JP2574607B2 - Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing - Google Patents

Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing

Info

Publication number
JP2574607B2
JP2574607B2 JP4237058A JP23705892A JP2574607B2 JP 2574607 B2 JP2574607 B2 JP 2574607B2 JP 4237058 A JP4237058 A JP 4237058A JP 23705892 A JP23705892 A JP 23705892A JP 2574607 B2 JP2574607 B2 JP 2574607B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
strain relief
silicon steel
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4237058A
Other languages
Japanese (ja)
Other versions
JPH05195072A (en
Inventor
康之 早川
氏裕 西池
文二郎 福田
政孝 山田
哲也 大石
成 吉田
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4237058A priority Critical patent/JP2574607B2/en
Publication of JPH05195072A publication Critical patent/JPH05195072A/en
Application granted granted Critical
Publication of JP2574607B2 publication Critical patent/JP2574607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電気
機器の鉄心などの用途に用いて好適な方向性けい素鋼板
に関し、特に被膜特性が良好でしかも歪取り焼鈍に伴う
鉄損劣化が少ない方向性けい素鋼板を有利に製造する方
法を提案しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet which is suitable for use in applications such as iron cores of transformers and other electric equipment, and more particularly to a steel sheet having good coating properties and capable of reducing iron loss due to strain relief annealing. An object of the present invention is to propose a method for advantageously producing a low-oriented silicon steel sheet.

【0002】[0002]

【従来の技術】方向性けい素鋼板に求められる特性とし
ては、鋼板自体としての良好な磁気特性ばかりでなく、
鉄心加工で重ねられる鋼板相互の良好な絶縁性を確保す
るため、鋼板表面被膜における絶縁性及び加工時の耐は
く離性といった被膜特性がある。このような鋼板の被膜
特性を改善するためには、仕上焼鈍時に生成するフォル
ステライト被膜の密着性を改善することが重要である。
2. Description of the Related Art The properties required of a grain-oriented silicon steel sheet include not only good magnetic properties as the steel sheet itself,
In order to ensure good insulation between the steel sheets stacked in the iron core processing, there are coating properties such as insulation properties on the steel sheet surface coating and peel resistance during processing. In order to improve the film properties of such a steel sheet, it is important to improve the adhesion of the forsterite film generated during finish annealing.

【0003】フォルステライト被膜の改善に関して、仕
上焼鈍に先立って鋼板表面に塗布する焼鈍分離剤に、主
成分であるMgO に加えてTiO2等のTi化合物を含有させる
技術が数多く開示されている。例えば特公昭51-12451号
公報には、Mg化合物 100重量部に対しTi化合物が2〜40
重量部となるように配合することにより、また特公昭49
-29409号公報には、重質低活性微粒MgO 100 部に対し2
〜20重量部TiO2を混合することにより、いずれもフォル
ステライト被膜の均一性と密着性が向上することが開示
されている。さらに特開昭50-145315 公報には、焼鈍分
離剤に用いるTiO2を微細粒とすることによりTi化合物か
らなる黒点状付着物を消滅させる技術、特開昭54-12892
8 号公報においてはMgO にTiO2及びSiO2、さらには硼素
化合物を複合含有させてフォルステライト被膜の張力を
強化する方法、特開平1-168817号公報には、MgO にTiO
2と硫酸アンチモンと窒化マンガン又は窒化フェロマン
ガンとを複合混入させて鉄損を改善する技術へと発展し
てきている。
[0003] With respect to the improvement of forsterite coating, many techniques have been disclosed in which an annealing separator applied to the surface of a steel sheet prior to finish annealing contains a Ti compound such as TiO 2 in addition to MgO as a main component. For example, in Japanese Patent Publication No. 51-12451, a Ti compound is contained in an amount of 2 to 40 with respect to 100 parts by weight of a Mg compound.
By blending so that it becomes part by weight,
JP-29409 discloses that 2 parts per 100 parts of heavy low activity fine MgO
It is disclosed that the uniformity and adhesion of the forsterite film are improved by mixing TiO2 parts by weight of TiO 2 . Further JP 50-145315, Japanese, technology to eliminate the black dot deposits consisting of Ti compound by the TiO 2 used in the annealing separator and the fine particle, JP 54-12892
No. 8 discloses a method of strengthening the tension of a forsterite film by adding MgO to TiO 2 and SiO 2 , and further a boron compound.
The technology has been developed to improve iron loss by compounding 2 , antimony sulfate and manganese nitride or ferromanganese nitride.

【0004】このように焼鈍分離剤中にTi化合物を含有
させる技術は、優れた被膜特性を得るための有力な方法
ではあるが、特開平2-93021号公報にも記述があるよう
に、歪取り焼鈍に伴って鉄損が劣化するという重大な問
題がある。
[0004] The technique of including a Ti compound in the annealing separator is a powerful method for obtaining excellent film properties, but as described in Japanese Patent Application Laid-Open No. 2-93021, the technique of distorting a Ti compound is disclosed. There is a serious problem that iron loss is deteriorated by removing annealing.

【0005】ここに方向性けい素鋼板が用いられている
トランス鉄心のうち約半数は巻コアと呼ばれる小型の内
鉄型鉄心である。この巻コアは、製作途中の変形工程に
おいて機械的な外力を受けて歪を生じ、その結果磁気特
性が劣化するので、この加工による歪を回復させる目的
で、歪取り焼鈍を通常 800℃前後で行うことが不可避で
ある。しかるに前記した如く焼鈍分離剤中にTi化合物を
含有させると、歪取り焼鈍でTiの炭化物、あるいはTiの
セレン化物、硫化物が、地鉄表層の加工歪が導入された
部分に優先的に析出し、磁壁の移動が部分的に阻止され
るために鉄損が劣化することが知られている。そのため
巻コア用の素材鋼板としては歪取り焼鈍を施しても鉄損
の劣化が小さいことが望まれていた。
[0005] Here, about half of transformer cores using a grain-oriented silicon steel sheet are small core-type cores called wound cores. This wound core is subjected to mechanical external force in the deformation process during the production and produces distortion, resulting in deterioration of magnetic properties. Therefore, in order to recover the distortion due to this processing, strain relief annealing is usually performed at around 800 ° C. It is inevitable to do it. However, when a Ti compound is contained in the annealing separator as described above, carbides of Ti, or selenides and sulfides of Ti are preferentially precipitated in the portion of the surface layer of the base iron into which the processing strain has been introduced by strain relief annealing. However, it is known that core loss deteriorates because the movement of the domain wall is partially prevented. Therefore, it has been desired that the material steel sheet for the wound core has a small deterioration of iron loss even when subjected to strain relief annealing.

【0006】かかる焼鈍分離剤にTi化合物を含有させる
と歪取り焼鈍後の鉄損が劣化するという問題に対して上
掲特開平2-93021 号公報においては、仕上焼鈍後の炭素
量を0.0015wt%以下に低減させることにより、析出する
Tiの炭化物を低減するという解決策を提案している。し
かしながらこの技術は、MgO 中ヘの二酸化炭素の吸収を
抑えることが実操業では困難なこと、Ti炭化物以外のTi
の硫化物、Tiのセレン化物等の析出物については低減す
ることが原理的に不可能なことから、歪取り焼鈍での鉄
損劣化を完全に抑えることはできない。
To address the problem that the inclusion of a Ti compound in the annealing separator deteriorates iron loss after strain relief annealing, Japanese Patent Application Laid-Open No. 2-93021 discloses a method in which the carbon content after finish annealing is reduced to 0.0015 wt. % By precipitation
A solution to reduce Ti carbides is proposed. However, this technology is difficult in actual operation to suppress the absorption of carbon dioxide into MgO.
Since it is impossible in principle to reduce precipitates such as sulfides and selenides of Ti, iron loss deterioration during strain relief annealing cannot be completely suppressed.

【0007】[0007]

【発明が解決しようとする課題】この発明は、焼鈍分離
剤中にTi化合物を含有させた場合に、歪取り焼鈍後に鉄
損が劣化するという問題を解決するもので、歪取り焼鈍
に伴う鉄損劣化のない、被膜特性の良好なけい素鋼板の
製造方法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problem that iron loss deteriorates after strain relief annealing when a Ti compound is contained in the annealing separator. An object of the present invention is to propose a method for producing a silicon steel sheet having good film properties without loss and deterioration.

【0008】[0008]

【課題を解決するための手段】発明者らは、Ti化合物を
含有させた焼鈍分離剤を用いても、歪取り焼鈍により鉄
損の劣化を来すことがない方策について種々実験、検討
を重ねた結果、鋼板表面に被膜が形成される純化焼鈍の
初期段階を窒素含有雰囲気にすることにより、鋼板表層
にTiの炭化物あるいはTiのセレン化物、硫化物が析出す
ることを有利に抑制でき、ひいては鉄損劣化を有利に防
止できることを見出した。この発明は、上記の知見に立
脚するものである。
Means for Solving the Problems The present inventors have repeated various experiments and studies on measures to prevent deterioration of iron loss due to strain relief annealing even when an annealing separator containing a Ti compound is used. As a result, by setting the initial stage of the purification annealing in which a film is formed on the surface of the steel sheet to a nitrogen-containing atmosphere, it is possible to advantageously suppress the precipitation of carbides of Ti or selenides of Ti or sulfides on the surface layer of the steel sheet. It has been found that iron loss deterioration can be advantageously prevented. The present invention is based on the above findings.

【0009】すなわちこの発明は、脱炭焼鈍後のけい素
鋼板表面上に、MgO を主成分とする焼鈍分離剤を塗布し
た後、二次再結晶焼鈍、次いで純化焼鈍を施す方向性け
い素鋼板の製造方法において、この焼鈍分離剤にTi酸化
物又は加熱によりTi酸化物になるTi化合物を、MgO :10
0 重量部に対するTiO2換算で1.0 〜40重量部の範囲で含
有させること、及び純化焼鈍を1150〜1250℃の範囲で、
最初から少なくとも下記式で与えられる時間t(分)ま
では窒素濃度10 vol%以上の非酸化性雰囲気中で、その
後は窒素濃度3 vol%未満の水素雰囲気中で行い地鉄中
のTi含有量を30ppm 以下に低減することを特徴とする、
歪取り焼鈍による鉄損劣化がなく被膜特性に優れる方向
性けい素鋼板の製造方法である。 記 t(分)=668 −19.1x+0.171 x2 −4.42×10-43 ここにx:雰囲気中の窒素濃度(vol %)
That is, the present invention is directed to a grain-oriented silicon steel sheet which is subjected to a secondary recrystallization annealing and then a purification annealing after applying an annealing separator containing MgO as a main component on the surface of the silicon steel sheet after the decarburizing annealing. In the production method of the above, a Ti oxide or a Ti compound which becomes a Ti oxide by heating is added to the annealing separator by MgO: 10
0 to 40 parts by weight of TiO 2 based on 0 parts by weight, and purification annealing in the range of 1150 to 1250 ° C.
From the beginning, at least until a time t (min) given by the following formula, in a non-oxidizing atmosphere with a nitrogen concentration of 10 vol% or more, and then in a hydrogen atmosphere with a nitrogen concentration of less than 3 vol%, the Ti content in the base iron Reduced to 30 ppm or less,
This is a method for producing a grain-oriented silicon steel sheet having excellent film properties without iron loss deterioration due to strain relief annealing. Description t (min) = 668 -19.1 x +0.171 x 2 -4.42 x 10 -4 x 3 where x: nitrogen concentration in atmosphere (vol%)

【0010】以下この発明を導いた実験について述べ
る。 C:0.078wt%(以下単に%で示す)、Si:3.3%、Mn:0.0
83%、Se:0.025%、Al:0.020%、N:0.0089%、Sb:0.0
25%、Cu:0.09 %を含み残部実質的にFeの組成になるけ
い素鋼素材を、1420℃で20分加熱した後、熱間圧延を施
して板厚2.2 mmに仕上げた。次いで1000℃で30秒の熱延
板焼鈍を行い、冷間圧延にて板厚1.5 mmにし、続いて11
00℃で2分の中間焼鈍後30℃/秒で急冷し、さらに冷間
圧延にて板厚0.22mmの最終板厚に仕上げた。
An experiment which led to the present invention will be described below. C: 0.078 wt% (hereinafter simply indicated as%), Si: 3.3%, Mn: 0.0
83%, Se: 0.025%, Al: 0.020%, N: 0.0089%, Sb: 0.0
A silicon steel material containing 25% and 0.09% of Cu and substantially having a balance of Fe was heated at 1420 ° C. for 20 minutes, and then subjected to hot rolling to finish to a sheet thickness of 2.2 mm. Subsequently, hot-rolled sheet annealing was performed at 1000 ° C. for 30 seconds, and a sheet thickness of 1.5 mm was obtained by cold rolling.
After intermediate annealing at 00 ° C. for 2 minutes, the steel sheet was rapidly cooled at 30 ° C./second, and further finished by cold rolling to a final sheet thickness of 0.22 mm.

【0011】その後脱炭焼鈍を 840℃で2分間湿潤水素
雰囲気中にて行い、続いてMgO 100重量部に対してTiO2
を10重量部添加した焼鈍分離剤を鋼板表面に塗布形成し
た後、二次再結晶焼鈍を窒素25 vol%、水素75 vol%の
混合雰囲気中で20℃/秒の速度にて1150℃まで昇温して
行い、続いて1180℃で純化焼鈍を、純化焼鈍の最初から
60分間までの種々の時間を窒素75 vol%、水素25 vol%
の混合雰囲気で行い残り5時間を水素中で行った。この
純化焼鈍後、りん酸マグネシウムを主体とする絶縁コー
ティングを施した。
Thereafter, decarburizing annealing is performed at 840 ° C. for 2 minutes in a humid hydrogen atmosphere, and then TiO 2 is added to 100 parts by weight of MgO.
Is added to the surface of the steel sheet by 10% by weight, and the secondary recrystallization annealing is performed at a rate of 20 ° C / sec to 1150 ° C in a mixed atmosphere of 25vol% nitrogen and 75vol% hydrogen. And then perform purification annealing at 1180 ° C from the beginning of the purification annealing.
Various times up to 60 minutes for nitrogen 75 vol%, hydrogen 25 vol%
And the remaining 5 hours in hydrogen. After this purification annealing, an insulating coating mainly composed of magnesium phosphate was applied.

【0012】かくして得られた製品板に 800℃、3時間
の歪取り焼鈍を施して、歪取り焼鈍前後の鉄損(W17/50)
を比較した。さらに製品板の地鉄内部のTi量を湿式分析
にて求めた。
The product sheet thus obtained is subjected to strain relief annealing at 800 ° C. for 3 hours, and iron loss before and after the strain relief annealing (W 17/50 )
Were compared. Furthermore, the Ti content inside the base steel of the product plate was determined by wet analysis.

【0013】かかる実験データを整理して、図1に、窒
素75 vol%、水素25vol %混合雰囲気中での純化焼鈍時
間が歪取り焼鈍前後の鉄損変化量に及ぼす影響につい
て、また図2には、窒素75 vol%、水素25 vol%混合雰
囲気中での純化焼鈍時間が製品板地鉄中のTi量に及ぼす
影響について、さらに図3には、製品板地鉄中のTi量と
歪取り焼鈍前後の鉄損変化量との関係についてそれぞれ
示す。
FIG. 1 summarizes the experimental data, and FIG. 1 shows the effect of the purification annealing time on the iron loss change before and after the strain relief annealing in a mixed atmosphere of 75 vol% nitrogen and 25 vol% hydrogen, and FIG. Fig. 3 shows the effect of the time of purification annealing in the mixed atmosphere of 75 vol% nitrogen and 25 vol% hydrogen on the amount of Ti in the product sheet iron. The relationship with the amount of change in iron loss before and after annealing is shown.

【0014】これらの実験結果(図1〜3)から、製品
板地鉄中のTi量が30ppm 以下であれば、歪取り焼鈍によ
る鉄損の劣化量を0.02 W/kg 未満にできること、及び純
化焼鈍前半に窒素75 vol%、水素25 vol%の混合雰囲気
中で、焼鈍時間を30分以上とすれば、地鉄中のTi量を30
ppm 以下に低減できることが明らかになった。
From the results of these experiments (FIGS. 1 to 3), if the amount of Ti in the product sheet iron is 30 ppm or less, the amount of deterioration of iron loss due to strain relief annealing can be reduced to less than 0.02 W / kg, and If the annealing time is 30 minutes or more in a mixed atmosphere of 75 vol% nitrogen and 25 vol% hydrogen in the first half of annealing, the amount of Ti in
It was clarified that it can be reduced to below ppm.

【0015】以上の結果を基に、さらに純化焼鈍前半に
おける雰囲気中の窒素濃度を種々に変化させて、製品板
地鉄中のTi量を30ppm 以下にするために必要なその雰囲
気での最少保持時間について調べてみた。その結果につ
いて、窒素濃度と必要保持時間との関係で図4に示す。
Based on the above results, furthermore, various changes in the nitrogen concentration in the atmosphere in the first half of the purification annealing are performed to minimize the amount of Ti in the atmosphere necessary for reducing the Ti content in the product sheet iron to 30 ppm or less. I checked about time. FIG. 4 shows the results in relation to the nitrogen concentration and the required holding time.

【0016】同図から、必要な保持時間t(分)は、雰
囲気中の窒素濃度x( vol%)との関係で、 t(分)=668 −19.1x+0.171 x2 −4.42×10-43 と表されることがわかった。このように、必要な保持時
間は、窒素分圧が75%以上の場合では30分であるが、窒
素分圧が25%程度の場合には5時間を必要とする。これ
らの実験結果に基づきこの発明を達成するに至ったので
ある。
[0016] From this figure, the required retention time t (min) in relation to the nitrogen concentration x in the atmosphere (vol%), t (min) = 668 -19.1x + 0.171 x 2 -4.42 × 10 - It was found to be represented as 4 × 3 . As described above, the necessary holding time is 30 minutes when the nitrogen partial pressure is 75% or more, but requires 5 hours when the nitrogen partial pressure is about 25%. Based on these experimental results, the present invention has been achieved.

【0017】[0017]

【作用】この発明により歪取り焼鈍による鉄損劣化が防
止できる理由については必ずしも明らかでないが、発明
者らは以下のように考えている。すなわち焼鈍分離剤中
に含有しているTi化合物は、MgO と混合した形でSiO2
反応し黒色を帯びた下地被膜を形成する役割がある。と
ころが被膜形成に使われたTiの残存部分は、純化焼鈍に
よる高温により拡散し地鉄中へと移動することになる。
かくして地鉄中にTiが存在することにより、鋼中のC、
Se又はN等と結合して加工歪が導入された部分は歪取り
焼鈍後にTiの炭化物あるいはセレン化物、窒化物が優先
的に析出し磁性劣化を起こす。これに対してこの発明で
は、純化焼鈍の前半で窒素を導入することにより、残存
しているTiが被膜内部にて窒素と化合し、TiN として被
膜中に固定されるために地鉄中への拡散が抑えられ、そ
の結果Tiの炭化物、セレン化物又は窒化物の析出が抑制
されて鉄損劣化が防止できるものと思われる。
The reason why the present invention can prevent iron loss deterioration due to strain relief annealing is not always clear, but the inventors consider as follows. That is, the Ti compound contained in the annealing separator has a role of reacting with SiO 2 in a form mixed with MgO to form a black base coat. However, the remaining portion of Ti used for forming the film is diffused by the high temperature due to the purification annealing and moves into the base iron.
Thus, due to the presence of Ti in the base steel, C,
In the part where the processing strain is introduced by combining with Se or N, Ti carbide or selenide or nitride is preferentially precipitated after strain relief annealing to cause magnetic deterioration. In contrast, in the present invention, by introducing nitrogen in the first half of the purification annealing, the remaining Ti combines with nitrogen inside the coating and is fixed as TiN in the coating, so It is considered that diffusion is suppressed, and as a result, precipitation of carbides, selenides or nitrides of Ti is suppressed, and deterioration of iron loss can be prevented.

【0018】この発明の対象とするけい素鋼素材の成分
組成については、方向性けい素鋼板として通常用いられ
ている範囲のものを用いることができ、例えばC:0.02
〜0.10%、Si:2.0 〜4.0 %、Mn:0.02〜0.20%を含
み、かつS及びSeのうち少なくとも一方を単独または合
計量で0.010 〜0.040 %を含む組成が好ましい。その他
必要に応じてAl:0.010 〜0.065 %、N:0.0010〜0.01
50%、Sb:0.01〜0.20%、Cu:0.02〜0.20%、Mo:0.01
〜0.05%、Sn:0.02〜0.20%、Ge:0.01〜0.30%、Ni:
0.02〜0.20%を含むことができる。
Regarding the component composition of the silicon steel material which is the object of the present invention, those having a range usually used as a grain-oriented silicon steel sheet can be used. For example, C: 0.02
Preferred is a composition containing 0.1 to 0.10%, Si: 2.0 to 4.0%, Mn: 0.02 to 0.20%, and containing at least one of S and Se alone or in a total amount of 0.010 to 0.040%. In addition, if necessary, Al: 0.010 to 0.065%, N: 0.0010 to 0.01
50%, Sb: 0.01 to 0.20%, Cu: 0.02 to 0.20%, Mo: 0.01
-0.05%, Sn: 0.02-0.20%, Ge: 0.01-0.30%, Ni:
0.02 to 0.20%.

【0019】Cは、0.02%に満たないと良好な一次再結
晶組織を得られず、0.10%を超えると脱炭不良となり磁
気特性が悪化するので0.03〜0.10%程度が好ましい。Si
は、製品の電気抵抗を高め、渦電流損を低減させる上で
必要な成分であり、2.0 %に満たないと最終仕上焼鈍中
にα−γ変態によって結晶方位が損なわれ、4.0 %を超
えると冷延性に問題があるために、 2.0〜4.0 %程度が
好ましい。Mn とSeおよびSはインヒビターとして機能
するもので、Mn量が0.02%未満又はS、Seの単独もしく
は合計量が0.010 %未満であるとインヒビター機能が不
十分であり、Mn量が0.20%を超え又はS、Seの単独もし
くは合計が0.040 %を超えるとスラブ加熱温度に要する
温度が高すぎて実用的でないので、Mnは0.02〜0.20%、
S又はSeは単独あるいは合計として0.010 〜0.040 %と
するのが好ましい。
If C is less than 0.02%, a good primary recrystallized structure cannot be obtained, and if it exceeds 0.10%, decarburization becomes poor and the magnetic properties deteriorate, so that C is preferably about 0.03 to 0.10%. Si
Is a necessary component to increase the electrical resistance of the product and reduce the eddy current loss. If it is less than 2.0%, the crystal orientation is impaired by α-γ transformation during final finish annealing, and if it exceeds 4.0%, Since there is a problem in cold rolling, the content is preferably about 2.0 to 4.0%. Mn, Se and S function as inhibitors. If the amount of Mn is less than 0.02% or the amount of S or Se alone or the total amount is less than 0.010%, the inhibitor function is insufficient, and the amount of Mn exceeds 0.20%. Alternatively, if S or Se alone or in total exceeds 0.040%, the temperature required for the slab heating temperature is too high to be practical, so that Mn is 0.02 to 0.20%,
S or Se is preferably used alone or in a total amount of 0.010 to 0.040%.

【0020】その他インヒビター構成成分として公知で
あるAlN を利用することができ、良好な鉄損を得るため
にはAlは0.010 〜0.065 %、Nは0.0010〜0.0150%の範
囲が好ましい。これを超える量では、AlN の粗大化を招
き抑制力を失い、これ未満ではAlN の量が不足である。
In addition, AlN known as an inhibitor component can be used, and in order to obtain good iron loss, Al is preferably in the range of 0.010 to 0.065%, and N is preferably in the range of 0.0010 to 0.0150%. If the amount exceeds this, the AlN becomes coarse and loses its suppressing power. If the amount is less than this, the amount of AlN is insufficient.

【0021】さらに磁束密度を向上させるためにSb、Cu
を低下させることが可能である。Sbは0.20%を超えると
脱炭性が悪くなり、0.01%に満たないと効果がないので
0.01〜0.20%が好ましい。Cuは0.20%を超えると酸洗性
が悪化し0.01%に満たないと効果がないので0.01〜0.20
%が好ましい。
In order to further improve the magnetic flux density, Sb, Cu
Can be reduced. If Sb exceeds 0.20%, the decarburization property deteriorates, and if it is less than 0.01%, there is no effect.
0.01-0.20% is preferred. If the content of Cu exceeds 0.20%, the pickling property deteriorates, and if it is less than 0.01%, there is no effect.
% Is preferred.

【0022】表面性状を改善するためにMoを添加でき
る。0.05%を超えると脱炭性が悪くなり、0.01%に満た
ないと効果がないので0.01〜0.05%が好ましい。
Mo can be added to improve the surface properties. If it exceeds 0.05%, the decarburization property deteriorates, and if it is less than 0.01%, there is no effect, so 0.01 to 0.05% is preferable.

【0023】鉄損を向上させるためにSn、Ge、Niを添加
することができる。Snは0.30%を超えると良好な一次再
結晶組織が得られず、0.01%未満では効果がないので0.
01〜0.30%が好ましい。Geは0.30%を超えると良好な一
次再結晶組織が得られず、0.01%未満では効果がないの
で0.01〜0.30%が好ましい。Niは0.20%を超えると熱間
強度が低下し、0.01%未満では効果がないので0.01〜0.
20%が好ましい。
In order to improve iron loss, Sn, Ge and Ni can be added. If the content of Sn exceeds 0.30%, a good primary recrystallized structure cannot be obtained, and if it is less than 0.01%, there is no effect.
01-0.30% is preferred. If Ge exceeds 0.30%, a good primary recrystallized structure cannot be obtained, and if it is less than 0.01%, there is no effect, so 0.01 to 0.30% is preferable. If the Ni content exceeds 0.20%, the hot strength decreases, and if it is less than 0.01%, there is no effect.
20% is preferred.

【0024】この発明の対象としている方向性けい素鋼
板の製造においては、従来用いられている製鋼法で得ら
れた溶鋼を連続鋳造法あるいは造塊法で鋳造し、必要に
応じて分塊圧延工程を挟んでスラブを得、続いて熱間圧
延をし、必要に応じて熱延板焼鈍を行った後、1回ない
しは中間焼鈍を挟む2回以上の冷間圧延により最終板厚
の冷延板を得る。
In the production of a grain-oriented silicon steel sheet, which is the object of the present invention, molten steel obtained by a conventional steelmaking method is cast by a continuous casting method or an ingot-forming method, and if necessary, is subjected to slab rolling. A slab is obtained by sandwiching the process, followed by hot rolling and, if necessary, hot-rolled sheet annealing, and then cold rolling of the final sheet thickness by one or two or more cold-rolling steps of intermediate annealing. Get the board.

【0025】この最終冷延後に脱炭焼鈍を行った後、鋼
板表面に焼鈍分離剤を塗布する。この際、焼鈍分離剤と
してTi酸化物又は加熱によりTi酸化物になるTi化合物を
MgO:100 重量部に対するTiO2換算で1.0 〜40重量部の
範囲で含有させることが肝要である。Ti酸化物又は加熱
によりTi酸化物になるTi化合物としては、例えばTiO2
TiO3・H2O 、 TiO・(OH)2 、Ti(OH)4 などが挙げられ
る。また焼鈍分離剤中のTi酸化物又は加熱によりTi酸化
物になるTi化合物の量がTiO2換算でMgO 100 重量部に対
して1.0 重量部に満たないと被膜特性改善効果に乏し
く、40重量部を超えると急激にぜい性が悪化するので
1.0〜40重量部とする。
After decarburizing annealing after the final cold rolling, an annealing separator is applied to the surface of the steel sheet. At this time, Ti oxide or a Ti compound which becomes Ti oxide by heating as an annealing separator is used.
It is important that MgO be contained in the range of 1.0 to 40 parts by weight in terms of TiO 2 with respect to 100 parts by weight. Examples of Ti oxides or Ti compounds that become Ti oxides by heating include TiO 2 ,
TiO 3 .H 2 O, TiO. (OH) 2 , Ti (OH) 4 and the like. If the amount of the Ti oxide in the annealing separator or the Ti compound which becomes a Ti oxide by heating is less than 1.0 part by weight with respect to 100 parts by weight of MgO in terms of TiO 2 , the effect of improving the film properties is poor, and 40 parts by weight. If it exceeds, the brittleness suddenly worsens,
1.0 to 40 parts by weight.

【0026】次いで二次再結晶焼鈍を行い、続いて純化
焼鈍を、1150〜1250℃の範囲で、最初から少なくとも下
記式で与えられる時間t(分)までは窒素濃度10 vol%
以上の非酸化性雰囲気中で、その後は窒素濃度3 vol%
未満の水素雰囲気中で行う。 記 t=668 −19.1x+0.171 x2 −4.42×10-43 ここに純化焼鈍の温度は1150℃に満たないとSeないしS
等の除去が不十分となって磁気特性が劣化し、一方1250
℃を超えると熱間強度が低下しコイル形状が悪化して巻
取りができなくなるので、純化焼鈍の温度は1150℃〜12
50℃とする。純化焼鈍の前半の雰囲気の窒素濃度が10 v
ol%に満たないと地鉄中にTiが侵入して歪取り焼鈍によ
って鉄損が劣化するので窒素濃度は高い方が好ましく、
10 vol%以上とする。残余の雰囲気成分はTiN を優先的
に形成させるために非酸化性であればよく、水素雰囲
気、不活性ガス雰囲気、が挙げられる。かかる窒素濃度
を10vol%以上にして焼鈍する時間は、その雰囲気中の
窒素濃度によって異なり、窒素濃度x( vol%) との関
係で、上掲した式に示される時間t(分)以上とする。
この時間がt(分)に満たないと、地鉄中にTiが侵入し
て歪取り焼鈍によって鉄損が劣化する。純化焼鈍の後半
の窒素濃度が3 vol%以上であると焼鈍後に地鉄中に窒
素が残留して磁気特性がかえって悪化するので後半の窒
素濃度は3 vol%未満とする。
Next, a secondary recrystallization annealing is performed, followed by a purification annealing in a temperature range of 1150 to 1250 ° C. from the beginning until at least a time t (min) given by the following formula, the nitrogen concentration is 10 vol%.
In the above non-oxidizing atmosphere, then nitrogen concentration 3 vol%
It is performed in a hydrogen atmosphere of less than. Serial t = 668 -19.1x + 0.171 x 2 -4.42 × 10 -4 x 3 temperature purification annealing here is less than 1150 ° C. When Se to S
Etc. are insufficiently removed and the magnetic properties deteriorate, while 1250
If the temperature exceeds 100 ° C, the hot strength decreases, the coil shape deteriorates, and winding cannot be performed.
Set to 50 ° C. Nitrogen concentration in the first half atmosphere of purification annealing is 10 v
If the concentration is less than ol%, Ti will penetrate into the base iron and iron loss will be degraded by strain relief annealing, so the nitrogen concentration is preferably higher,
At least 10 vol%. The remaining atmosphere components may be non-oxidizing in order to form TiN preferentially, and include a hydrogen atmosphere and an inert gas atmosphere. The time for annealing at such a nitrogen concentration of 10 vol% or more depends on the nitrogen concentration in the atmosphere, and is not less than the time t (min) shown in the above equation in relation to the nitrogen concentration x (vol%). .
If this time is less than t (minutes), Ti penetrates into the base iron, and iron loss deteriorates due to strain relief annealing. If the nitrogen concentration in the latter half of the purification annealing is 3 vol% or more, nitrogen remains in the base iron after annealing and the magnetic properties deteriorate rather, so the nitrogen concentration in the latter half is less than 3 vol%.

【0027】その後絶縁コーティング好ましくは張力を
も付与する絶縁コーティングを施して製品とする。
Thereafter, an insulating coating, preferably an insulating coating for imparting tension, is applied to obtain a product.

【0028】[0028]

【実施例】【Example】

実施例1 C:0.044 %、Si:3.23%、Mn:0.075 %、Se:0.021
%、Sb:0.026 %を含み残部実質的にFeの組成からなる
けい素鋼スラブを、1420℃で30分間加熱後、熱間圧延を
施して板厚2.0 mmの熱延板とした。次いで1000℃で1分
間焼鈍した後、冷間圧延にて板厚0.60mmとし、975 ℃、
2分間の中間焼鈍を行った後、冷間圧延を施して最終板
厚0.20mmに仕上げた。次いで 820℃2分間の脱炭焼鈍を
行い、MgO 100 重量部に対して表1に示す重量部になる
TiO2を含有させた焼鈍分離剤を鋼板表面に塗布した後、
850 ℃、50時間窒素雰囲気中で二次再結晶焼鈍を行っ
た。続いて表1で示した雰囲気と時間で1200℃にて純化
焼鈍を行った。純化焼鈍後、コロイド状SiO2、りん酸マ
グネシウム及び無水クロム酸からなる絶縁コーティング
を施した。その後鋼板をトロイド状に塑性加工し、さら
に直線状に伸ばした後、 800℃で3時間の歪取り焼鈍を
行った。コーティング後と歪取り焼鈍後の鉄損を表1に
併記する。
Example 1 C: 0.044%, Si: 3.23%, Mn: 0.075%, Se: 0.021
%, Sb: 0.026%, and the balance substantially consisting of Fe was heated at 1420 ° C. for 30 minutes, and then hot-rolled to obtain a hot-rolled sheet having a sheet thickness of 2.0 mm. Next, after annealing at 1000 ° C. for 1 minute, the sheet was cold-rolled to a sheet thickness of 0.60 mm.
After intermediate annealing for 2 minutes, cold rolling was performed to finish to a final thickness of 0.20 mm. Next, decarburization annealing is performed at 820 ° C. for 2 minutes to obtain 100 parts by weight of MgO as shown in Table 1.
After applying the annealing separator containing TiO 2 to the steel sheet surface,
Secondary recrystallization annealing was performed in a nitrogen atmosphere at 850 ° C. for 50 hours. Subsequently, purification annealing was performed at 1200 ° C. in the atmosphere and time shown in Table 1. After the purification annealing, an insulating coating composed of colloidal SiO 2 , magnesium phosphate and chromic anhydride was applied. Thereafter, the steel sheet was plastically worked into a toroidal shape, stretched linearly, and then subjected to strain relief annealing at 800 ° C. for 3 hours. Table 1 also shows the iron loss after the coating and after the strain relief annealing.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例2 C:0.071 %、Si:3.34%、Mn:0.069 %、S:0.021
%、Al:0.025 %、N:0.0083%、Cu:0.12%、Sb:0.
029 %を含み残部実質的のFeの組成からなるけい素鋼ス
ラブを1430℃で30分間加熱後、熱間圧延を施して板厚2.
2 mmの熱延板とした。次いで1000℃、1分間の熱延板焼
鈍をした後、冷間圧延で板厚1.5 mmとし、1100℃、2分
間の中間焼鈍を行い、30℃/秒の速度にて冷却した後、
冷間圧延を施して最終板厚0.23mmに仕上げた。次いで 8
20℃、2分間の脱炭焼鈍を行い、MgO 100 重量部に対し
て表2に示す重量部になるTiO2を含有させた焼鈍分離剤
を鋼板表面に塗布し、その後 850℃、20時間窒素雰囲気
中で保定し引続いて水素75vol%、窒素25 vol%の雰囲
気中で12℃/hの速度で1150℃まで昇温する二次再結晶
焼鈍を行った。続いて表2で示した雰囲気と時間で1200
℃にて純化焼鈍を行った。純化焼鈍後コロイド状SiO2
りん酸マグネシウム、無水クロム酸からなる絶縁コーテ
ィングを施した。その後鋼板をトロイド状に塑性加工
し、さらに直線状に伸ばした後、800 ℃で3時間の歪取
り焼鈍を行った。コーティング後と歪取り焼鈍後の鉄損
を表2に併記した。
Example 2 C: 0.071%, Si: 3.34%, Mn: 0.069%, S: 0.021
%, Al: 0.025%, N: 0.0083%, Cu: 0.12%, Sb: 0.2%
A silicon steel slab containing 029% and substantially the balance of Fe is heated at 1430 ° C. for 30 minutes and then subjected to hot rolling to obtain a sheet thickness of 2.
A 2 mm hot rolled sheet was used. Next, after hot-rolled sheet annealing at 1000 ° C for 1 minute, cold-rolled to a sheet thickness of 1.5 mm, intermediate annealing at 1100 ° C for 2 minutes, and cooling at a rate of 30 ° C / sec,
Cold rolling was performed to obtain a final thickness of 0.23 mm. Then 8
After decarburizing annealing at 20 ° C for 2 minutes, an annealing separator containing TiO 2 containing 100 parts by weight of MgO and containing TiO 2 as shown in Table 2 was applied to the surface of the steel sheet, and then nitrogen at 850 ° C for 20 hours. This was kept in an atmosphere and subsequently subjected to secondary recrystallization annealing in which the temperature was raised to 1150 ° C. at a rate of 12 ° C./h in an atmosphere of 75 vol% of hydrogen and 25 vol% of nitrogen. Subsequently, the atmosphere and time shown in Table 2 were used for 1200
Purification annealing was performed at ℃. After the purification annealing, an insulating coating composed of colloidal SiO 2 , magnesium phosphate and chromic anhydride was applied. Thereafter, the steel sheet was plastically worked into a toroidal shape, stretched linearly, and then subjected to strain relief annealing at 800 ° C. for 3 hours. Table 2 also shows the iron loss after coating and after strain relief annealing.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例3 表3で表される種々の成分組成からなるけい素鋼スラブ
を用意した。
Example 3 Silicon steel slabs having various component compositions shown in Table 3 were prepared.

【0033】[0033]

【表3】 [Table 3]

【0034】これらのけい素鋼スラブを、1430℃、30分
間加熱後、熱間圧延を施して板厚2.2 mmの熱延板とし
た。1000℃で1分間の熱延板焼鈍をした後、冷間圧延に
て板厚1.5mm とし、1100℃、2分間の中間焼鈍を行った
後、さらに冷間圧延をして最終板厚0.23mmに仕上げた。
次いで 820℃、2分間の脱炭焼鈍を行い、焼鈍分離剤と
してMgO 100 重量部に対してTiO2を10重量部含有させた
ものを塗布して、その後850 ℃、20時間窒素雰囲気中で
保定し引続いて水素75 vol%、窒素25 vol%の雰囲気中
で12℃/hの速度で1150℃まで昇温する二次再結晶焼鈍
を行った。次いで前半5時間を水素50 vol%、窒素50 v
ol%の雰囲気で、後半5時間を水素雰囲気で何れも1200
℃の焼鈍温度にて純化焼鈍を行った。純化焼鈍後コロイ
ド状SiO2とりん酸マグネシウム、無水クロム酸からなる
絶縁コーティングを施した。その後鋼板をトロイド状に
塑性加工し、さらに直線状に伸ばした後、 800℃で3時
間の歪取り焼鈍を行った。コーティング後と歪取り焼鈍
後の鉄損差を表3に併記した。
After heating these silicon steel slabs at 1430 ° C. for 30 minutes, they were subjected to hot rolling to obtain hot-rolled sheets having a thickness of 2.2 mm. After hot-rolled sheet annealing at 1000 ° C for 1 minute, cold-rolling to 1.5mm thickness, intermediate annealing at 1100 ° C for 2 minutes, cold-rolling to final thickness of 0.23mm Finished.
Next, decarburizing annealing was performed at 820 ° C for 2 minutes, and an annealing separator containing 10 parts by weight of TiO 2 per 100 parts by weight of MgO was applied, and then kept at 850 ° C for 20 hours in a nitrogen atmosphere. Subsequently, secondary recrystallization annealing in which the temperature was raised to 1150 ° C. at a rate of 12 ° C./h in an atmosphere of 75 vol% of hydrogen and 25 vol% of nitrogen was performed. Next, the first 5 hours consisted of 50 vol% hydrogen and 50 v nitrogen.
ol% atmosphere, the last 5 hours in a hydrogen atmosphere 1200
Purification annealing was performed at an annealing temperature of ° C. After the purification annealing, an insulating coating composed of colloidal SiO 2 , magnesium phosphate and chromic anhydride was applied. Thereafter, the steel sheet was plastically worked into a toroidal shape, stretched linearly, and then subjected to strain relief annealing at 800 ° C. for 3 hours. Table 3 also shows the iron loss difference between after coating and after strain relief annealing.

【0035】[0035]

【発明の効果】この発明の方向性けい素鋼板の製造方法
は、焼鈍分離剤にTi酸化物又は加熱によりTi酸化物にな
るTi化合物を、MgO :100 重量部に対するTiO2換算で1.
0 〜40重量部の範囲で含有させ、かつ純化焼鈍を1150〜
1250℃の範囲で、最初から少なくとも次式 t(分)=668 −19.1x+0.171 x2 −4.42×10-43 (ここにx:雰囲気中の窒素濃度(vol %)) で与えられる時間t(分)までは窒素濃度10 vol%以上
の非酸化性雰囲気中でその後は窒素濃度3 vol%未満の
水素雰囲気中で行い地鉄中のTi含有量を30ppm 以下に低
減することにより、歪取り焼鈍に伴う鉄損劣化のない、
被膜特性の良好なけい素鋼板を得ることができる。
According to the method for manufacturing a grain-oriented silicon steel sheet of the present invention, a Ti oxide or a Ti compound which becomes a Ti oxide by heating is used as an annealing separator in the form of TiO 2 in terms of TiO 2 with respect to 100 parts by weight of MgO.
0 to 40 parts by weight and purification annealing of 1150 to
In the range of 1250 ° C., initially at least the following formula t (min) = 668 -19.1x + 0.171 x 2 -4.42 × 10 -4 x 3 ( here x: the concentration of nitrogen in the atmosphere (vol%)) is given by Until the time t (min), in a non-oxidizing atmosphere with a nitrogen concentration of 10 vol% or more, and then in a hydrogen atmosphere with a nitrogen concentration of less than 3 vol%, the Ti content in the base iron is reduced to 30 ppm or less. No iron loss deterioration due to strain relief annealing,
A silicon steel sheet having good coating characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、窒素含有雰囲気中での純化焼鈍時間が
歪取り焼鈍前後の鉄損変化量に及ぼす影響について示す
グラフである。
FIG. 1 is a graph showing the effect of the time of purification annealing in a nitrogen-containing atmosphere on the amount of change in iron loss before and after strain relief annealing.

【図2】図2は、窒素含有雰囲気中での純化焼鈍時間が
製品板地鉄中のTi量に及ぼす影響について示すグラフで
ある。
FIG. 2 is a graph showing the effect of the time of purification annealing in a nitrogen-containing atmosphere on the amount of Ti in a product sheet iron.

【図3】図3は、製品板地鉄中のTi量と歪取り焼鈍前後
の鉄損変化量との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of Ti in a product sheet metal and the amount of change in iron loss before and after strain relief annealing.

【図4】図4は、純化焼鈍前半における窒素濃度が必要
保持時間に及ぼす影響を示すグラフである。
FIG. 4 is a graph showing the effect of the nitrogen concentration in the first half of the purification annealing on the required holding time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 政孝 兵庫県神戸市中央区脇浜海岸通2番88号 川崎製鉄株式会社 阪神製造所内 (72)発明者 大石 哲也 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (72)発明者 吉田 成 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (72)発明者 清水 洋 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masataka Yamada 2-88 Wakihama Kaigandori, Chuo-ku, Kobe City, Hyogo Prefecture Inside the Hanshin Works of Kawasaki Steel Corporation (72) Inventor Tetsuya Oishi 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (Without address) Kawasaki Steel Corporation Mizushima Works (72) Inventor Shigeru Yoshida 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture Kawasaki Steel Corporation Mizushima Works (72) Inventor Hiroshi Shimizu Kurashiki, Okayama Prefecture 1-chome Kawasaki-dori, Mizushima-shi (without address) Kawasaki Steel Corporation Mizushima Works

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脱炭焼鈍後のけい素鋼板表面上に、MgO
を主成分とする焼鈍分離剤を塗布した後、二次再結晶焼
鈍、次いで純化焼鈍を施す方向性けい素鋼板の製造方法
において、 この焼鈍分離剤にTi酸化物又は加熱によりTi酸化物にな
るTi化合物を、MgO :100 重量部に対するTiO2換算で1.
0 〜40重量部の範囲で含有させること、及び純化焼鈍を
1150〜1250℃の範囲で、最初から少なくとも下記式で与
えられる時間t(分)までは窒素濃度10 vol%以上の非
酸化性雰囲気中で、その後は窒素濃度3 vol%未満の水
素雰囲気中で行い地鉄中のTi含有量を30ppm 以下に低減
することを特徴とする、歪取り焼鈍による鉄損劣化がな
く被膜特性に優れる方向性けい素鋼板の製造方法。 記 t(分)=668 −19.1x+0.171 x2 −4.42×10-43 ここにx:雰囲気中の窒素濃度(vol %)
[1] MgO on the surface of a silicon steel sheet after decarburizing annealing.
In the method for producing a grain-oriented silicon steel sheet, which is subjected to a secondary recrystallization annealing and then a purification annealing after applying an annealing separating agent containing as a main component, a Ti oxide or a Ti oxide by heating is applied to the annealing separating agent. Ti compound was converted to TiO 2 by 1.100 parts by weight of MgO: 1.
0 to 40 parts by weight, and purifying annealing.
In the range of 1150 to 1250 ° C., from the beginning, in a non-oxidizing atmosphere having a nitrogen concentration of 10 vol% or more, at least until a time t (minute) given by the following formula, and then in a hydrogen atmosphere having a nitrogen concentration of less than 3 vol% reducing Ti content in the row have a base steel to 30ppm or less
A method for producing a grain-oriented silicon steel sheet having excellent coating properties without iron loss deterioration due to strain relief annealing. Description t (min) = 668 -19.1 x +0.171 x 2 -4.42 x 10 -4 x 3 where x: nitrogen concentration in atmosphere (vol%)
JP4237058A 1991-10-01 1992-09-04 Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing Expired - Fee Related JP2574607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4237058A JP2574607B2 (en) 1991-10-01 1992-09-04 Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-253597 1991-10-01
JP25359791 1991-10-01
JP4237058A JP2574607B2 (en) 1991-10-01 1992-09-04 Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing

Publications (2)

Publication Number Publication Date
JPH05195072A JPH05195072A (en) 1993-08-03
JP2574607B2 true JP2574607B2 (en) 1997-01-22

Family

ID=26533019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4237058A Expired - Fee Related JP2574607B2 (en) 1991-10-01 1992-09-04 Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing

Country Status (1)

Country Link
JP (1) JP2574607B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399369B2 (en) 2001-07-16 2008-07-15 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
JP6354957B2 (en) * 2015-07-08 2018-07-11 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR20240066266A (en) 2021-10-29 2024-05-14 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH05195072A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP3846064B2 (en) Oriented electrical steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP2574607B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating properties without iron loss deterioration due to strain relief annealing
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
EP0535651B1 (en) Method of manufacturing grain oriented silicon steel sheets
JP3236684B2 (en) Oriented silicon steel sheet with excellent bending properties and iron loss properties
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
CN116829742A (en) Method for producing oriented electrical steel sheet and annealing separator used therefor
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JP3132936B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JP2991613B2 (en) Method for producing grain-oriented silicon steel sheet with good magnetic properties
JP2003034821A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic-flux density having no undercoat film
JP3456869B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP2895645B2 (en) Method of forming insulating coating on grain-oriented silicon steel sheet
JP2006144042A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic and coating characteristic
JPH08269560A (en) Production of grain-oriented silicon steel sheet without glass film and excellent in iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees