by sandwiching and cold-rolling two or more times, and the cold-rolled sheet is subjected to primary recrystallization annealing, then an annealing separator is applied, and then finish annealing is performed to obtain a finish-annealed sheet.
  • a method for producing a grain-oriented electrical steel sheet comprising applying a coating liquid to an annealed sheet and performing flattening annealing to obtain a grain-oriented electrical steel sheet,
  • the oxygen basis weight on the surface of the steel sheet after the primary recrystallization annealing is 1.5 g/m 2 or more and 2.1 g/m 2 or less, and as the annealing separator, TiO 2 is 0.6 per 100 parts by mass of MgO.
  • a method for producing a grain-oriented electrical steel sheet characterized by using an annealing separator containing up to 2.7 parts by mass, and setting the rate of temperature increase between 700 to 950°C in the final annealing to 15°C/h or more. .
  • the chemical composition of the steel slab further includes Al: 0.003 to 0.015 mass%, N: 0.001 to 0.007 mass%, Cu: 0.01 to 0.14 mass%, Ni: 0.01 to 0. .3 mass%, Cr: 0.01 to 0.06 mass%, Sb: 0.004 to 0.04 mass%, Sn: 0.005 to 0.04 mass%, Mo: 0.01 to 0.1 mass%, B: 0.001 to 0.01mass%, P: 0.005 to 0.06mass%, Nb: 0.002 to 0.02mass%, Bi: 0.001 to 0.01mass%, Ge: 0.001 to 0.01mass% 05 mass%, As: 0.005 to 0.05 mass%, Te: 0.005 to 0.02 mass%, Ti: 0.005 to 0.04 mass% and V: 0.005 to 0.03 mass% 3.
  • the present invention it is possible to provide a grain-oriented electrical steel sheet that is less likely to undergo twinning deformation and has less deterioration in magnetic properties even when used for applications that require strong working. Therefore, by using the grain-oriented electrical steel sheet of the present invention, it is possible not only to reduce troubles such as cracks and chips when processing iron cores and wound cores of small generators, but also to reduce energy loss in generators, transformers, etc. enables the production of
  • the oxygen basis weight of the decarburized annealed sheet after primary recrystallization annealing (hereinafter also referred to as the oxygen basis weight after decarburization annealing), the oxygen basis weight and the Ti basis weight of the undercoat Table 1 shows the measurement results of , and the investigation results of the magnetic flux density and twinning rate in the steel sheet.
  • the above oxygen basis weight can be measured by a melting-infrared absorption method.
  • the Ti basis weight can be measured by emission spectroscopy.
  • the magnetic flux density is the magnetic flux density when excited at 800 A / m: B 8 (T) according to JIS It was measured according to the method specified in C2550.
  • the oxygen basis weight after decarburization annealing should be increased, and the amount of TiO 2 in the annealing separator should be increased. Both increasing the amount contributes.
  • the oxygen basis weight after decarburization annealing was increased too much, the oxygen basis weight of the undercoat decreased rapidly.
  • the strength of the coating is increased by introducing S into the coating as described in Patent Document 1 above, or by adjusting the ratio of Ti and N as described in Patent Document 2. It is known that increasing In contrast, the above findings suggest that factors other than film strength are involved. That is, the present inventors considered that it is important not to directly transmit the coating tension due to the overcoat to the steel substrate. In other words, the top coat applies stress in the tensile direction to the steel sheet, and under this condition, twinning occurs when deformation stress is further applied. Conversely, if the film stress is not applied, twins are unlikely to occur even with some deformation stress.
  • the oxygen basis weight of the undercoating is increased by a certain amount or more, the stress of the overcoating coating in the upper layer is relaxed in the undercoating, and the stress applied to the base steel is reduced. Further, as the Ti content in the undercoat increases, the tension in the undercoat itself increases, so twinning is more likely to occur.
  • the oxygen basis weight of the undercoating generally correlates with the oxygen basis weight of the surface of the steel sheet after decarburization annealing, increasing this increases the oxygen basis weight of the undercoating.
  • the oxygen basis weight after decarburization annealing is too high, the amount of the undercoat formed will be too large, and the undercoat will partially peel off, thereby decreasing the oxygen basis weight of the undercoat. Therefore, there is an appropriate range for the oxygen basis weight after decarburization annealing.
  • the Ti source is TiO 2 in the annealing separator
  • the Ti basis weight is almost correlated with the amount of TiO 2 added.
  • the basis weight of oxygen after decarburization annealing also has an effect. This is because when the oxygen basis weight after decarburization annealing is high, oxides present in the subscale surface layer, such as Fe 2 SiO 4 , and TiO 2 undergo a substitution reaction to form FeTiO 3 . It is considered that the amount of Ti in the coating increases because Ti easily penetrates into the coating.
  • both the oxygen basis weight after decarburization annealing and the amount of TiO2 added in the annealing separator affect both the oxygen basis weight and the Ti basis weight of the undercoat.
  • the oxygen basis weight and the Ti basis weight of the undercoat can be kept within appropriate ranges, and the twinning rate can be reduced.
  • the undercoating has an oxygen basis weight of 3.8 g/m 2 or more and a Ti basis weight of 0.06 g/m 2 or less. This is based on the above-described new knowledge that strain due to tension in the overcoat promotes twinning, and that if the stress caused by the overcoat is relieved by the undercoat, the occurrence of twins can be suppressed. That is, when the oxygen basis weight of the undercoat is less than 3.8 g/m 2 , the ability of the undercoat to relax the tension of the coating decreases, resulting in an increase in twinning rate.
  • the oxygen basis weight should be 3.8 g/m 2 or more and the Ti basis weight should be 0.06 g/m 2 or less.
  • the oxygen basis weight of the undercoat is preferably 5.0 g/m 2 or less. From the same point of view, it is preferable that the Ti basis weight in the undercoating is 0.01 g/m 2 or more.
  • the grain-oriented electrical steel sheet targeted by the present invention preferably has a magnetic flux density of 1.88 T or less at B8 .
  • the reason why it is desirable to lower the magnetic flux density is that when the magnetic flux density is high, the secondary recrystallized grain size usually becomes large, the grain boundary density decreases, and twin crystals are likely to develop. If the secondary recrystallized grain size is made finer by setting the magnetic flux density to a lower value, it is possible to prevent the strain imparted during working from being locally concentrated, making it easier to prevent twinning deformation. Therefore, the present invention cannot be applied to, for example, a technique in which a coil is annealed under a temperature gradient to elongate secondary recrystallized grains. Also, the technique of growing secondary recrystallized grains by holding in the secondary recrystallization temperature range during final annealing is not suitable for the present invention.
  • C 0.001 to 0.10 mass%
  • C is a component necessary for generating Goss-oriented crystal grains, and should be contained in an amount of 0.001 mass% or more in order to exhibit such an effect.
  • addition exceeding 0.10 mass% makes it difficult to decarburize to a level that does not cause magnetic aging in the subsequent decarburization annealing. Therefore, the C content should be in the range of 0.001 to 0.10 mass%.
  • the content of C is preferably 0.015 mass% or more, and preferably 0.08 mass% or less.
  • Al, N, Cu, Ni, Cr, Sb, Sn, Mo, B, P, Nb and Bi segregate on the grain boundaries and on the surface of the steel sheet and act as auxiliary inhibitors to improve the magnetic properties.
  • the grain-oriented electrical steel sheet of the present invention is produced by melting steel having the chemical composition described above by a conventionally known refining process, and using a continuous casting method or an ingot casting-slabbing rolling method or the like to form a steel material (steel slab). After that, the steel material is hot-rolled to obtain a hot-rolled sheet, and if necessary, hot-rolled sheet annealing is performed, and cold rolling is performed once or twice or more with intermediate annealing.
  • the cold-rolled sheet shall be thick.
  • the reason why the oxygen basis weight on the surface of the steel sheet after primary recrystallization annealing is 1.5 to 2.1 g/m 2 is to set the oxygen basis weight and the Ti basis weight in the undercoating to appropriate ranges. .
  • the oxygen basis weight is less than 1.5 g/m 2 , the formation of the undercoat becomes insufficient, and when the oxygen basis weight exceeds 2.1 g/m 2 , the formation of the undercoat becomes excessive. In the end, point-like peeling occurs, and a sufficient effect cannot be obtained.
  • the annealing temperature is preferably 700 to 900° C. and the annealing time is preferably 30 to 300 seconds. If the annealing temperature is less than 700° C. or the annealing time is less than 30 seconds, the desired oxygen basis weight cannot be secured or decarburization becomes insufficient. On the other hand, if the annealing temperature exceeds 900° C. or the annealing time exceeds 300 seconds, the oxygen basis weight becomes excessive. Also, the decarburization annealing is performed in a wet hydrogen atmosphere.
  • the dew point is in the range of 45 to 60° C.
  • the H 2 concentration is a conventional method, which can be in the range of 40% to 80%.
  • the oxygen basis weight can be adjusted.
  • This PH 2 O/PH 2 is desirably in the range of 0.40 to 0.55. It is also possible to change at each stage of the heating zone and soaking zone.
  • the soaking area can be divided into two stages, a front stage and a rear stage. Both or one of the soaking temperature and the atmospheric oxidizing PH 2 O/PH 2 conditions are different between the former stage and the latter stage.
  • the temperature difference between the former stage and the latter stage shall be 20°C or more. If oxidizing, change the PH 2 O/PH 2 difference by 0.2 or more.
  • the temperature is not particularly limited, but the latter stage should be higher than the former stage.
  • PH 2 O/PH 2 is often lower in the latter stage than in the former stage, and this can be followed in the present invention.
  • the pretreatment of the primary recrystallization annealing For example, when cleaning a rolled sheet (cold-rolled sheet), electrolytic degreasing is performed with a degreasing solution (electrolytic solution) containing sodium silicate. As a result, the SiO 2 compound is electrodeposited on the surface of the steel sheet, which serves as a starting point for oxidation during decarburization annealing, and can increase the oxygen basis weight.
  • the oxygen basis weight after the primary recrystallization annealing changes depending on the material composition and the previous process, it is necessary to adjust the annealing conditions according to each process. For example, if the Si content in the steel material is as low as 3 mass% or less, the oxygen basis weight tends to decrease, so the dew point is set high. In addition, if the steel sheet surface before primary recrystallization annealing has a high oxygen basis weight of 0.1 g/m 2 or more, it is effective to set the dew point to a lower value.
  • the surface of the steel sheet is coated with an annealing separator containing MgO as a main component.
  • the annealing separating agent used is one to which TiO 2 is added.
  • the reason why TiO 2 is added here is mainly from the viewpoint of enhancing film adhesion, and this addition of TiO 2 has been conventionally performed.
  • the second feature of the present invention is that the amount of TiO 2 added is kept to a very small amount. That is, the amount of TiO 2 added to the annealing separator used in the present invention is in the range of 0.6 to 2.7 parts by mass when MgO is 100 parts by mass.
  • the amount (content) of TiO 2 added to the annealing separating agent is less than 0.6 parts by mass, the film adhesion is lowered, and the underlying pattern is generated.
  • the amount of TiO 2 added to the annealing separator is higher than 2.7 parts by mass, the amount of Ti contained in the undercoating exceeds 0.06 g/m 2 in terms of Ti basis weight, and the twinning rate increases. will do.
  • the conditions of the annealing separator other than the amount of TiO 2 added may be as known.
  • additives for the annealing separator include borates such as Li, Na, K, Mg, Ca, Sr, Sn, Sb, Cr, Fe, and Ni, sulfates, carbonates, and water. Oxides, chlorides and the like can be added singly or in combination.
  • the amount of the annealing separator applied to the surface of the steel sheet is preferably 8 to 16 g/m 2 on both sides, and the hydration amount is preferably in the range of 0.5 to 3.7 mass%.
  • the annealing separating agent is usually made into a slurry with water, coated with a roll coater, and then dried. This method can also be used in the present invention.
  • a third feature of the present invention is to specify the rate of temperature increase at this time. That is, the rate of temperature increase between 700 and 950° C. in the final annealing must be 15° C./h or more.
  • This temperature range is the temperature range in which the formation of the undercoating begins in earnest, and is also the temperature range immediately before TiO 2 in the annealing separator decomposes and Ti penetrates into the undercoating. If the rate of temperature rise in this temperature range is slow, the substitution reaction that forms FeTiO3 from Fe2SiO4 proceeds too much, Ti penetrates too much into the film, and the Ti content in the undercoat increases.
  • the rate of temperature increase between 700 and 950° C. in the final annealing should be 15° C./h or more, preferably 20° C./h or more.
  • the final annealing (retaining treatment) is generally performed at a temperature of 1150° C. or higher and 1250° C. or lower for a time of 3 hours or longer and 50 hours or shorter, and the present invention is also within this range. If the temperature is lower than 1150° C. or the time is shorter than 3 hours, purification may be insufficient and precipitates may remain, resulting in an increased twinning rate. On the other hand, if the temperature is higher than 1250° C. or the time is longer than 50 hours, the coil may buckle and the yield may decrease.
  • an insulating coating is applied and flattening annealing, which also serves as baking, is performed.
  • flattening annealing which also serves as baking
  • a steel slab having a chemical composition in which the balance is Fe and unavoidable impurities is heated at 1410 ° C. for 30 minutes, hot-rolled to a hot-rolled sheet with a thickness of 2.5 mm, and heated at 1000 ° C. for 1 minute.
  • the hot-rolled sheet was annealed. After that, it was cold-rolled to a thickness of 0.9 mm, subjected to intermediate annealing at 980° C. for 1 minute, and then cold-rolled to a final thickness of 0.35 mm.
  • primary recrystallization annealing which also serves as decarburization annealing, was performed at 850° C. for 120 seconds in an atmosphere with a PH 2 O/PH 2 ratio of 0.51.
  • the oxygen basis weight of the decarburized annealed sheet was set to 2.0 g/m 2 .
  • powder obtained by adding 2.4 parts by mass of TiO 2 and 0.1 part by mass of Li 2 SO 4 to 100 parts by mass of MgO as an annealing separator was made into a slurry, and the amount of hydration was 1.0 parts by mass. It was coated on both sides of the steel sheet at 11 g/m 2 so as to be 3 mass%.
  • the temperature was raised between 700 and 950° C. at various heating rates shown in Table 2, followed by holding treatment at 1160° C. for 5 hours for purification.
  • a hot-rolled sheet was annealed at 1000° C. for 1 minute. After that, it was cold rolled to an intermediate plate thickness of 0.8 mm, subjected to intermediate annealing at 1000° C. for 2 minutes, and further cold rolled to obtain a cold rolled plate having a final thickness of 0.27 mm.
  • a coating liquid consisting of magnesium phosphate-colloidal silica-titanium sulfate was applied, and flattening annealing was performed for both baking and shape correction of the steel sheet to obtain a product coil (grain-oriented electrical steel sheet).
  • the steel sheets thus obtained were examined for magnetic flux density B8 and twinning rate.
  • the results are shown in Table 3 together with the oxygen basis weight after primary recrystallization annealing, the oxygen basis weight in the undercoat and the Ti basis weight.
  • the oxygen basis weight after the primary recrystallization annealing, the oxygen basis weight and Ti basis weight in the undercoat, the magnetic flux density B8 and the twinning rate were measured according to the measurement method described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

The present invention provides a grain-oriented electromagnetic steel sheet which is free from defects such as cracking and chipping due to twinning deformation even if applied to a winding core or an iron core of a small power generator or the like, thereby being subjected to intense processing, and which is also free from deterioration in the magnetic characteristics. This grain-oriented electromagnetic steel sheet has a component composition that contains 2.8 mass% to 3.5 mass% of Si and 0.01 mass% to 1.0 mass% of Mn, with the balance being made up of Fe and unavoidable impurities, while having a base coating film that is mainly composed of forsterite and contains Ti, and a top coating film that is formed on the base coating film. With respect to this grain-oriented electromagnetic steel sheet, the base coating film has an oxygen weight per square meter of 3.8 g/m2 or more and a Ti weight per square meter of 0.06 g/m2 or less.

Description

方向性電磁鋼板およびその製造方法Grain-oriented electrical steel sheet and manufacturing method thereof
 本発明は、変圧器や電動機、発電機等の鉄心に主として用いられる方向性電磁鋼板、中でも、小型発電機や小型電動機の鉄心、あるいは、巻きコアやEIコアのように、比較的強い曲げ加工や剪断加工等を受けても双晶が発生し難い方向性電磁鋼板と、その製造方法に関するものである。 The present invention is a grain-oriented electrical steel sheet mainly used for iron cores of transformers, electric motors, generators, etc., especially iron cores of small generators and small electric motors, or winding cores and EI cores. The present invention relates to a grain-oriented electrical steel sheet in which twinning is unlikely to occur even when subjected to shearing or the like, and a method for producing the same.
 方向性電磁鋼板や無方向性電磁鋼板は、各種の変圧器や電動機、発電機等の鉄心材料として広く用いられている。このうち、方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積しているため、磁束密度が高く、鉄損が低いという、変圧器や発電機等のエネルギーロスの低減に直接つながる、良好な鉄損特性を有しているのが特長である。 Grain-oriented and non-oriented electrical steel sheets are widely used as iron core materials for various transformers, electric motors, generators, etc. Of these, grain-oriented electrical steel sheets are highly concentrated in the {110}<001> orientation known as the Goss orientation, so they have high magnetic flux density and low iron loss. It is characterized by having good iron loss characteristics, which directly leads to the reduction of energy loss.
 このような方向性電磁鋼板を用いて、小型発電機や小型電動機の鉄心、あるいはEIコア等を製造する際には、コイルの形状を矯正するレベラー処理を施した後、打抜加工や剪断加工を行うことが多い。しかし、上記レベラー処理や打抜加工、剪断加工の際に、鋼板が双晶変形を起こして、割れや欠けを起こしたり、反りが生じたりして、製造トラブルを引き起こすことがある。また、巻きコアを製造する際にも、鋼板を巻き取ってコア形状に変形させるときに双晶が発生し、磁気特性が劣化することもある。 When such grain-oriented electrical steel sheets are used to manufacture iron cores for small generators and small electric motors, or EI cores, etc., they are subjected to a leveler process for correcting the shape of the coil, followed by punching or shearing. often do However, during the leveler treatment, punching, and shearing, the steel sheet may undergo twinning deformation, resulting in cracking, chipping, or warping, which may cause manufacturing troubles. Also, when manufacturing a wound core, twinning may occur when a steel sheet is wound and deformed into a core shape, degrading the magnetic properties.
 そこで、加工性を改善するための技術が種々提案されている。
 例えば、特許文献1には、素材成分中のSやNを低減し、焼鈍分離剤中にSO化合物をSO成分質量にして0.5~5.0mass%添加することにより、双晶の発生を抑制する技術が提案されている。
Therefore, various techniques have been proposed to improve workability.
For example, in Patent Document 1, by reducing S and N in the raw material components and adding 0.5 to 5.0 mass% of the SO 3 component mass of the SO 3 compound to the annealing separator, twinning is achieved. Techniques for suppressing the generation have been proposed.
 また、特許文献2には、焼鈍分離剤中にTi化合物を含有させて優れた被膜特性のフォルステライト被膜を形成する技術において、フォルステライト被膜を含めた鋼板のTi濃度をN濃度に対して1.0~2.0倍の範囲として鋼中のNを低減することにより、剪断加工や曲げ加工時の割れを防止する技術が提案されている。 In addition, Patent Document 2 describes a technique for forming a forsterite coating with excellent coating properties by including a Ti compound in an annealing separator, wherein the Ti concentration of the steel sheet including the forsterite coating is 1 with respect to the N concentration. Techniques have been proposed to prevent cracking during shearing and bending by reducing N in the steel to a range of 0.0 to 2.0 times.
 特許文献3には、圧延直角方向(C方向)の二次再結晶粒径を微細化するとともに、被膜/地鉄界面の凹凸を低減することにより双晶発生の起点数を低減する技術が開示されている。 Patent Document 3 discloses a technique for reducing the number of origins of twinning by refining the secondary recrystallized grain size in the direction perpendicular to rolling (C direction) and reducing the unevenness of the film/base iron interface. It is
特開2000-256810号公報JP-A-2000-256810 特開平06-179977号公報JP-A-06-179977 特表2013-58239号公報Japanese Patent Publication No. 2013-58239
 上記した従来技術を適用することにより、方向性電磁鋼板の磁気特性を低下させることなく加工性を改善することができるものの、双晶の発生抑制については更なる改善が求められている。
 例えば、特許文献1に記載の技術を適用した場合、双晶発生率は大きく低下するものの、ばらつきの範囲内ではあるが、該発生率が10%程度の高い値となることがあり、この点の改善が求められる。
Although the workability can be improved without degrading the magnetic properties of the grain-oriented electrical steel sheet by applying the above-described prior art, further improvement is required for suppressing the occurrence of twins.
For example, when the technique described in Patent Document 1 is applied, although the twinning rate is greatly reduced, the twinning rate may be as high as about 10%, although it is within the range of variation. improvement is required.
 また、特許文献2に従ってTiとNの濃度比を適正化することにより、曲げ加工性は改善されるものの、曲げ加工時に発生する双晶については検討されていないことから、双晶の発生率低減を図るには、さらなる検討が必要になる。 In addition, although the bending workability is improved by optimizing the concentration ratio of Ti and N according to Patent Document 2, twins that occur during bending have not been studied, so the rate of twinning is reduced. In order to achieve this, further consideration is required.
 特許文献3に記載の、圧延直角方向の二次粒径を微細化させることは双晶の減少に有効であるが、仕上焼鈍時にコイル内でわずかな温度傾斜や昇温速度の変化があると、二次再結晶粒が粗大化するため、厳密な制御が必要になる点、改善の余地があった。 Refining the secondary grain size in the direction perpendicular to rolling, as described in Patent Document 3, is effective in reducing twins. , the secondary recrystallized grains are coarsened, so there is room for improvement in that strict control is required.
 本発明は、従来技術が抱える上記事情に鑑みてなされたものであり、その目的とするところは、従来技術よりも双晶発生率を低減できる方向性電磁鋼板の製造技術を開発することによって、小型発電機の鉄心や巻きコア等、強度の加工を受ける用途でも、双晶変形による割れや欠け等の発生がなく、磁気特性の劣化もない方向性電磁鋼板を提供すると共に、その製造方法を提案することにある。 The present invention has been made in view of the above-mentioned circumstances of the prior art. Provided is a grain-oriented electrical steel sheet that does not suffer from cracking or chipping due to twinning deformation even in applications that undergo strong processing, such as iron cores and winding cores of small generators, and that does not deteriorate in magnetic properties. to propose.
 発明者らは、上記課題を解決すべく、Ti化合物を含有する焼鈍分離剤を塗布して形成したTiを含むフォルステライト被膜を下地被膜として有する、被膜特性の良好な方向性電磁鋼板に対して膨大な実験を行い、双晶発生率を従来技術よりも低減する方策を検討した。その結果、下地被膜の酸素目付量と該下地被膜中に含有されるTiの量とが双晶発生に大きな影響を与えていること、また、双晶の発生を抑えるためには、下地被膜の酸素目付量を増加するとともに、下地被膜中のTi量を制限するのが有効であることを新規に見出し、本発明を開発するに至った。
 すなわち、本発明の要旨構成は以下のとおりである。
In order to solve the above problems, the inventors have developed a grain-oriented electrical steel sheet having good coating properties, which has a Ti-containing forsterite coating as a base coating formed by applying an annealing separator containing a Ti compound. Extensive experiments were conducted, and measures to reduce the twinning rate compared to the conventional technology were examined. As a result, it was found that the oxygen basis weight of the undercoat and the amount of Ti contained in the undercoat have a great effect on the occurrence of twins. The inventors have newly found that it is effective to increase the oxygen basis weight and limit the amount of Ti in the undercoat, and have developed the present invention.
That is, the gist and configuration of the present invention are as follows.
1.Si:2.8~3.5mass%およびMn:0.01~1.0mass%を含有し、残部がFeおよび不可避的不純物である成分組成と、Tiを含みフォルステライトを主体とする下地被膜および前記下地被膜上に形成される上塗り被膜と、を有し、前記下地被膜において、酸素目付量が3.8g/m以上およびTi目付量が0.06g/m以下である方向性電磁鋼板。 1. A component composition containing Si: 2.8 to 3.5 mass% and Mn: 0.01 to 1.0 mass%, the balance being Fe and unavoidable impurities, and a base coat containing Ti and mainly composed of forsterite and and a topcoat formed on the undercoat, wherein the undercoat has an oxygen basis weight of 3.8 g/m 2 or more and a Ti basis weight of 0.06 g/m 2 or less. .
2.前記成分組成は、さらに、Al:0mass%超0.015mass%以下、N:0mass%超0.007mass%以下、Cu:0mass%超0.14mass%以下、Ni:0mass%超0.3mass%以下、Cr:0mass%超0.06mass%以下、Sb:0mass%超0.04mass%以下、Sn:0mass%超0.04mass%以下、Mo:0mass%超0.1mass%以下、B:0mass%超0.01mass%以下、P:0mass%超0.06mass%以下、Nb:0mass%超0.02mass%以下、Bi:0mass%超0.01mass%以下、Ge:0mass%超0.05mass%以下、As:0mass%超0.05mass%以下、Te:0mass%超0.02mass%以下、Ti:0mass%超0.04mass%以下およびV:0mass%超0.03mass%以下のうちから選ばれる1種または2種以上を含有する前記1に記載の方向性電磁鋼板。 2. The component composition further includes Al: more than 0 mass% and 0.015 mass% or less, N: more than 0 mass% and 0.007 mass% or less, Cu: more than 0 mass% and 0.14 mass% or less, Ni: more than 0 mass% and 0.3 mass% or less. , Cr: more than 0 mass% and 0.06 mass% or less, Sb: more than 0 mass% and 0.04 mass% or less, Sn: more than 0 mass% and 0.04 mass% or less, Mo: more than 0 mass% and 0.1 mass% or less, B: more than 0 mass% 0.01 mass% or less, P: more than 0 mass% and 0.06 mass% or less, Nb: more than 0 mass% and 0.02 mass% or less, Bi: more than 0 mass% and 0.01 mass% or less, Ge: more than 0 mass% and 0.05 mass% or less, One selected from As: more than 0 mass% and 0.05 mass% or less, Te: more than 0 mass% and 0.02 mass% or less, Ti: more than 0 mass% and 0.04 mass% or less, and V: more than 0 mass% and 0.03 mass% or less Or the grain-oriented electrical steel sheet according to 1 above containing two or more kinds.
3.C:0.001~0.10mass%、Si:2.8~3.5mass%、Mn:0.01~1.0mass%、SおよびSeのうちから選ばれる1種または2種を合計で0.005~0.03mass%を含有し、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブに熱間圧延を施して熱延板とし、該熱延板に、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して冷延板とし、該冷延板に、一次再結晶焼鈍を施し、次いで焼鈍分離剤を塗布してから仕上焼鈍を施して仕上焼鈍板とし、該仕上焼鈍板に、コーティング液を塗布し、平坦化焼鈍を施して方向性電磁鋼板を得る、方向性電磁鋼板の製造方法であって、
 前記一次再結晶焼鈍後の鋼板表面における酸素目付量を1.5g/m以上2.1g/m以下とすること、前記焼鈍分離剤として、MgO100質量部に対してTiOを0.6~2.7質量部含有する焼鈍分離剤を用いること、および前記仕上焼鈍における700~950℃間の昇温速度を15℃/h以上とすることを特徴とする、方向性電磁鋼板の製造方法。
3. C: 0.001 to 0.10 mass%, Si: 2.8 to 3.5 mass%, Mn: 0.01 to 1.0 mass%, one or two selected from S and Se in total 0 A steel slab having a chemical composition containing 0.005 to 0.03 mass% and the balance being Fe and unavoidable impurities is hot-rolled to form a hot-rolled sheet, and the hot-rolled sheet is subjected to one or intermediate annealing. A cold-rolled sheet is obtained by sandwiching and cold-rolling two or more times, and the cold-rolled sheet is subjected to primary recrystallization annealing, then an annealing separator is applied, and then finish annealing is performed to obtain a finish-annealed sheet. A method for producing a grain-oriented electrical steel sheet, comprising applying a coating liquid to an annealed sheet and performing flattening annealing to obtain a grain-oriented electrical steel sheet,
The oxygen basis weight on the surface of the steel sheet after the primary recrystallization annealing is 1.5 g/m 2 or more and 2.1 g/m 2 or less, and as the annealing separator, TiO 2 is 0.6 per 100 parts by mass of MgO. A method for producing a grain-oriented electrical steel sheet, characterized by using an annealing separator containing up to 2.7 parts by mass, and setting the rate of temperature increase between 700 to 950°C in the final annealing to 15°C/h or more. .
4.前記鋼スラブの成分組成は、さらに、Al:0.003~0.015mass%、N:0.001~0.007mass%、Cu:0.01~0.14mass%、Ni:0.01~0.3mass%、Cr:0.01~0.06mass%、Sb:0.004~0.04mass%、Sn:0.005~0.04mass%、Mo:0.01~0.1mass%、B:0.001~0.01mass%、P:0.005~0.06mass%、Nb:0.002~0.02mass%、Bi:0.001~0.01mass%、Ge:0.001~0.05mass%、As:0.005~0.05mass%、Te:0.005~0.02mass%、Ti:0.005~0.04mass%およびV:0.005~0.03mass%のうちから選ばれる1種または2種以上を含有する前記3に記載の方向性電磁鋼板の製造方法。 4. The chemical composition of the steel slab further includes Al: 0.003 to 0.015 mass%, N: 0.001 to 0.007 mass%, Cu: 0.01 to 0.14 mass%, Ni: 0.01 to 0. .3 mass%, Cr: 0.01 to 0.06 mass%, Sb: 0.004 to 0.04 mass%, Sn: 0.005 to 0.04 mass%, Mo: 0.01 to 0.1 mass%, B: 0.001 to 0.01mass%, P: 0.005 to 0.06mass%, Nb: 0.002 to 0.02mass%, Bi: 0.001 to 0.01mass%, Ge: 0.001 to 0.01mass% 05 mass%, As: 0.005 to 0.05 mass%, Te: 0.005 to 0.02 mass%, Ti: 0.005 to 0.04 mass% and V: 0.005 to 0.03 mass% 3. The method for producing a grain-oriented electrical steel sheet according to 3 above, containing one or more of
 本発明によれば、強い加工が施される用途に用いた場合でも、双晶変形が起き難く、かつ、磁気特性の劣化も小さい方向性電磁鋼板を提供することができる。従って、本発明の方向性電磁鋼板を用いることによって、小型発電機の鉄心や巻きコア等に加工する際の割れや欠け等のトラブルを低減できるだけでなく、エネルギーロスの小さい発電機や変圧器等の製造を可能とする。 According to the present invention, it is possible to provide a grain-oriented electrical steel sheet that is less likely to undergo twinning deformation and has less deterioration in magnetic properties even when used for applications that require strong working. Therefore, by using the grain-oriented electrical steel sheet of the present invention, it is possible not only to reduce troubles such as cracks and chips when processing iron cores and wound cores of small generators, but also to reduce energy loss in generators, transformers, etc. enables the production of
 まず、本発明を導くに至った実験結果について説明する。
 C:0.04mass%、Si:2.9mass%、Mn:0.06mass%、Se:0.01mass%およびSb:0.01mass%を含有し、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブに、公知の方法で熱間圧延を施して熱延板とし、その後850℃×30秒の熱延板焼鈍を施した。その後、900℃×1分間の中間焼鈍を挟む2回以上の冷間圧延により最終板厚が0.30mmの冷延板に仕上げた。次いで、PHO/PHが0.39~0.61の種々の雰囲気下において、冷延板に、840℃×140秒の脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。このとき、一次再結晶焼鈍後の冷延板(以下、脱炭焼鈍板ともいう)の表面における酸素目付量を、表1に示すように、種々に変更した。その後、脱炭焼鈍板の表面および裏面の両方の面に、焼鈍分離剤を塗布した。焼鈍分離剤としては、MgO100質量部に対するTiOの添加量を表1に示す通りとなるように種々に変化させてなる粉体をスラリー状にしたものを用い、水和量が2.0mass%となるように、15g/mで塗布した。塗布後、乾燥させてからコイルに巻き取り、最終仕上焼鈍に供した。最終仕上焼鈍は、700~950℃間の昇温速度を15℃/hで昇温し、引き続き純化のために1160℃、5時間の保定処理を行った。この最終仕上焼鈍において、脱炭焼鈍板の表面に下地被膜を形成した。その後、下地被膜の上に、リン酸マグネシウム-コロイド状シリカ-無水クロム酸からなるコーティング液を塗布し、これの焼付けと鋼板の形状矯正を兼ねた平坦化焼鈍を施して製品コイル(方向性電磁鋼板)を得た。この平坦化焼鈍において、下地被膜上に上塗り被膜を形成した。
First, the experimental results leading to the present invention will be described.
C: 0.04 mass%, Si: 2.9 mass%, Mn: 0.06 mass%, Se: 0.01 mass% and Sb: 0.01 mass%, the balance being Fe and unavoidable impurities The steel slab having the steel sheet was hot-rolled by a known method to obtain a hot-rolled sheet, and then hot-rolled sheet annealing was performed at 850° C. for 30 seconds. After that, cold rolling was performed twice or more with intermediate annealing at 900° C. for 1 minute to finish a cold-rolled sheet having a final thickness of 0.30 mm. Next, the cold-rolled sheets were subjected to primary recrystallization annealing, which also serves as decarburization annealing, at 840° C. for 140 seconds in various atmospheres with a PH 2 O/PH 2 ratio of 0.39 to 0.61. At this time, as shown in Table 1, the oxygen basis weight on the surface of the cold-rolled sheet after the primary recrystallization annealing (hereinafter also referred to as decarburization-annealed sheet) was variously changed. After that, an annealing separator was applied to both the front and back surfaces of the decarburized annealed sheet. As the annealing separating agent, a powder obtained by changing the amount of TiO 2 added to 100 parts by mass of MgO as shown in Table 1 was slurried, and the amount of hydration was 2.0 mass%. It was applied at 15 g/m 2 so as to be After the application, it was dried, wound into a coil, and subjected to final annealing. In the final annealing, the temperature was raised from 700 to 950°C at a temperature elevation rate of 15°C/h, followed by holding treatment at 1160°C for 5 hours for purification. In this final finish annealing, an undercoat was formed on the surface of the decarburized annealed sheet. After that, a coating solution consisting of magnesium phosphate, colloidal silica, and chromic anhydride is applied to the undercoating, and then baked and flattened to correct the shape of the steel plate. steel plate) was obtained. In this flattening annealing, a top coat was formed on the base coat.
 このようにして得られた各鋼板について、一次再結晶焼鈍後の脱炭焼鈍板の酸素目付量(以下、脱炭焼鈍後の酸素目付量とも示す)、下地被膜の酸素目付量およびTi目付量の各測定結果と、鋼板における磁束密度および双晶発生率の調査結果とを、表1に示す。 For each steel sheet thus obtained, the oxygen basis weight of the decarburized annealed sheet after primary recrystallization annealing (hereinafter also referred to as the oxygen basis weight after decarburization annealing), the oxygen basis weight and the Ti basis weight of the undercoat Table 1 shows the measurement results of , and the investigation results of the magnetic flux density and twinning rate in the steel sheet.
 ここで、上記の酸素目付量は、融解-赤外線吸収法により測定することができる。同様に、Ti目付量は、発光分光分析法により測定することができる。 Here, the above oxygen basis weight can be measured by a melting-infrared absorption method. Similarly, the Ti basis weight can be measured by emission spectroscopy.
 また、磁束密度は、800A/mで励磁したときの磁束密度:B(T)を、JIS C2550で規定された方法に従って測定した。 In addition, the magnetic flux density is the magnetic flux density when excited at 800 A / m: B 8 (T) according to JIS It was measured according to the method specified in C2550.
 さらに、双晶発生率は、各鋼板からJIS5号試験片(試料)を60枚以上採取し、各JIS5号試験片を室温で引張速度10m/minの条件で引張試験に供したのち、酸洗してマクロエッチングした面を目視で観察し、双晶ラインが認められた試料を双晶発生試料と判定することで得られる、前記引張試験に供した全試料枚数に対する双晶発生試料の枚数の比率(%)である。 Furthermore, the twinning rate was measured by taking 60 or more JIS No. 5 test pieces (samples) from each steel plate, subjecting each JIS No. 5 test piece to a tensile test at room temperature at a tensile speed of 10 m / min, and then pickling it. The macro-etched surface is visually observed, and a sample in which twin lines are observed is determined to be a twinned sample. It is a ratio (%).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、下地被膜において、酸素目付量が3.8g/m以上かつTi目付量が0.06g/m以下であれば、双晶の発生率が1.5%以下と効果的に低減していることがわかる。 From Table 1, it can be seen that in the undercoating, if the oxygen basis weight is 3.8 g/m 2 or more and the Ti basis weight is 0.06 g/m 2 or less, the twinning rate is effectively 1.5% or less. It turns out that it is decreasing.
 さらに、表1に示したように、下地被膜の酸素目付量を3.8g/m以上に制御するには、脱炭焼鈍後の酸素目付量を高めること、焼鈍分離剤中のTiOの量を増加させること、の両方が寄与している。ただし、脱炭焼鈍後の酸素目付量を高くしすぎると、下地被膜の酸素目付量は急激に低下した。また、下地被膜のTi目付量の制御にも、同じく脱炭焼鈍後の酸素目付量と焼鈍分離剤中のTiO量の両方が寄与しており、Ti目付量を低減する、特に0.06g/m以下に収めるためには、焼鈍分離剤中のTiO含有量を低減するだけでなく、脱炭焼鈍後の酸素目付量を低下させることも有効であった。 Furthermore, as shown in Table 1, in order to control the oxygen basis weight of the undercoat to 3.8 g/m 2 or more, the oxygen basis weight after decarburization annealing should be increased, and the amount of TiO 2 in the annealing separator should be increased. Both increasing the amount contributes. However, when the oxygen basis weight after decarburization annealing was increased too much, the oxygen basis weight of the undercoat decreased rapidly. In addition, both the oxygen basis weight after decarburization annealing and the TiO 2 amount in the annealing separator also contribute to the control of the Ti basis weight of the undercoat, reducing the Ti basis weight, especially 0.06 g /m 2 or less, it was effective not only to reduce the TiO 2 content in the annealing separator, but also to reduce the oxygen basis weight after decarburization annealing.
 このような結果が得られた理由については明らかではないが、本発明者らは以下のように考えている。
 方向性電磁鋼板は、二次再結晶粒の方位が{110}<001>に高度に集積しているが、このような結晶方位を有する鋼板では、圧延方向に変形が加わると、{112}<111>の辷り系が働いて双晶変形が起こる。ただし、双晶変形は、変形エネルギーが高いため、歪み速度が速い場合や、低温で変形された場合にのみ起こる。一般に、このような双晶の低減は、例えば粗大介在物を減らしたり結晶粒径を微細化させたりして局所的な応力集中を減らすこと、不純物を減らして材料変形に対する強度を低減することなどが有効とされている。被膜との関係では、上掲の特許文献1に記載のように被膜中にSを導入したり、特許文献2に記載のようにTiとNの比率を調節したりして、被膜の強度を高めるのが有効であることが知られている。これに対して、上記の知見は、被膜強度以外の要因が関与していることを示唆している。すなわち、本発明者らは、上塗り被膜によるコーティング張力を地鉄に直接伝えないことが重要と考えた。つまり、上塗り被膜により鋼板は引っ張り方向の応力がかかっており、この状況下でさらに変形応力が加わったときに双晶が発生する。逆に、被膜の応力がかからなければ多少の変形応力でも双晶は発生しにくい。
Although the reason why such a result was obtained is not clear, the present inventors consider as follows.
In grain-oriented electrical steel sheets, the orientation of secondary recrystallized grains is highly concentrated in {110}<001>. The sliding system of <111> works to cause deformation twinning. However, the twinning deformation occurs only when the strain rate is high or when the deformation is performed at a low temperature because the deformation energy is high. In general, such twins are reduced by, for example, reducing coarse inclusions or refining the crystal grain size to reduce local stress concentration, or by reducing impurities to reduce strength against material deformation. is considered valid. In relation to the coating, the strength of the coating is increased by introducing S into the coating as described in Patent Document 1 above, or by adjusting the ratio of Ti and N as described in Patent Document 2. It is known that increasing In contrast, the above findings suggest that factors other than film strength are involved. That is, the present inventors considered that it is important not to directly transmit the coating tension due to the overcoat to the steel substrate. In other words, the top coat applies stress in the tensile direction to the steel sheet, and under this condition, twinning occurs when deformation stress is further applied. Conversely, if the film stress is not applied, twins are unlikely to occur even with some deformation stress.
 そして、下地被膜の酸素目付量を一定量以上高めると、上層の上塗り被膜の応力が、下地被膜中で緩和され、地鉄に付与される応力が低下するのである。また、下地被膜中のTi含有量が多くなるほど下地被膜そのものの張力を高めるため、双晶発生が起こりやすくなるのである。 Then, when the oxygen basis weight of the undercoating is increased by a certain amount or more, the stress of the overcoating coating in the upper layer is relaxed in the undercoating, and the stress applied to the base steel is reduced. Further, as the Ti content in the undercoat increases, the tension in the undercoat itself increases, so twinning is more likely to occur.
 次に、下地被膜の酸素目付量を制御する方法について述べる。
 下地被膜の酸素目付量は、脱炭焼鈍後の鋼板表面の酸素目付量とおおむね相関するため、これを増やせば下地被膜の酸素目付量も増えることとなる。しかし、脱炭焼鈍後の酸素目付量が多すぎると下地被膜の形成量が多くなりすぎ、下地被膜が部分的に剥離することにより、逆に下地被膜の酸素目付量が低下してしまう。そのため、脱炭焼鈍後の酸素目付量は適正範囲が存在することとなる。
Next, a method for controlling the oxygen basis weight of the undercoat will be described.
Since the oxygen basis weight of the undercoating generally correlates with the oxygen basis weight of the surface of the steel sheet after decarburization annealing, increasing this increases the oxygen basis weight of the undercoating. However, if the oxygen basis weight after decarburization annealing is too high, the amount of the undercoat formed will be too large, and the undercoat will partially peel off, thereby decreasing the oxygen basis weight of the undercoat. Therefore, there is an appropriate range for the oxygen basis weight after decarburization annealing.
 さらに、脱炭焼鈍後の酸素目付量を調整する以外に、焼鈍分離剤中のTiO量を増やすことによっても、下地被膜の酸素目付量を増加することができる。すなわち、TiOは、仕上焼鈍中に分解して酸素を発生し、それが鋼板を酸化させることにより下地被膜の形成量を増やすことになる。 Furthermore, in addition to adjusting the oxygen basis weight after decarburization annealing, the oxygen basis weight of the undercoating can also be increased by increasing the amount of TiO 2 in the annealing separator. That is, TiO 2 decomposes during final annealing to generate oxygen, which oxidizes the steel sheet and increases the amount of undercoating formed.
 さらに、下地被膜のTi目付量を制御する方法について述べる。
 Ti目付量については、Ti源が焼鈍分離剤中のTiOであるため、このTiOの添加量にほぼ相関する。TiO量の調整以外に、脱炭焼鈍後の酸素目付量も影響を与える。これは、脱炭焼鈍後の酸素目付量が高いと、サブスケール表層に存在する酸化物、例えばFeSiOのような物質とTiOが置換反応を起こしてFeTiOが形成され、ここからTiが被膜中に侵入されやすくなるため、被膜中Ti量が高まるものと考えられる。
Furthermore, a method for controlling the Ti weight per unit area of the undercoat will be described.
Since the Ti source is TiO 2 in the annealing separator, the Ti basis weight is almost correlated with the amount of TiO 2 added. Besides adjusting the amount of TiO 2 , the basis weight of oxygen after decarburization annealing also has an effect. This is because when the oxygen basis weight after decarburization annealing is high, oxides present in the subscale surface layer, such as Fe 2 SiO 4 , and TiO 2 undergo a substitution reaction to form FeTiO 3 . It is considered that the amount of Ti in the coating increases because Ti easily penetrates into the coating.
 以上の通り、脱炭焼鈍後の酸素目付量および焼鈍分離剤中のTiO添加量は共に、下地被膜の酸素目付量およびTi目付量の双方に影響を与えることから、脱炭焼鈍後の酸素目付量と焼鈍分離剤中のTiO添加量をそれぞれ最適化することにより、下地被膜の酸素目付量およびTi目付量を適正範囲に収め、双晶発生率を低減させることができる。 As described above, both the oxygen basis weight after decarburization annealing and the amount of TiO2 added in the annealing separator affect both the oxygen basis weight and the Ti basis weight of the undercoat. By optimizing the basis weight and the amount of TiO 2 added in the annealing separator, respectively, the oxygen basis weight and the Ti basis weight of the undercoat can be kept within appropriate ranges, and the twinning rate can be reduced.
 以下に、本発明について具体的に述べる。まず、本発明が対象とする方向性電磁鋼板について説明する。
 本発明が対象とする方向性電磁鋼板は、Si:2.8~3.5mass%およびMn:0.01~1.00mass%を含有し、残部がFeおよび不可避的不純物である成分組成と、Tiを含みフォルステライトを主体とする下地被膜および該下地被膜上に形成される上塗り被膜と、を有するものである。
The present invention will be specifically described below. First, the grain-oriented electrical steel sheet targeted by the present invention will be described.
The grain-oriented electrical steel sheet targeted by the present invention contains Si: 2.8 to 3.5 mass%, Mn: 0.01 to 1.00 mass%, and the balance is Fe and unavoidable impurities. It has an undercoat containing Ti and mainly composed of forsterite and a top coat formed on the undercoat.
 この方向性電磁鋼板は、下地被膜において、酸素目付量を3.8g/m以上とし、かつTi目付量を0.06g/m以下とすることが肝要である。これは、上塗り被膜の張力によるひずみが双晶を促進しており、上塗り被膜による応力を下地被膜が緩和すれば双晶発生率が抑えられるとの、上記した新規知見によるものである。
 すなわち、下地被膜の酸素目付量が3.8g/mを下回ると、コーティングの張力を下地被膜が緩和する能力が低下する結果、双晶発生率が増大する。また、Ti目付量が0.06g/mを超えると、下地被膜そのものの張力が増大するため、やはり双晶発生率が増大する。従って、下地被膜において、酸素目付量を3.8g/m以上とし、かつTi目付量を0.06g/m以下とする。
In this grain-oriented electrical steel sheet, it is essential that the undercoating has an oxygen basis weight of 3.8 g/m 2 or more and a Ti basis weight of 0.06 g/m 2 or less. This is based on the above-described new knowledge that strain due to tension in the overcoat promotes twinning, and that if the stress caused by the overcoat is relieved by the undercoat, the occurrence of twins can be suppressed.
That is, when the oxygen basis weight of the undercoat is less than 3.8 g/m 2 , the ability of the undercoat to relax the tension of the coating decreases, resulting in an increase in twinning rate. On the other hand, if the Ti basis weight exceeds 0.06 g/m 2 , the tension of the undercoat itself increases, so the twinning rate also increases. Therefore, in the undercoating, the oxygen basis weight should be 3.8 g/m 2 or more and the Ti basis weight should be 0.06 g/m 2 or less.
 一方、下地被膜において、酸素目付量の上限およびTi目付量の下限は特に限定する必要はない。ただし、被膜密着性の観点から、下地被膜における酸素目付量は、5.0g/m以下であることが好ましい。また、同様の観点から、下地被膜におけるTi目付量は、0.01g/m以上であることが好ましい。 On the other hand, it is not necessary to limit the upper limit of the oxygen basis weight and the lower limit of the Ti basis weight in the undercoating. However, from the viewpoint of film adhesion, the oxygen basis weight of the undercoat is preferably 5.0 g/m 2 or less. From the same point of view, it is preferable that the Ti basis weight in the undercoating is 0.01 g/m 2 or more.
 上記の下地被膜上に形成する上塗り被膜は、特に種類は問わず、方向性電磁鋼板の上塗り被膜として一般的な被膜を適用できる。例えば、リン酸マグネシウム-コロイド状シリカ-硫酸チタンからなるコーティング液を塗布、焼付けした張力付与型の被膜を適用できる。 For the overcoat to be formed on the undercoat, any type of overcoat can be applied as a topcoat for grain-oriented electrical steel sheets. For example, a tension-imparting coating obtained by coating and baking a coating liquid consisting of magnesium phosphate-colloidal silica-titanium sulfate can be applied.
 さらに、本発明が対象とする方向性電磁鋼板は、磁束密度がBで1.88T以下であることが望ましい。磁束密度を低くすることが望ましい理由は、通常、磁束密度が高いと二次再結晶粒径が大きくなり、粒界密度が低下して双晶が発展しやすくなるためである。磁束密度を低めに設定して二次再結晶粒径を微細化させると、加工時に付与される歪が局所的に集中するのを防止し、双晶変形を防ぎやすくできる。従って、例えば、コイルを温度勾配下で焼鈍して、二次再結晶粒を伸張させるような技術には、本発明を適用することはできない。また、仕上焼鈍中に二次再結晶温度域で保定を行って二次再結晶粒を成長させる技術も本発明には不適である。 Furthermore, the grain-oriented electrical steel sheet targeted by the present invention preferably has a magnetic flux density of 1.88 T or less at B8 . The reason why it is desirable to lower the magnetic flux density is that when the magnetic flux density is high, the secondary recrystallized grain size usually becomes large, the grain boundary density decreases, and twin crystals are likely to develop. If the secondary recrystallized grain size is made finer by setting the magnetic flux density to a lower value, it is possible to prevent the strain imparted during working from being locally concentrated, making it easier to prevent twinning deformation. Therefore, the present invention cannot be applied to, for example, a technique in which a coil is annealed under a temperature gradient to elongate secondary recrystallized grains. Also, the technique of growing secondary recrystallized grains by holding in the secondary recrystallization temperature range during final annealing is not suitable for the present invention.
 上記方向性電磁鋼板の成分組成は、さらに、Al、N、Cu、Ni、Cr、Sb、Sn、Mo、B、P、Nb、Bi、Ge、As、Te、TiおよびVのうちから選ばれる1種または2種以上を含有してもよい。具体的に、上記方向性電磁鋼板の成分組成は、Al:0mass%超0.015mass%以下、N:0mass%超0.007mass%以下、Cu:0mass%超0.14mass%以下、Ni:0mass%超0.3mass%以下、Cr:0mass%超0.06mass%以下、Sb:0mass%超0.04mass%以下、Sn:0mass%超0.04mass%以下、Mo:0mass%超0.1mass%以下、B:0mass%超0.01mass%以下、P:0mass%超0.06mass%以下、Nb:0mass%超0.02mass%以下、Bi:0mass%超0.01mass%以下、Ge:0mass%超0.05mass%以下、As:0mass%超0.05mass%以下、Te:0mass%超0.02mass%以下、Ti:0mass%超0.04mass%以下およびV:0mass%超0.03mass%以下のうちから選ばれる1種または2種以上を含有してもよい。 The chemical composition of the grain-oriented electrical steel sheet is further selected from Al, N, Cu, Ni, Cr, Sb, Sn, Mo, B, P, Nb, Bi, Ge, As, Te, Ti and V. You may contain 1 type(s) or 2 or more types. Specifically, the chemical composition of the grain-oriented electrical steel sheet is as follows: Al: more than 0 mass% and 0.015 mass% or less, N: more than 0 mass% and 0.007 mass% or less, Cu: more than 0 mass% and 0.14 mass% or less, Ni: 0 mass% % to 0.3 mass%, Cr: 0 mass% to 0.06 mass%, Sb: 0 mass% to 0.04 mass%, Sn: 0 mass% to 0.04 mass%, Mo: 0 mass% to 0.1 mass% Below, B: more than 0 mass% and 0.01 mass% or less, P: more than 0 mass% and 0.06 mass% or less, Nb: more than 0 mass% and 0.02 mass% or less, Bi: more than 0 mass% and 0.01 mass% or less, Ge: 0 mass% More than 0.05 mass% or less, As: more than 0 mass% and 0.05 mass% or less, Te: more than 0 mass% and 0.02 mass% or less, Ti: more than 0 mass% and 0.04 mass% or less, and V: more than 0 mass% and 0.03 mass% or less You may contain 1 type(s) or 2 or more types chosen from the inside.
 次に、上記の方向性電磁鋼板を製造するための方法について説明する。
 まず、鋼スラブの成分組成について説明する。
Next, a method for manufacturing the grain-oriented electrical steel sheet will be described.
First, the chemical composition of the steel slab will be explained.
C:0.001~0.10mass%
 Cは、ゴス方位結晶粒を発生させるために必要な成分であり、かかる作用を発現させるためには0.001mass%以上含有させる必要がある。一方、0.10mass%を超える添加は、その後の脱炭焼鈍で磁気時効を起こさないレベルまで脱炭することが難しくなる。よって、Cの含有量は0.001~0.10mass%の範囲とする。Cの含有量は、好ましくは0.015mass%以上であり、また、好ましくは0.08mass%以下である。
C: 0.001 to 0.10 mass%
C is a component necessary for generating Goss-oriented crystal grains, and should be contained in an amount of 0.001 mass% or more in order to exhibit such an effect. On the other hand, addition exceeding 0.10 mass% makes it difficult to decarburize to a level that does not cause magnetic aging in the subsequent decarburization annealing. Therefore, the C content should be in the range of 0.001 to 0.10 mass%. The content of C is preferably 0.015 mass% or more, and preferably 0.08 mass% or less.
Si:2.8~3.5mass%
 Siは、鋼の電気抵抗を高めて鉄損を低減すると共に、BCC組織を安定化し、高温熱処理を可能とするために必要な成分であり、少なくとも2.8mass%の添加を必要とする。しかし、3.5mass%を超える添加は、加工性を低下させ、冷間圧延して製造することが難しくなる。よって、Siの含有量は2.8~3.5mass%の範囲とする。双晶発生防止の効果も含めると、Siの含有量は、好ましくは2.8mass%以上であり、また、好ましくは3.3mass%以下である。
Si: 2.8-3.5 mass%
Si is a necessary component for increasing the electrical resistance of steel to reduce core loss, stabilizing the BCC structure, and enabling high-temperature heat treatment, and should be added in an amount of at least 2.8 mass%. However, addition of more than 3.5 mass% lowers the workability and makes it difficult to manufacture by cold rolling. Therefore, the Si content should be in the range of 2.8 to 3.5 mass%. Including the effect of preventing the occurrence of twins, the Si content is preferably 2.8 mass% or more and preferably 3.3 mass% or less.
Mn:0.01~1.0mass%
 Mnは、鋼の熱間脆性を改善するのに有効である他、SやSeを含有している場合には、MnSやMnSe等の析出物を形成し、抑制剤(インヒビター)として機能する元素である。上記効果は0.01mass%以上の添加で得られる。しかし、1.0mass%を超えて添加すると、MnSe等の析出物が粗大化し、インヒビターとしての効果が失われてしまう。よって、Mnの含有量は0.01~1.0mass%の範囲とする。Mnの含有量は、好ましくは0.03mass%以上であり、また、好ましくは0.50mass%以下である。
Mn: 0.01 to 1.0 mass%
Mn is effective in improving the hot shortness of steel, and when it contains S and Se, it forms precipitates such as MnS and MnSe, and is an element that functions as an inhibitor. is. The above effect can be obtained by addition of 0.01 mass% or more. However, if it is added in excess of 1.0 mass%, precipitates such as MnSe become coarse, and the inhibitor effect is lost. Therefore, the content of Mn should be in the range of 0.01 to 1.0 mass%. The content of Mn is preferably 0.03 mass% or more and preferably 0.50 mass% or less.
S、Se:1種または2種合計で0.005~0.03mass%
 SおよびSeは、MnやCuと結合してMnSe,MnS,Cu2-xSe,Cu2-xSを形成し、鋼中に分散第二相として析出し、インヒビター作用を発揮する有用成分である。SおよびSeの合計含有量が0.005mass%に満たないと、上記の添加効果が十分ではなく、一方、0.03mass%を超える添加は、二次粒径が粗大化して双晶発生に不利となる。そのため、これらの元素の添加量は、単独添加あるいは複合添加のいずれの場合も0.005~0.03mass%の範囲とする。SおよびSeの合計含有量は、好ましくは0.006mass%以上であり、また、好ましくは0.020mass%以下である。
S, Se: 0.005 to 0.03 mass% in total of 1 type or 2 types
S and Se are useful components that combine with Mn and Cu to form MnSe, MnS, Cu 2-x Se, and Cu 2-x S, precipitate as dispersed second phases in steel, and exhibit inhibitory action. be. If the total content of S and Se is less than 0.005 mass%, the above addition effect is not sufficient. becomes. Therefore, the amount of these elements to be added should be in the range of 0.005 to 0.03 mass%, whether they are added singly or in combination. The total content of S and Se is preferably 0.006 mass% or more and preferably 0.020 mass% or less.
 なお、本発明の方向性電磁鋼板の製造に用いる鋼スラブは、上記成分組成に加えてさらに、Al(sol.Al):0.003~0.015mass%、N:0.001~0.007mass%、Cu:0.01~0.14mass%、Ni:0.01~0.3mass%、Cr:0.01~0.06mass%、Sb:0.004~0.04mass%、Sn:0.005~0.04mass%、Mo:0.01~0.1mass%、B:0.001~0.01mass%、P:0.005~0.06mass%、Nb:0.002~0.02mass%、Bi:0.001~0.01mass%、Ge:0.001~0.05mass%、As:0.005~0.05mass%、Te:0.005~0.02mass%、Ti:0.005~0.04mass%およびV:0.005~0.03mass%のうちから選ばれる1種または2種以上を含有することができる。 In addition to the above chemical composition, the steel slab used for manufacturing the grain-oriented electrical steel sheet of the present invention further contains Al (sol. Al): 0.003 to 0.015 mass%, N: 0.001 to 0.007 mass%. %, Cu: 0.01 to 0.14 mass%, Ni: 0.01 to 0.3 mass%, Cr: 0.01 to 0.06 mass%, Sb: 0.004 to 0.04 mass%, Sn: 0.04 mass%. 005-0.04mass%, Mo: 0.01-0.1mass%, B: 0.001-0.01mass%, P: 0.005-0.06mass%, Nb: 0.002-0.02mass% , Bi: 0.001 to 0.01 mass%, Ge: 0.001 to 0.05 mass%, As: 0.005 to 0.05 mass%, Te: 0.005 to 0.02 mass%, Ti: 0.005 0.04 mass% and one or more selected from V: 0.005 to 0.03 mass%.
 sol.Al、N、Cu、Ni、Cr、Sb、Sn、Mo、B、P、NbおよびBiの各元素は、結晶粒界や鋼板表面に偏析して補助的なインヒビターとして作用し、磁気特性を適度に向上させる効果があるため、必要に応じて添加することができる。しかし、本発明のように磁束密度を一定以上高めすぎないようにするためには、添加量も従来に比して低めにする必要がある。よって、添加する場合には、上記範囲とするのが好ましい。 Al, N, Cu, Ni, Cr, Sb, Sn, Mo, B, P, Nb and Bi segregate on the grain boundaries and on the surface of the steel sheet and act as auxiliary inhibitors to improve the magnetic properties. can be added as necessary. However, in order to prevent the magnetic flux density from being excessively increased above a certain level as in the present invention, it is necessary to reduce the amount of addition as compared with the prior art. Therefore, when it is added, it is preferable to set it as the above range.
 また、Ge、As、Te、TiおよびVの各元素は、いずれも、安定的にインヒビター効果(抑制力)を有するため、スラブ加熱や仕上焼鈍などの鋼板内での温度ばらつきが生じる工程でも均一に存在することができるため、磁束密度をコイル全長で安定化させる効果があるので、必要に応じて添加することができる。 In addition, since each element of Ge, As, Te, Ti, and V has a stable inhibitory effect (inhibiting power), even in processes such as slab heating and finish annealing, where temperature variations occur within the steel sheet, Since it can be present in the coil, it has the effect of stabilizing the magnetic flux density over the entire length of the coil, so it can be added as necessary.
 なお、前述した成分のうち、Cは製造工程の途中で脱炭されて鋼中から除去され、S、Seは、最終仕上焼鈍において純化されて鋼中から除去されるため、製品段階では、いずれも含有量が不可避的不純物レベルとなる。 Among the components described above, C is decarburized during the manufacturing process and removed from the steel, and S and Se are purified and removed from the steel in the final annealing. The content is also at the level of unavoidable impurities.
 次に、本発明に係る方向性電磁鋼板の製造条件について詳しく説明する。
 本発明の方向性電磁鋼板は、上記に説明した成分組成を有する鋼を従来公知の精錬プロセスで溶製し、連続鋳造法または造塊-分塊圧延法等を用いて鋼素材(鋼スラブ)とし、その後、上記鋼素材に熱間圧延を施して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とする。本発明のように、磁束密度を上げすぎずに二次粒を微細化させ、双晶発生を抑制させる目的の場合、最終冷延圧下率は低めが望ましい。最終冷延圧下率は、具体的には、50~70%、さらに望ましくは55~66%とすることが好ましい。
Next, manufacturing conditions for the grain-oriented electrical steel sheet according to the present invention will be described in detail.
The grain-oriented electrical steel sheet of the present invention is produced by melting steel having the chemical composition described above by a conventionally known refining process, and using a continuous casting method or an ingot casting-slabbing rolling method or the like to form a steel material (steel slab). After that, the steel material is hot-rolled to obtain a hot-rolled sheet, and if necessary, hot-rolled sheet annealing is performed, and cold rolling is performed once or twice or more with intermediate annealing. The cold-rolled sheet shall be thick. For the purpose of refining secondary grains and suppressing the occurrence of twins without excessively increasing the magnetic flux density, as in the present invention, a lower final cold rolling reduction is desirable. Specifically, the final cold rolling reduction is preferably 50 to 70%, more preferably 55 to 66%.
 次いで、冷延板に、一次再結晶焼鈍あるいは脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。また、このとき、必要に応じて窒化処理を施してもよい。この際に形成させる(酸化膜の)酸素目付量を従来よりも高めに調節することが、本発明の第1の特徴であり、本発明の主たる要素のうちの一つである。
 すなわち、一次再結晶焼鈍後の鋼板表面における酸素目付量が1.5~2.1g/mとなるように、該一次再結晶焼鈍における温度、時間および雰囲気の少なくとも1つを調節する。ここで、一次再結晶焼鈍後の鋼板表面における酸素目付量を1.5~2.1g/mとするのは、下地被膜における酸素目付量およびTi目付量を適切な範囲とするためである。特に、上記酸素目付量が1.5g/mを下回ると、下地被膜の形成が不十分となり、また、上記酸素目付量が2.1g/mを超えると、下地被膜の形成が過剰となり、最終的には点状剥離を生じてしまい、十分な効果が得られなくなる。
Next, the cold-rolled sheet is subjected to primary recrystallization annealing or primary recrystallization annealing that also serves as decarburization annealing. Moreover, at this time, nitriding treatment may be performed as necessary. It is the first feature of the present invention and one of the main elements of the present invention to adjust the oxygen basis weight (of the oxide film) formed at this time to be higher than before.
That is, at least one of the temperature, time and atmosphere in the primary recrystallization annealing is adjusted so that the oxygen basis weight on the steel sheet surface after the primary recrystallization annealing is 1.5 to 2.1 g/m 2 . Here, the reason why the oxygen basis weight on the surface of the steel sheet after primary recrystallization annealing is 1.5 to 2.1 g/m 2 is to set the oxygen basis weight and the Ti basis weight in the undercoating to appropriate ranges. . In particular, when the oxygen basis weight is less than 1.5 g/m 2 , the formation of the undercoat becomes insufficient, and when the oxygen basis weight exceeds 2.1 g/m 2 , the formation of the undercoat becomes excessive. In the end, point-like peeling occurs, and a sufficient effect cannot be obtained.
 一次再結晶焼鈍後の酸素目付量を上記の範囲とするための一次再結晶焼鈍の条件として、焼鈍温度は700~900℃、焼鈍時間は30~300秒の範囲とすることが好ましい。焼鈍温度が700℃未満、もしくは焼鈍時間が30秒未満では、所望の酸素目付量が確保されなかったり、脱炭が不十分となったりする。一方で、焼鈍温度が900℃を超えたり焼鈍時間が300秒を超えたりすると、酸素目付量が過大となる。また、脱炭焼鈍の際は、湿水素雰囲気とする。露点は、45~60℃の範囲、H濃度については常法通りとし、40%から80%の範囲で行うことが可能である。露点とH濃度から、雰囲気酸化性PHO/PHを合わせこむことにより、酸素目付量を調節することができる。このPHO/PHとしては、0.40~0.55の範囲が望ましい。加熱領域や均熱領域の各段階で変更することも可能である。 As the conditions for the primary recrystallization annealing to set the oxygen basis weight after the primary recrystallization annealing within the above range, the annealing temperature is preferably 700 to 900° C. and the annealing time is preferably 30 to 300 seconds. If the annealing temperature is less than 700° C. or the annealing time is less than 30 seconds, the desired oxygen basis weight cannot be secured or decarburization becomes insufficient. On the other hand, if the annealing temperature exceeds 900° C. or the annealing time exceeds 300 seconds, the oxygen basis weight becomes excessive. Also, the decarburization annealing is performed in a wet hydrogen atmosphere. The dew point is in the range of 45 to 60° C., and the H 2 concentration is a conventional method, which can be in the range of 40% to 80%. By adjusting the atmosphere oxidizing PH 2 O/PH 2 from the dew point and the H 2 concentration, the oxygen basis weight can be adjusted. This PH 2 O/PH 2 is desirably in the range of 0.40 to 0.55. It is also possible to change at each stage of the heating zone and soaking zone.
 なお、上記均熱領域は、前段と後段の2段に分けることができる。前段と後段では、均熱温度、雰囲気酸化性PHO/PHの両方、もしくはいずれかを異なる条件とする。均熱温度を変える場合は、前段と後段の温度差を20℃以上とする。酸化性であれば、PHO/PHの差を0.2以上変化させる。一般に、温度に関しては特に限定されるものではないが、後段は前段よりも高温にするとよい。雰囲気酸化性に関して、後段は前段よりも低PHO/PHとすることが多く、本発明でもこれを踏襲することが可能である。さらに、前段を複数段に分けることも可能であり、この場合は最終段とその前の段との間で、温度および/またはPHO/PHの差を上記範囲となるようにする。このように温度またはPHO/PHを変化させたときの最終の均熱領域を、最終段と定義する。 The soaking area can be divided into two stages, a front stage and a rear stage. Both or one of the soaking temperature and the atmospheric oxidizing PH 2 O/PH 2 conditions are different between the former stage and the latter stage. When the soaking temperature is changed, the temperature difference between the former stage and the latter stage shall be 20°C or more. If oxidizing, change the PH 2 O/PH 2 difference by 0.2 or more. In general, the temperature is not particularly limited, but the latter stage should be higher than the former stage. Regarding atmospheric oxidizability, PH 2 O/PH 2 is often lower in the latter stage than in the former stage, and this can be followed in the present invention. Furthermore, it is also possible to divide the preceding stage into a plurality of stages, in which case the temperature and/or PH 2 O/PH 2 difference between the final stage and the preceding stage is within the above range. The final soaking region when changing the temperature or PH 2 O/PH 2 in this manner is defined as the final stage.
 なお、本発明で規定する高い酸素目付量を実現するために、一次再結晶焼鈍の前処理に工夫を凝らすことも可能である。例えば、圧延板(冷延板)のクリーニングの際にケイ酸ナトリウムを含む脱脂液(電解液)で電解脱脂を行う。これにより、SiO化合物を鋼板表面に電着させ、これが脱炭焼鈍時の酸化の起点となって酸素目付量を高めることができる。 In addition, in order to realize the high oxygen basis weight specified in the present invention, it is possible to devise the pretreatment of the primary recrystallization annealing. For example, when cleaning a rolled sheet (cold-rolled sheet), electrolytic degreasing is performed with a degreasing solution (electrolytic solution) containing sodium silicate. As a result, the SiO 2 compound is electrodeposited on the surface of the steel sheet, which serves as a starting point for oxidation during decarburization annealing, and can increase the oxygen basis weight.
 一次再結晶焼鈍後の酸素目付量は素材成分や前工程によって変化するため、それぞれの工程に応じて焼鈍条件を調整する必要がある。例えば、鋼素材中のSi量が3mass%以下の低めの含有量であれば、酸素目付量が低下傾向となるため、露点は高めに設定する。他には、一次再結晶焼鈍前の鋼板表面の、酸素目付量が0.1g/m以上の高い条件であれば、露点を低めに設定することも効果的である。 Since the oxygen basis weight after the primary recrystallization annealing changes depending on the material composition and the previous process, it is necessary to adjust the annealing conditions according to each process. For example, if the Si content in the steel material is as low as 3 mass% or less, the oxygen basis weight tends to decrease, so the dew point is set high. In addition, if the steel sheet surface before primary recrystallization annealing has a high oxygen basis weight of 0.1 g/m 2 or more, it is effective to set the dew point to a lower value.
 さらには、一次再結晶焼鈍後の酸素目付量を高めるために、加熱領域の露点を高めに設定し、均熱領域の露点を低めに設定することも可能である。これらの処理は特に限定されるものでなく、酸素目付量を所望の範囲に収めることができればいずれの条件を用いてもよい。 Furthermore, in order to increase the oxygen basis weight after the primary recrystallization annealing, it is possible to set the dew point of the heating area higher and the dew point of the soaking area lower. These treatments are not particularly limited, and any conditions may be used as long as the oxygen basis weight can be kept within the desired range.
 一次再結晶焼鈍後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布する。このときに焼鈍分離剤は、TiOを添加したものを用いる。ここで、TiOを添加するのは、主に被膜密着性を高める観点からであり、このTiOの添加は従来なされている。本発明では、この、TiO添加量をごく微量にとどめるのが第2の特徴である。すなわち、本発明で用いる焼鈍分離剤におけるTiO添加量は、MgOを100質量部としたときに、0.6~2.7質量部の範囲とする。焼鈍分離剤におけるTiO添加量(含有量)が0.6質量部よりも低いと被膜密着性が低下したり、下地模様が発生したりする。一方、焼鈍分離剤におけるTiO添加量が2.7質量部より高いと、下地被膜中に含有するTi量がTi目付量で0.06g/mを超えてしまって双晶発生率が増大することになる。 After the primary recrystallization annealing, the surface of the steel sheet is coated with an annealing separator containing MgO as a main component. At this time, the annealing separating agent used is one to which TiO 2 is added. The reason why TiO 2 is added here is mainly from the viewpoint of enhancing film adhesion, and this addition of TiO 2 has been conventionally performed. The second feature of the present invention is that the amount of TiO 2 added is kept to a very small amount. That is, the amount of TiO 2 added to the annealing separator used in the present invention is in the range of 0.6 to 2.7 parts by mass when MgO is 100 parts by mass. If the amount (content) of TiO 2 added to the annealing separating agent is less than 0.6 parts by mass, the film adhesion is lowered, and the underlying pattern is generated. On the other hand, when the amount of TiO 2 added to the annealing separator is higher than 2.7 parts by mass, the amount of Ti contained in the undercoating exceeds 0.06 g/m 2 in terms of Ti basis weight, and the twinning rate increases. will do.
 TiO添加量以外の焼鈍分離剤の条件は公知のとおりでよい。例えば、焼鈍分離剤の添加剤としては、TiO以外に、Li,Na,K,Mg,Ca,Sr,Sn,Sb,Cr,Fe,Ni等のホウ酸塩、硫酸塩、炭酸塩、水酸化物、塩化物等を単独あるいは複合して添加することができる。また、焼鈍分離剤の鋼板表面への塗布量は、両面で8~16g/m、水和量は0.5~3.7mass%の範囲とすることが好ましい。さらに焼鈍分離剤は、水でスラリー化してロールコーターにより塗布後、乾燥させるのが常法であるが、本発明でもこの方法を用いることができる。 The conditions of the annealing separator other than the amount of TiO 2 added may be as known. For example, in addition to TiO2 , additives for the annealing separator include borates such as Li, Na, K, Mg, Ca, Sr, Sn, Sb, Cr, Fe, and Ni, sulfates, carbonates, and water. Oxides, chlorides and the like can be added singly or in combination. Also, the amount of the annealing separator applied to the surface of the steel sheet is preferably 8 to 16 g/m 2 on both sides, and the hydration amount is preferably in the range of 0.5 to 3.7 mass%. Further, the annealing separating agent is usually made into a slurry with water, coated with a roll coater, and then dried. This method can also be used in the present invention.
 焼鈍分離剤を塗布後、仕上焼鈍を施す。本発明は、このときの昇温速度を特定するのが、第3の特徴である。すなわち、仕上焼鈍における700~950℃間の昇温速度は、15℃/h以上とする必要がある。この温度域は、下地被膜形成が本格的に開始する温度域であるとともに、焼鈍分離剤中のTiOが分解してTiが下地被膜中に侵入する直前の温度域でもある。この温度域の昇温速度が遅いと、FeSiOからFeTiOができる置換反応が進みすぎることにより、Tiの膜中侵入が進みすぎて下地被膜中Ti含有量が増大してしまう。また、この温度でのMgOの活性も失われる結果、その後の被膜反応が進みにくくなり、下地被膜の酸素目付量も低下してしまう。さらには、この温度で二次再結晶粒の成長も促進する結果、結晶粒径が粗大化してしまう。したがって、仕上焼鈍における700~950℃間の昇温速度は15℃/h以上とし、また、20℃/h以上とすることが好ましい。 After applying the annealing separator, finish annealing is applied. A third feature of the present invention is to specify the rate of temperature increase at this time. That is, the rate of temperature increase between 700 and 950° C. in the final annealing must be 15° C./h or more. This temperature range is the temperature range in which the formation of the undercoating begins in earnest, and is also the temperature range immediately before TiO 2 in the annealing separator decomposes and Ti penetrates into the undercoating. If the rate of temperature rise in this temperature range is slow, the substitution reaction that forms FeTiO3 from Fe2SiO4 proceeds too much, Ti penetrates too much into the film, and the Ti content in the undercoat increases. In addition, as a result of the loss of MgO activity at this temperature, subsequent film reaction is less likely to proceed, and the oxygen basis weight of the undercoat also decreases. Furthermore, as a result of promoting the growth of secondary recrystallized grains at this temperature, the grain size becomes coarse. Therefore, the rate of temperature increase between 700 and 950° C. in the final annealing should be 15° C./h or more, preferably 20° C./h or more.
 仕上焼鈍における他の条件は、常法通りでよい。例えば、雰囲気はH,N,Arのいずれか、もしくはこれらの混合条件でよい。仕上焼鈍(保定処理)について、温度は1150℃以上1250℃以下、時間は3時間以上50時間以下で行われるのが一般的であり、本発明もこの範囲でよい。温度が1150℃より低かったり、時間が3時間より短かったりすると、純化が不十分となり析出物が残存する結果、双晶発生率が増大するおそれがある。一方、温度が1250℃より高かったり、時間が50時間より長かったりすると、コイルが座屈して歩留まりが低下するおそれがある。 Other conditions in the finish annealing may be as usual. For example, the atmosphere may be H 2 , N 2 , Ar, or a mixture of these. The final annealing (retaining treatment) is generally performed at a temperature of 1150° C. or higher and 1250° C. or lower for a time of 3 hours or longer and 50 hours or shorter, and the present invention is also within this range. If the temperature is lower than 1150° C. or the time is shorter than 3 hours, purification may be insufficient and precipitates may remain, resulting in an increased twinning rate. On the other hand, if the temperature is higher than 1250° C. or the time is longer than 50 hours, the coil may buckle and the yield may decrease.
 さらに、最終仕上焼鈍後、絶縁被膜の塗布、焼付けを兼ねた平坦化焼鈍を施すが、これらは公知の方法でよい。
 以上、一連の工程からなる製造方法で製造することにより、強加工をしても双晶の発生しにくい方向性電磁鋼板を得ることができる。
Further, after the final annealing, an insulating coating is applied and flattening annealing, which also serves as baking, is performed.
As described above, it is possible to obtain a grain-oriented electrical steel sheet in which twinning is less likely to occur even if it is subjected to heavy working by manufacturing with a manufacturing method consisting of a series of steps.
 C:0.05mass%、Si:3.2mass%、Mn:0.06mass%、S:0.01mass%、Al:0.006mass%、N:0.004mass%およびMo:0.01mass%を含有し、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブを1410℃×30分加熱後、熱間圧延を施して板厚:2.5mmの熱延板とし、1000℃×1分の熱延板焼鈍を施した。その後、0.9mm厚まで冷間圧延を施し、980℃、1分間の中間焼鈍を施し、その後、冷間圧延を施して0.35mmの最終板厚に仕上げた。 Contains C: 0.05 mass%, Si: 3.2 mass%, Mn: 0.06 mass%, S: 0.01 mass%, Al: 0.006 mass%, N: 0.004 mass% and Mo: 0.01 mass% Then, a steel slab having a chemical composition in which the balance is Fe and unavoidable impurities is heated at 1410 ° C. for 30 minutes, hot-rolled to a hot-rolled sheet with a thickness of 2.5 mm, and heated at 1000 ° C. for 1 minute. The hot-rolled sheet was annealed. After that, it was cold-rolled to a thickness of 0.9 mm, subjected to intermediate annealing at 980° C. for 1 minute, and then cold-rolled to a final thickness of 0.35 mm.
 次いで、PHO/PHが0.51の雰囲気下で850℃×120秒の脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。このとき、脱炭焼鈍板の酸素目付量を2.0g/mとした。さらに、その後、焼鈍分離剤としてMgO100質量部に対してTiOを2.4質量部、LiSOを0.1質量部で添加した粉体をスラリー状にして、水和量が1.3mass%となるように、鋼板両面に11g/mで塗布した。塗布後、乾燥させてからコイルに巻き取り、最終仕上焼鈍に供した。最終仕上焼鈍は、700~950℃間を、表2に示す種々の昇温速度で昇温し、引き続き純化のために1160℃で5時間の保定処理を行った。 Next, primary recrystallization annealing, which also serves as decarburization annealing, was performed at 850° C. for 120 seconds in an atmosphere with a PH 2 O/PH 2 ratio of 0.51. At this time, the oxygen basis weight of the decarburized annealed sheet was set to 2.0 g/m 2 . Further, after that, powder obtained by adding 2.4 parts by mass of TiO 2 and 0.1 part by mass of Li 2 SO 4 to 100 parts by mass of MgO as an annealing separator was made into a slurry, and the amount of hydration was 1.0 parts by mass. It was coated on both sides of the steel sheet at 11 g/m 2 so as to be 3 mass%. After the application, it was dried, wound into a coil, and subjected to final annealing. In the final annealing, the temperature was raised between 700 and 950° C. at various heating rates shown in Table 2, followed by holding treatment at 1160° C. for 5 hours for purification.
 その後、リン酸マグネシウム-コロイド状シリカ-硫酸チタンからなるコーティング液を塗布し、この焼付けと鋼板の形状矯正とを兼ねた平坦化焼鈍を施して製品コイル(方向性電磁鋼板)を得た。
 このようにして得られた鋼板について、磁束密度Bおよび双晶発生率を調査した。その結果を、下地被膜における酸素目付量およびTi目付量と併せて、表2に示す。なお、下地被膜における酸素目付量およびTi目付量、並びに磁束密度Bおよび双晶発生率は、上述した測定手法に従って測定した。
After that, a coating liquid consisting of magnesium phosphate-colloidal silica-titanium sulfate was applied, and flattening annealing was performed for both baking and shape correction of the steel sheet to obtain a product coil (grain-oriented electrical steel sheet).
The steel sheets thus obtained were examined for magnetic flux density B8 and twinning rate. The results are shown in Table 2 together with the oxygen basis weight and Ti basis weight of the undercoat. The oxygen basis weight, Ti basis weight, magnetic flux density B8 , and twinning rate of the undercoat were measured according to the above-described measurement method.
 表2から、昇温速度が遅いと、下地被膜の酸素目付量が低下、Ti含有量が増大し、それに伴い双晶発生率も増大していくことがわかる。 From Table 2, it can be seen that when the heating rate is slow, the oxygen basis weight of the undercoat decreases, the Ti content increases, and the twinning rate increases accordingly.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3に示した各種成分を含有し、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブを1380℃×60分加熱後、熱間圧延を施して板厚:2.2mmの熱延板とし、1000℃×1分の熱延板焼鈍を施した。その後、冷間圧延を施して中間板厚:0.8mmとし、1000℃×2分の中間焼鈍を施し、さらに冷間圧延を施して最終板厚:0.27mmの冷延板とした。これに、ケイ酸ナトリウムを2%含有する電解液で10C/dmの電解脱脂を行ったあと、PHO/PHが0.46の雰囲気下で820℃×100秒の脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。さらにその後、焼鈍分離剤としてMgO100質量部に対してTiOを1.5質量部および水酸化カルシウムを2.5質量部で添加した粉体をスラリー状にして、水和量が1.0mass%となるように、鋼板両面に10g/mで塗布した。塗布後、乾燥させてからコイルに巻き取り、最終仕上焼鈍に供した。最終仕上焼鈍は、700~950℃間を20℃/hの昇温速度で昇温し、引き続き純化のために1180℃、10時間の保定処理を行った。その後、リン酸マグネシウム-コロイド状シリカ-硫酸チタンからなるコーティング液を塗布し、この焼付けと鋼板の形状矯正とを兼ねた平坦化焼鈍を施して製品コイル(方向性電磁鋼板)を得た。 A steel slab containing the various components shown in Table 3, with the balance being Fe and unavoidable impurities, was heated at 1380 ° C. for 60 minutes and then hot rolled to a thickness of 2.2 mm. A hot-rolled sheet was annealed at 1000° C. for 1 minute. After that, it was cold rolled to an intermediate plate thickness of 0.8 mm, subjected to intermediate annealing at 1000° C. for 2 minutes, and further cold rolled to obtain a cold rolled plate having a final thickness of 0.27 mm. This was subjected to electrolytic degreasing at 10 C/dm 2 with an electrolytic solution containing 2% sodium silicate, and then decarburization annealing at 820° C. for 100 seconds in an atmosphere of PH 2 O/PH 2 of 0.46. Also, primary recrystallization annealing was performed. Further, after that, a powder obtained by adding 1.5 parts by mass of TiO 2 and 2.5 parts by mass of calcium hydroxide to 100 parts by mass of MgO as an annealing separator was made into a slurry, and the hydration amount was 1.0 mass%. 10 g/m 2 was applied to both sides of the steel plate so that After the application, it was dried, wound into a coil, and subjected to final annealing. In the final annealing, the temperature was raised from 700 to 950°C at a temperature elevation rate of 20°C/h, followed by holding treatment at 1180°C for 10 hours for purification. After that, a coating liquid consisting of magnesium phosphate-colloidal silica-titanium sulfate was applied, and flattening annealing was performed for both baking and shape correction of the steel sheet to obtain a product coil (grain-oriented electrical steel sheet).
 このようにして得られた鋼板について、磁束密度Bおよび双晶発生率を調査した。その結果を、一次再結晶焼鈍後の酸素目付量、下地被膜における酸素目付量およびTi目付量と併せて、表3に示す。なお、一次再結晶焼鈍後の酸素目付量、下地被膜における酸素目付量およびTi目付量、並びに磁束密度Bおよび双晶発生率は、上述した測定手法に従って測定した。 The steel sheets thus obtained were examined for magnetic flux density B8 and twinning rate. The results are shown in Table 3 together with the oxygen basis weight after primary recrystallization annealing, the oxygen basis weight in the undercoat and the Ti basis weight. The oxygen basis weight after the primary recrystallization annealing, the oxygen basis weight and Ti basis weight in the undercoat, the magnetic flux density B8 and the twinning rate were measured according to the measurement method described above.
 表3から、電解脱脂を行って一次再結晶焼鈍後の酸素目付量を適正範囲に収めた条件では、いずれの成分の鋼板を用いても下地被膜の酸素目付量が増加かつTi目付量が低減し、それに伴い双晶発生率も改善されていることがわかる。 From Table 3, under the conditions in which electrolytic degreasing is performed and the oxygen basis weight after primary recrystallization annealing is within an appropriate range, the oxygen basis weight of the undercoating increases and the Ti basis weight decreases regardless of the steel sheet composition. It can be seen that the twinning rate is improved accordingly.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (4)

  1.  Si:2.8~3.5mass%およびMn:0.01~1.0mass%を含有し、残部がFeおよび不可避的不純物である成分組成と、Tiを含みフォルステライトを主体とする下地被膜および前記下地被膜上に形成される上塗り被膜と、を有し、前記下地被膜において、酸素目付量が3.8g/m以上およびTi目付量が0.06g/m以下である方向性電磁鋼板。 A component composition containing Si: 2.8 to 3.5 mass% and Mn: 0.01 to 1.0 mass%, the balance being Fe and unavoidable impurities, and a base coat containing Ti and mainly composed of forsterite and and a topcoat formed on the undercoat, wherein the undercoat has an oxygen basis weight of 3.8 g/m 2 or more and a Ti basis weight of 0.06 g/m 2 or less. .
  2.  前記成分組成は、さらに、Al:0mass%超0.015mass%以下、N:0mass%超0.007mass%以下、Cu:0mass%超0.14mass%以下、Ni:0mass%超0.3mass%以下、Cr:0mass%超0.06mass%以下、Sb:0mass%超0.04mass%以下、Sn:0mass%超0.04mass%以下、Mo:0mass%超0.1mass%以下、B:0mass%超0.01mass%以下、P:0mass%超0.06mass%以下、Nb:0mass%超0.02mass%以下、Bi:0mass%超0.01mass%以下、Ge:0mass%超0.05mass%以下、As:0mass%超0.05mass%以下、Te:0mass%超0.02mass%以下、Ti:0mass%超0.04mass%以下およびV:0mass%超0.03mass%以下のうちから選ばれる1種または2種以上を含有する請求項1に記載の方向性電磁鋼板。 The component composition further includes Al: more than 0 mass% and 0.015 mass% or less, N: more than 0 mass% and 0.007 mass% or less, Cu: more than 0 mass% and 0.14 mass% or less, Ni: more than 0 mass% and 0.3 mass% or less. , Cr: more than 0 mass% and 0.06 mass% or less, Sb: more than 0 mass% and 0.04 mass% or less, Sn: more than 0 mass% and 0.04 mass% or less, Mo: more than 0 mass% and 0.1 mass% or less, B: more than 0 mass% 0.01 mass% or less, P: more than 0 mass% and 0.06 mass% or less, Nb: more than 0 mass% and 0.02 mass% or less, Bi: more than 0 mass% and 0.01 mass% or less, Ge: more than 0 mass% and 0.05 mass% or less, One selected from As: more than 0 mass% and 0.05 mass% or less, Te: more than 0 mass% and 0.02 mass% or less, Ti: more than 0 mass% and 0.04 mass% or less, and V: more than 0 mass% and 0.03 mass% or less Or the grain-oriented electrical steel sheet according to claim 1, containing two or more kinds.
  3.  C:0.001~0.10mass%、Si:2.8~3.5mass%、Mn:0.01~1.0mass%、SおよびSeのうちから選ばれる1種または2種を合計で0.005~0.03mass%を含有し、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブに熱間圧延を施して熱延板とし、該熱延板に、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して冷延板とし、該冷延板に、一次再結晶焼鈍を施し、次いで焼鈍分離剤を塗布してから仕上焼鈍を施して仕上焼鈍板とし、該仕上焼鈍板に、コーティング液を塗布し、平坦化焼鈍を施して方向性電磁鋼板を得る、方向性電磁鋼板の製造方法であって、
     前記一次再結晶焼鈍後の鋼板表面における酸素目付量を1.5g/m以上2.1g/m以下とすること、前記焼鈍分離剤として、MgO100質量部に対してTiOを0.6~2.7質量部含有する焼鈍分離剤を用いること、および前記仕上焼鈍における700~950℃間の昇温速度を15℃/h以上とすることを特徴とする、方向性電磁鋼板の製造方法。
    C: 0.001 to 0.10 mass%, Si: 2.8 to 3.5 mass%, Mn: 0.01 to 1.0 mass%, one or two selected from S and Se in total 0 A steel slab having a chemical composition containing 0.005 to 0.03 mass% and the balance being Fe and unavoidable impurities is hot-rolled to form a hot-rolled sheet, and the hot-rolled sheet is subjected to one or intermediate annealing. A cold-rolled sheet is obtained by sandwiching and cold-rolling two or more times, and the cold-rolled sheet is subjected to primary recrystallization annealing, then an annealing separator is applied, and then finish annealing is performed to obtain a finish-annealed sheet. A method for producing a grain-oriented electrical steel sheet, comprising applying a coating liquid to an annealed sheet and performing flattening annealing to obtain a grain-oriented electrical steel sheet,
    The oxygen basis weight on the surface of the steel sheet after the primary recrystallization annealing is 1.5 g/m 2 or more and 2.1 g/m 2 or less, and as the annealing separator, TiO 2 is 0.6 per 100 parts by mass of MgO. A method for producing a grain-oriented electrical steel sheet, characterized by using an annealing separator containing up to 2.7 parts by mass, and setting the rate of temperature increase between 700 to 950°C in the final annealing to 15°C/h or more. .
  4.  前記鋼スラブの成分組成は、さらに、Al:0.003~0.015mass%、N:0.001~0.007mass%、Cu:0.01~0.14mass%、Ni:0.01~0.3mass%、Cr:0.01~0.06mass%、Sb:0.004~0.04mass%、Sn:0.005~0.04mass%、Mo:0.01~0.1mass%、B:0.001~0.01mass%、P:0.005~0.06mass%、Nb:0.002~0.02mass%、Bi:0.001~0.01mass%、Ge:0.001~0.05mass%、As:0.005~0.05mass%、Te:0.005~0.02mass%、Ti:0.005~0.04mass%およびV:0.005~0.03mass%のうちから選ばれる1種または2種以上を含有する請求項3に記載の方向性電磁鋼板の製造方法。
     
     
    The chemical composition of the steel slab further includes Al: 0.003 to 0.015 mass%, N: 0.001 to 0.007 mass%, Cu: 0.01 to 0.14 mass%, Ni: 0.01 to 0. .3 mass%, Cr: 0.01 to 0.06 mass%, Sb: 0.004 to 0.04 mass%, Sn: 0.005 to 0.04 mass%, Mo: 0.01 to 0.1 mass%, B: 0.001 to 0.01mass%, P: 0.005 to 0.06mass%, Nb: 0.002 to 0.02mass%, Bi: 0.001 to 0.01mass%, Ge: 0.001 to 0.01mass% 05 mass%, As: 0.005 to 0.05 mass%, Te: 0.005 to 0.02 mass%, Ti: 0.005 to 0.04 mass% and V: 0.005 to 0.03 mass% The method for producing a grain-oriented electrical steel sheet according to claim 3, which contains one or more of the

PCT/JP2022/038635 2021-10-20 2022-10-17 Grain-oriented electromagnetic steel sheet and method for producing same WO2023068236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023513545A JPWO2023068236A1 (en) 2021-10-20 2022-10-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-171828 2021-10-20
JP2021171828 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023068236A1 true WO2023068236A1 (en) 2023-04-27

Family

ID=86059289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038635 WO2023068236A1 (en) 2021-10-20 2022-10-17 Grain-oriented electromagnetic steel sheet and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2023068236A1 (en)
WO (1) WO2023068236A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238939A (en) * 1985-04-15 1986-10-24 Kawasaki Steel Corp Silicon steel sheet excelling in high-frequency characteristic and its production
JPH09184017A (en) * 1996-01-08 1997-07-15 Kawasaki Steel Corp Forsterite film of grain oriented silicon steel sheet with high magnetic flux density and its formation
JPH1060533A (en) * 1996-08-13 1998-03-03 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property and coating characteristics
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP2016145419A (en) * 2015-01-30 2016-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and method therefor
JP2018066062A (en) * 2016-10-19 2018-04-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238939A (en) * 1985-04-15 1986-10-24 Kawasaki Steel Corp Silicon steel sheet excelling in high-frequency characteristic and its production
JPH09184017A (en) * 1996-01-08 1997-07-15 Kawasaki Steel Corp Forsterite film of grain oriented silicon steel sheet with high magnetic flux density and its formation
JPH1060533A (en) * 1996-08-13 1998-03-03 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property and coating characteristics
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP2016145419A (en) * 2015-01-30 2016-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and method therefor
JP2018066062A (en) * 2016-10-19 2018-04-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPWO2023068236A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
JP6327364B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
EP2957644B1 (en) Method for producing grain-oriented electrical steel sheet
EP3144400B1 (en) Method for producing grain-oriented electromagnetic steel sheet
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5417936B2 (en) Method for producing grain-oriented electrical steel sheet
EP3144399B1 (en) Method for producing grain-oriented electrical steel sheet
WO2014049770A1 (en) Process for producing grain-oriented electromagnetic steel sheet
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
MX2013005804A (en) Method for producing directional electromagnetic steel sheet.
JP5434524B2 (en) Method for producing grain-oriented electrical steel sheet
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH11302730A (en) Production of grain-oriented silicon steel sheet excellent in coating characteristic and low magnetic field characteristic
JP2019099839A (en) Manufacturing method of oriented electromagnetic steel sheet
WO2023068236A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP3928275B2 (en) Electrical steel sheet
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP3952570B2 (en) Method for producing grain-oriented electrical steel sheet
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
JPH05295441A (en) Production of grain-oriented silicon steel sheet excellent in glass film characteristic, having superior magnetic property, and increrased in magnetic flux density
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023513545

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883540

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006085

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024006085

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240327

122 Ep: pct application non-entry in european phase

Ref document number: 22883540

Country of ref document: EP

Kind code of ref document: A1