JPH09184017A - Forsterite film of grain oriented silicon steel sheet with high magnetic flux density and its formation - Google Patents

Forsterite film of grain oriented silicon steel sheet with high magnetic flux density and its formation

Info

Publication number
JPH09184017A
JPH09184017A JP8000594A JP59496A JPH09184017A JP H09184017 A JPH09184017 A JP H09184017A JP 8000594 A JP8000594 A JP 8000594A JP 59496 A JP59496 A JP 59496A JP H09184017 A JPH09184017 A JP H09184017A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
coating
forsterite
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8000594A
Other languages
Japanese (ja)
Other versions
JP3539028B2 (en
Inventor
Hirotake Ishitobi
宏威 石飛
Michiro Komatsubara
道郎 小松原
Hiroshi Yamaguchi
山口  広
Masako Hisada
雅子 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP00059496A priority Critical patent/JP3539028B2/en
Publication of JPH09184017A publication Critical patent/JPH09184017A/en
Application granted granted Critical
Publication of JP3539028B2 publication Critical patent/JP3539028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce the applied tension effect of a forsterite film and to effectively improve iron loss by specifying the required conditions of a forsterite film of a silicon steel sheet. SOLUTION: This silicon steel sheet is a grain oriented silicon sheet having >=1.90T magnetic flux density, and the forsterite film on its surface satisfies the following required conditions: coating weight of oxygen, (2.5 to 4.5)g/m<2> ; coating weiqht of Ti, (0.25 to 0.90)g/m<2> ; T/N by mole, <=1.2; and the average grain size of the forsterite grains, <=0.5/μm. Although the effects of these required conditionss are confirmed experimentally their function and mechanism are not made clear yet. However, it is considered, e.g. as possibility, that the mechanical properties of the film are improved by the synergistic effect of these respective required conditions and the coefficient of thermal expansion of the film is further lowered by the incorporation of Ti and N. Moreover, at a guess, these required conditions contribute greatly to the recovery of iron loss after stress relief annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高磁束密度一方
向性けい素鋼板の品質の向上、特に鉄損の低減に有利に
寄与するフォルステライト被膜とその形成方法を提案す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention proposes a forsterite coating and a method for forming the forsterite coating, which contributes to the improvement of the quality of a high magnetic flux density unidirectional silicon steel sheet, and particularly to the reduction of iron loss.

【0002】[0002]

【従来の技術】方向性けい素鋼板は軟磁性材料として、
主に変圧器あるいは回転機等の鉄心材料として使用され
るもので、磁気特性として磁束密度が高く、鉄損および
磁気歪が小さいことが要求される。そのためには、磁化
容易軸である<001>軸を圧延方向に高度に揃えた、
いわゆるゴス方位と呼ばれる集合組織を2次再結晶によ
ってつくることが必要である。かかる方向性けい素鋼板
は、2次再結晶に必要なインヒビター、例えばMnS,MnS
e, AlN 等を含む方向性けい素鋼スラブを加熱して熱間
圧延を行ったのち、必要に応じて焼鈍を行い、1回ある
いは中間焼鈍を挟む2回以上の冷間圧延によって最終製
品板厚とし、ついで脱炭焼鈍を行ったのち、鋼板にMgO
などの焼鈍分離剤を塗布してから仕上げ焼鈍を行うこと
によって製造される。なお、この方向性けい素鋼板の表
面には、特殊な場合を除いて、フォルステライト(Mg2Si
O4) 質絶縁被膜が形成されている。この被膜は表面を電
気的に絶縁するためだけでなく、その低熱膨張性を利用
して引張応力を鋼板に付与することにより、鉄損さらに
は磁気歪をも効果的に改善している。
2. Description of the Related Art Oriented silicon steel sheets are used as soft magnetic materials.
It is mainly used as an iron core material of a transformer or a rotating machine, and is required to have high magnetic flux density and small iron loss and magnetostriction as magnetic characteristics. For that purpose, the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction.
It is necessary to create a so-called goth orientation texture by secondary recrystallization. Such grain-oriented silicon steel sheet has an inhibitor necessary for secondary recrystallization, such as MnS or MnS.
After the directional slabs of directional silicon steel containing e, AlN, etc. are hot-rolled by heating, they are annealed as necessary and then cold-rolled once or twice with an intermediate anneal between them to obtain the final product sheet. After thickening and then decarburizing annealing, the steel sheet was MgO
It is produced by applying an annealing separator such as the above and then performing finish annealing. On the surface of this grain-oriented silicon steel sheet, except for special cases, forsterite (Mg 2 Si
O 4 ) A high quality insulating film is formed. This coating not only electrically insulates the surface, but also effectively reduces iron loss and magnetostriction by applying tensile stress to the steel sheet by utilizing its low thermal expansion property.

【0003】このフォルステライト被膜は、仕上げ焼鈍
において形成されるが、その被膜形成挙動は鋼中のMnS,
MnSe, AlN等のインヒビターの挙動に影響するため、優
れた磁気特性を得るための必須の過程である2次再結晶
そのものにも影響を及ぼす。すなわち、フォルステライ
ト形成反応は仕上げ焼鈍の昇温過程から始まるが、この
仕上げ焼鈍時に形成されたフォルステライト被膜がポー
ラス状になった場合およびこの被膜形成が不均一に進行
した場合には、焼鈍雰囲気からOやNが鋼中に侵入し易
くなるため、鋼中のインヒビターが分解や粗大化、ある
いは過剰化する。その結果、得られる2次再結晶組織
は、ゴス方位への集積度が低く、したがって磁気特性も
劣化することになる。またフォルステライト被膜は、被
膜が形成されることにより、不要となったインヒビター
成分が被膜近傍に濃化することになって鋼を実質的に純
化する。このことによっても、鋼板の磁気特性のより一
層の向上に寄与している。したがって、この被膜形成過
程を制御してフォルステライト被膜を均一に形成するこ
とは、方向性けい素鋼板の製品品質を左右する重要なポ
イントの一つである。
This forsterite coating is formed during finish annealing, and the coating formation behavior of MnS in steel is
Since it affects the behavior of inhibitors such as MnSe and AlN, it also affects secondary recrystallization itself, which is an essential process for obtaining excellent magnetic properties. That is, the forsterite formation reaction starts from the temperature rising process of finish annealing, but when the forsterite coating formed during this finish annealing becomes porous or when the formation of this coating progresses unevenly, the annealing atmosphere Since O and N easily penetrate into the steel, the inhibitor in the steel decomposes, coarsens, or becomes excessive. As a result, the obtained secondary recrystallized structure has a low degree of integration in the Goss orientation, and therefore the magnetic characteristics are deteriorated. In addition, the forsterite coating substantially concentrates the steel by forming the coating so that the unnecessary inhibitor component is concentrated near the coating. This also contributes to the further improvement of the magnetic properties of the steel sheet. Therefore, controlling the film formation process to form a forsterite film uniformly is one of the important points that affect the product quality of grain-oriented silicon steel sheets.

【0004】さらに、形成した被膜は、当然のことなが
ら、均一で欠陥がなく、かつ剪断、打抜きおよび曲げ加
工などに耐え得る密着性の優れたものでなければならな
く、またユーザーでの歪取り焼鈍による磁気特性の劣化
が少なく、表面が平滑であって、鉄心として積層したと
きに、高い占積率を示すものでなければならない。
Furthermore, the formed coating film must naturally be uniform and free from defects, and must have excellent adhesiveness capable of withstanding shearing, punching, bending, and the like, and the user's strain relief The deterioration of magnetic properties due to annealing should be small, the surface should be smooth, and a high space factor should be exhibited when laminated as an iron core.

【0005】さて、方向性けい素鋼板にフォルステライ
ト質絶縁被膜を形成させるには、まず所望の最終厚みに
冷間圧延した冷延板を、湿水素中700 〜900 ℃の温度で
連続焼鈍することによって、冷間圧延後の組織を適正な
2次再結晶が起こるように1次再結晶させ、また、その
後の2次再結晶を完全に行わせて磁気特性を向上させる
べく鋼板に0.01〜0.10%程度含まれる炭素を0.003 %程
度以下まで脱炭する。さらに、この焼鈍を酸化雰囲気に
することでSiO2を主成分とするサブスケールを鋼板表層
に生成させる。
In order to form a forsterite insulating coating on a grain-oriented silicon steel sheet, first, a cold-rolled sheet cold-rolled to a desired final thickness is continuously annealed in wet hydrogen at a temperature of 700 to 900 ° C. As a result, the structure after cold rolling is primary recrystallized so that proper secondary recrystallization occurs, and the secondary recrystallization after that is completely performed to improve the magnetic properties by 0.01 to 0.01%. Decarbonize about 0.10% of carbon to about 0.003% or less. Furthermore, by substituting this annealing in an oxidizing atmosphere, a subscale containing SiO 2 as a main component is generated on the surface layer of the steel sheet.

【0006】その後、MgO を主成分とする焼鈍分離剤を
鋼板上に塗布し、コイル状に巻取って還元または非酸化
性雰囲気中にて2次再結晶焼鈍と純化焼鈍とを兼ねた最
高1200℃程度の温度にて高温仕上げ焼鈍を施すことによ
り、主として以下の式で示される固相反応によってフォ
ルステライト質絶縁被膜を形成させるのである。 2MgO +SiO2→Mg2SiO4 ---(1)
After that, an annealing separator containing MgO as a main component is applied to the steel sheet, wound into a coil, and subjected to secondary recrystallization annealing and purification annealing at a maximum of 1200 in a reducing or non-oxidizing atmosphere. By performing high-temperature finish annealing at a temperature of about ° C, a forsterite insulating coating is formed mainly by a solid-phase reaction represented by the following formula. 2MgO + SiO 2 → Mg 2 SiO 4 --- (1)

【0007】ここでインヒビターとして、AlN を用いる
方向性けい素鋼板は、強い抑制力によって鮮鋭なゴス方
位が得られやすく、高磁束密度の製品を製造するうえで
有利である。また、このAlN 系の方向性けい素鋼板は結
晶方位がよく揃っているため、張力によって180 °磁区
幅が狭くなることによる鉄損改善効果が大きいという特
徴がある。このため、従来から、このAlN 系の方向性け
い素鋼板のフォルステライト被膜の鋼板に付与する張力
(以下単に被膜の付与張力という)を大きくするため、
いくつかの技術が提案されてきた。たとえば特公昭63−
3007号公報(一方向性珪素鋼板のフォルステライト絶縁
被膜の形成方法)および特公昭63−24046 号公報(磁気
特性に優れた一方向性電磁鋼板の製造方法)には、Mn活
量と仕上げ焼鈍時の酸素分圧との組合せにより、被膜の
付与張力を増大せしめる方法が開示されている。また特
開平5−140637号公報(方向性けい素鋼板用焼鈍分離
剤)には、分離剤へのコーディエライト粉末の添加によ
る被膜の付与張力増加方法が、さらに特開平7−62443
号公報(高張力のグラス被膜を有し、磁気特性の優れる
方向性電磁鋼板の製造方法)には、脱炭焼鈍と窒化処理
をしたあと、Sb化合物を添加した焼鈍分離剤を塗布し、
特定の昇温条件で仕上げ焼鈍する被膜の付与張力の増加
方法が、それぞれ提案開示されている。
The grain-oriented silicon steel sheet using AlN as the inhibitor is advantageous in producing a product having a high magnetic flux density because a sharp Goss orientation is easily obtained due to a strong suppressing force. In addition, since this AlN-based grain-oriented silicon steel sheet has well-aligned crystal orientations, it is characterized in that the iron loss improving effect is large because the 180 ° magnetic domain width is narrowed by the tension. Therefore, in order to increase the tension applied to the forsterite-coated steel sheet of this AlN-based grain-oriented silicon steel sheet (hereinafter simply referred to as the coating tension),
Several techniques have been proposed. For example, Japanese Patent Publication Sho 63-
No. 3007 (Method for forming forsterite insulating coating on unidirectional silicon steel sheet) and JP-B-63-24046 (Method for producing unidirectional electrical steel sheet with excellent magnetic properties) show Mn activity and finish annealing. A method of increasing the applied tension of the coating by the combination with the partial pressure of oxygen at the time is disclosed. Further, JP-A-5-140637 (annealing separator for grain-oriented silicon steel sheet) discloses a method for increasing the applied tension of a film by adding cordierite powder to the separator, and further disclosed in JP-A-7-62443.
In the gazette (a method of manufacturing a grain-oriented electrical steel sheet having a high-strength glass coating and having excellent magnetic properties), after decarburizing annealing and nitriding treatment, an annealing separator containing an Sb compound is applied,
Proposals and methods for increasing the applied tension of the coating film subjected to finish annealing under specific temperature rising conditions are proposed and disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記し
た各技術はいずれも、それなりの被膜の付与張力による
鉄損低減効果は認められるものの、ばらつきを生じ、工
業的に十分に安定した鉄損低減効果を得るためには必ず
しも満足できるものではなく、特に、ユーザーでのトラ
ンスなどの製作にあたって行われる歪取り焼鈍後の鉄損
の回復が不十分であった。
However, in each of the above-mentioned techniques, although the iron loss reducing effect by the applied tension of the coating film is recognized to some extent, variations are caused and the iron loss reducing effect is industrially sufficiently stable. However, the recovery of the iron loss after the strain relief annealing, which is performed when the user manufactures the transformer, is insufficient.

【0009】そこで、この発明は、高磁束密度一方向性
けい素鋼板における被膜の付与張力効果を安定して発揮
し、鉄損を効果的に改善するとともに、ユーザーでの歪
取り焼鈍後の鉄損の回復も十分なフォルステライト被膜
とその形成方法を提案することを目的とする。
Therefore, the present invention stably exerts the effect of applied tension of the coating on the high magnetic flux density unidirectional silicon steel sheet, effectively improves the iron loss, and at the same time, the iron after the strain relief annealing by the user. The purpose of the present invention is to propose a forsterite coating and a method for forming the same, in which loss recovery is sufficient.

【0010】[0010]

【課題を解決するための手段】発明者らは、被膜の付与
張力効果を安定して発揮し、鉄損を効果的に改善するこ
とはもとより、とくに歪取り焼鈍後の鉄損の回復を大幅
に改善できるフォルステライト被膜を新規に見出し、こ
の発明を達成したものである。すなわち、この発明の要
旨とするところは以下のとおりである。
[Means for Solving the Problems] The inventors have shown that the tension effect of the coating is stably exerted and the iron loss is effectively improved, and in particular, the iron loss recovery after the strain relief annealing is significantly improved. The present invention has been accomplished by newly discovering a forsterite coating that can be improved. That is, the gist of the present invention is as follows.

【0011】 表面にフォルステライト被膜を有する
磁束密度B8 が1.90T 以上である一方向性けい素鋼板で
あって、該フォルステライト被膜が、酸素目付量:2.5
〜4.5g/m2 、Ti目付量:0.25〜0.90g/m2、Ti/Nモル
比:1.2 以下およびフォルステライト粒子の平均粒子
径:0.5 μm 以下を満たしてなることを特徴とする高磁
束密度一方向性けい素鋼板のフォルステライト被膜(第
1発明)。
A unidirectional silicon steel sheet having a forsterite coating on its surface and having a magnetic flux density B 8 of 1.90 T or more, wherein the forsterite coating has an oxygen basis weight of 2.5.
To 4.5 g / m 2 , Ti basis weight: 0.25 to 0.90 g / m 2 , Ti / N molar ratio: 1.2 or less, and average particle size of forsterite particles: 0.5 μm or less, high magnetic flux. A forsterite coating on a density unidirectional silicon steel sheet (first invention).

【0012】 表面にフォルステライト被膜を有する
磁束密度B8 が1.90T 以上である一方向性けい素鋼板で
あって、該フォルステライト被膜が、酸素目付量:2.5
〜4.5g/m2 、Ti目付量:0.25〜0.90g/m2、Sr目付量:0.
03〜0.20g/m2、Ti/Nモル比:1.2 以下およびフォルス
テライト粒子の平均粒子径:0.5 μm 以下を満たしてな
ることを特徴とする高磁束密度一方向性けい素鋼板のフ
ォルステライト被膜(第2発明)。
A unidirectional silicon steel sheet having a forsterite coating on its surface and having a magnetic flux density B 8 of 1.90 T or more, wherein the forsterite coating has an oxygen basis weight of 2.5.
~ 4.5g / m 2 , Ti basis weight: 0.25 ~ 0.90g / m 2 , Sr basis weight: 0.
03-0.20 g / m 2 , Ti / N molar ratio: 1.2 or less and average particle size of forsterite particles: 0.5 μm or less, forsterite coating of high magnetic flux density unidirectional silicon steel sheet (Second invention).

【0013】 一方向性けい素鋼板用素材を、熱間圧
延し、ついで冷間圧延したのち、脱炭焼鈍を施して得た
酸素目付量が0.9 〜2.5g/m2 の範囲の脱炭焼鈍板の表面
に、Ti化合物をTiO2換算で6.0 〜30.0重量%の範囲で含
有し、残部は実質的にMgOの組成になる焼鈍分離剤を塗
布し、ついで、仕上げ焼鈍にて2次再結晶焼鈍後、1150
℃以上の温度で純化焼鈍を施し、その純化焼鈍中に少な
くとも30分間、N2濃度:10%以上のH2−N2混合雰囲気中
で焼鈍することを特徴とする高磁束密度一方向性けい素
鋼板のフォルステライト被膜の形成方法(第3発明)。
[0013] A material for unidirectional silicon steel sheet is hot-rolled, then cold-rolled, and then decarburized and annealed to obtain a decarburization annealed material having an oxygen basis weight of 0.9 to 2.5 g / m 2. An annealing separator containing Ti compounds in the range of 6.0 to 30.0% by weight in terms of TiO 2 and having a composition of substantially MgO was applied to the surface of the plate, and then secondary annealing was performed by finish annealing. After annealing, 1150
High magnetic flux density unidirectional silicon carbide characterized by performing purification annealing at a temperature of ℃ or more and annealing in the H 2 -N 2 mixed atmosphere with N 2 concentration: 10% or more for at least 30 minutes during the purification annealing. A method for forming a forsterite coating on a bare steel sheet (third invention).

【0014】 一方向性けい素鋼板用素材を、熱間圧
延し、ついで冷間圧延したのち、脱炭焼鈍を施して得た
酸素目付量が0.9 〜2.5g/m2 の範囲の脱炭焼鈍板の表面
に、Ti化合物をTiO2換算で6.0 〜30.0重量%およびSr化
合物をSrO 換算で0.1 〜4.0 重量%の範囲で含有し、残
部は実質的にMgO の組成になる焼鈍分離剤を塗布し、つ
いで、仕上げ焼鈍にて2次再結晶焼鈍後、1150℃以上の
温度で純化焼鈍を施し、その純化焼鈍中に少なくとも30
分間、N2濃度:10%以上のH2−N2混合雰囲気中で焼鈍す
ることを特徴とする高磁束密度一方向性けい素鋼板のフ
ォルステライト被膜の形成方法(第4発明)。
The material for unidirectional silicon steel sheet is hot-rolled, then cold-rolled, and then decarburized and annealed to obtain a decarburization annealed material having an oxygen basis weight of 0.9 to 2.5 g / m 2. on the surface of the plate, a 6.0 to 30.0 wt% and Sr compound Ti compound in terms of TiO 2 contained in the range of 0.1 to 4.0 wt% in terms of SrO, the remainder being coated with an annealing separating agent consisting essentially composition of MgO Then, after secondary recrystallization annealing by finish annealing, purification annealing is performed at a temperature of 1150 ° C or higher, and at least 30 times during the purification annealing.
A method for forming a forsterite coating on a high magnetic flux density unidirectional silicon steel sheet, which comprises annealing in a H 2 —N 2 mixed atmosphere having a N 2 concentration of 10% or more for 4 minutes (the fourth invention).

【0015】 第3または4発明において、脱炭焼鈍
板が、5% HCl水溶液を用いて、70℃の温度で60秒間の
酸洗を行ったときの酸洗減量が0.3g/m2 以下であること
を特徴とする高磁束密度一方向性けい素鋼板のフォルス
テライト被膜の形成方法(第5発明)。
In the third or fourth invention, the decarburized annealed sheet has a pickling weight loss of 0.3 g / m 2 or less when pickling is performed for 60 seconds at a temperature of 70 ° C. using a 5% HCl aqueous solution. A method for forming a forsterite coating on a high magnetic flux density unidirectional silicon steel sheet, which is characterized by (5th invention).

【0016】 第3,4または5発明において、脱炭
焼鈍前鋼板にけい素化合物を付着させ、その付着量をSi
重量換算で0.5 〜7.0 mg/m2の範囲とすることを特徴と
する高磁束密度一方向性けい素鋼板の製造方法(第6発
明)。
In the third, fourth or fifth invention, a silicon compound is adhered to the steel sheet before decarburization annealing, and the adhered amount is changed to Si.
A method for producing a high magnetic flux density unidirectional silicon steel sheet, characterized in that it is in the range of 0.5 to 7.0 mg / m 2 in terms of weight (sixth invention).

【0017】[0017]

【発明の実施の形態】先ず、この発明にかかわる実験結
果について以下に説明する。インヒビターとして、AlN,
MnSe およびSbを含有する、板厚:0.23mmに最終冷間圧
延された3.3 %けい素鋼板を、840 ℃の湿水素雰囲気中
で脱炭焼鈍した。その後、MgO に TiO2 およびSr(OH)2
を添加した焼鈍分離剤を塗布し、ついで1200℃×5時間
のH2ガス中での最終仕上げ焼鈍を施した。このとき、フ
ォルステライト被膜の酸素目付量およびフォルステライ
トの粒子径と緻密さとを変化させる目的で脱炭焼鈍時間
を15〜300 秒間の範囲で、また昇温過程の雰囲気酸化性
を、PH 2O/PH2 として0.10〜0.70の範囲および均熱過程
の雰囲気酸化性を0.40〜0.80の範囲でそれぞれ変化させ
た。さらにフォルステライト被膜中のTi目付量を変化さ
せるため、焼鈍分離剤中のTiO2添加量を0.5 〜50wt%の
範囲で変化させ、加えて被膜中のTi/Nモル比を変化さ
せるために、焼鈍分離剤中のSr(OH)2 添加量を0〜10wt
%の範囲で、また、最終仕上げ焼鈍における1200℃保定
の始めの1時間の雰囲気のN2濃度を0〜50%の範囲で、
それぞれ変化させた。かくして得られた製品について鉄
損低減効果の指標としての被膜の付与張力と酸素目付
量、Ti目付量、Ti/Nモル比およびフォルステライト粒
子の平均粒子径など調査した。
BEST MODE FOR CARRYING OUT THE INVENTION First, experimental results relating to the present invention.
The results will be described below. As an inhibitor, AlN,
 Final cold pressure to 0.23mm, containing MnSe and Sb
Rolled 3.3% silicon steel sheet in a wet hydrogen atmosphere at 840 ° C.
Decarburized and annealed. After that, TiO was added to MgO.TwoAnd Sr (OH)Two
Annealing Separator added with, then 1200 ℃ × 5 hours
HTwoA final finish annealing in gas was applied. At this time,
Oxygen basis weight of forsterite coating and forstery
Decarburization annealing time for the purpose of changing the particle size and the fineness of
In the range of 15 to 300 seconds, and the atmospheric oxidizability during the heating process.
, PH TwoO / PHTwoIn the range of 0.10 to 0.70 and soaking process
The atmospheric oxidizability of each is changed in the range of 0.40 to 0.80.
Was. Furthermore, the Ti basis weight in the forsterite coating can be changed.
TiO in the annealing separatorTwo0.5 ~ 50wt%
The Ti / N molar ratio in the coating in addition to
Sr (OH) in the annealing separatorTwoAddition amount is 0-10wt
%, And 1200 ° C retention in final finish annealing
At the beginning of the 1 hour atmosphere NTwoConcentration in the range of 0-50%,
Each was changed. About the product thus obtained Iron
Coating tension and oxygen basis weight as indicators of loss reduction effect
Amount, Ti basis weight, Ti / N molar ratio and forsterite grains
The average particle size of the child was investigated.

【0018】被膜の付与張力と酸素目付量およびTi目付
量との関係を、フォルステライト粒子径およびTi/Nモ
ル比別に、それぞれ図1〜3に示す。ここで、図1は、
フォルステライト平均粒子径:0.4 μm 、Ti/Nモル
比:0.9 〜1.1 、図2は、フォルステライト平均粒子
径:0.4 μm 、Ti/Nモル比:1.4 〜1.6 、図3は、フ
ォルステライト平均粒子径:0.8 μm 、Ti/Nモル比:
0.9 〜1.1 の場合である。ここで被膜の付与張力は、片
面の被膜を酸洗によって除去した場合の鋼板のそりから
計算によって求めた。
The relationship between the applied tension of the coating and the oxygen areal weight and the Ti areal weight are shown in FIGS. 1 to 3 for each forsterite particle size and Ti / N molar ratio. Here, FIG.
Forsterite average particle size: 0.4 μm, Ti / N molar ratio: 0.9-1.1, FIG. 2 shows forsterite average particle size: 0.4 μm, Ti / N molar ratio: 1.4-1.6, FIG. 3 shows forsterite average particle. Diameter: 0.8 μm, Ti / N molar ratio:
This is the case of 0.9 to 1.1. Here, the applied tension of the coating was calculated from the warpage of the steel sheet when the coating on one surface was removed by pickling.

【0019】図1からフォルステライト粒子径が0.4 μ
m 、およびTi/Nモル比が0.9 〜1.1 の場合に、酸素目
付量が2.5g/m2 以上、Ti目付量が0.25〜0.9g/m2 の範囲
において、0.6kgf/mm2以上の高い被膜の付与張力が得ら
れることがわかる。これに対し、Ti/Nモル比が1.4 〜
1.6 と大きい図2、あるいはフォルステライト粒子径が
0.80μm と大きい図3では、被膜の付与張力は図1より
も劣っていることが明らかである。なお、被膜の付与張
力が0.6 kgf/mm2 以上の値を示した製品の鉄損17/50
全て0.80W/kg以下の低い値を示していた。
From FIG. 1, the forsterite particle size is 0.4 μ.
m, and when Ti / N molar ratio of 0.9 to 1.1, oxygen basis weight 2.5 g / m 2 or more, Ti basis weight in the range of 0.25~0.9g / m 2, 0.6kgf / mm 2 higher than It can be seen that the applied tension of the film can be obtained. On the other hand, the Ti / N molar ratio is 1.4-
Figure 2 which is as large as 1.6, or forsterite particle size
In FIG. 3, which is as large as 0.80 μm, it is clear that the applied tension of the coating is inferior to that in FIG. The iron loss 17/50 of the products in which the applied tension of the coating showed a value of 0.6 kgf / mm 2 or more was a low value of 0.80 W / kg or less.

【0020】一般に、3%Si−Feの線熱膨張係数は約13
×10-6/ ℃に対し、フォルステライトのそれは10〜11×
10 -6/℃と言われている。そして、フォルステライト被
膜が鋼板に張力を及ぼす要因は、この熱膨張係数のちが
いによる。したがって被膜量が多いと張力は増大する。
しかしながら必ずしも張力は、被膜量のみで決定される
わけではなく、図1と図3との比較からわかるごとく、
フォルステライトの粒子径も大きく影響しており、微細
粒子の方がより大きい張力を与えることがわかる。さら
に図1と図2との比較からわかるごとく、被膜中のTi目
付量およびTi/Nモル比もまた被膜の付与張力に影響を
及ぼす重要な因子である。
Generally, the coefficient of linear thermal expansion of 3% Si-Fe is about 13
X10 -6 / ℃, forsterite that is 10 ~ 11 x
It is said to be 10 -6 / ° C. The factor that the forsterite coating film exerts the tension on the steel sheet is due to the difference in the coefficient of thermal expansion. Therefore, when the coating amount is large, the tension increases.
However, the tension is not necessarily determined only by the coating amount, and as can be seen from the comparison between FIG. 1 and FIG.
It can be seen that the particle size of forsterite also has a large effect, and that fine particles give greater tension. Further, as can be seen from the comparison between FIG. 1 and FIG. 2, the Ti basis weight in the coating and the Ti / N molar ratio are also important factors affecting the applied tension of the coating.

【0021】このような、フォルステライト被膜の粒子
径、被膜中のTi/Nモル比、およびTi目付量が被膜の付
与張力に及ぼしている作用機構については、未だあきら
かにはなっていないが、これらが相乗して被膜の機械的
特性を向上していること、Ti, Nを含有することによっ
て被膜の熱膨張係数をさらに低下せしめていること等が
可能性として考えられ、また、これらが、歪取り焼鈍後
の鉄損の回復にも大きく寄与しているものと考えられ
る。また、高い張力を鋼板に付与するフォルステライト
被膜は、磁束密度B8 が1.90T 以上の高磁束密度方向性
けい素鋼板において鉄損の低減に大きな効果を発揮し、
被膜の付与張力が0.6 kgf/mm2 未満の場合、あるいは磁
束密度B8 が1.90T未満の場合には、鉄損低減効果は相
対的に低下する。したがって、被膜の付与張力により鉄
損を低減するためには磁束密度B8 が1.90T 以上の方向
性けい素鋼板に適用することがよく、この発明も磁束密
度B8 が1.90T 以上の一方向性けい素鋼板に適用するも
のとする。
Although the mechanism of the effect that the particle size of the forsterite coating, the Ti / N molar ratio in the coating, and the Ti basis weight affect the applied tension of the coating, it has not been clarified yet. It is conceivable that these may synergistically improve the mechanical properties of the coating, and that the thermal expansion coefficient of the coating may be further reduced by containing Ti, N, etc. It is considered that this also greatly contributes to the recovery of iron loss after stress relief annealing. In addition, the forsterite coating that imparts high tension to the steel sheet exerts a great effect on reducing iron loss in high-flux-density grain-oriented silicon steel sheets having a magnetic flux density B 8 of 1.90 T or more,
When the applied tension of the coating is less than 0.6 kgf / mm 2 or the magnetic flux density B 8 is less than 1.90 T, the iron loss reducing effect is relatively reduced. Therefore, in order to reduce iron loss by imparting tension of the coating may be the magnetic flux density B 8 is applied to the above oriented silicon steel sheet 1.90T, unidirectional present invention also the magnetic flux density B 8 is not less than 1.90T It shall be applied to silicon steel sheets.

【0022】つぎに、この発明の限定理由および好適範
囲について述べる。磁束密度B8 が1.90T 以上の高磁束
密度一方向性けい素鋼板において、フォルステライト被
膜の付与張力による鉄損の低減を効果的に得るために
は、被膜の付与張力は0.6 kgf/mm2 以上とすることが好
ましい。この鉄損の低減を効果的に得るためのフォルス
テライト被膜の諸特性を以下に列記する。 ・酸素目付量:2.5 〜4.5g/m2 酸素目付量は、十分な鉄損の低減を得るためには、2.5g
/m2 以上を必要とする。しかしながら、4.5g/m2 を超え
ると、被膜が過厚となって、鋼板を積層したときの占積
率を低下させるとともに、被膜の密着性の劣化をきたし
鉄損低減効果が損なわれる。したがって、酸素目付量は
2.5 〜4.5g/m2 の範囲とする。
Next, the reasons for limitation and the preferred range of the present invention will be described. In a high magnetic flux density unidirectional silicon steel sheet with a magnetic flux density B 8 of 1.90 T or more, in order to effectively reduce the iron loss due to the applied tension of the forsterite coating, the applied tension of the coating is 0.6 kgf / mm 2 The above is preferable. The various characteristics of the forsterite coating for effectively obtaining this reduction in iron loss are listed below.・ Oxygen basis weight: 2.5-4.5g / m 2 Oxygen basis weight is 2.5g to obtain sufficient reduction of iron loss.
Requires / m 2 or more. However, if it exceeds 4.5 g / m 2 , the coating becomes excessively thick, the space factor when laminating steel sheets is reduced, and the adhesion of the coating is deteriorated, and the iron loss reducing effect is impaired. Therefore, the oxygen basis weight is
The range is 2.5 to 4.5 g / m 2 .

【0023】・Ti目付量:0.25〜0.90g/m2 Ti目付量は、やはり十分な鉄損低減効果を得るために、
0.25g/m2以上必要である。しかし、0.90g/m2を超えると
フォルステライト被膜がすきまがあいたように粗雑化す
る傾向が現われ、かえって被膜の付与張力が低下し鉄損
が増加したり、歪取り焼鈍後に鉄損が劣化する傾向にな
る。このため、Ti目付量は0.25〜0.90g/m2の範囲とす
る。
Ti basis weight: 0.25 to 0.90 g / m 2 Ti basis weight is, in order to obtain a sufficient iron loss reducing effect,
0.25g / m 2 or more is required. However, if it exceeds 0.90 g / m 2 , the forsterite coating tends to coarsen as if there was a gap, rather the applied tension of the coating decreases and the iron loss increases, or the iron loss deteriorates after strain relief annealing. Become a trend. Therefore, the Ti basis weight is set in the range of 0.25 to 0.90 g / m 2 .

【0024】・Ti/Nモル比:1.2 以下および平均粒子
径:0.5 μm 以下 被膜の付与張力を高め鉄損を効果的に低減するため、Ti
/Nモル比は1.2 以下、フォルステライト被膜の平均粒
子径は0.5 μm 以下とすることが重要である。なお、Ti
/Nモル比は、1.2 を超えると歪取り焼鈍後に鉄損が劣
化する。
Ti / N molar ratio: 1.2 or less and average particle size: 0.5 μm or less In order to increase the applied tension of the coating and effectively reduce iron loss, Ti
It is important that the / N molar ratio is 1.2 or less and the average particle size of the forsterite coating is 0.5 μm or less. Note that Ti
If the / N molar ratio exceeds 1.2, iron loss deteriorates after strain relief annealing.

【0025】・Sr目付量:0.02〜0.30g/m2 Sr目付量は、0.02g/m2以上入ることによって、被膜の付
与張力はより安定して高いレベルになることがわかっ
た。この現象は何らかの触媒的作用によるのと思われる
が、Srが入るとTi/Nモル比は1.2 以下の低い範囲に、
またTi目付量は0.25g/m2以上の高いレベルに安定する。
このことが被膜の付与張力を高位に安定させ鉄損を効果
的に低減する原因になっているものと思われる。なお、
Srが0.30g/m2を超えると、被膜はかえって粗雑化し付与
張力が低下する。したがって、Sr目付量は0.02〜0.30g/
m2の範囲がよい。
[0025] · Sr basis weight: 0.02~0.30g / m 2 Sr unit weight, by entering 0.02 g / m 2 or more, it was found that applying tension coating is more stable and higher levels. This phenomenon seems to be due to some catalytic action, but when Sr is added, the Ti / N molar ratio falls to a low range of 1.2 or less,
Further, the Ti basis weight is stabilized at a high level of 0.25 g / m 2 or more.
This seems to be the cause of stabilizing the applied tension of the coating at a high level and effectively reducing the iron loss. In addition,
When Sr exceeds 0.30 g / m 2 , the coating becomes rather rough and the applied tension decreases. Therefore, the Sr weight is 0.02-0.30g /
A range of m 2 is good.

【0026】このような酸素目付量、Ti目付量、Ti/N
モル比および平均粒子径を規制したフォルステライト被
膜、さらにはこれらに加えてSr目付量を規制したフォル
ステライト被膜は、安定して高いレベルの被膜の付与張
力を得て鉄損を効果的に低減することはもちろんのこ
と、歪取焼鈍後の鉄損の回復に特段の効果を発揮するも
のとなる。
Such oxygen basis weight, Ti basis weight, Ti / N
Forsterite coatings that regulate the molar ratio and average particle size, and in addition to these, forsterite coatings that regulate the Sr basis weight, obtain a stable and high level of applied tension of the coating to effectively reduce iron loss. Not to mention, it has a special effect on recovery of iron loss after stress relief annealing.

【0027】ついで、この発明のフォルステライト被膜
の形成方法について説明する。まず、この発明における
方向性けい素鋼板用素材の好適成分組成について記す。
C、SiおよびMnの含有量の好適範囲は、それぞれC:0.
02〜0.12wt%(以下、wt%を単に%であらわす)、Si:
2.0 〜5.0 %、Mn:0.03〜0.30%である。その理由は、
Cは、熱延組織の改善に必要であるが、多すぎると脱炭
が困難になるので0.02〜0.12%程度とする。Siは、あま
りに少ないと電気抵抗が少なくなって良好な鉄損特性が
得られず、一方、あまりに多すぎると冷間圧延が困難に
なるため2.0 〜5.0 %の範囲がよい。Mnは、インヒビタ
ー成分として必要であるが、多すぎるとインヒビターサ
イズが粗大化し、好ましくないので0.03〜0.30%の範囲
が好適である。
Next, a method of forming the forsterite coating film of the present invention will be described. First, the preferred component composition of the grain-oriented silicon steel sheet material according to the present invention will be described.
The preferable ranges of the contents of C, Si and Mn are C: 0.
02 to 0.12 wt% (hereinafter wt% is simply expressed as%), Si:
2.0 to 5.0%, Mn: 0.03 to 0.30%. The reason is,
C is necessary for improving the hot rolled structure, but if it is too large, it becomes difficult to decarburize, so it is set to about 0.02 to 0.12%. If Si is too small, the electric resistance will be small and good iron loss characteristics will not be obtained. On the other hand, if it is too large, cold rolling will be difficult, so the range of 2.0 to 5.0% is preferable. Mn is necessary as an inhibitor component, but if it is too large, the inhibitor size becomes coarse, which is not preferable. Therefore, the range of 0.03 to 0.30% is preferable.

【0028】なお、この発明の鋼においては、インヒビ
ターはAlN 系、AlN −MnS 系、AlN−MnSe系等のほか、M
nSe系、MnS 系等いずれのインヒビター種をも用いるこ
とは可能であるが、AlN を用いる系が特に好適である。
その理由は、高磁束密度の製品を得られやすいことのほ
か、AlN に由来する鋼中Nが仕上げ焼鈍時に表面に移動
し、被膜中のTi/Nモル比を低くするのに有効だからで
ある。また、フォルステライトの粒子径も小さいものが
得られやすくなることによる。
In the steel of the present invention, the inhibitors include AlN type, AlN-MnS type, AlN-MnSe type, and M type.
Although any inhibitor species such as nSe type and MnS type can be used, a system using AlN 3 is particularly preferable.
The reason is that it is easy to obtain a product with a high magnetic flux density, and N in steel derived from AlN moves to the surface during finish annealing, which is effective in lowering the Ti / N molar ratio in the coating. . In addition, it is easy to obtain a forsterite having a small particle size.

【0029】この場合、Alが少なすぎると磁束密度は低
くなり、多すぎると2次再結晶が不安定となる。このた
め、Al含有量は0.01〜0.05%の範囲が良い。Nは、0.00
4 %未満ではAlN の量が不足し、0.012 %を超えると製
品にブリスターが発生するので、その含有量は0.004 〜
0.012 %の範囲とすることがよい。
In this case, if the Al content is too small, the magnetic flux density will be low, and if it is too large, the secondary recrystallization will be unstable. Therefore, the Al content is preferably in the range of 0.01 to 0.05%. N is 0.00
If it is less than 4%, the amount of AlN is insufficient, and if it exceeds 0.012%, blisters occur in the product, so the content is 0.004 ~.
It is preferable to set it in the range of 0.012%.

【0030】Sおよび/またはSeは、インヒビター成分
であるが、0.05%を超えると純化焼鈍での純化が困難と
なり、一方、0.01%未満ではインヒビターの量が不足す
るため、合計で0.01〜0.05%の範囲で含有せることがよ
い。
S and / or Se is an inhibitor component, but if it exceeds 0.05%, purification by purification annealing becomes difficult, while if it is less than 0.01%, the amount of the inhibitor is insufficient, so 0.01 to 0.05% in total. It is preferable to contain in the range of.

【0031】上記の成分の他、仕上げ焼鈍においてイン
ヒビターの酸化を抑制するために、さらにSbを含有させ
て、Sbの鋼板表面への偏析効果を利用することが磁気特
性を向上させるうえで有効である。また、Cuは、一般に
インヒビターを補強する効果を持つため、これも、磁気
特性向上に有利な効果を発揮する。さらに、Snは、2次
再結晶粒径を小さくすることによって鉄損改善の効果を
有する。したがって、これらのうち少なくとも1種を含
有させることによって磁気特性をさらに向上させること
が可能となる。この場合、それらの含有量は、0.01%未
満では効果が少なく、一方0.30%を超えるとじん性の劣
化や被膜への悪影響が生ずるため、含有量は、それぞれ
0.01〜0.30%の範囲が好適である。
In addition to the above components, in order to suppress the oxidation of the inhibitor in finish annealing, it is effective to further contain Sb and utilize the segregation effect of Sb on the steel sheet surface in order to improve the magnetic properties. is there. Further, since Cu generally has the effect of reinforcing the inhibitor, this also exerts an advantageous effect in improving the magnetic properties. Further, Sn has the effect of improving iron loss by reducing the secondary recrystallized grain size. Therefore, it becomes possible to further improve the magnetic characteristics by including at least one of these. In this case, if the content thereof is less than 0.01%, the effect is small, while if it exceeds 0.30%, deterioration of toughness and adverse effect on the coating film occur, so the content is
The range of 0.01 to 0.30% is preferable.

【0032】この他、Nb, Te, Cr, Bi, B,Ge等のイン
ヒビター補強成分も適宜添加することができる。また、
熱間ぜい性に起因した表面欠陥防止のためにMoを添加す
ることもできる。
In addition to these, inhibitor reinforcing components such as Nb, Te, Cr, Bi, B and Ge can be added as appropriate. Also,
Mo may be added to prevent surface defects due to hot brittleness.

【0033】次に製造工程について述べる。上述の鋼成
分からなるけい素鋼スラブまたはインゴットを必要なサ
イズとしたあと加熱して熱間圧延を施す。熱延板は例え
ば900 〜1200℃で焼鈍後、急冷し、引続き1回あるいは
中間焼鈍を挟む2回の冷間圧延を行う。AlN 系インヒビ
ターの場合は、最終圧下率を80%以上で施すことが有利
である。AlN の強い抑制力を発揮するための一次再結晶
組織が、圧下率80%未満では得られないためである。
Next, the manufacturing process will be described. A silicon steel slab or ingot made of the above steel components is sized and heated, and then hot rolled. The hot-rolled sheet is annealed at, for example, 900 to 1200 ° C., rapidly cooled, and then cold-rolled once or twice with an intermediate annealing. In the case of AlN-based inhibitors, it is advantageous to apply the final reduction rate of 80% or more. This is because the primary recrystallized structure for exerting the strong suppressing power of AlN cannot be obtained at a rolling reduction of less than 80%.

【0034】最終冷延後の鋼板は脱脂や酸洗によって表
面を清浄化したあと、脱炭焼鈍する。この脱炭焼鈍条件
は、まず仕上げ焼鈍後の酸素目付量を2.5 〜4.5g/m2
範囲にするために、脱炭焼鈍後の焼鈍板の酸素目付量を
0.9 〜2.5g/m2 の範囲にすることが好ましい。これは、
フォルステライト被膜が、脱炭焼鈍において形成する主
酸化物SiO2を一方の原料物質とし、焼鈍分離剤の主成分
であるMgO をもう一方の原料物質として、前記(1) 式に
よって生成するため、フォルステライト被膜の酸素目付
量は、脱炭焼鈍後の焼鈍板の酸素目付量によって大きく
影響されるからである。
After the final cold rolling, the surface of the steel sheet is cleaned by degreasing or pickling, and then decarburized and annealed. The decarburization annealing condition is that the oxygen basis weight of the annealed sheet after decarburizing and annealing is set so that the oxygen basis weight after finish annealing is in the range of 2.5 to 4.5 g / m 2.
It is preferably in the range of 0.9 to 2.5 g / m 2 . this is,
Forsterite coating, the main oxide SiO 2 formed in decarburization annealing as one raw material, MgO which is the main component of the annealing separator as the other raw material is generated by the above formula (1), This is because the oxygen basis weight of the forsterite coating is greatly influenced by the oxygen basis weight of the annealed sheet after decarburization annealing.

【0035】ただし、仕上げ焼鈍中にも、焼鈍分離剤か
ら発生する水分によって、鋼板は一定の追加酸化を受け
る。これは焼鈍分離剤は水スラリーとして塗布し、乾燥
されるがMgO の一部が水和結合水を800 ℃近辺まで徐々
に放出するからである。このため、フォルステライト被
膜の酸素目付量は、一義的に脱炭焼鈍後の焼鈍板の酸素
目付量によって、決定されるわけではないが脱炭焼鈍板
の酸素目付量が低いと、この追加酸化はより増大する傾
向がある。このため、脱炭焼鈍後の酸素目付量が0.9 〜
2.5g/m2 の範囲にすることで、仕上げ焼鈍後の酸素目付
量は、この発明の限定範囲(2.5 〜4.5 g/m2) に入るよ
うになる。
However, even during the finish annealing, the steel sheet undergoes a certain amount of additional oxidation due to the moisture generated from the annealing separator. This is because the annealing separator is applied as a water slurry and dried, but part of MgO gradually releases hydrated water up to around 800 ° C. Therefore, the oxygen basis weight of the forsterite coating is not uniquely determined by the oxygen basis weight of the annealed sheet after decarburization annealing, but if the oxygen basis weight of the decarburized annealed sheet is low, this additional oxidation Tends to increase. Therefore, the oxygen basis weight after decarburization annealing is 0.9-
By setting it in the range of 2.5 g / m 2 , the oxygen basis weight after finish annealing comes to fall within the limited range of the present invention (2.5 to 4.5 g / m 2 ).

【0036】さらにフォルステライト被膜を、平均粒子
径:0.5 μm 以下でかつ緻密なものとするために、脱炭
焼鈍で形成するサブスケールの質的指標として、脱炭焼
鈍板を5%、HCl 水溶液中70℃、60秒間の酸洗で評価し
たときの酸洗減量を0.3g/m2以下とすることが重要であ
る。
Further, in order to make the forsterite coating finer with an average particle size of 0.5 μm or less, a decarburization annealed plate of 5%, an aqueous solution of HCl was used as a qualitative index of the subscale formed by decarburization annealing. It is important that the pickling weight loss when evaluated by pickling at 70 ° C for 60 seconds is 0.3 g / m 2 or less.

【0037】この酸洗減量は、表面の化学的活性度の指
標であり、これが多い鋼板の表面は、より反応性に富ん
でいる。したがって仕上げ焼鈍中の追加酸化が多くな
る。追加酸化では表面に主に鉄酸化物あるいは鉄けい酸
塩を生成する。これらが多いと、フォルステライトの核
生成を妨げるため、粒子径が大きく、かつ粗雑で均一性
の悪い、付与張力の弱い被膜が形成される。
This pickling weight loss is an index of the chemical activity of the surface, and the surface of the steel sheet, which has a large amount, is more reactive. Therefore, the additional oxidation during the finish annealing increases. The additional oxidation mainly produces iron oxide or iron silicate on the surface. When the amount of these is large, forsterite nucleation is hindered, so that a film having a large particle size, coarseness, poor uniformity, and weak applied tension is formed.

【0038】また、焼鈍分離剤中のTiO2濃度が6%以上
と多い場合には、仕上げ焼鈍中に、 TiO2+2H2→Ti+2H2O --- (2) の反応で生成するH2O が、追加酸化要因となって、フォ
ルステライト粒子径を粗大化しやすくする。これらの追
加酸化を抑制し、緻密なフォルステライト被膜を形成す
るために脱炭焼鈍板の酸洗減量を0.3g/m2 以下とするこ
とが重要になる。
When the TiO 2 concentration in the annealing separator is as high as 6% or more, H 2 O produced by the reaction of TiO 2 + 2H 2 → Ti + 2H 2 O --- (2) during finish annealing. However, it becomes an additional oxidation factor, and makes the forsterite particle size easy to coarsen. It is important to reduce the pickling loss of the decarburized annealed sheet to 0.3 g / m 2 or less in order to suppress these additional oxidations and form a dense forsterite film.

【0039】なお、追加酸化はインヒビターであるAlN
やMnSeの酸化をも引き起こすため、抑制力の低下をきた
し、磁気特性を劣化させる。このような弊害を防止する
うえからでも、酸洗減量を低く、維持することは重要で
ある。
The additional oxidation is an inhibitor, AlN.
It also causes the oxidation of MnSe and MnSe, resulting in a decrease in the suppression force and deterioration of magnetic properties. In order to prevent such a harmful effect, it is important to keep the pickling weight loss low.

【0040】以上のような酸素目付量および酸洗減量を
もつ脱炭焼鈍板は以下のようにして製造することができ
る。脱炭焼鈍温度は、通常の脱炭、1次再結晶温度であ
る700 〜900 ℃の範囲でよい。また、焼鈍時間は、脱炭
焼鈍後の酸素目付量が、0.9 〜2.5g/m2 の範囲になるよ
うに、30〜300 秒間程度の範囲から選択できる。
The decarburized annealed sheet having the above-mentioned oxygen basis weight and pickling loss can be manufactured as follows. The decarburization annealing temperature may be in the range of normal decarburization and primary recrystallization temperature of 700 to 900 ° C. Further, the annealing time can be selected from the range of about 30 to 300 seconds so that the oxygen basis weight after decarburization annealing is in the range of 0.9 to 2.5 g / m 2 .

【0041】次に脱炭焼鈍板の酸洗減量を0.3g/m2 以下
にするには、雰囲気酸化性の選択が大切であり、均熱過
程前段における雰囲気の酸化度P(H2O) /P(H2)を0.7
未満にし、この均熱過程に至るまでの昇温過程における
雰囲気の酸化度P(H2O) /P(H2)をその均熱過程よりも
低くすることが重要である。昇温過程の酸化性を均熱過
程のそれよりも下げることによって、酸洗減量が低くで
きるのは、化学的に低活性なFeSiO3が多く生成するため
と思われる。昇温過程の酸化度の好ましい範囲は、均熱
過程の酸化度の程度にもよるが、0.05〜0.50の範囲であ
る。
Next, in order to reduce the pickling loss of the decarburized and annealed sheet to 0.3 g / m 2 or less, it is important to select the oxidizing property of the atmosphere, and the degree of oxidation P (H 2 O) of the atmosphere in the preceding stage of the soaking process is important. / P (H 2 ) 0.7
It is important that the temperature is less than the above, and the degree of oxidation P (H 2 O) / P (H 2 ) of the atmosphere in the temperature raising process up to the soaking process is lower than that in the soaking process. The reason why the pickling weight loss can be lowered by lowering the oxidizing property in the temperature rising process to that in the soaking process is considered to be that FeSiO 3 which is chemically low in activity is produced in large amounts. The preferred range of the degree of oxidation during the temperature rising process is 0.05 to 0.50, although it depends on the degree of oxidation during the soaking process.

【0042】また、均熱過程においては酸化度が0.7 以
上になると、酸洗減量が増大する。これは3%けい素鋼
の湿水素中における温度と鋼板表面の生成酸化物との平
衡状態図から考えると、FeO の生成によるものと思われ
る。FeO は、酸素の内部拡散ではなく、Fe原子の外部拡
散によって生成する酸化物であり、このような酸化物が
一旦生成すると表面の保護性が劣化するものと考えられ
る。したがって、この発明では、均熱過程前段の酸化度
を0.7 未満にすることがよい。より好ましい範囲は、0.
30〜0.65程度である。
In the soaking process, if the degree of oxidation is 0.7 or more, the pickling weight loss increases. This is thought to be due to the formation of FeO 3 when considering the equilibrium diagram of the temperature of 3% silicon steel in wet hydrogen and the oxide formed on the surface of the steel sheet. FeO is an oxide that is generated not by the internal diffusion of oxygen but by the external diffusion of Fe atoms, and it is thought that once such oxide is generated, the surface protective property deteriorates. Therefore, in the present invention, the degree of oxidation before the soaking process is preferably less than 0.7. A more preferable range is 0.
It is about 30 to 0.65.

【0043】なお、さらに均熱過程後段の雰囲気の酸化
度を、0.2 〜0.005 の範囲内にすることによってもサブ
スケールの保護性が向上し、酸洗減量を低減させること
ができる。これは還元効果によって表層酸化物が化学的
に安定な状態に変化するためと思われる。この酸化度が
0.2 を超えるとこの変化が小さいため、効果が少ないと
考えられる。一方、0.005 未満になると逆に酸化減量が
激増するがこれは、還元が進行し過ぎるためと思われ
る。
Further, by setting the degree of oxidation of the atmosphere at the latter stage of the soaking process within the range of 0.2 to 0.005, the subscale protection property is improved and the pickling weight loss can be reduced. It is considered that this is because the surface oxide is changed to a chemically stable state by the reduction effect. This degree of oxidation
If it exceeds 0.2, this change is small and the effect is considered to be small. On the other hand, when it is less than 0.005, on the contrary, the oxidative weight loss increases sharply, which seems to be because the reduction proceeds too much.

【0044】さらに、脱炭焼鈍前にSi化合物をSiとして
0.5 〜7.0mg/m2の範囲で付着させることによって、酸洗
減量の低減をより確実なものとすることができる。これ
は脱炭焼鈍で形成する初期酸化物の形態ないしは組成の
変化によって、その後の均熱過程で生成する酸化層が、
より緻密なものになるためと考えられる。Si化合物とし
ては、本質的にSi, O,H、あるいは本質的にSi, Oか
らなるけい素化合物、すなわちSiO2・xH2O の形で表さ
れる化合物を付着せしめることが有効である。オルトけ
い酸(H4SiO4)、メタけい酸(H2SiO3)、コロイダルシリカ
の如き水溶状超微粒SiO2、およびけい酸アルカリ水溶液
中で鋼板を電解処理したときに電着するSiO2、またはこ
れにH2O が結合した化合物等がこれに該当する。
Further, before decarburization annealing, the Si compound was changed to Si.
By making it adhere in the range of 0.5 to 7.0 mg / m 2 , it is possible to more reliably reduce the amount of pickling. This is due to the change in the form or composition of the initial oxide formed by decarburization annealing, and the oxide layer formed in the subsequent soaking process,
It is thought that it will be more precise. As the Si compound, it is effective to attach a silicon compound essentially consisting of Si, O, H or a silicon compound essentially consisting of Si, O, that is, a compound represented by the form of SiO 2 .xH 2 O. Ortho silicic acid (H 4 SiO 4), metasilicate (H 2 SiO 3), SiO 2 electrodepositing when such water like ultra fine SiO 2 colloidal silica, and a steel sheet with silicate alkaline aqueous solution was electrolyzed , Or a compound or the like in which H 2 O is bound to this, corresponds to this.

【0045】かかるSi化合物の付着量がSiとして0.5mg/
m2より少ないと、所期の効果が得にくく、また、Si化合
物の付着量がSiとして7mg/m2 を超えると酸素目付量は
急に減少する。これは、表面に緻密で酸素が透過しにく
い被膜が形成されるためと考えられる。また、このよう
な酸素目付量の低減とともに脱炭も不良になる傾向があ
る。方向性けい素鋼の場合、この脱炭不良は磁気特性に
対し大なる悪影響を及ぼすものである。したがって、こ
の発明においてSi化合物の付着量の上限をSiにして7mg
/m2 としたのは以上の理由によるものである。なお、Si
化合物付着量のより好適な範囲はSiとして0.7 〜6.0mg/
m2である。
The amount of such Si compound deposited is 0.5 mg / Si
If it is less than m 2 , the desired effect is difficult to obtain, and if the amount of Si compound attached exceeds 7 mg / m 2 as Si, the oxygen basis weight suddenly decreases. It is considered that this is because a film that is dense and does not easily transmit oxygen is formed on the surface. In addition, decarburization tends to be poor with the reduction of the oxygen basis weight. In the case of grain-oriented silicon steel, this poor decarburization has a great adverse effect on the magnetic properties. Therefore, in the present invention, the upper limit of the amount of Si compound deposited is set to 7 mg.
The reason for setting / m 2 is as described above. Note that Si
A more preferable range of the amount of compound attached is 0.7 to 6.0 mg / Si as Si.
a m 2.

【0046】鋼板表面上にSi化合物を付着させるには、
大別して塗布による方法と電解処理による方法との二つ
の方法を用いることができる。まず、塗布による方法を
選ぶ場合に、最終冷間圧延後の方向性けい素鋼板は、塗
布液がはじかないように事前に表面を脱脂して、濡れ性
を十分に良くしておくことが重要である。塗布剤として
は、4〜50μm 程度の粒径を持つコロイド状シリカ、あ
るいは水に対する溶解度は小さいがけい酸(SiO2 ・xH2
O)等を用いることができる。塗布のための具体的な手段
や塗布後の成分や濃度等は特に限定するものではない
が、例えば、0.5 〜2.0mm の間隔に溝を切った塗布ロー
ルを用いれば、塗布液濃度、ロール圧下力の選択によ
り、塗布量が任意に制御できるため好適である。
To deposit the Si compound on the steel plate surface,
It can be roughly classified into two methods, a method by coating and a method by electrolytic treatment. First of all, when selecting the coating method, it is important to degrease the surface of the grain-oriented silicon steel sheet after the final cold rolling in advance so that the coating solution does not repel and to improve the wettability sufficiently. Is. As the coating agent, colloidal silica having a particle size of 4 to 50 μm, or silicic acid (SiO 2 · xH 2) having a low solubility in water
O) etc. can be used. The specific means for coating and the components and concentrations after coating are not particularly limited, but for example, if a coating roll having grooves at intervals of 0.5 to 2.0 mm is used, the coating liquid concentration and roll pressure It is preferable because the coating amount can be controlled arbitrarily by selecting the force.

【0047】次に、電解処理による方法について述べ
る。方向性けい素鋼板には、最終冷間圧延後に表面に付
着した圧延油、鉄粉あいは最終冷延に先立つ種々の工程
において形成したスケールの粒子などを除去し、清浄な
表面を得るためのクリーニングを施す。
Next, a method by electrolytic treatment will be described. For grain-oriented silicon steel sheets, the rolling oil that has adhered to the surface after the final cold rolling, the iron powder, etc. to remove the particles of scale formed in various steps prior to the final cold rolling to obtain a clean surface. Perform cleaning.

【0048】このクリーニング方法としては浸漬脱脂、
スプレー脱脂、ブラッシング脱脂等の他、アルカリ性脱
脂浴中で鋼板を電解処理する、いわゆる電解脱脂があ
る。この電解脱脂には通常、苛性ソーダ、炭酸ソーダ、
りん酸ソーダ、けい酸ソーダ等の一種あるいは二種以上
を含む水溶液が脱脂浴として採用されるが、けい酸塩を
含む脱脂浴を用いて鋼板を電解脱脂すれば、鋼板表面に
けい酸またはけい酸塩もしくはそれらと鉄との水和酸化
物を含む化合部が電着する。この現象は、特に陰極にお
いて顕著である。したがって、最終冷延後の方向性けい
素鋼板を、けい酸塩を含む脱脂浴中で電解脱脂するか、
通常の浸漬脱脂の末部に電解用電極を付設することは、
脱脂処理と同時にこの発明に都合のよいSi化合物を付着
できることから極めて有利である。また、電気量の制御
によってSi化合物の付着量を任意に選ぶことができるこ
とも有利な点である。
As this cleaning method, immersion degreasing,
In addition to spray degreasing, brushing degreasing, etc., there is so-called electrolytic degreasing in which a steel sheet is electrolytically treated in an alkaline degreasing bath. For this electrolytic degreasing, usually caustic soda, sodium carbonate,
An aqueous solution containing one or more of sodium phosphate, sodium silicate, etc. is adopted as the degreasing bath.However, if the steel sheet is electrolytically degreased using a degreasing bath containing silicate, the surface of the steel sheet will be silicic acid or silica. A chemical compound containing an acid salt or a hydrated oxide of iron and iron is electrodeposited. This phenomenon is particularly remarkable in the cathode. Therefore, the grain-oriented silicon steel sheet after the final cold rolling is electrolytically degreased in a degreasing bath containing silicate,
Attaching an electrode for electrolysis to the end of normal immersion degreasing
It is extremely advantageous because a Si compound convenient for the present invention can be attached simultaneously with the degreasing treatment. Further, it is also an advantage that the amount of Si compound deposited can be arbitrarily selected by controlling the amount of electricity.

【0049】この電解処理の電解浴に用いるけい酸塩と
しては、ナトリウムのけい酸塩すなわちオルトけい酸ナ
トリウム(Na4SiO4) 、メタけい酸ナトリウム(Na2SiO3)
または種々のけい酸ナトリウムの液体混合物であるいわ
ゆる水ガラス等が適当である。また、カリウムあるいは
リチウムのけい酸塩を用いることも可能である。いずれ
も金属イオンとSiとのモル比は、その如何を問わない。
As the silicate used in the electrolytic bath for this electrolytic treatment, sodium silicate, that is, sodium orthosilicate (Na 4 SiO 4 ), sodium metasilicate (Na 2 SiO 3 ).
Alternatively, so-called water glass, which is a liquid mixture of various sodium silicates, is suitable. It is also possible to use potassium or lithium silicate. In either case, the molar ratio of metal ion and Si does not matter.

【0050】電解浴の組成は、上記けい酸化合物を含む
ものであれば、その他の成分、例えばNaOH、Na2CO3等の
存在およびその濃度の如何を問わないが、けい酸塩の濃
度が0.5 〜5%程度であれば、脱脂とSiの付着との双方
において所期の目標を達成することが可能なので有利で
ある。この他、コロイダルシリカの懸濁液中で鋼板を電
解処理することによってもSi化合物を電着させることが
可能である。
The composition of the electrolytic bath is not limited as long as it contains the above-mentioned silicic acid compound, regardless of the presence and concentration of other components such as NaOH and Na 2 CO 3 , but the concentration of the silicate is not limited. If it is about 0.5 to 5%, it is possible to achieve the desired target in both degreasing and adhesion of Si, which is advantageous. In addition, the Si compound can be electrodeposited by electrolytically treating the steel sheet in a suspension of colloidal silica.

【0051】電解の方法や条件、すなわち通電方法、電
流密度、電解時間あるいは電解温度等については公知の
範囲内で適宜選択することでよい。
The electrolysis method and conditions, that is, the energization method, the current density, the electrolysis time, the electrolysis temperature and the like may be appropriately selected within a known range.

【0052】以上の脱炭焼鈍を行った酸素目付量が0.9
〜2.5 g/m2の範囲の鋼板に、MgO を主成分とした焼鈍分
離剤を塗布する。この焼鈍分離剤中に、仕上げ焼鈍後の
被膜中のTi目付量が0.25〜0.9g/m2 となるようにするた
めに、Ti化合物を添加することが重要である。この場
合、Ti化合物がTiO2として6.0 重量%以下では目的のTi
目付量に達せず、また30重量%以上では、目的のTi目付
量を超えてしまうため、Ti化合物は、TiO2として6〜30
%の範囲で添加することが良い。Ti化合物としてはTi
O2, Ti(OH)4, TiO3 ・H2O, TiO・(OH)2 等が挙げられ
る。さらに分離剤中にSrCO3 またはSr(OH)2 を、SrO と
して0.1 〜4.0 重量%、添加することが、被膜中のTi目
付量を安定確保し、かつTi/Nモル比を1.2 以下にする
うえで有効である。特にSrO として1.0 〜4.0 重量%の
範囲で添加すると、被膜中にSrが0.03〜0.20g/m2の範囲
で含有され、被膜の付与張力をより安定かつ高くするこ
とができる。
Oxygen basis weight after decarburization annealing is 0.9
Apply an annealing separator containing MgO as a main component to steel plates in the range of up to 2.5 g / m 2 . It is important to add a Ti compound to this annealing separator so that the coating weight of Ti in the film after finish annealing is 0.25 to 0.9 g / m 2 . In this case, if the Ti compound content is 6.0% by weight or less as TiO 2 , the target Ti
If the weight is less than 30% by weight, the Ti weight exceeds the target weight, so the Ti compound should be 6 to 30 as TiO 2.
It is good to add in the range of%. Ti as a Ti compound
O 2, Ti (OH) 4 , TiO 3 · H 2 O, TiO · (OH) 2 and the like. Furthermore, by adding SrCO 3 or Sr (OH) 2 to the separating agent in an amount of 0.1 to 4.0% by weight as SrO, the Ti basis weight in the coating can be stably secured and the Ti / N molar ratio can be 1.2 or less. It is effective in the above. In particular, when SrO is added in the range of 1.0 to 4.0% by weight, Sr is contained in the coating in the range of 0.03 to 0.20 g / m 2 , and the tension applied to the coating can be made more stable and higher.

【0053】焼鈍分離剤を塗布したのち、鋼板は仕上げ
焼鈍に供される。仕上げ焼鈍は、2次再結晶焼鈍と、そ
れに引き続いて、不要となった鋼中のN,S,Se等のイ
ンヒビター成分を純化するための、純化焼鈍が一連の工
程となったヒートパターンによって行われる。AlN をイ
ンヒビターとする方向性けい素鋼板では、2次再結晶焼
鈍は、通常AlN の分解を抑制するため、N2:5〜50 vol
%を含む、N2−H2混合雰囲気中で、昇温速度7〜50℃/
hr程度の昇温速度で、1150℃あたりまで昇温することに
よって行われる。引き続く純化焼鈍は、1150〜1250℃の
温度範囲で、H2中において3〜20時間、保定することに
よって行われる。
After applying the annealing separator, the steel sheet is subjected to finish annealing. The finish annealing is performed by a secondary recrystallization annealing and, subsequently, a heat pattern in which purification annealing is a series of steps for purifying the inhibitor components such as N, S, and Se in the unnecessary steel. Be seen. In grain-oriented silicon steel sheets using AlN as an inhibitor, secondary recrystallization annealing usually suppresses the decomposition of AlN, so N 2 : 5 to 50 vol.
% Including, in N 2 -H 2 mixed atmosphere heating rate 7 to 50 ° C. /
It is carried out by heating up to around 1150 ° C at a heating rate of about hr. Subsequent purification annealing is carried out in the temperature range of 1150 to 1250 ° C. by holding in H 2 for 3 to 20 hours.

【0054】この発明では、被膜中のTi/Nモル比を1.
2 以下にするために、1150℃以上の純化焼鈍において、
少なくとも、30分間、N2濃度10%以上のH2−N2混合雰囲
気で焼鈍することが重要である。このようにすることに
よってTi/Nモル比が低下するのは、被膜中での窒化物
の生成が促進されるためと考えられる。この純化焼鈍中
におけるN2濃度の好適範囲は20〜50%、この雰囲気での
焼鈍時間の好適範囲はN2濃度にもよるが、1〜10時間で
ある。
In the present invention, the Ti / N molar ratio in the coating is 1.
In order to make it 2 or less
It is important to anneal for at least 30 minutes in a H 2 —N 2 mixed atmosphere with an N 2 concentration of 10% or more. The reason why the Ti / N molar ratio is lowered by doing so is considered to be that the formation of nitrides in the film is promoted. The preferable range of the N 2 concentration during this purification annealing is 20 to 50%, and the preferable range of the annealing time in this atmosphere is 1 to 10 hours, depending on the N 2 concentration.

【0055】仕上げ焼鈍後は必要に応じて絶縁コーティ
ングが施されて製品となる。
After finish annealing, an insulating coating is applied if necessary to obtain a product.

【0056】[0056]

【実施例】【Example】

実施例1 C:0.069 %、Si:3.33%、Mn:0.073 %、Se:0.022
%、sol.Al:0.026 %、N:0.0083%およびSb:0.024
%を含有する方向性けい素鋼素材を、2.3mm 厚に熱延
後、1000℃の均一化焼鈍を行い、さらに1100℃の中間焼
鈍を挟む2回の冷間圧延によって0.23mmの板厚とした。
ついで840 ℃で180 秒間H2−N2−H2O 雰囲気中で脱炭焼
鈍を行た。この脱炭焼鈍の際、昇温過程、および均熱過
程の雰囲気酸化性をそれぞれ独立に制御し、P(H2O) /
P(H2)として表1に示す値にそれぞれ調整した。
Example 1 C: 0.069%, Si: 3.33%, Mn: 0.073%, Se: 0.022
%, Sol.Al: 0.026%, N: 0.0083% and Sb: 0.024
% Of grain-oriented silicon steel material is hot-rolled to a thickness of 2.3 mm, homogenized at 1000 ℃, and then cold-rolled twice with an intermediate anneal at 1100 ℃ to obtain a 0.23 mm plate thickness. did.
Next, decarburization annealing was performed at 840 ° C for 180 seconds in an H 2 —N 2 —H 2 O atmosphere. At the time of this decarburization annealing, the atmospheric oxidizability of the temperature rising process and the soaking process is controlled independently, and P (H 2 O)
Each value was adjusted as shown in Table 1 as P (H 2 ).

【0057】[0057]

【表1】 [Table 1]

【0058】ついで、MgO にTiO2、さらにはSr(OH)2
表1に示す値でそれぞれ含有させた焼鈍分離剤をスラリ
ーとして塗布量:9.0 g/m2で塗布し、乾燥した。その後
2次再結晶焼鈍をN2: 20vol%、H2: 80vol%の混合雰
囲気中で20℃/hrの昇温速度で1180℃まで昇温して行
い、引き続いて1180℃の温度で10時間の純化焼鈍を行っ
た。このとき、焼鈍の初期は表1に示すN2%のH2−N2
合雰囲気で、表1に示す時間を保定し、その後はH2 100
%の雰囲気で保定した。
Then, an annealing separator containing MgO 2 containing TiO 2 and Sr (OH) 2 at the values shown in Table 1 was applied as a slurry at an application amount of 9.0 g / m 2 and dried. After that, secondary recrystallization annealing is performed in a mixed atmosphere of N 2 : 20vol% and H 2 : 80vol% at a heating rate of 20 ° C / hr to 1180 ° C, and subsequently at a temperature of 1180 ° C for 10 hours. Purification annealing was performed. At this time, in the initial stage of annealing, the N 2 % H 2 —N 2 mixed atmosphere shown in Table 1 was maintained for the time shown in Table 1, and thereafter H 2 100
It was held in the atmosphere of%.

【0059】その後、りん酸マグネシウムとコロイダル
シリカを主成分とするコーティングを施した。この工程
中、脱炭焼鈍後の一部の試料で、酸素目付量を分析する
とともに、5%HCl ・70℃・60秒間の酸洗における酸洗
減量を測定した。また、仕上げ焼鈍後の一部の試料で、
フォルステライト被膜の酸素目付量、Ti目付量、Sr目
付量、Ti/Nモル比を分析するとともに、フォルステラ
イト粒子の平均粒子径および被膜の付与張力を測定し
た。
Thereafter, a coating containing magnesium phosphate and colloidal silica as main components was applied. During this step, a part of the samples after the decarburization annealing was analyzed for the oxygen basis weight, and the pickling weight loss in the pickling at 5% HCl / 70 ° C / 60 seconds was measured. Also, in some samples after finish annealing,
The oxygen areal weight, Ti areal weight, Sr areal weight, and Ti / N molar ratio of the forsterite coating were analyzed, and the average particle diameter of the forsterite particles and the applied tension of the coating were measured.

【0060】さらに、得られた製品を、トロイド状に塑
性加工し、さらに直線状に伸ばしたのち、乾燥N2 中で
800 ℃・3時間の歪取り焼鈍を行った。歪取り焼鈍前後
の製品について、磁界800A/mにおける磁束密度(B
8 値) 、1.7T, 50Hzにおける鉄損(W17/50 値) 、被膜
の曲げ密着性及び被膜の外観について調査した。この被
膜の曲げ密着性は、5mm間隔の種々の径を有する丸棒に
試験片を巻き付け、被膜がはく離しない最小径で示し
た。これらの結果を、表1にまとめて併記した。
Further, the obtained product was plastically processed into a toroidal shape and further linearly stretched, and then dried in N 2 .
Strain relief annealing was performed at 800 ° C for 3 hours. For the products before and after strain relief annealing, the magnetic flux density (B
8 values), iron loss at 1.7 T, 50 Hz (W 17/50 value), bending adhesion of the coating, and appearance of the coating. The flexural adhesion of this coating was indicated by the minimum diameter at which the test piece was wound around round rods having various diameters at 5 mm intervals and the coating did not peel off. These results are collectively shown in Table 1.

【0061】表1から明らかなように、この発明の適合
例である試料No. 1〜9はいずれも0.6kgf/mm2以上の高
い付与張力のフォルステライト被膜を有し、優れた鉄損
を示し歪取り焼鈍後の鉄損劣化も見られず、また被膜特
性も当然のことながら優れている。これらに対し、フォ
ルステライト被膜の酸素目付量と平均粒子径がこの発明
の範囲外である比較例の試料No.10 , 11、Ti目付量がこ
の発明の範囲外である比較例の試料No.12, 13 、Ti/N
モル比がこの発明の範囲外である比較例の試料No.14, 1
6, 17 、Sr目付量および平均粒子径がこの発明の範囲外
である比較例の試料No.15 は、いずれも被膜の付与張力
が低く、鉄損は劣っている。
As is clear from Table 1, all of the sample Nos. 1 to 9 which are suitable examples of the present invention have a forsterite coating film having a high applied tension of 0.6 kgf / mm 2 or more, and have excellent iron loss. As shown, no iron loss deterioration was observed after the strain relief annealing, and the coating properties were naturally excellent. On the other hand, the sample weights of oxygen and the average particle diameter of the forsterite coating are Comparative Examples Nos. 10 and 11 in which the average particle size is outside the scope of the present invention, and the sample weights of Comparative Examples in which the Ti basis weight is outside the scope of the present invention. 12, 13, Ti / N
Sample No. 14, 1 of Comparative Example in which the molar ratio is outside the scope of the present invention
6, 17, Sr areal weight and average particle size are out of the range of the present invention, the sample No. 15 of Comparative Example has a low coating tension and inferior iron loss.

【0062】また試料No.18, 19,の比較例は、被膜の付
与張力が0.6 Kgf/mm2 以上であるにもかかわらず、酸素
目付量、Ti目付量、Ti/Nモル比あるいは平均粒子径のい
ずれかがこの発明の範囲外であるため鉄損はこの発明の
適合例に比し劣っており、歪取り焼鈍後の鉄損回復も十
分でない。
Further, in the comparative examples of sample Nos. 18 and 19, even though the applied tension of the coating was 0.6 Kgf / mm 2 or more, the oxygen basis weight, the Ti basis weight, the Ti / N molar ratio or the average particle Since any of the diameters is out of the range of the present invention, the iron loss is inferior to that of the conforming example of the present invention, and the iron loss recovery after the strain relief annealing is not sufficient.

【0063】実施例2 最終板厚を0.23mmとした実施例1と同じ、冷間圧延後の
鋼板を、3%オルトけい酸ナトリウムを主成分とする電
解脱脂浴中で電解脱脂するとともに、表面にSi化合物を
付着させた。このとき、電界電気量を変更することによ
ってSiとしての付着量を表2に示す値に調整した。
Example 2 The same cold rolled steel sheet as in Example 1 having a final thickness of 0.23 mm was electrolytically degreased in an electrolytic degreasing bath containing 3% sodium orthosilicate as a main component, and the surface A Si compound was attached to. At this time, the amount of adhesion as Si was adjusted to the value shown in Table 2 by changing the electric field electric amount.

【0064】[0064]

【表2】 [Table 2]

【0065】このあと、実施例1と同様に処理し、ま
た、実施例1と同様な調査を行った。これらの処理条件
および調査結果を表2にまとめて併記した。表2から明
らかなごとくこの発明の適合例である試料NO. 1〜5
は、いずれも0.7kgf/mm2以上の高い付与張力のフォルス
テライト被膜を有し、優れた鉄損を示しており、また、
被膜特性も優れている。これらに対し、Si付着量がこの
発明の範囲よりも多い比較例の試料NO. 6,7は平均粒
子径が過大となり被膜の付与張力が弱く、鉄損、被膜特
性ともに劣っている。
After that, the same treatment as in Example 1 was conducted, and the same investigation as in Example 1 was conducted. These treatment conditions and the survey results are also shown in Table 2 together. As is clear from Table 2, sample Nos. 1 to 5 which are the application examples of the present invention.
Have a forsterite coating with a high applied tension of 0.7 kgf / mm 2 or more, and show excellent iron loss.
Excellent coating properties. On the other hand, in the sample Nos. 6 and 7 of Comparative Examples in which the amount of deposited Si is more than the range of the present invention, the average particle diameter is excessively large, the applied tension of the coating is weak, and the iron loss and the coating properties are poor.

【0066】また、試料No. 8,9の比較例は被膜の付
与張力が0.6 Kgf/mm2 以上であるにもかかわらず、酸素
目付量、Ti目付量あるいはTi/Nモル比などがこの発明の
範囲外であるため鉄損はこの発明の適合例に比し劣って
いる。
In addition, in the comparative examples of sample Nos. 8 and 9, although the applied tension of the coating is 0.6 Kgf / mm 2 or more, the oxygen basis weight, the Ti basis weight or the Ti / N molar ratio is the same as that of the present invention. The iron loss is inferior to that of the conforming example of the present invention because it is out of the range.

【0067】[0067]

【発明の効果】この発明は、高磁束密度一方向性けい素
鋼板のフォルステライト被膜の酸素目付量、Ti目付量、
Ti/Nモル比および平均粒子径を規定するものであって、
この発明によれば、被膜の付与張力効果を安定して発揮
し、鉄損を効果的に改善することができ、特にユーザー
での歪取り焼鈍における鉄損の回復を大幅に向上でき、
被膜特性にも優れるものとなる。
EFFECT OF THE INVENTION The present invention provides an oxygen basis weight, a Ti basis weight of a forsterite coating of a high magnetic flux density unidirectional silicon steel sheet,
It defines the Ti / N molar ratio and the average particle size,
According to this invention, the applied tension effect of the coating film can be stably exhibited, and the iron loss can be effectively improved. In particular, the recovery of the iron loss in the strain relief annealing by the user can be significantly improved,
It also has excellent coating properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フォルステライトの平均粒子径:0.4 μm 、Ti
/N モル比:0.9 〜1.1 の場合の被膜の付与張力と酸素
目付量およびTi目付量との関係を示すグラフである。
[Fig. 1] Average particle size of forsterite: 0.4 μm, Ti
3 is a graph showing the relationship between the applied tension of the coating and the oxygen areal weight and the Ti areal weight when the / N molar ratio is 0.9 to 1.1.

【図2】フォルステライト平均粒子径:0.4 μm 、Ti/
N モル比:1.4 〜1.6 の場合の被膜の付与張力と酸素目
付量およびTi目付量との関係を示すグラフである。
[Figure 2] Forsterite average particle size: 0.4 μm, Ti /
3 is a graph showing the relationship between the applied tension of the coating and the oxygen basis weight and the Ti basis weight when the N molar ratio is 1.4 to 1.6.

【図3】フォルステライト平均粒子径:0.8 μm 、Ti/
N モル比:0.9 〜1.1 の場合の被膜の付与張力と酸素目
付量およびTi目付量との関係を示すグラフである。
[Fig. 3] Forsterite average particle size: 0.8 μm, Ti /
6 is a graph showing the relationship between the applied tension of the coating and the oxygen basis weight and the Ti basis weight when the N molar ratio is 0.9 to 1.1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 H01F 1/16 B (72)発明者 山口 広 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 久田 雅子 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01F 1/16 H01F 1/16 B (72) Inventor Hiroshi Yamaguchi 1-chome, Kawashima-dori, Kurashiki, Okayama (No street number) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works (72) Inventor Masako Kuda 1-chome, Mizushima Kawasaki Dori, Kurashiki City, Okayama Prefecture (No street number) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面にフォルステライト被膜を有する磁
束密度B8 が1.90T以上である一方向性けい素鋼板であ
って、該フォルステライト被膜が、 酸素目付量:2.5 〜4.5g/m2 、 Ti目付量:0.25〜0.90g/m2、 Ti/Nモル比:1.2 以下および フォルステライト粒子の平均粒子径:0.5 μm 以下 を満たしてなることを特徴とする高磁束密度一方向性け
い素鋼板のフォルステライト被膜。
1. A unidirectional silicon steel sheet having a forsterite coating on the surface and having a magnetic flux density B 8 of 1.90 T or more, wherein the forsterite coating has an oxygen basis weight: 2.5 to 4.5 g / m 2 , High magnetic flux density unidirectional silicon steel sheet characterized by satisfying Ti basis weight: 0.25 to 0.90 g / m 2 , Ti / N molar ratio: 1.2 or less, and average particle size of forsterite particles: 0.5 μm or less Forsterite film.
【請求項2】 表面にフォルステライト被膜を有する磁
束密度B8 が1.90T以上である一方向性けい素鋼板であ
って、該フォルステライト被膜が、 酸素目付量:2.5 〜4.5g/m2 、 Ti目付量:0.25〜0.90g/m2、 Sr目付量:0.03〜0.20g/m2 Ti/Nモル比:1.2 以下および フォルステライト粒子の平均粒子径:0.5 μm 以下 を満たしてなることを特徴とする高磁束密度一方向性け
い素鋼板のフォルステライト被膜。
2. A unidirectional silicon steel sheet having a forsterite coating on its surface and a magnetic flux density B 8 of 1.90 T or more, wherein the forsterite coating has an oxygen basis weight of 2.5 to 4.5 g / m 2 . Ti basis weight: 0.25 to 0.90 g / m 2 , Sr basis weight: 0.03 to 0.20 g / m 2 Ti / N molar ratio: 1.2 or less, and average particle diameter of forsterite particles: 0.5 μm or less Forsterite coating of high magnetic flux density unidirectional silicon steel sheet.
【請求項3】 一方向性けい素鋼板用素材を、熱間圧延
し、ついで冷間圧延したのち、脱炭焼鈍を施して得た酸
素目付量が0.9 〜2.5g/m2 の範囲の脱炭焼鈍板の表面
に、 Ti化合物をTiO2換算で6.0 〜30.0重量%の範囲で含有
し、残部は実質的にMgOの組成になる焼鈍分離剤を塗布
し、ついで、仕上げ焼鈍にて2次再結晶焼鈍後、1150℃
以上の温度で純化焼鈍を施し、その純化焼鈍中に少なく
とも30分間、N2濃度:10%以上のH2−N2混合雰囲気中で
焼鈍することを特徴とする高磁束密度一方向性けい素鋼
板のフォルステライト被膜の形成方法。
3. A material for unidirectional silicon steel sheet is hot-rolled, then cold-rolled, and then decarburized and annealed to obtain an oxygen basis weight in the range of 0.9 to 2.5 g / m 2. The surface of the charcoal-annealed plate was coated with an annealing separator containing Ti compound in the range of 6.0 to 30.0% by weight in terms of TiO 2 and the balance being substantially MgO, and then subjected to secondary annealing by finish annealing. After recrystallization annealing, 1150 ℃
A high magnetic flux density unidirectional silicon characterized by performing purification annealing at the above temperature and annealing in the H 2 -N 2 mixed atmosphere with N 2 concentration: 10% or more for at least 30 minutes during the purification annealing. Method for forming forsterite coating on steel sheet.
【請求項4】 一方向性けい素鋼板用素材を、熱間圧延
し、ついで冷間圧延したのち、脱炭焼鈍を施して得た酸
素目付量が0.9 〜2.5g/m2 の範囲の脱炭焼鈍板の表面
に、 Ti化合物をTiO2換算で6.0 〜30.0重量%およびSr化合物
をSrO 換算で0.1 〜4.0 重量%の範囲で含有し、残部は
実質的にMgO の組成になる焼鈍分離剤を塗布し、つい
で、仕上げ焼鈍にて2次再結晶焼鈍後、1150℃以上の温
度で純化焼鈍を施し、その純化焼鈍中に少なくとも30分
間、N2濃度:10%以上のH2−N2混合雰囲気中で焼鈍する
ことを特徴とする高磁束密度一方向性けい素鋼板のフォ
ルステライト被膜の形成方法。
4. A material for unidirectional silicon steel sheet is hot-rolled, then cold-rolled, and then decarburized and annealed to obtain an oxygen basis weight in the range of 0.9 to 2.5 g / m 2. on the surface of the coal annealed sheet, a 6.0 to 30.0 wt% and Sr compound Ti compound in terms of TiO 2 contained in the range of 0.1 to 4.0 wt% in terms of SrO, the remainder annealing separator consisting essentially composition of MgO Then, after secondary recrystallization annealing by finish annealing, purification annealing is performed at a temperature of 1150 ° C. or higher, and N 2 concentration: 10% or more of H 2 —N 2 for at least 30 minutes during the purification annealing. A method for forming a forsterite coating on a high magnetic flux density unidirectional silicon steel sheet, characterized by annealing in a mixed atmosphere.
【請求項5】 請求項3または4において、脱炭焼鈍板
が、5% HCl水溶液を用いて、70℃の温度で60秒間の酸
洗を行ったときの酸洗減量が0.3g/m2 以下であることを
特徴とする高磁束密度一方向性けい素鋼板のフォルステ
ライト被膜の形成方法。
5. The pickling reduction amount according to claim 3 or 4, when the decarburized annealed sheet is pickled with a 5% HCl aqueous solution at a temperature of 70 ° C. for 60 seconds, the pickling loss is 0.3 g / m 2. A method for forming a forsterite coating on a high magnetic flux density unidirectional silicon steel sheet, characterized in that:
【請求項6】 請求項3,4または5において、脱炭焼
鈍前鋼板にけい素化合物を付着させ、その付着量をSi重
量換算で0.5 〜7.0 mg/m2の範囲とすることを特徴とす
る高磁束密度一方向性けい素鋼板の製造方法。
6. The silicon compound according to claim 3, 4 or 5, wherein a silicon compound is adhered to the steel sheet before decarburization annealing, and the adhered amount is in the range of 0.5 to 7.0 mg / m 2 in terms of Si weight. Method for producing high magnetic flux density unidirectional silicon steel sheet.
JP00059496A 1996-01-08 1996-01-08 Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method. Expired - Fee Related JP3539028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00059496A JP3539028B2 (en) 1996-01-08 1996-01-08 Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00059496A JP3539028B2 (en) 1996-01-08 1996-01-08 Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.

Publications (2)

Publication Number Publication Date
JPH09184017A true JPH09184017A (en) 1997-07-15
JP3539028B2 JP3539028B2 (en) 2004-06-14

Family

ID=11478071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00059496A Expired - Fee Related JP3539028B2 (en) 1996-01-08 1996-01-08 Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.

Country Status (1)

Country Link
JP (1) JP3539028B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2001200317A (en) * 2000-01-21 2001-07-24 Kawasaki Steel Corp Method for producing low core loss grain oriented silicon steel sheet having good film
JP2003079113A (en) * 2001-08-30 2003-03-14 Nippon Steel Corp Resin-sealed stator for electric motor, manufacturing method therefor and die for resin sealing
JP2005317683A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Grain-oriented electromagnetic steel plate for three-phase laminated iron core
JP2006137972A (en) * 2004-11-10 2006-06-01 Jfe Steel Kk Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor
JP2006137970A (en) * 2004-11-10 2006-06-01 Jfe Steel Kk Grain-oriented electromagnetic steel sheet with chromium-free coating, and manufacturing method therefor
JP2006137971A (en) * 2004-11-10 2006-06-01 Jfe Steel Kk Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor
JP2007051314A (en) * 2005-08-16 2007-03-01 Nippon Steel Corp Grain-oriented electromagnetic steel sheet with film having superior adhesiveness, and manufacturing method therefor
EP1811053A1 (en) * 2004-11-10 2007-07-25 JFE Steel Corporation Grain oriented electromagnetic steel plate and method for producing the same
US7887646B2 (en) 2005-05-23 2011-02-15 Nippon Steel Corporation Oriented magnetic steel plate excellent in coating adhesion and method of production of same
WO2012001971A1 (en) * 2010-06-30 2012-01-05 Jfeスチール株式会社 Process for producing grain-oriented magnetic steel sheet
WO2012001957A1 (en) * 2010-06-29 2012-01-05 Jfeスチール株式会社 Oriented magnetic steel sheet and production method thereof
WO2012001953A1 (en) * 2010-06-30 2012-01-05 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
JP2012052232A (en) * 2010-08-06 2012-03-15 Jfe Steel Corp Grain-oriented electrical steel sheet, and method for producing the same
JP5419459B2 (en) * 2006-11-22 2014-02-19 新日鐵住金株式会社 Unidirectional electrical steel sheet with excellent coating adhesion and method for producing the same
WO2016047077A1 (en) * 2014-09-26 2016-03-31 Jfeスチール株式会社 Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
JP2017133072A (en) * 2016-01-28 2017-08-03 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and rust resistance, original sheet for grain-oriented electromagnetic steel sheet and method for manufacturing them
JP2018070974A (en) * 2016-11-01 2018-05-10 Jfeスチール株式会社 Production method for grain-oriented electromagnetic steel sheet
KR20180053353A (en) 2015-09-25 2018-05-21 제이에프이 스틸 가부시키가이샤 Directional electric steel sheet and manufacturing method thereof
WO2022168887A1 (en) 2021-02-04 2022-08-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
WO2023068236A1 (en) * 2021-10-20 2023-04-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2001200317A (en) * 2000-01-21 2001-07-24 Kawasaki Steel Corp Method for producing low core loss grain oriented silicon steel sheet having good film
JP2003079113A (en) * 2001-08-30 2003-03-14 Nippon Steel Corp Resin-sealed stator for electric motor, manufacturing method therefor and die for resin sealing
JP2005317683A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Grain-oriented electromagnetic steel plate for three-phase laminated iron core
JP2006137972A (en) * 2004-11-10 2006-06-01 Jfe Steel Kk Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor
JP2006137970A (en) * 2004-11-10 2006-06-01 Jfe Steel Kk Grain-oriented electromagnetic steel sheet with chromium-free coating, and manufacturing method therefor
JP2006137971A (en) * 2004-11-10 2006-06-01 Jfe Steel Kk Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor
EP1811053A4 (en) * 2004-11-10 2014-12-17 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same
EP1811053A1 (en) * 2004-11-10 2007-07-25 JFE Steel Corporation Grain oriented electromagnetic steel plate and method for producing the same
JP4682590B2 (en) * 2004-11-10 2011-05-11 Jfeスチール株式会社 Directional electrical steel sheet with chromeless coating and method for producing the same
US7887646B2 (en) 2005-05-23 2011-02-15 Nippon Steel Corporation Oriented magnetic steel plate excellent in coating adhesion and method of production of same
JP5230194B2 (en) * 2005-05-23 2013-07-10 新日鐵住金株式会社 Oriented electrical steel sheet having excellent coating adhesion and method for producing the same
JP2012214902A (en) * 2005-05-23 2012-11-08 Nippon Steel Corp Grain-oriented electromagnetic steel sheet excellent in film adhesion, and process for producing the same
JP4598624B2 (en) * 2005-08-16 2010-12-15 新日本製鐵株式会社 Oriented electrical steel sheet with excellent film adhesion and method for producing the same
JP2007051314A (en) * 2005-08-16 2007-03-01 Nippon Steel Corp Grain-oriented electromagnetic steel sheet with film having superior adhesiveness, and manufacturing method therefor
JP5419459B2 (en) * 2006-11-22 2014-02-19 新日鐵住金株式会社 Unidirectional electrical steel sheet with excellent coating adhesion and method for producing the same
US9536657B2 (en) 2010-06-29 2017-01-03 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
WO2012001957A1 (en) * 2010-06-29 2012-01-05 Jfeスチール株式会社 Oriented magnetic steel sheet and production method thereof
JP2012031512A (en) * 2010-06-29 2012-02-16 Jfe Steel Corp Grain-oriented electromagnetic steel sheet and production method thereof
US20130112319A1 (en) * 2010-06-29 2013-05-09 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
US20130098508A1 (en) * 2010-06-30 2013-04-25 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
WO2012001971A1 (en) * 2010-06-30 2012-01-05 Jfeスチール株式会社 Process for producing grain-oriented magnetic steel sheet
JP2012031516A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Process for producing grain-oriented electromagnetic steel sheet
JP2012012666A (en) * 2010-06-30 2012-01-19 Jfe Steel Corp Grain-oriented electromagnetic steel sheet and method for manufacturing the same
WO2012001953A1 (en) * 2010-06-30 2012-01-05 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
US9396850B2 (en) 2010-06-30 2016-07-19 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
JP2012052232A (en) * 2010-08-06 2012-03-15 Jfe Steel Corp Grain-oriented electrical steel sheet, and method for producing the same
EP3199649A4 (en) * 2014-09-26 2018-07-04 JFE Steel Corporation Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
JPWO2016047077A1 (en) * 2014-09-26 2017-04-27 Jfeスチール株式会社 Directional electrical steel sheet, method for manufacturing directional electrical steel sheet, evaluation method for directionally oriented electrical steel sheet, and iron core
CN107075602A (en) * 2014-09-26 2017-08-18 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet, the manufacture method of grain-oriented magnetic steel sheet, the evaluation method of grain-oriented magnetic steel sheet and iron core
WO2016047077A1 (en) * 2014-09-26 2016-03-31 Jfeスチール株式会社 Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
EP3517637A1 (en) * 2014-09-26 2019-07-31 JFE Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
US10697038B2 (en) 2014-09-26 2020-06-30 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
US10889875B2 (en) 2014-09-26 2021-01-12 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
KR20180053353A (en) 2015-09-25 2018-05-21 제이에프이 스틸 가부시키가이샤 Directional electric steel sheet and manufacturing method thereof
JP2017133072A (en) * 2016-01-28 2017-08-03 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet excellent in coating adhesion and rust resistance, original sheet for grain-oriented electromagnetic steel sheet and method for manufacturing them
JP2018070974A (en) * 2016-11-01 2018-05-10 Jfeスチール株式会社 Production method for grain-oriented electromagnetic steel sheet
WO2022168887A1 (en) 2021-02-04 2022-08-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
KR20230128103A (en) 2021-02-04 2023-09-01 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet and annealing separator used therefor
WO2023068236A1 (en) * 2021-10-20 2023-04-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Also Published As

Publication number Publication date
JP3539028B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP6686146B2 (en) Method for forming an insulating coating on a grain-oriented electrical steel sheet, and a grain-oriented electrical steel sheet on which an insulation coating is formed
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3220362B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPWO2020149321A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3873489B2 (en) Method for producing grain-oriented silicon steel sheet having excellent coating properties and magnetic properties
JP3846064B2 (en) Oriented electrical steel sheet
JP4259037B2 (en) Method for producing grain-oriented electrical steel sheet
KR0178537B1 (en) Method of producing grain oriented silicon steel sheets having improved magnetic properties and bending rpoperties
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPWO2020149326A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4029432B2 (en) Method for producing grain-oriented silicon steel sheet
JP2002194445A (en) Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP3157701B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP3668994B2 (en) Method for producing grain-oriented silicon steel sheet
JPH0335364B2 (en)
JP3885257B2 (en) Method for producing grain-oriented electrical steel sheet
JP3456869B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH09291313A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP2002194444A (en) Method for producing grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JP3612753B2 (en) Method for producing grain-oriented silicon steel sheet
JP4239454B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees