JP3157701B2 - Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties - Google Patents

Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Info

Publication number
JP3157701B2
JP3157701B2 JP19043195A JP19043195A JP3157701B2 JP 3157701 B2 JP3157701 B2 JP 3157701B2 JP 19043195 A JP19043195 A JP 19043195A JP 19043195 A JP19043195 A JP 19043195A JP 3157701 B2 JP3157701 B2 JP 3157701B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
atmosphere
coil
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19043195A
Other languages
Japanese (ja)
Other versions
JPH0931546A (en
Inventor
道郎 小松原
宏威 石飛
雅子 久田
山口  広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP19043195A priority Critical patent/JP3157701B2/en
Publication of JPH0931546A publication Critical patent/JPH0931546A/en
Application granted granted Critical
Publication of JP3157701B2 publication Critical patent/JP3157701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁気特性に優れ
た方向性けい素鋼板の製造方法、特に磁束密度の向上に
有利な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, and more particularly to a method advantageous for improving magnetic flux density.

【0002】方向性けい素鋼板は変圧器や発電機等の鉄
心として使用されるもので、磁気特性として、磁束密度
(磁化力が800 A/m における磁束B8 値で示される) が
高く、かつ鉄損(最大磁束密度1.7 Tおよび周波数50Hz
における1kg当たりの鉄損W 17/50 値で示される) が低
いことが要求される。
[0002] Grain-oriented silicon steel sheets are used in transformers and generators.
Used as a core, magnetic properties include magnetic flux density
(Magnetic flux B at 800 A / m8 (Indicated by the value)
High and iron loss (maximum magnetic flux density 1.7 T and frequency 50Hz
Loss W per kg in 17/50Is low)
Is required.

【0003】[0003]

【従来の技術】近年、方向性けい素鋼板の磁気特性、中
でも鉄損の低減に対して、鋼板表面に局部的に歪みを導
入したり溝を形成して、磁区を細分化する技術が開発さ
れ、これによって大幅な鉄損の改善が可能となった。特
に、この技術は、磁束密度の高い鋼板に適用すると極め
て有効であり、鉄損の低減は磁束密度の向上に併せて達
成されるのである。
2. Description of the Related Art In recent years, in order to reduce the magnetic properties of grain-oriented silicon steel sheets, particularly the reduction of iron loss, a technique has been developed in which magnetic domains are subdivided by locally introducing strain or forming grooves on the steel sheet surface. This has made it possible to significantly reduce iron loss. In particular, this technique is extremely effective when applied to a steel sheet having a high magnetic flux density, and a reduction in iron loss is achieved along with an increase in the magnetic flux density.

【0004】方向性けい素鋼板の磁束密度を向上するに
は、製品の結晶方位を(110)〔001〕方位、いわゆるゴ
ス方位に高度に集積させる必要があり、このゴス方位の
結晶粒は、最終仕上焼鈍において、2次再結晶現象によ
って得られる。従って、2次再結晶では、(110) 001 方
位に近い結晶粒のみを優先的に成長させて他の方位の結
晶粒の成長を抑制する必要があるため、ゴス方位以外の
方位の結晶粒の成長を抑制するインヒビターの添加が必
須である。このインヒビターは、鋼中に析出分散相を形
成し、2次再結晶の直前まで1次再結晶粒の成長(正常
粒成長)を抑制することによって、磁束密度の向上に寄
与するものである。しかし、実際の製造工程では、しば
しば結晶方位が(110) 001 方位からずれた粒が2次再結
晶し、磁束密度の劣化した鋼板が製造されることが問題
となっていた。
In order to improve the magnetic flux density of a grain-oriented silicon steel sheet, it is necessary to highly integrate the crystal orientation of the product in the (110) [001] orientation, that is, the so-called Goss orientation. In the final finish annealing, it is obtained by a secondary recrystallization phenomenon. Therefore, in the secondary recrystallization, it is necessary to preferentially grow only the crystal grains close to the (110) 001 orientation and to suppress the growth of the crystal grains in the other directions. Addition of an inhibitor that suppresses growth is essential. This inhibitor contributes to an improvement in magnetic flux density by forming a precipitate dispersed phase in the steel and suppressing the growth of primary recrystallized grains (normal grain growth) until immediately before secondary recrystallization. However, in the actual manufacturing process, there has been a problem that grains whose crystal orientation is shifted from the (110) 001 orientation are often subjected to secondary recrystallization, thereby producing a steel sheet having deteriorated magnetic flux density.

【0005】この問題について、発明者らが行った調査
によれば、2次再結晶のための焼鈍(最終仕上焼鈍)に
おいて鋼板表面が酸化し、鋼板表層部のインヒビターを
分解そして消失するために、2次再結晶前に鋼板表層部
における正常粒成長抑制力が不足することが判明した。
According to a study conducted by the inventors regarding this problem, during annealing for secondary recrystallization (final finish annealing), the surface of the steel sheet is oxidized, and the inhibitor on the surface layer of the steel sheet is decomposed and disappears. It was found that the ability to suppress normal grain growth in the surface layer of the steel sheet before the secondary recrystallization was insufficient.

【0006】こうした最終仕上焼鈍中の鋼板表層部にお
けるインヒビターの分解そして消失を抑制するには、最
終仕上焼鈍の前工程である脱炭焼鈍において鋼板表面に
形成される酸化物層(サブスケール)を利用することが
考えられる。すなわち、鋼板表面に酸化物層が存在する
場合、この酸化物層が、O,Mn, Alなどの元素の拡散に
対する障害物となれば、これら元素の酸化が抑えられ
て、その結果インヒビターの分解そして消失も抑制され
る。
In order to suppress the decomposition and disappearance of the inhibitor in the surface layer of the steel sheet during the final finish annealing, an oxide layer (sub-scale) formed on the steel sheet surface in the decarburization annealing which is a step before the final finish annealing is required. It can be used. That is, when an oxide layer is present on the steel sheet surface, if this oxide layer becomes an obstacle to the diffusion of elements such as O, Mn, and Al, the oxidation of these elements is suppressed, and as a result, the decomposition of the inhibitor And disappearance is also suppressed.

【0007】この技術思想に基づいて、酸化の抑制に寄
与し得る酸化物層の組成について鋭意検討した結果、鋼
板表面の酸化物層の組成として、ファイヤライトおよび
シリカの比を一定範囲に制御する技術を開発し、特開平
4−20271 号公報において提案した。
As a result of intensive studies on the composition of the oxide layer that can contribute to the suppression of oxidation based on this technical idea, the ratio of firelite and silica is controlled within a certain range as the composition of the oxide layer on the steel sheet surface. The technology was developed and proposed in Japanese Patent Application Laid-Open No. Hei 4-20271.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この技
術によっても、工業的生産における、磁気特性の安定化
は充分とはいい難く、とりわけ磁束密度の高い方向性け
い素鋼板を安定して生産することは困難であった。そこ
で、この発明は、工業的生産においても安定して高磁束
密度の製品を得ることができる方向性けい素鋼板の新規
な製造方法について提案することを目的とする。
However, even with this technique, stabilization of magnetic characteristics in industrial production is not sufficient, and particularly, it is necessary to stably produce oriented silicon steel sheets having a high magnetic flux density. Was difficult. Accordingly, an object of the present invention is to propose a novel method for manufacturing a grain-oriented silicon steel sheet that can stably obtain a product having a high magnetic flux density even in industrial production.

【0009】[0009]

【課題を解決するための手段】発明者らは、上記の問題
を解決すべく鋭意研究を重ねた結果、最終冷間圧延後の
鋼板の表面粗さを特定の範囲に調整すること、脱炭焼鈍
に先立って電解脱脂法による洗浄処理を行って鋼板表面
にSiを含有する電着物を所定量以上付着させること、そ
して脱炭焼鈍の雰囲気を制御することによって、磁束密
度の安定した向上が実現するとの知見を得るに到った。
この発明は、上記の知見に立脚するものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors have found that the surface roughness of the steel sheet after the final cold rolling is adjusted to a specific range, Stable improvement of magnetic flux density is realized by performing a cleaning treatment by electrolytic degreasing method before annealing to deposit electrodeposits containing Si on a steel plate surface in a specified amount or more, and controlling the atmosphere of decarburizing annealing. Then came the knowledge.
The present invention is based on the above findings.

【0010】すなわち、この発明は、含けい素鋼スラブ
に熱間圧延を施し、次いで1回または中間焼鈍を挟む複
数回の冷間圧延によって最終板厚とした後、脱炭焼鈍、
そして焼鈍分離剤を塗布して最終仕上焼鈍を施す一連の
工程によって方向性けい素鋼板を製造するに当たり、最
終冷間圧延後の鋼板表面の算術平均粗さを0.40μm以下
に調整し、その後脱炭焼鈍に先立って、電解脱脂法によ
って鋼板表面にSiを含有する電着物が0.1mg/m2以上で付
着する洗浄処理を施し、次いで、雰囲気における水素分
圧に対する水蒸気分圧の比(以下、P(H2O) /P(H2)と
示す)を0.30〜0.65に調整して行う前期と、雰囲気にお
ける温度を850 〜950 ℃かつ水蒸気分圧を0.05〜3.0 %
に調整して鋼板表面の酸化物の分解再生成高密度化処理
を行う後期とからなる脱炭焼鈍を施すことを特徴とする
磁気特性に優れた方向性けい素鋼板の製造方法である。
That is, according to the present invention, a silicon-containing steel slab is subjected to hot rolling, and then to a final thickness by cold rolling once or a plurality of times including intermediate annealing, followed by decarburizing annealing,
Then, in producing a grain-oriented silicon steel sheet through a series of steps of applying an annealing separator and performing a final finish annealing, the arithmetic average roughness of the steel sheet surface after the final cold rolling is adjusted to 0.40 μm or less, and then the steel sheet is removed. Prior to charcoal annealing, the steel sheet surface is subjected to a cleaning treatment by an electrolytic degreasing method in which an electrodeposit containing Si adheres at a concentration of 0.1 mg / m 2 or more, and then a ratio of a partial pressure of water vapor to a partial pressure of hydrogen in the atmosphere (hereinafter, referred to as P (H 2 O) / P (H 2 )) is adjusted to 0.30 to 0.65, and the temperature in the atmosphere is 850 to 950 ° C. and the partial pressure of steam is 0.05 to 3.0%.
And performing a decarburizing anneal in a later stage of performing a decomposition / regeneration / densification treatment of oxides on the surface of the steel sheet.

【0011】次に、この発明の基礎となった種々の実験
結果について説明する。なお、実験に供した素材は、
C,SiおよびAlを必須成分として含有させた。なぜな
ら、Cは熱間圧延および冷間圧延における組織の改善に
有用な成分であり、またSiは電気抵抗を高めて鉄損を向
上させるのに有用な成分であり、さらにAlはインヒビタ
ー成分として2次再結晶粒方位の向上、すなわち磁束密
度の向上に有用な成分であるからである。
Next, various experimental results on which the present invention is based will be described. The materials used in the experiment were
C, Si and Al were contained as essential components. This is because C is a component useful for improving the structure in hot rolling and cold rolling, Si is a component useful for increasing electric resistance to improve iron loss, and Al is 2% as an inhibitor component. This is because it is a component useful for improving the secondary recrystallized grain orientation, that is, improving the magnetic flux density.

【0012】実験1 C:0.065 重量%、Si:3.25 重量%、Mn:0.070重量%,
Al:0.025重量%, Se:0.020重量%およびSb:0.025重量%
を含有する鋼スラブの3本に、それぞれ熱間圧延を施し
た後、1000℃で1分間の熱延板焼鈍を施し、第1回目の
冷間圧延にて1.50mmの板厚としてから、湿N2 雰囲気(
露点40℃) 中で1100℃,60秒間の中間焼鈍を施してミス
ト水を用いて40℃/sの冷却速度で350 ℃まで急冷した
後、350 ℃で20秒間保持したのち、常温まで冷却した。
Experiment 1 C: 0.065% by weight, Si: 3.25% by weight, Mn: 0.070% by weight,
Al: 0.025% by weight, Se: 0.020% by weight and Sb: 0.025% by weight
After hot-rolling each of the three steel slabs containing, a hot-rolled sheet was annealed at 1000 ° C for 1 minute, and the first cold-rolling was performed to obtain a sheet thickness of 1.50 mm. N 2 atmosphere (
Intermediate annealing at 1100 ° C for 60 seconds in a dew point of 40 ° C), quenched to 350 ° C at a cooling rate of 40 ° C / s using mist water, kept at 350 ° C for 20 seconds, and then cooled to room temperature .

【0013】次いで、中間焼鈍後に15%のHCl 水溶液に
て酸洗し、180mm 径のワークロールをそなえるゼンジミ
ア圧延機を用いて、0.22mmの最終板厚とした。なお、最
終冷間圧延後のコイルの表面粗さは算術平均粗さで0.30
〜0.35μmであった。
Next, after the intermediate annealing, the plate was pickled with a 15% aqueous solution of HCl, and a final thickness of 0.22 mm was obtained using a Sendzimir mill equipped with a work roll having a diameter of 180 mm. Incidentally, the surface roughness of the coil after the final cold rolling is an arithmetic average roughness of 0.30
0.30.35 μm.

【0014】その後、脱炭焼鈍の前処理として、鋼板の
表面洗浄を行った。すなわち、第1番目のコイルは、15
%NaOH水溶液中に通板してブラッシングを施した後、純
水でリンスし乾燥した。第2番目のコイルは、同じく15
%NaOH水溶液中を通板してブラッシングを施した後、20
%HCl 水溶液中を通板し、その後、純水でリンスし乾燥
した。第3番目のコイルは、a〜jに10分割し、各分割
コイルをオルソ珪酸ソーダ浴中に通板した後、純水でリ
ンスし乾燥した。ここで、オルソ珪酸ソーダ浴中を通板
するに際し、分割コイルa以外の分割コイルには交番電
流を付加して電解脱脂法による鋼板表面の洗浄処理を行
った。なお、分割コイルbには1.0 A/dm 2 の−+の交番
電流を付加し、分割コイルc〜jには、それぞれ0.01,
0.1, 0.5, 1.0, 3.0, 5.0, 8.0, 15A/dm2 の+−の交番
電流を付加した。
Then, as a pretreatment for decarburizing annealing,
Surface cleaning was performed. That is, the first coil is 15
After brushing by passing through an aqueous solution of NaOH
Rinse with water and dry. The second coil is also 15
After passing through an aqueous solution of NaOH and brushing,
% HCl aqueous solution, then rinse with pure water and dry
did. The third coil is divided into 10 into a to j
After passing the coil through the sodium orthosilicate bath,
Rinsed and dried. Here, passing through a sodium orthosilicate bath
In doing so, the alternating coils are applied to the divided coils other than the divided coil a.
Flow to clean the steel sheet surface by electrolytic degreasing.
Was. The split coil b has 1.0 A / dm Two-+ Alternation
An electric current is added, and 0.01,
0.1, 0.5, 1.0, 3.0, 5.0, 8.0, 15A / dmTwo+-Alternation of
Current was applied.

【0015】これらの前処理の結果はいずれも、鋼板表
面が清浄なものとなったが、第2番目のコイルは、鋼板
表面が0.2 μm厚にわたり溶損し、第3番目のコイルに
おいて、分割コイルc〜jは鋼板表面にSiを含有する電
着物が付着し、その付着量は、分割コイルcにおいては
0.03mg/m2 、同dにおいては0.06mg/m2 、同eにおいて
は0.10mg/m2 、同fにおいては0.34mg/m2 、同gにおい
ては0.54mg/m2 、同hにおいては1.36mg/m2 、同iにお
いては2.4 mg/m2 、同jにおいては4.0 mg/m2であっ
た。
[0015] In all of these pretreatment results, the steel sheet surface was clean, but the second coil was damaged by 0.2 μm thick on the steel sheet surface. For c to j, the electrodeposit containing Si adheres to the surface of the steel sheet.
0.03 mg / m 2, in the d is 0.06 mg / m 2, in the e is 0.10 mg / m 2, in the f is 0.34 mg / m 2, in the g is 0.54 mg / m 2, in the h is 1.36mg / m 2, 2.4 mg / m 2 in the i, in the j was 4.0 mg / m 2.

【0016】さらに、12種類のコイルをそれぞれ2分割
して2組に分け、一方の組の12種類のコイルには、50%
H2および残余N2バランスの雰囲気(露点60℃,P(H2O)
/P(H2):0.39)下にて840 ℃で2分間の連続脱炭焼鈍
を施した。残る組の12種類のコイルには、50%H2および
残余N2バランスの雰囲気(露点60℃)下にて840 ℃で2
分間の連続脱炭焼鈍を行った後、880 ℃で10秒間、露点
−10〜−4℃( H2O分圧:0.25〜0.43%)の乾N2雰囲気
下での熱処理を行った。
Further, each of the twelve types of coils is divided into two parts and divided into two sets.
H 2 and N 2 balance atmosphere (dew point 60 ° C, P (H 2 O)
/ P (H 2 ): 0.39) at 840 ° C. for 2 minutes. The remaining 12 coils are 2 % at 840 ° C under 50% H 2 and residual N 2 balance atmosphere (dew point 60 ° C).
After a continuous decarburization annealing for 10 minutes, a heat treatment was performed at 880 ° C. for 10 seconds in a dry N 2 atmosphere at a dew point of −10 to −4 ° C. (H 2 O partial pressure: 0.25 to 0.43%).

【0017】次いで、これらのコイルは5%TiO2と2%
Sr(OH)2 ・8H2O を含有しMgO を主成分とする焼鈍分離
剤を鋼板表面に塗布した後、コイル状に巻き取り、1200
℃まで15℃/hの昇温速度で25%N2と75%H2の混合雰囲気
下で昇温し、さらにH2の雰囲気下で1200℃、10h保持し
た後、降温する最終仕上焼鈍を施した。その後、各コイ
ルにおける未反応の焼鈍分離剤を除去した後、平坦化処
理を兼ねた張力コーティングを鋼板表面に塗布焼付けし
て製品とした。かくして得られた製品コイルの磁気特性
を図1に示す。
Next, these coils were made of 5% TiO 2 and 2%
Sr (OH) containing 2 · 8H 2 O was applied to the annealing separator to the steel sheet surface mainly containing MgO, wound into a coil, 1200
° C. until the temperature was raised under a mixed atmosphere at heating rate 25% N 2 and 75% H 2 for 15 ° C. / h, further 1200 ° C. under an atmosphere of H 2, after 10h holding the final annealing to cooling gave. Then, after removing the unreacted annealing separating agent in each coil, a tension coating serving also as a flattening treatment was applied to the steel sheet surface and baked to obtain a product. The magnetic properties of the product coil thus obtained are shown in FIG.

【0018】図1に示すように、脱炭焼鈍の前処理とし
て、電解脱脂法を採用しかつ鋼板表面にSiを含有する電
着物を0.1mg/m2以上付着させ、さらに脱炭焼鈍後に熱処
理を施した場合に、磁束密度の高い優れた磁気特性の製
品が得られた。
As shown in FIG. 1, as a pretreatment for decarburization annealing, an electrolytic degreasing method is employed, and an electrodeposit containing Si is attached to a steel sheet surface at a concentration of 0.1 mg / m 2 or more. , A product having high magnetic flux density and excellent magnetic properties was obtained.

【0019】また、これらの優れた磁気特性の得られた
理由を解明するために、各々の脱炭焼鈍板を25%N2と75
%H2の混合雰囲気(露点20℃)下で900 ℃,30分間の熱
処理を行って、酸化挙動および窒化挙動を調査した。そ
の結果を、図2に示すように、磁束密度の高い材料が得
られた条件では、鋼板の酸化および窒化が抑制されてい
ることが判明した。すなわち、鋼板表層部での酸化や窒
化が抑制されると、最終仕上げ焼鈍において、鋼板表層
部のインヒビターが良好な状態に維持されることから、
適切な2次再結晶が得られたものと推定される。
In order to clarify the reason why these excellent magnetic properties were obtained, each of the decarburized annealed sheets was made of 25% N 2 and 75% N 2.
% Mixed atmosphere of H 2 (dew point 20 ° C.) 900 ° C. under, subjected to a heat treatment of 30 minutes, were investigated oxidation behavior and nitriding behavior. As a result, as shown in FIG. 2, it was found that under the condition that a material having a high magnetic flux density was obtained, oxidation and nitriding of the steel sheet were suppressed. That is, when oxidation and nitridation in the steel sheet surface layer portion are suppressed, in the final finish annealing, the inhibitor of the steel sheet surface layer portion is maintained in a good state,
It is estimated that appropriate secondary recrystallization was obtained.

【0020】さらに、脱炭焼鈍後に施した熱処理は、後
述するように、鋼板表面の酸化物を分解し、その後細か
い酸化物粒子を再生成することによって、鋼板表面の酸
化物粒子を高密度に分散生成させるため、酸素や窒素の
拡散を抑制する作用を有するところから、鋼板表面の酸
化物の分解再生成高密度化処理と呼称する。
Further, as described later, the heat treatment performed after the decarburizing annealing decomposes oxides on the surface of the steel sheet and then regenerates fine oxide particles, thereby reducing the oxide particles on the steel sheet surface to a high density. Since it has a function of suppressing the diffusion of oxygen and nitrogen for dispersion generation, it is referred to as a decomposition / regeneration / densification treatment of oxides on the surface of the steel sheet.

【0021】実験2 実験1と同じ組成を有する鋼スラブの12本に、それぞれ
熱間圧延を施した後、1050℃で1分間の熱延板焼鈍を施
し、第1回目の冷間圧延にて1.40mmの板厚としてから、
25%N2と75%H2の混合雰囲気( 露点45℃) 中で1050℃,
60秒間の中間焼鈍を施してミスト水を用いて40℃/sの冷
却速度で250 ℃まで急冷した後、350 ℃で120 秒間保持
したのち、常温まで冷却した。
Experiment 2 Twelve steel slabs having the same composition as in Experiment 1 were each subjected to hot rolling, then annealed at 1050 ° C. for 1 minute, and subjected to a first cold rolling. From the 1.40mm thickness,
1050 ° C in a mixed atmosphere of 25% N 2 and 75% H 2 (dew point 45 ° C)
The steel sheet was subjected to an intermediate annealing for 60 seconds, rapidly cooled to 250 ° C. at a cooling rate of 40 ° C./s using mist water, kept at 350 ° C. for 120 seconds, and then cooled to room temperature.

【0022】次いで、中間焼鈍後に最終板厚0.19mmまで
の最終冷間圧延を行うに際し、第1番目、第2番目、第
3番目および第4番目のコイルは、中間焼鈍後そのまま
の状態で冷間圧延を行い、第5番目、第6番目、第7番
目および第8番目のコイルは、15%のHCl水溶液中に
通板してスケール表層を除去した後冷間圧延を行い、そ
して第9番目、第6番目、第10番目、第11番目および第
12番目のコイルは、表面研削機で約0.1 mmの間隔で鋼板
表面の酸化物層の全てを幅1000 mm にわたり除去した
後、冷間圧延を行った。
Next, when performing the final cold rolling to a final thickness of 0.19 mm after the intermediate annealing, the first, second, third and fourth coils are cooled as they are after the intermediate annealing. The fifth, sixth, seventh and eighth coils were passed through a 15% HCl aqueous solution to remove the scale surface layer, and then cold-rolled. Th, sixth, tenth, eleventh and
The twelfth coil was subjected to cold rolling after removing all the oxide layers on the surface of the steel sheet over a width of 1000 mm with a surface grinder at intervals of about 0.1 mm.

【0023】なお、冷間圧延はゼンジマー圧延機にて、
第1番目、第2番目、第5番目、第6番目、第9番目、
第10番目のコイルは250 mm径のワークロールを用いて行
い、残りのコイルは150 mm径のワークロールを用いて行
った。さらに、第1番目、第3番目、第5番目、第7番
目、第9番目および第11番目のコイルの圧延に際して、
高粘度系の圧延油を用い、残りのコイルの圧延は低粘度
系の圧延油を用いた。
The cold rolling is performed by a Sendzimir rolling mill.
1st, 2nd, 5th, 6th, 9th,
The tenth coil was performed using a work roll having a diameter of 250 mm, and the remaining coils were performed using a work roll having a diameter of 150 mm. Further, at the time of rolling the first, third, fifth, seventh, ninth and eleventh coils,
A high-viscosity rolling oil was used, and the remaining coils were rolled using a low-viscosity rolling oil.

【0024】最終冷間圧延後の鋼板表面の平均粗さは、
第1番目のコイルが0.74μmRa 、第2のコイルが0.68
μmRa 、第3番目のコイルが0.62μmRa 、第4番目
のコイルが0.56μmRa 、第5番目のコイルが0.39μm
a 、第6番目のコイルが0.35μmRa 、第7番目のコ
イルが0.31μmRa 、第8番目のコイルが0.27μm
a 、第9番目のコイルが0.52μmRa 、第10番目のコ
イルが0.44μmRa 、第11番目のコイルが0.37μm
a 、第12番目のコイルが0.33μmRa であった。
The average roughness of the steel sheet surface after the final cold rolling is as follows:
The first coil is 0.74μmRa, The second coil is 0.68
μmRa, The third coil is 0.62μmRa, Fourth
0.56μmRaThe fifth coil is 0.39μm
RaAnd the sixth coil is 0.35μmRa, The seventh
0.31μmRaThe eighth coil is 0.27μm
R aThe ninth coil is 0.52μmRa, The tenth
0.44μmRaThe eleventh coil is 0.37μm
Ra, The twelfth coil is 0.33μmRaMet.

【0025】これら12種類のコイルをさらに2分割して
2組に分け、脱炭焼鈍の前処理として、一方の組の16種
類のコイルは、15%NaOH水溶液中でアルカリ脱脂後に純
水でのリンスを行い、残る組の16種類のコイルには、オ
ルソ珪酸ナトリウム浴中を通板する際に、−+−+の交
番電流を流して電解脱脂を行って、1.0 〜2.5 mg/m2のS
iを含有する電着物を鋼板表面に付着させた後、純水で
のリンスを行った。
These 12 types of coils were further divided into two and divided into two sets. As a pretreatment for decarburization annealing, one set of 16 types of coils was subjected to alkaline degreasing in a 15% aqueous NaOH solution followed by pure water. perform rinsing, the set 16 types of coils remains, when Tsuban through the ortho sodium silicate bath, - + - + for flowing alternating current subjected to electrolytic degreasing, 1.0 to 2.5 mg / m 2 S
After depositing the electrodeposit containing i on the surface of the steel sheet, rinsing with pure water was performed.

【0026】その後、各コイルは45%H2および残余N2
ランスの雰囲気(露点60℃)下で850 ℃,2分間の脱炭
焼鈍と、引続く同一連続焼鈍炉内での65%H2および残余
N2バランスの雰囲気(露点−5〜5℃,H2O 分圧:0.46
〜0.86%)下で860 ℃,15秒間の連続焼鈍を行った。
Thereafter, each coil was subjected to decarburizing annealing at 850 ° C. for 2 minutes in an atmosphere (dew point: 60 ° C.) with a balance of 45% H 2 and the balance of N 2 , followed by 65% H 2 in the same continuous annealing furnace. And the rest
N 2 balance atmosphere (dew point -5~5 ℃, H 2 O partial pressure: 0.46
(0.86%) at 860 ° C for 15 seconds.

【0027】次いで、これらのコイルは10%TiO2および
3%Sr(OH)2 ・8H2O を含有しMgOを主成分とする焼鈍
分離剤を鋼板表面に塗布した後、コイル状に巻き取り、
850℃で35時間N2中で保持した後、15℃/hの昇温速度で2
5%N2および75%H2の混合雰囲気下で1200℃まで昇温
し、さらにH2の雰囲気下で1200℃、10h保持した後、降
温する最終仕上焼鈍を施した。その後、各コイルにおけ
る未反応の焼鈍分離剤を除去した後、平坦化処理を兼ね
た張力コーティングを鋼板表面に塗布焼付けして製品と
した。かくして得られた製品コイルの磁気特性を図3に
示す。
Next, these coils are coated with an annealing separator containing 10% TiO 2 and 3% Sr (OH) 2 .8H 2 O and containing MgO as a main component on the surface of the steel sheet, and then wound into a coil. ,
After holding in 35 hours N 2 at 850 ° C., 2 at a heating rate of 15 ° C. / h
The temperature was raised to 1200 ° C. in a mixed atmosphere of 5% N 2 and 75% H 2 , further maintained at 1200 ° C. for 10 hours in an atmosphere of H 2 , and then subjected to final finishing annealing in which the temperature was lowered. Then, after removing the unreacted annealing separating agent in each coil, a tension coating serving also as a flattening treatment was applied to the steel sheet surface and baked to obtain a product. FIG. 3 shows the magnetic characteristics of the product coil thus obtained.

【0028】図3から、最終冷間圧延後の鋼板表面の表
面粗さを0.40μmRa 以下とし、、また脱炭焼鈍の前処
理として電解脱脂法を採用しかつ鋼板表面にSiを含有す
る電着物を付着させた場合に、磁束密度の高い優れた磁
気特性の製品が得られたことがわかる。
FIG. 3 shows that the surface roughness of the steel sheet surface after the final cold rolling is set to 0.40 μm Ra or less, the electrolytic degreasing method is used as a pretreatment for decarburization annealing, and the steel sheet surface contains Si. It can be seen that when the kimono was attached, a product having high magnetic flux density and excellent magnetic properties was obtained.

【0029】また、優れた磁気特性が得られた理由を解
明するために、各々の脱炭焼鈍板を25%N2と75%H2の混
合雰囲気(露点20℃)下で900 ℃,30分間の熱処理を行
って、酸化挙動および窒化挙動を調査したところ、実験
1と同様に磁束密度の高い材料が得られた条件では、鋼
板の酸化および窒化が抑制されていた。
In order to clarify the reason why the excellent magnetic properties were obtained, each of the decarburized annealed sheets was heated at 900 ° C. and 30 ° C. in a mixed atmosphere of 25% N 2 and 75% H 2 (dew point: 20 ° C.). When the oxidation behavior and the nitridation behavior were examined by performing a heat treatment for 1 minute, the oxidation and nitridation of the steel sheet were suppressed under the condition that a material having a high magnetic flux density was obtained as in Experiment 1.

【0030】実験3 実験1と同じ組成を有する鋼スラブに、熱間圧延を施し
た後、1050℃で1分間の熱延板焼鈍を施し、第1回目の
冷間圧延にて1.40mmの板厚としてから、25%N2と75%H2
の混合雰囲気( 露点45℃) 中で1050℃,60秒間の中間焼
鈍を施してミスト水を用いて40℃/sの冷却速度で300 ℃
まで急冷した後、300 ℃で60秒間保持したのち、常温ま
で冷却した。その後、15%HCl 水溶液での酸洗により、
鋼板の外部スケールを除去した。その後、200 mm径のロ
ールをそなえるゼンジミア圧延機を用いて、0.19mmの最
終板厚とした。なお、最終冷間圧延後の鋼板の表面粗さ
は0.25〜0.30μmRa であった。
Experiment 3 A steel slab having the same composition as in Experiment 1 was hot-rolled, then annealed at 1050 ° C. for 1 minute, and the first cold-rolled 1.40 mm plate was subjected to cold rolling. 25% N 2 and 75% H 2
Intermediate annealing at 1050 ° C for 60 seconds in a mixed atmosphere (dew point 45 ° C) of 300 ° C at a cooling rate of 40 ° C / s using mist water
After rapidly cooling to 300 ° C., the mixture was kept at 300 ° C. for 60 seconds, and then cooled to room temperature. Then, by pickling with a 15% HCl aqueous solution,
The outer scale of the steel plate was removed. Thereafter, a final thickness of 0.19 mm was obtained using a Sendzimir rolling mill equipped with a roll having a diameter of 200 mm. Incidentally, final cold surface roughness of the steel sheet after rolling was 0.25~0.30μmR a.

【0031】次に、脱炭焼鈍の前処理として、オルソ珪
酸ナトリウム水溶液中での電解脱脂を行って、Siを含有
する電着物を0.4 〜1.0mg/m2付着させた後、このコイル
を8分割して、雰囲気のP(H2O) /P(H2)を種々に変化
して850 ℃で2分間の脱炭焼鈍を施した。
Next, as a pretreatment for decarburizing annealing, electrolytic degreasing in an aqueous solution of sodium orthosilicate was performed to deposit an electrodeposit containing Si of 0.4 to 1.0 mg / m 2. The mixture was divided and subjected to decarburization annealing at 850 ° C. for 2 minutes while varying the atmosphere P (H 2 O) / P (H 2 ).

【0032】すなわち、H2とN2の混合比率を変え、かつ
雰囲気の露点を変化することによりP(H2O) /P(H2)
を、0.05, 0.15, 0.20, 0.30, 0.45, 0.55, 0.65, 0.70
および0.75とした雰囲気において、それぞれ脱炭焼鈍を
施した。これら8種類のコイルは、60%H2および残余N2
バランスの雰囲気(露点6〜8℃,H2O 分圧0.92〜1.06
%) 下で870 ℃,20秒間の連続焼鈍を行った。
That is, by changing the mixing ratio of H 2 and N 2 and changing the dew point of the atmosphere, P (H 2 O) / P (H 2 )
To 0.05, 0.15, 0.20, 0.30, 0.45, 0.55, 0.65, 0.70
And 0.75 in an atmosphere of decarburization annealing, respectively. These eight coils have 60% H 2 and residual N 2
Balance atmosphere (dew point 6 to 8 ° C, H 2 O partial pressure 0.92 to 1.06
%) At 870 ° C for 20 seconds.

【0033】次に、これらのコイルは10%のTiO2および
3%のSr(OH)2 ・8H2O を含有するMgO を焼鈍分離剤と
して鋼板表面に塗布した後、コイル状に巻き取り、850
℃で15時間N2中で保持した後、15℃/hの昇温速度で25%
N2と75%H2の混合雰囲気下で1200℃まで昇温し、さらに
H2の雰囲気下で1200℃、10h保持したのち降温する、最
終仕上焼鈍を施した。その後、各コイルにおける未反応
の焼鈍分離剤を除去した後、平坦化処理を兼ねた張力コ
ーティングを鋼板表面に塗布焼付けして製品とした。か
くして得られた製品コイルの磁気特性を図4に示すよう
に、脱炭焼鈍の雰囲気におけるP(H2O) /P(H2)を0.30
〜0.65とすることにより、磁束密度の高い優れた磁気特
性が得られた。
Next, these coils are coated with MgO containing 10% TiO 2 and 3% Sr (OH) 2 .8H 2 O as an annealing separator on the surface of the steel sheet, and then wound into a coil. 850
After holding in 15 hours N 2 at ° C., 25% at a heating rate of 15 ° C. / h
In a mixed atmosphere of N 2 and 75% H 2 , the temperature was raised to 1200 ° C.
The sample was kept at 1200 ° C. for 10 hours in an atmosphere of H 2 and then subjected to final finish annealing in which the temperature was lowered. Then, after removing the unreacted annealing separating agent in each coil, a tension coating serving also as a flattening treatment was applied to the steel sheet surface and baked to obtain a product. As shown in FIG. 4, the magnetic properties of the product coil thus obtained were such that P (H 2 O) / P (H 2 ) in the atmosphere of decarburizing annealing was 0.30.
By setting it to 0.65, excellent magnetic properties with high magnetic flux density were obtained.

【0034】また、これらの優れた磁気特性の得られた
理由を解明するために、各々の脱炭焼鈍板を25%N2と75
%H2の混合雰囲気(露点20℃)下で900 ℃,30分間の熱
処理を行って、酸化挙動および窒化挙動を調査したとこ
ろ、実験1と同様に磁束密度の高い材料が得られた条件
では、鋼板の酸化および窒化が抑制されていた。
In order to clarify the reason why these excellent magnetic properties were obtained, each of the decarburized annealed sheets was made of 25% N 2 and 75% N 2.
% H mixed atmosphere of 2 (dew point 20 ° C.) 900 ° C. under, subjected to a heat treatment of 30 minutes, were investigated oxidation behavior and nitriding behavior, under the condition that a material having high magnetic flux density in the same manner as in Experiment 1 were obtained In addition, oxidation and nitriding of the steel sheet were suppressed.

【0035】実験4 次に、脱炭焼鈍に引続く鋼板表面の酸化物に対する分解
再生成高密度化処理について、その最適条件を調査し
た。実験1と同じ組成の鋼スラブを熱間圧延によって2.
0 mmの板厚のコイルとし、湿N2雰囲気(露点35℃)で11
50℃,1分間の熱延板焼鈍を施してから、ミスト水を用
いて平均冷却速度40℃/sで室温まで冷却した後、15%の
HCl 水溶液での酸洗により、鋼板の酸化物表層を除去し
た。
Experiment 4 Next, the optimum conditions for decomposing, regenerating and densifying the oxides on the steel sheet surface following the decarburizing annealing were investigated. Hot rolling a steel slab of the same composition as in Experiment 1 2.
Use a coil with a thickness of 0 mm, and place in a wet N 2 atmosphere (dew point 35 ° C) 11
After subjecting the hot-rolled sheet to annealing at 50 ° C for 1 minute, it is cooled to room temperature using mist water at an average cooling rate of 40 ° C / s, and then 15%
The oxide surface layer of the steel sheet was removed by pickling with an aqueous HCl solution.

【0036】このコイルを200mm 径のワークロールを有
するゼンジミア圧延機によって、0.26mmの最終板厚まで
冷間圧延した。なお、冷間圧延後の鋼板の表面粗さは、
0.28〜0.32μmRa であった。
The coil was cold rolled to a final thickness of 0.26 mm by a Sendzimir mill having a work roll of 200 mm diameter. The surface roughness of the steel sheet after cold rolling is as follows:
It was 0.28 to 0.32 μm Ra .

【0037】次に脱炭焼鈍の前処理として、オルソ珪酸
ナトリウム水溶液中での電解脱脂を行って、Siを含有す
る電着物を0.5 〜0.8mg/m2付着させた後、55%H2および
残余N2の雰囲気(露点65℃)下で850 ℃,100 秒間の脱
炭焼鈍を施した。このコイルを131 分割し、それぞれの
コイルに、以下に示す種々の熱処理を施した。
Next, as a pretreatment for decarburization annealing, electrolytic degreasing in an aqueous sodium orthosilicate solution was performed to deposit 0.5 to 0.8 mg / m 2 of the electrodeposit containing Si, and then 55% H 2 and atmosphere residual N 2 (dew point 65 ° C.) 850 ° C. below, were subjected to decarburization annealing for 100 seconds. This coil was divided into 131, and each coil was subjected to various heat treatments described below.

【0038】〔熱処理雰囲気の条件〕分割したコイルの
うち40コイルに対して、870 ℃,20秒間の熱処理を、そ
れぞれ100 %H2ガスにH2O を含有させたもの、75%H2
よび25%N2ガスにH2O を含有させたもの、50%H2および
50%N2ガスにH2O を含有させたもの、そして25%H2およ
び75%N2ガスにH2O を含有させたもの、100 %N2ガスに
H2O を含有させたものによる雰囲気で行った。なお、含
有させたH2O の量は、ガス分圧で0.01%,0.03%, 0.05
%, 0.1 %, 0.5 %, 3.0%, 5.2 %そして12%とし
た。
[Conditions of heat treatment atmosphere] Forty of the divided coils were subjected to a heat treatment at 870 ° C. for 20 seconds, each containing 100% H 2 gas containing H 2 O, 75% H 2 and 25% N 2 gas containing H 2 O, 50% H 2 and
50% N 2 gas containing H 2 O, 25% H 2 and 75% N 2 gas containing H 2 O, 100% N 2 gas
The test was performed in an atmosphere containing H 2 O. The amount of H 2 O contained was 0.01%, 0.03%, 0.05% by gas partial pressure.
%, 0.1%, 0.5%, 3.0%, 5.2% and 12%.

【0039】かかる熱処理後に、この熱処理を施さない
1コイルを含めた41コイルについて、10% TiO2 および
4%Sr(OH)2 ・8H2O を含有するMgO を主成分とする焼
鈍分離剤を鋼板表面に塗布した後、コイル状に巻き取
り、N2中で840 ℃,40h保持した後、15℃/hの昇温速度
で25%N2および75%H2の混合雰囲気下で1200℃まで昇温
し、さらにH2の雰囲気下で1200℃, 10h保持した後降温
する、最終仕上焼鈍を施した。
[0039] After the heat treatment, the 41 coils including first coil is not subjected to this heat treatment, the MgO containing 10% TiO 2 and 4% Sr (OH) 2 · 8H 2 O with an annealing separator consisting mainly after coating the surface of the steel sheet, wound into a coil, 840 ° C. in N 2, after 40h maintained, 15 ℃ / h 1200 ℃ in a mixed atmosphere of 25% N 2 and 75% H 2 at a heating rate of The temperature was raised to 1,200 ° C. for 10 hours in an atmosphere of H 2 , and then the temperature was lowered to perform final finish annealing.

【0040】その後、各コイルにおける未反応の焼鈍分
離剤を除去した後、平坦化処理を兼ねた張力コーティン
グを鋼板表面に塗布焼付けして製品とした。かくして得
られた製品コイルの磁気特性を図5に示す。なお、かか
る熱処理を行わなかった製品の磁束密度は、B8 値で1.
865 Tであった。図5から、高磁束密度の製品を得るた
めには、N2とH2との混合比に拘わらず、H2O の含有量を
0.05〜3.0 %とする必要があることがわかる。
Then, after removing the unreacted annealing separating agent in each coil, a tension coating serving also as a flattening treatment was applied to the steel sheet surface and baked to obtain a product. FIG. 5 shows the magnetic characteristics of the product coil thus obtained. Incidentally, the magnetic flux density of the product did not perform the heat treatment was 1 8 value B.
865 T. From FIG. 5, in order to obtain a product with a high magnetic flux density, the content of H 2 O is determined regardless of the mixing ratio of N 2 and H 2.
It is understood that the content needs to be 0.05 to 3.0%.

【0041】〔熱処理の温度と時間の条件〕分割した残
りの90コイルを用いて、40%N2および60%H2の混合雰囲
気中にH2Oを1.8 %含有させた雰囲気にて熱処理を行っ
た。ここで熱処理は、温度を800, 825, 850, 875, 900,
925, 950, 975, 1000℃の9水準および時間を2,3,
5,10, 15, 20, 30, 40, 50, 60秒間の10水準として、
それらを組合わせて行った。
[Temperature and Time Conditions of Heat Treatment] Using the remaining 90 coils, heat treatment was performed in an atmosphere containing 1.8% of H 2 O in a mixed atmosphere of 40% N 2 and 60% H 2. went. Here, the heat treatment raises the temperature to 800, 825, 850, 875, 900,
9 levels of 925, 950, 975, 1000 ° C and time
5,10,15,20,30,40,50,60 levels as 10 levels
They were performed in combination.

【0042】かかる熱処理の後、これら90種類の分割コ
イルは10%TiO2および4%Sr(OH)2・8H2O を含有するM
gO を主成分とする焼鈍分離剤を鋼板表面に塗布した
後、コイル状に巻き取り、N2中で840 ℃,40h保持した
後、15℃/hの昇温速度で25%N2および75%H2の混合雰囲
気下で1200℃まで昇温し、次いでH2の雰囲気下で1200℃
まで昇温し、さらにH2の雰囲気下で1200℃,110 h保持
したのち降温する、最終仕上焼鈍を施した。
After such heat treatment, these 90 types of split coils contain M containing 10% TiO 2 and 4% Sr (OH) 2 .8H 2 O.
After coating an annealing separator consisting mainly on the surface of the steel sheet to gO, wound into a coil, 840 ° C. in N 2, after 40h holding, 25% N 2 and at a heating rate of 15 ° C. / h 75 % H 2 in a mixed atmosphere to 1200 ° C., then H 2 in an atmosphere of 1200 ° C.
The temperature was raised to 1,200 ° C. and 110 hours in an atmosphere of H 2 , and then the temperature was decreased, and a final finish annealing was performed.

【0043】その後、各コイルにおける未反応の焼鈍分
離剤を除去した後、平坦化処理を兼ねた張力コーティン
グを鋼板表面に塗布焼付けして製品とした。かくして得
られた製品コイルの磁気特性を図6に示すように、温度
および時間の最適条件は、850 〜950 ℃で5〜40秒間の
範囲であることがわかる。
Then, after removing the unreacted annealing separating agent in each coil, a tension coating serving also as a flattening treatment was applied to the steel sheet surface and baked to obtain a product. FIG. 6 shows the magnetic characteristics of the product coil obtained in this manner, and it can be seen that the optimum conditions of temperature and time are in the range of 850 to 950 ° C. for 5 to 40 seconds.

【0044】また、各々の脱炭焼鈍板を25%N2と75%H2
の混合雰囲気(露点20℃)下で900℃,30分間の熱処理
を行って、酸化挙動および窒化挙動を調査したところ、
実験1や2と同様に、磁束密度の高い材料が得られた条
件では、鋼板の酸化および窒化が抑制されていた。
Each of the decarburized annealed plates was made of 25% N 2 and 75% H 2
In a mixed atmosphere (dew point: 20 ° C), heat treatment was performed at 900 ° C for 30 minutes to investigate oxidation and nitridation behavior.
As in Experiments 1 and 2, under the condition that a material having a high magnetic flux density was obtained, oxidation and nitriding of the steel sheet were suppressed.

【0045】さらに、脱炭焼鈍板に0.05〜0.35%のH2O
分圧の雰囲気で熱処理を施すと、酸化および窒化が抑制
される理由を詳細に調査するため、鋼板断面のSEM 写真
を観察したところ、この熱処理によって鋼板表層部に存
在するファイヤライト(Fe2SiO4) が、次式(1) に示す反
応に従って分解し、シリカ(SiO2)の微細粒が高密度に生
成していることがわかった。
Further, 0.05 to 0.35% H 2 O is added to the decarburized annealed plate.
In order to investigate in detail why oxidation and nitridation are suppressed when heat treatment is performed in a partial pressure atmosphere, SEM photographs of the cross section of the steel sheet were observed, and firelite (Fe 2 SiO) present in the surface layer of the steel sheet due to this heat treatment was observed. 4 ) was decomposed according to the reaction shown in the following equation (1), and it was found that fine particles of silica (SiO 2 ) were generated at a high density.

【数1】 Fe2SiO4Si →2SiO2+2Fe -----(1)## EQU1 ## Fe 2 SiO 4 + Si → 2SiO 2 +2 Fe ----- (1)

【0046】すなわち、図7(a) に示すように、脱炭焼
鈍板上に生成する酸化物はその表面側にファイヤライト
および地鉄側にシリカがそれぞれ生成するのが一般であ
る。特に、ファイヤライトは酸素分圧の高い表面側に生
成するため、同図に示すように、粗い粒子として形成さ
れる。
That is, as shown in FIG. 7 (a), the oxides formed on the decarburized annealed plate generally generate firelite on the surface side and silica on the ground iron side. In particular, since firelite is generated on the surface side having a high oxygen partial pressure, it is formed as coarse particles as shown in FIG.

【0047】ここで、H2O 分圧が0.05〜3.0 %の雰囲気
で熱処理を行うと、図7(b) に示すように、ファイヤラ
イトの一部がシリカと鉄と酸素に分解し、酸素が鉄中に
溶存する微量Siと結合してさらにシリカを生成する。こ
れら分解して生成するシリカおよび鉄中に溶存する微量
Siと結合して生成するシリカは、極めて微細な粒子であ
り、しかも高密度でサブスケール中に存在するため、サ
ブスケールを介しての酸素の拡散や窒素の拡散を妨げる
作用が大きい。このため、鋼板は最終仕上焼鈍中の酸化
や窒化から保護されることになり、インヒビターの初期
状態が2次再結晶まで維持され、良好な磁気特性が得ら
れたものである。そこで、かかる熱処理を、鋼板表面の
酸化物の分解再生成高密度化処理と呼称する。
Here, when the heat treatment is performed in an atmosphere having a H 2 O partial pressure of 0.05 to 3.0%, as shown in FIG. 7B, part of the firelite is decomposed into silica, iron and oxygen, and Combines with a trace amount of Si dissolved in iron to form further silica. Trace amounts of dissolved silica and iron formed by these decompositions
Silica formed by bonding with Si is an extremely fine particle and exists at a high density in the sub-scale. Therefore, the silica has a large effect of hindering diffusion of oxygen and nitrogen through the sub-scale. For this reason, the steel sheet is protected from oxidation and nitridation during the final finish annealing, and the initial state of the inhibitor is maintained until secondary recrystallization, and good magnetic properties are obtained. Therefore, such a heat treatment is referred to as an oxide decomposition / regeneration densification treatment of the steel sheet surface.

【0048】この鋼板表面の酸化物の分解再生成高密度
化処理によって微細なシリカ粒子を酸化物内に高密度に
生成させるには、十分なファイヤライト粒子がかかる処
理の前に存在することが必要である。すなわち、最終冷
間圧延後の鋼板の表面粗さを0.40μmRa 以下とするこ
と、脱炭焼鈍の前処理として電解脱脂法によって鋼板表
面にSiを含有する電着物が0.1mg/m2以上で付着する洗浄
処理を施すことおよび脱炭焼鈍の前期においてP(H2O)
/P(H2)を0.30〜0.65とすることは、いずれも、脱炭焼
鈍で形成される酸化物中のファイヤライトを増加させる
作用があることが、新たに判明した。
In order to generate fine silica particles in the oxide at a high density by the decomposition / regeneration / densification treatment of the oxide on the steel sheet surface, sufficient firelite particles must be present before the treatment. is necessary. That is, the surface roughness of the steel sheet after the final cold rolling is set to 0.40 μm Ra or less, and the electrodeposits containing Si on the steel sheet surface is 0.1 mg / m 2 or more by electrolytic degreasing as a pretreatment of decarburization annealing. P (H 2 O)
It has been newly found that setting / P (H 2 ) to 0.30 to 0.65 has the effect of increasing the amount of firelite in the oxide formed by decarburizing annealing.

【0049】また、酸化物の分解再生成高密度化処理の
条件として、温度が低すぎる場合や時間が短かすぎる場
合は、ファイヤライトの分解および微細シリカの再生成
の反応の進行が遅く、逆に、温度が高すぎる場合は、フ
ァイヤライトの分解によって再生成されるシリカの粒子
径が粗大となってサブスケールの酸化および窒化抑制作
用が十分に機能しなくなる。一方、処理時間が長過ぎる
場合は、ファイヤライトが完全に分解して、消滅する結
果、最終仕上焼鈍時に、焼鈍分離剤中のMgO と反応して
次式(2) に示すオリビン形成の反応が抑制され、磁気特
性が劣化することになる。
If the temperature is too low or the time is too short as a condition for the decomposition and regeneration of oxides, the progress of the reaction of decomposition of firelite and regeneration of fine silica is slow. Conversely, if the temperature is too high, the particle size of the silica regenerated by the decomposition of the firelite becomes coarse, and the effect of suppressing oxidation and nitridation of the sub-scale does not function sufficiently. On the other hand, if the treatment time is too long, the firelite is completely decomposed and disappears.As a result, at the time of the final finish annealing, it reacts with MgO in the annealing separator to form the olivine forming reaction represented by the following formula (2). As a result, the magnetic properties are degraded.

【数2】 2x MgO + Fe2SiO4 → (Mgx Fe1-x )2SiO4+2xFeO -----(2) 2 x MgO + Fe 2 SiO 4 → (Mg x Fe 1-x ) 2 SiO 4 + 2xFeO ----- (2)

【0050】なお、脱炭焼鈍板に非酸化性雰囲気で890
〜1050℃で加熱焼鈍処理を施す技術について、特公昭54
−24686 号公報に開示されているが、ここに示された雰
囲気は、Siに対しても非酸化性であり、H2O 分圧は0.01
%以下である。そして、熱処理温度も890 ℃以上と高
く、またサブスケール中の酸化物であるファイヤライト
やシリカに関する記載はなく、従って微細SiO2を分散再
生成させる技術である、この発明とは異なる技術であ
る。
It is to be noted that the decarburized annealed plate was 890
Regarding the technology of heat annealing at ~ 1050 ° C,
-24686, the atmosphere shown here is also non-oxidizing to Si, and the H 2 O partial pressure is 0.01
% Or less. Also, the heat treatment temperature is as high as 890 ° C. or higher, and there is no description about the oxides in the subscale, such as firelite and silica. Therefore, this is a technique different from the present invention, which is a technique for dispersing and regenerating fine SiO 2. .

【0051】また、特公昭57−1575号公報には、脱炭焼
鈍を前半と後半に分け、後半の雰囲気のP(H2O) /P(H
2)を前半より低下させる脱炭焼鈍技術が開示されている
が、これはP(H2O) /P(H2)のレベルを変えて生成する
酸化物を変更するものであり、従って、H2とH2O の分圧
の比率が問題となる。すなわち、H2O の分圧を一定値以
下に制御してファイヤライトを分解してシリカを再生成
する、この発明とは本質的に異なるものであり、両者の
相違は、例えば100 %N2の雰囲気中に微量のH2O が含有
される場合についての適合性を評価すれば明白である。
さらに同公報には、サブスケール中の酸化物であるファ
イヤライトやシリカに関する記載はなく、ファイヤライ
トを増加させる処理およびシリカの微細分散を図ること
の示唆もない。
In Japanese Patent Publication No. 57-1575, the decarburizing annealing is divided into the first half and the second half, and P (H 2 O) / P (H
2 ) The decarburizing annealing technology for lowering the amount of P (H 2 O) / P (H 2 ) from the first half is disclosed, which changes the oxide generated by changing the level of P (H 2 O) / P (H 2 ). The ratio between the partial pressures of H 2 and H 2 O is problematic. That is, it is essentially different from the present invention in which the partial pressure of H 2 O is controlled to a certain value or less to decompose the firelite and regenerate silica, and the difference between the two is, for example, 100% N 2. It will be clear if the suitability for the case where a small amount of H 2 O is contained in the atmosphere is evaluated.
Further, the publication does not describe firelite or silica which is an oxide in the sub-scale, and does not suggest a treatment for increasing the firelite or a fine dispersion of silica.

【0052】上述したとおり、この発明は、方向性けい
素鋼板の製造工程において、最終冷間圧延後の鋼板の表
面粗さを適正に調整し、次いで脱炭焼鈍の前処理とし
て、電解脱脂法によって鋼板表面にSiを含有する電着物
が0.1mg/m2以上で付着する洗浄処理を施し、脱炭焼鈍
前、後期の雰囲気のP(H2O) /P(H2)を所定量の範囲と
し、かつ後期の雰囲気中のH2O 分圧を所定量以下としか
つ温度を所定の温度範囲とすることで、脱炭焼鈍後の鋼
板表面の酸化物の分解微細分散再生成を促進し、最終仕
上焼鈍中の鋼板の酸化および窒化を抑制し、最終的に製
品の磁束密度を向上させるものである。
As described above, the present invention provides a process for producing a grain-oriented silicon steel sheet in which the surface roughness of the steel sheet after the final cold rolling is appropriately adjusted, and then, as a pretreatment for decarburization annealing, an electrolytic degreasing method is used. the electrodeposit containing Si is subjected to a cleaning process to adhere at 0.1 mg / m 2 or more on the surface of the steel sheet, before decarburization annealing, the late atmosphere P (H 2 O) / P (H 2) a predetermined amount of By setting the H 2 O partial pressure in the atmosphere in the latter period to a predetermined amount or less and setting the temperature to a predetermined temperature range, the decomposition of oxides on the steel sheet surface after decarburizing annealing promotes fine dispersion and regeneration. The purpose of the present invention is to suppress the oxidation and nitriding of the steel sheet during the final finish annealing, and finally improve the magnetic flux density of the product.

【0053】ここで、この発明の素材成分は、方向性け
い素鋼の一般に従うものであり、例えば以下に示す成分
組成が有利に適合する。 C:0.020 〜0.10重量% Cは、熱間圧延および冷間圧延における組織改善に有用
な成分であり、この効果は含有量が0.020 重量%に満た
ないと得られない。一方、0.10重量%をこえると、脱炭
不良となり磁気特性の劣化を招くため、C量は0.020 〜
0.10重量%の範囲に限定した。 Si:1.0 〜5.0 重量% Siは製品の電気抵抗を高め渦電流損を低減させる上で重
量な成分で、この目的のためには1.0 重量%以上は必要
であるが、一方5.0 重量%をこえると冷間圧延性が劣化
するため、1.0 〜5.0 重量%の範囲に限定した。 Mn:0.05〜2.5 重量% Mnは後述するインヒビター形成成分であり、さらに熱間
圧延性を高めるために必要な成分でもあり、このために
は、0.05重量%以上を必要とするが、一方2.5重量%を
こえると脱炭が困難となるため、0.05〜2.5 重量%の範
囲に限定した。
Here, the raw material component of the present invention generally follows that of oriented silicon steel, and for example, the following component composition is advantageously adapted. C: 0.020 to 0.10 wt% C is a component useful for improving the structure in hot rolling and cold rolling, and this effect cannot be obtained unless the content is less than 0.020 wt%. On the other hand, if the content exceeds 0.10% by weight, the decarburization becomes poor and the magnetic properties are deteriorated.
The range was limited to 0.10% by weight. Si: 1.0 to 5.0% by weight Si is a heavy component in increasing the electrical resistance of the product and reducing eddy current loss. For this purpose, 1.0% by weight or more is necessary, but it exceeds 5.0% by weight. , The cold rollability deteriorates, so the range is limited to 1.0 to 5.0% by weight. Mn: 0.05 to 2.5% by weight Mn is an inhibitor-forming component to be described later, and is also a component necessary for enhancing hot rolling property. For this purpose, 0.05% by weight or more is required, while 2.5% by weight is required. %, The decarburization becomes difficult, so the content was limited to the range of 0.05 to 2.5% by weight.

【0054】次に、インヒビター形成成分としては、上
記のMnのほか、Al, SまたはSeを0.005 〜0.04重量%の
範囲で含有する。すなわち、Al, SまたはSeは、AlN, M
nSまたはMnSeとして鋼中に微細析出してインヒビターを
形成するのに必要であり、これらのうち1種または2種
以上の含有が必要である。この目的のためには、0.005
重量%以上の含有が必要であるが、0.04重量%をこえる
と、微細に分散析出させることが困難となってインヒビ
ターの機能が低下するため、0.005 〜0.04重量%の範囲
で含有する。なお、2種以上を含有させる場合は、個々
の成分を0.005 〜0.04重量%の範囲に制限することが好
ましい。
Next, as an inhibitor-forming component, in addition to the above-mentioned Mn, Al, S or Se is contained in the range of 0.005 to 0.04% by weight. That is, Al, S or Se is AlN, M
Necessary for fine precipitation in steel as nS or MnSe to form an inhibitor, and one or more of these must be contained. For this purpose, 0.005
However, if it exceeds 0.04% by weight, it becomes difficult to finely disperse and precipitate, and the function of the inhibitor deteriorates. Therefore, the content is in the range of 0.005 to 0.04% by weight. When two or more kinds are contained, it is preferable to limit each component to the range of 0.005 to 0.04% by weight.

【0055】その他、必要に応じて、インヒビター成分
として、Ge, P,V,Sn, Sb, Bi,BおよびNを0.005
〜0.040 重量%、SnおよびSbを0.005 〜0.2 重量%、Bi
およびBを0.0003〜0.0100重量%の範囲で添加すること
が好ましい。なお、Nは製造工程の途中において窒化す
ることによって添加することも可能である。さらに、熱
間圧延性を改善するために、Moを0.05重量%までの範囲
で含有することもできる。
In addition, if necessary, Ge, P, V, Sn, Sb, Bi, B, and N may be added as inhibitor components to 0.005.
0.040% by weight, 0.005 to 0.2% by weight of Sn and Sb, Bi
And B are preferably added in the range of 0.0003 to 0.0100% by weight. Note that N can be added by nitriding during the manufacturing process. Further, in order to improve hot rollability, Mo may be contained in a range of up to 0.05% by weight.

【0056】[0056]

【発明の実施の形態】次に、この発明に従う製造方法に
ついて詳しく述べる。上記好適成分組成になる鋼スラブ
は、従来用いられている製鋼法で得られた鋼を鋳造して
得られ、必要に応じて再圧延を行い、次いで熱間圧延に
よって熱延コイルとする。かかる熱延コイルは、1回も
しくは中間焼鈍を挟む複数回の冷間圧延によって最終板
厚とするが、この最終冷間圧延後の鋼板の表面粗さを0.
40μmRa 以下に調整することが、この発明の必須要件
である。これは、冷間圧延前の鋼板表面の酸化物層の除
去量、圧延機のワークロール径、圧延油の粘度あるいは
圧延速度などを変更することにより達成される。
Next, a manufacturing method according to the present invention will be described in detail. The steel slab having the above-mentioned preferred composition is obtained by casting steel obtained by a conventionally used steelmaking method, re-rolled if necessary, and then hot-rolled into a hot-rolled coil. Such a hot-rolled coil has a final thickness by cold rolling once or a plurality of times with intermediate annealing, but the surface roughness of the steel sheet after this final cold rolling is reduced to 0.
Adjustment to 40 μm Ra or less is an essential requirement of the present invention. This can be achieved by changing the removal amount of the oxide layer on the steel sheet surface before the cold rolling, the work roll diameter of the rolling mill, the viscosity of the rolling oil, the rolling speed, and the like.

【0057】ここに、鋼板表面の平均粗さが0.40μmR
a をこえると、脱炭焼鈍の前期において形成される酸化
物中のファイヤライトの含有量が低下し、脱炭焼鈍後期
での酸化物の分解再生成高密度化処理の効果が得られな
い。
Here, the average roughness of the steel sheet surface is 0.40 μmR
If the value exceeds a , the content of firelite in the oxide formed in the first half of the decarburization annealing decreases, and the effect of the decomposition and regeneration of the oxide in the second half of the decarburization annealing cannot be obtained.

【0058】最終冷間圧延後の鋼板表面の酸化物は、最
終冷間圧延前の焼鈍後の表面スケールを除去する際、そ
の除去量を変えることにより行われる。また、除去の手
段は、酸洗や研削など従来公知の方法を用いることがで
きる。最終冷間圧延後のコイルは、次に脱炭焼鈍に供す
るが、この脱炭焼鈍の前処理として、電解脱脂法による
洗浄処理を施す必要がある。すなわち、電解脱脂法は鋼
板を浴中に浸漬し、正又は負の電流を鋼板表面から浴中
に流して、鋼板表面を清浄化する技術である。かかる電
解脱脂での洗浄において、鋼板表面にSiを含有する電着
物を最終的に0.1 mg/m2 以上で付着させることが肝要で
ある。なぜなら、Siを含有する電着物の付着量が0.1mg/
m2未満の場合は、続く脱炭焼鈍の前期において形成され
る鋼板表面の酸化物中のファイヤライトの含有量が低下
し、脱炭焼鈍後期において酸化物の分解再生成高密度化
処理の効果が得られない。
The oxides on the surface of the steel sheet after the final cold rolling are removed by changing the removal amount when removing the surface scale after annealing before the final cold rolling. Further, as a removing means, a conventionally known method such as pickling or grinding can be used. The coil after the final cold rolling is then subjected to decarburizing annealing, and it is necessary to perform a cleaning treatment by an electrolytic degreasing method as a pretreatment of the decarburizing annealing. That is, the electrolytic degreasing method is a technique in which a steel sheet is immersed in a bath and a positive or negative current flows from the steel sheet surface into the bath to clean the steel sheet surface. In such washing by electrolytic degreasing, it is important to finally deposit an electrodeposit containing Si on the steel sheet surface at a concentration of 0.1 mg / m 2 or more. This is because the deposition amount of the electrodeposit containing Si is 0.1 mg /
When it is less than m 2, followed by decreased content of fayalite in oxides of the steel sheet surface formed in the previous period of decarburization annealing, the effect of decomposition regeneration densification of the oxide in the decarburization annealing late Can not be obtained.

【0059】なお、Siを含有する電着物の付着量の検出
は、けい光X線によるSi強度の単位時間当たりのカウン
ト数を用いて行うことができる。すなわち、付着した電
着物を極低濃度のHCl で洗い落として、その前後の重量
変化を測定し、この重量変化とけい光X線によるSi強度
のカウント数の変化とを対応させ、較正曲線を予め作成
しておくことにより、付着量の測定は簡便になされる。
The adhesion amount of the electrodeposits containing Si can be detected by using the count number of the Si intensity per unit time by the fluorescent X-ray. That is, the attached electrodeposits are washed off with a very low concentration of HCl, and the weight change before and after the change is measured, and the weight change is associated with the change in the Si intensity count number due to the fluorescent X-ray, and a calibration curve is created in advance. By doing so, the measurement of the attached amount is easily performed.

【0060】また、脱炭焼鈍は操業性の点から前期およ
び後期に分けて同一の連続炉で行っても、前期と後期と
を別々の焼鈍処理として行っても良い。脱炭焼鈍前期
は、通常行われている脱炭焼鈍であるが、鋼板表面に形
成される酸化物におけるファイヤライトの組成割合を高
めるため、雰囲気のP(H2O) /P(H2)を0.30〜0.65の範
囲とすることが必要である。すなわち、P(H2O) /P(H
2)が0.30未満の場合、ファイヤライトの生成が不十分と
なり、脱炭焼鈍後期での鋼板表面の酸化物に対する分解
再生成高密度化処理において、微細シリカの生成が不十
分となる。一方、P(H2O) /P(H2)が0.65をこえる場合
は、ウスタイトが生成されて、同じく酸化物に対する分
解再生成高密度化処理において、微細シリカの生成が困
難となる。従って、脱炭焼鈍前期における雰囲気のP(H
2O) /P(H2)を0.30〜0.65とする。
The decarburizing annealing may be performed in the same continuous furnace in the first and second stages in terms of operability, or may be performed as separate annealing processes in the first and second stages. The first stage of the decarburization annealing is a normal decarburization annealing. However, in order to increase the composition ratio of firelite in the oxide formed on the surface of the steel sheet, P (H 2 O) / P (H 2 ) in the atmosphere is used. Must be in the range of 0.30 to 0.65. That is, P (H 2 O) / P (H
If the value of 2 ) is less than 0.30, the generation of firelite becomes insufficient, and the generation of fine silica becomes insufficient in the decomposition and regeneration high-density treatment of oxides on the steel sheet surface in the latter stage of decarburization annealing. On the other hand, when P (H 2 O) / P (H 2 ) exceeds 0.65, wustite is generated, and similarly, it becomes difficult to generate fine silica in the decomposition / regeneration high-density treatment of the oxide. Therefore, the atmosphere P (H
2 O) / P a (H 2) and 0.30 to 0.65.

【0061】脱炭焼鈍後期は、焼鈍雰囲気中の H2O分圧
を0.05〜3.0 %とし、焼鈍温度を 850〜950 ℃の範囲と
することが必要である。すなわち、H2O 分圧が0.05%以
下の場合、ファイヤライトから分解した再生成物として
Fe、OおよびSiO2が生じ、緻密かつ微細なシリカの分散
とはならず、一方 3.0%をこえると、ファイヤライトの
分解が阻害される。さらに、焼鈍温度が 850℃未満にな
ると、ファイヤライトの分解反応の進行が不十分とな
り、一方 950℃をこえると、シリカ粒子の粗大化が生じ
緻密な酸化物粒子の分散状態が得られなくなる。従っ
て、焼鈍雰囲気中の H2O分圧は0.05〜3.0 %とし、かつ
焼鈍温度を 850〜950 ℃の範囲に限定する。
In the latter half of the decarburizing annealing, it is necessary to set the H 2 O partial pressure in the annealing atmosphere at 0.05 to 3.0% and the annealing temperature at 850 to 950 ° C. That is, when the partial pressure of H 2 O is 0.05% or less,
Fe, O, and SiO 2 are produced, and fine and fine silica is not dispersed. On the other hand, if it exceeds 3.0%, decomposition of firelite is inhibited. Further, when the annealing temperature is lower than 850 ° C., the progress of the decomposition reaction of the firelite becomes insufficient. On the other hand, when the annealing temperature exceeds 950 ° C., the silica particles become coarse and the dense oxide particles cannot be dispersed. Thus, H 2 O partial pressure in the annealing atmosphere is set to 0.05 to 3.0%, and to limit the annealing temperature in the range of 850 to 950 ° C..

【0062】かかる酸化物の分解再生成高密度化処理
は、5秒間未満ではやや不十分であり、40秒間をこえる
と過剰にファイヤライトが分解されて、磁気特性の低下
を招くため、5〜40秒間の範囲が好ましい。
[0062] The densification treatment for the decomposition and regeneration of the oxide is slightly insufficient for less than 5 seconds, and excessively long for more than 40 seconds, resulting in excessive decomposition of firelite and deterioration of magnetic properties. A range of 40 seconds is preferred.

【0063】なお、脱炭焼鈍後は焼鈍分離材を塗布して
から1200℃程度の温度で最終仕上焼鈍を行い、最終製品
とする。そして、必要に応じて、絶縁コーティングを施
し、平坦化処理を行って製品とすることができる。ま
た、鋼板表面に溝を設けたり、プラズマジェットやレー
ザーを照射して局部的に歪みを与えて磁区細分化処理を
施すことも可能である。
After the decarburizing annealing, the annealing separator is applied, and the final finishing annealing is performed at a temperature of about 1200 ° C. to obtain a final product. Then, if necessary, an insulating coating is applied, and a flattening process is performed to obtain a product. It is also possible to provide a groove on the surface of the steel sheet, or to apply a plasma jet or a laser to locally impart distortion to perform a magnetic domain refining treatment.

【0064】[0064]

【実施例】【Example】

実施例1 表1に従う組成の鋼スラブA〜Pを熱間圧延後、1000℃
で1分間の熱延板焼鈍を施し、次いで第1回目の冷間圧
延でA〜Lは1.5mm およびM〜Pは0.60mmの中間板厚と
したのち、中間焼鈍として、A〜Lは1100℃およびM〜
Pは1000℃で40秒間、25%湿N2および75%H2雰囲気(露
点40℃)での焼鈍を施した後、ミスト水を用いて40℃/s
の冷却速度で350 ℃まで急冷し、その後A〜Lは 350℃
およびM〜Pは 200℃で25秒間保持した後、常温まで大
気中で徐冷した。中間焼鈍後のコイルは、15%のHCl 水
溶液で酸洗し、その後 180mm径のワークロールを有する
センジミア圧延機にて、0.22mmの最終板厚とした。これ
らのコイルの表面粗さは、表2に示すように0.25〜0.30
μmRa であった。
Example 1 After hot rolling steel slabs A to P having compositions according to Table 1, 1000 ° C.
For 1 minute, and then the first cold rolling is performed to set the intermediate sheet thickness to 1.5 mm for A to L and 0.60 mm for M to P. ° C and M ~
P was annealed at 1000 ° C. for 40 seconds in a 25% wet N 2 and 75% H 2 atmosphere (dew point: 40 ° C.), and then was heated to 40 ° C./s using mist water.
Rapid cooling to 350 ° C at a cooling rate of 350 ° C
M and P were kept at 200 ° C. for 25 seconds, and then gradually cooled in the air to room temperature. The coil after the intermediate annealing was pickled with a 15% aqueous solution of HCl, and then the final sheet thickness was 0.22 mm by a Sendzimir mill having a work roll having a diameter of 180 mm. The surface roughness of these coils was 0.25 to 0.30 as shown in Table 2.
It was μmR a.

【0065】次に、これらのコイルを2分割し、一方は
脱炭焼鈍の前処理として、アルカリ脱脂浴中を通板した
後純水でリンスし洗浄した。他方は脱炭焼鈍の前処理と
してオルソ珪酸ソーダ浴を用いて電解脱脂し、Siを含有
する電着物を 1.0〜2.3mg/mm 2 付着させた。その後、コ
イルを50%H2および残余N2バランスの雰囲気(露点60
℃,P(H2O) /P(H2):0.39)で 840℃,2分間の前期
の脱炭焼鈍を行い、引き続いて脱炭焼鈍後期において、
50%H2および残部N2バランスの雰囲気(露点5℃, H2O
分圧: 0.9%)下で 880℃において20秒間の酸化物の分
解再生成高密度化処理を施した。
Next, these coils are divided into two parts, one of which is
Passed through an alkaline degreasing bath as a pretreatment for decarburization annealing
Thereafter, it was rinsed with pure water and washed. The other is pre-treatment of decarburization annealing
And electrolytic degreasing using a sodium orthosilicate bath, containing Si
1.0 to 2.3 mg / mm TwoAttached. After that,
Il 50% HTwoAnd the residual NTwoBalance atmosphere (dew point 60
℃, P (HTwoO) / P (HTwo): 0.39) at 840 ℃ for 2 minutes
Of decarburization annealing, and subsequently in the later stage of decarburization annealing,
50% HTwoAnd the rest NTwoBalance atmosphere (dew point 5 ℃, HTwoO
Partial pressure: 0.9%) under 880 ° C for 20 seconds of oxide fraction
A solution regeneration densification process was performed.

【0066】[0066]

【表1】 [Table 1]

【0067】これらのコイルは、3%のTiO2および2%
の Sr(OH)2・8H2Oを含有しMgO を主成分とする焼鈍分離
剤を鋼板表面に塗布した後、コイル状に巻き取り、N2
で 840℃45hの保持を行った後、15℃/hの昇温速度で25
%N2および75%H2の雰囲気で1200℃まで昇温し、H2中で
1200℃,10h保持した後降温する、最終仕上焼鈍を施し
た。その後、未反応の焼鈍分離剤を除去した後、平坦化
処理を兼ねて張力コーティングを塗布焼付けて製品とし
た。かくして得られた製品の磁気特性を、表2に併記す
る。
These coils have 3% TiO 2 and 2%
Of Sr (OH) containing 2 · 8H 2 O was applied to the annealing separator to the steel sheet surface mainly containing MgO, wound into a coil, after the holding of 840 ° C. 45h in N 2, 25 at a heating rate of 15 ° C / h
% Was heated to 1200 ° C. in an atmosphere of N 2 and 75% H 2, in H 2
After the temperature was kept at 1200 ° C. for 10 hours, the temperature was lowered and a final finish annealing was performed. Then, after removing the unreacted annealing separating agent, a tension coating was applied and baked to serve as a flattening treatment to obtain a product. The magnetic properties of the product thus obtained are also shown in Table 2.

【0068】[0068]

【表2】 [Table 2]

【0069】実施例2 表1に記載した鋼スラブAを熱間圧延後、1150℃で1分
間の熱延板焼鈍を施した後、ミスト水を用いて40℃/sの
冷却速度で室温まで冷却した。その後、15%のHCl 水溶
液で酸洗してから、 180mm径のワークロールを有するセ
ンジミア圧延機を用いて、0.26mmの最終板厚とした。こ
こで、コイルの表面粗さは0.28〜0.32μmRa であっ
た。
Example 2 After hot-rolling steel slab A described in Table 1, subjecting it to hot-rolled sheet annealing at 1150 ° C. for 1 minute, it was cooled to room temperature using mist water at a cooling rate of 40 ° C./s. Cool. Then, after pickling with a 15% aqueous solution of HCl, a final thickness of 0.26 mm was obtained using a Sendzimir rolling mill having a work roll with a diameter of 180 mm. Here, the surface roughness of the coil was 0.28 to 0.32 μm Ra .

【0070】次に、脱炭焼鈍の前処理として、オルソ珪
酸ソーダ浴を用いて電解脱脂し、Siを含有する電着物を
0.8mg/m2 で付着させた。このコイルに、45%H2および
残余N2バランスの雰囲気(露点60℃,P(H2O) /P
(H2):0.44)で 850℃,2分間の脱炭焼鈍を行った後、
2分割し、一方をN2雰囲気(露点−5℃, H2O分圧:0.
4%)で 860℃において20秒間の酸化物の分解再生成高
密度化処理を施した。残る一方は、そのまま次工程の処
理へ廻した。
Next, as a pretreatment for decarburizing annealing, electrolytic degreasing is performed using a sodium orthosilicate bath, and the electrodeposit containing Si is removed.
Deposited at 0.8 mg / m 2 . In this coil, 45% H 2 and residual N 2 balance atmosphere (dew point 60 ° C, P (H 2 O) / P
(H 2 ): After decarburizing annealing at 850 ° C for 2 minutes at 0.44),
Divide into two, and place one in an N 2 atmosphere (dew point -5 ° C, H 2 O partial pressure: 0.
(4%) at 860 ° C. for 20 seconds. The remaining one was sent to the next step as it was.

【0071】これらのコイルは、10%TiO2および2%の
Sr(OH)2・8H2Oを含有しMgO を主成分とする焼鈍分離剤
を鋼板表面に塗布した後、コイル状に巻き取り、25%N2
および75%H2雰囲気で 850℃まで30℃/h 850℃から1200
℃まで15℃/hの昇温速度で昇温し、H2中1200℃, 10hの
保持を行った後、降温する最終仕上焼鈍を施した。その
後、未反応の焼鈍分離剤を除去した後、平坦化処理を兼
ねて張力コーティングを塗布焼付けて製品とした。かく
して得られた製品の磁気特性を表3に示す。
These coils are made of 10% TiO 2 and 2%
Sr (OH) containing 2 · 8H 2 O was applied to the annealing separator to the steel sheet surface mainly containing MgO, wound into a coil, 25% N 2
And 30% / h from 850 ° C to 1200 ° C in a 75% H 2 atmosphere
The temperature was raised to 15 ° C. at a rate of 15 ° C./h, and the temperature was maintained at 1200 ° C. for 10 hours in H 2 , followed by final finishing annealing in which the temperature was lowered. Then, after removing the unreacted annealing separating agent, a tension coating was applied and baked to serve as a flattening treatment to obtain a product. Table 3 shows the magnetic properties of the product thus obtained.

【0072】[0072]

【表3】 [Table 3]

【0073】実施例3 C:0.040 重量%, Si:3.25重量%, Mn:0.07重量%,
P:0.004 重量%, Al:0.001 重量%, S:0.002 重量
%, Se:0.018 重量%, Mo:0.010 重量%およびSb:0.
025 重量%を含有し、残部Feと不可避的不純物からなる
けい素鋼スラブ2本を熱間圧延し、1000℃, 30秒間の熱
延板焼鈍を施した後、0.64mmの板厚とした。その後、75
%H2および残余N2バランスの雰囲気(露点35℃)で1000
℃, 30秒間の中間焼鈍を行い、冷却後表面を研削してか
ら、タンデム圧延機にて低粘度油を用いて、0.20mmの最
終板厚とした。このとき、鋼板の表面粗さは0.35〜0.38
μmRa であった。
Example 3 C: 0.040% by weight, Si: 3.25% by weight, Mn: 0.07% by weight,
P: 0.004% by weight, Al: 0.001% by weight, S: 0.002% by weight, Se: 0.018% by weight, Mo: 0.010% by weight and Sb: 0.
Two silicon steel slabs containing 25% by weight, the balance being Fe and unavoidable impurities were hot-rolled and subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds to obtain a sheet thickness of 0.64 mm. Then 75
1000% in an atmosphere with a balance of% H 2 and residual N 2 (dew point 35 ° C)
Intermediate annealing at 30 ° C. for 30 seconds was performed, and after cooling, the surface was ground. After that, a final thickness of 0.20 mm was obtained using a low-viscosity oil in a tandem rolling mill. At this time, the surface roughness of the steel sheet is 0.35 to 0.38
It was μmR a.

【0074】次に、脱炭焼鈍の前処理として、オルソ珪
酸ソーダ浴を用いて電解脱脂し、Siを含有する電着物を
2.3 g/m2付着させた。これらのコイルを2分割し、一方
は45%H2および残余N2バランスの雰囲気(露点60℃,P
(H2O) /P(H2):0.44)で820 ℃,2分間の前期脱炭焼
鈍を行い、引続いて50%H2および残余N2バランスの雰囲
気(露点12℃,H20 分圧:1.4 %)下で 860℃,20秒間
の酸化物の分解再生成高密度化処理を施した。他方のコ
イルは、比較として、同じく45%H2および残余N2バラン
ス(露点60℃,P(H2O) /P(H2):0.44)の雰囲気で 8
20℃,2分間の前期脱炭焼鈍を行い、引続いて 100%H2
の雰囲気(露点−40℃, H2O分圧:0.01%) 下で1000
℃,20秒間の酸化物の分解再生成高密度化処理を施し
た。
Next, as a pretreatment for decarburization annealing, electrolytic degreasing is performed using a sodium orthosilicate bath, and the electrodeposit containing Si is removed.
2.3 g / m 2 were deposited. These coils were divided into two parts, one of which was in an atmosphere with a balance of 45% H 2 and the balance of N 2 (dew point 60 ° C, P
(H 2 O) / P (H 2 ): 0.44), decarburizing annealing at 820 ° C. for 2 minutes, followed by an atmosphere of 50% H 2 and residual N 2 balance (dew point 12 ° C., H 20 Under a partial pressure of 1.4%), the oxides were subjected to a high-density decomposition / regeneration process at 860 ° C for 20 seconds. For comparison, the other coil was used in an atmosphere of 45% H 2 and the balance of the remaining N 2 (dew point 60 ° C., P (H 2 O) / P (H 2 ): 0.44).
Pre-decarburization annealing at 20 ° C for 2 minutes, followed by 100% H 2
Under the atmosphere (dew point −40 ° C, H 2 O partial pressure: 0.01%)
The oxides were decomposed, regenerated, and densified at 20 ° C for 20 seconds.

【0075】これら2つのコイルは、2%のTiO2および
1.2%の SrSO4を含有しMgO を主成分とする焼鈍分離剤
を鋼板表面に塗布した後、コイル状に巻き取り、N2中で
850℃,50h保持後、25%N2および75%H2雰囲気で30℃
/hの昇温速度で1200℃まで昇温し、H2中で1200℃, 10h
保持した後降温する、最終仕上焼鈍を施した。その後、
未反応の焼鈍分離剤を除去した後、平坦化処理を兼ねて
張力コーティングを塗布焼付けた後、圧延方向と直角方
向に5mmの間隔でプラズマジェットを圧延方向に照射し
て磁区細分化処理を施し、製品とした。かくして得られ
た製品の磁気特性を表4に示す。
These two coils have 2% TiO 2 and
After the coated surface of the steel sheet annealing separator composed mainly of MgO containing 1.2% of SrSO 4, wound into a coil, in N 2
After holding at 850 ° C for 50 hours, 30 ° C in an atmosphere of 25% N 2 and 75% H 2
/ at a Atsushi Nobori rate was raised to 1200 ° C. for h, 1200 ° C. in H 2, 10h
After the temperature was maintained, the temperature was lowered and a final finish annealing was performed. afterwards,
After removing the unreacted annealing separator, a tension coating is also applied and baked to serve as a flattening process, and then a plasma jet is irradiated in the rolling direction at intervals of 5 mm in a direction perpendicular to the rolling direction to perform a magnetic domain refining process. , And the product. Table 4 shows the magnetic properties of the product thus obtained.

【0076】[0076]

【表4】 [Table 4]

【0077】[0077]

【発明の効果】この発明によれば、磁束密度の高い方向
性けい素鋼板を安定して製造することができ、とりわけ
方向性けい素鋼板の工業的規模での生産における効果は
極めて大きい。
According to the present invention, a grain-oriented silicon steel sheet having a high magnetic flux density can be stably manufactured, and the effect in the production of grain-oriented silicon steel sheet on an industrial scale is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱炭焼鈍の前処理法および鋼板表面へのSi含有
電着物の付着量と磁気特性との関係を示した図である。
FIG. 1 is a diagram showing a relationship between a pretreatment method of decarburizing annealing and an amount of deposited Si-containing electrodeposits on a steel sheet surface and magnetic properties.

【図2】脱炭焼鈍の前処理条件と脱炭焼鈍板の耐酸化性
および耐窒化性との関係を示した図である。
FIG. 2 is a diagram showing a relationship between pretreatment conditions for decarburizing annealing and oxidation resistance and nitriding resistance of a decarburized annealed sheet.

【図3】最終冷間圧延後の鋼板表面に残留する酸化物量
を示す酸素目付量と磁気特性との関係を示した図であ
る。
FIG. 3 is a diagram showing a relationship between an oxygen basis weight indicating an amount of oxide remaining on a steel sheet surface after final cold rolling and magnetic properties.

【図4】脱炭焼鈍前期の雰囲気のP(H2O) /P(H2)と磁
気特性との関係を示した図である。
FIG. 4 is a diagram showing the relationship between magnetic properties and P (H 2 O) / P (H 2 ) in the atmosphere before decarburization annealing.

【図5】脱炭焼鈍後期処理の雰囲気と磁気特性との関係
を示した図である。
FIG. 5 is a diagram showing the relationship between the atmosphere in the latter stage of decarburizing annealing and magnetic properties.

【図6】脱炭焼鈍後期処理の温度および時間と磁気特性
との関係を示した図である。
FIG. 6 is a diagram showing a relationship between temperature and time of late treatment of decarburizing annealing and magnetic properties.

【図7】鋼板表面の酸化物の分解再生成高密度化処理に
よって酸化物の組成と酸化物粒子分布が変化する状態を
示した模式図である。
FIG. 7 is a schematic view showing a state in which the composition of the oxide and the distribution of the oxide particles are changed by the decomposition and regeneration of the oxide on the surface of the steel sheet to increase the density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 広 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (56)参考文献 特開 平7−180100(JP,A) 特開 平7−180099(JP,A) 特開 平7−180098(JP,A) 特開 平5−195071(JP,A) 特開 平7−41861(JP,A) 特開 平6−336617(JP,A) 特開 平6−336616(JP,A) 特開 平6−336612(JP,A) 特開 平1−119622(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 501 C21D 8/12 H01F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Yamaguchi 1-chome, Kawasaki-dori, Mizushima, Kurashiki-shi, Okayama Pref. Kawasaki Steel Corporation Mizushima Works (56) References JP-A-7-180100 (JP, A JP-A-7-180099 (JP, A) JP-A-7-180098 (JP, A) JP-A-5-195071 (JP, A) JP-A-7-41861 (JP, A) JP-A-6-1994 336617 (JP, A) JP-A-6-336616 (JP, A) JP-A-6-336612 (JP, A) JP-A-1-119622 (JP, A) (58) Fields investigated (Int. 7 , DB name) C21D 9/46 501 C21D 8/12 H01F 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 含けい素鋼スラブに熱間圧延を施し、次
いで1回または中間焼鈍を挟む複数回の冷間圧延によっ
て最終板厚とした後、脱炭焼鈍、そして焼鈍分離剤を塗
布して最終仕上焼鈍を施す一連の工程によって方向性け
い素鋼板を製造するに当たり、最終冷間圧延後の鋼板表
面の算術平均粗さを0.40μm以下に調整し、その後脱炭
焼鈍に先立って、電解脱脂法によって鋼板表面にSiを含
有する電着物が0.1mg/m2以上で付着する洗浄処理を施
し、次いで、雰囲気における水素分圧に対する水蒸気分
圧の比を0.30〜0.65に調整して行う前期と、雰囲気にお
ける温度を850 〜950 ℃かつ水蒸気分圧を0.05〜3.0 %
に調整して鋼板表面の酸化物の分解再生成高密度化処理
を行う後期とからなる脱炭焼鈍を施すことを特徴とする
磁気特性に優れた方向性けい素鋼板の製造方法。
1. A silicon steel slab is subjected to hot rolling, and then to a final thickness by one or a plurality of cold rollings sandwiching intermediate annealing, followed by decarburizing annealing and applying an annealing separating agent. In producing a grain-oriented silicon steel sheet by a series of steps of performing final finish annealing, the arithmetic average roughness of the steel sheet surface after final cold rolling is adjusted to 0.40 μm or less, and then, prior to decarburization annealing, electrolytic year performed electrodeposit containing Si in the steel sheet surface by degreasing method performs a cleaning process to be deposited at 0.1 mg / m 2 or more, then, by adjusting the ratio of steam partial pressure to hydrogen partial pressure in the atmosphere from 0.30 to 0.65 And the atmosphere temperature is 850-950 ° C and the water vapor partial pressure is 0.05-3.0%
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, comprising performing a decarburizing anneal in a later stage of decomposing and regenerating an oxide on the surface of a steel sheet by adjusting the temperature of the steel sheet.
【請求項2】 分解再生成高密度化処理を5〜40秒間に
わたって行う請求項1に記載の方向性けい素鋼板の製造
方法。
2. The method for producing a grain-oriented silicon steel sheet according to claim 1, wherein the decomposition / regeneration / densification treatment is performed for 5 to 40 seconds.
JP19043195A 1995-07-26 1995-07-26 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties Expired - Fee Related JP3157701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19043195A JP3157701B2 (en) 1995-07-26 1995-07-26 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19043195A JP3157701B2 (en) 1995-07-26 1995-07-26 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH0931546A JPH0931546A (en) 1997-02-04
JP3157701B2 true JP3157701B2 (en) 2001-04-16

Family

ID=16258023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19043195A Expired - Fee Related JP3157701B2 (en) 1995-07-26 1995-07-26 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3157701B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102066947B1 (en) * 2017-12-27 2020-01-16 주식회사 성우하이텍 clinching nut for self tapping
KR102094175B1 (en) * 2017-09-19 2020-03-27 주식회사 성우하이텍 Self piercing clinching net

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711470B1 (en) * 2005-12-24 2007-04-24 주식회사 포스코 Method for manufacturing high si grain oriented electrical steel sheet having good core loss property at high frequency
JP6801412B2 (en) * 2016-12-06 2020-12-16 日本製鉄株式会社 Electrical steel sheet and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094175B1 (en) * 2017-09-19 2020-03-27 주식회사 성우하이텍 Self piercing clinching net
KR102066947B1 (en) * 2017-12-27 2020-01-16 주식회사 성우하이텍 clinching nut for self tapping

Also Published As

Publication number Publication date
JPH0931546A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP3470475B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
EP3392317A1 (en) Insulation coating composition for grain-oriented electrical steel sheet, method for forming insulation coating of grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet having insulation coating formed thereon
JP4784347B2 (en) Method for producing grain-oriented electrical steel sheet
JP3220362B2 (en) Manufacturing method of grain-oriented silicon steel sheet
US6280534B1 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
KR20160057754A (en) Method of manufacturing oriented electrical steels
JP2001107145A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP3157701B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP3301629B2 (en) Method for producing oriented silicon steel sheet having metallic luster and excellent magnetic properties
JPH10121135A (en) Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
KR101410474B1 (en) Gran-oriented electrical steel sheet and manufacturing method for the same
KR101623874B1 (en) Insulation coating composite for oriented electrical steel steet, forming method of insulation coating using the same, and oriented electrical steel steet
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2003342642A (en) Process for manufacturing grain-oriented electrical steel sheet showing excellent magnetic properties and coating film properties
JP3873300B2 (en) Method for producing grain-oriented silicon steel sheets with excellent magnetic properties
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP4029432B2 (en) Method for producing grain-oriented silicon steel sheet
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP3873301B2 (en) Method for producing grain-oriented silicon steel sheet
KR20190077773A (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP2574607B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees