JP4239454B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4239454B2
JP4239454B2 JP2001375581A JP2001375581A JP4239454B2 JP 4239454 B2 JP4239454 B2 JP 4239454B2 JP 2001375581 A JP2001375581 A JP 2001375581A JP 2001375581 A JP2001375581 A JP 2001375581A JP 4239454 B2 JP4239454 B2 JP 4239454B2
Authority
JP
Japan
Prior art keywords
steel sheet
sio
annealing
decarburization annealing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001375581A
Other languages
Japanese (ja)
Other versions
JP2003171720A (en
Inventor
誠英 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001375581A priority Critical patent/JP4239454B2/en
Publication of JP2003171720A publication Critical patent/JP2003171720A/en
Application granted granted Critical
Publication of JP4239454B2 publication Critical patent/JP4239454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、被膜特性および電磁特性に優れた方向性電磁鋼板の製造方法に関し、特に脱炭焼鈍におけるサブスケールの生成状態を適切に制御することによって、被膜特性および電磁特性の有利な改善を図ろうとするものである。
【0002】
【従来の技術】
方向性電磁鋼板は、主として変圧器およびその他の電気機器の鉄心材料として使用されるもので、磁束密度や鉄損等の電磁特性および絶縁性や密着性等の被膜特性に優れることが基本的に重要とされる。
【0003】
かかる方向性電磁鋼板は、2次再結晶に必要なインヒビター、例えばMnS,MnSe,AlN等を含む鋼スラブを、熱間圧延したのち、必要に応じて熱延板焼鈍を行い、ついで1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚としたのち、脱炭焼鈍を行い、ついで鋼板の表面にMgOなどの焼鈍分離剤を塗布してから、最終仕上焼鈍を行って製造される。なお、この方向性電磁鋼板の表面には、特殊な場合を除いて、フォルステライト(Mg2SiO4)質の絶縁被膜が形成されているのが一般的である。
【0004】
このフォルステライト質絶縁被膜は、鋼板を積層して使用する場合に、その層間を電気的に絶縁し、渦電流を低減するのに有効に寄与するが、該鋼板表面の絶縁被膜が不均一であったり、巻き鉄心作製時に被膜剥離が生じたりすると、商品価値が低下するだけでなく、占積率が低下し、さらには鉄心組立て時の締め付けにより絶縁性が低下して局所的な発熱を起こし、変圧器における事故の原因ともなる。
【0005】
また、このフォルステライト質絶縁被膜は、鋼板表面の電気的絶縁だけでなく、その低熱膨張性を利用して引張応力を鋼板に付与することにより、鉄損さらには磁気歪の改善に寄与している。
さらに、このフォルステライト質絶縁被膜は、二次再結晶が完了して不要となったインヒビター成分を被膜中に吸い上げ、鋼を純化することによっても、磁気特性の向上に寄与している。
従って、かような絶縁被膜の形成過程を制御して、均一かつ平滑なフォルステライト質絶縁被膜を形成することは、方向性電磁鋼板の製品品質を左右する重要なポイントの一つである。
【0006】
ところで、上記したようなフォルステライト質絶縁被膜は、脱炭焼鈍時に生成するサブスケール中のSiO2と焼鈍分離剤中のMgOが、高温の仕上焼鈍時に、次式に従い固相反応を生じることによって形成される。
2MgO + SiO2 → Mg2SiO4
従って、従来から、良好なフォルステライト質絶縁被膜を形成するために、脱炭焼鈍時に生成するサブスケールについても、種々の検討が行われている。
【0007】
例えば、特開平6−336616号公報では、脱炭焼鈍の均熱過程では、炉内雰囲気を非FeO生成域に設定する一方、その昇温過程では雰囲気酸化度を均熱過程よりも低く設定することによって、酸化をコントロールする方法を提案している。
また、特開平7−41861 号公報には、中間焼鈍における雰囲気酸化度を 0.4〜2.0 の範囲に設定し、Siの優先酸化を制御することによって、脱炭焼鈍後の酸化物中のSiO2量を安定化させる方法が提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記の技術を適用した場合であっても、中間焼鈍前や脱炭焼鈍前の鋼板の表面状態が変動すると、脱炭焼鈍後のサブスケール品質が変動し、最終仕上焼鈍時に追加酸化が増大して、電磁特性の劣化を招く場合があった。
この発明は、上記の問題を有利に解決するもので、脱炭焼鈍後におけるサブスケール品質の変動を効果的に抑制して、仕上焼鈍後に均一で密着性に優れたフォルステライト質絶縁被膜を得ることができ、ひいては良好な電磁特性を得ることができる、方向性電磁鋼板の新規な製造方法を提案することを目的とする。
【0009】
【課題を解決するための手段】
以下、この発明の解明経緯について説明する。
上述したとおり、予め脱炭焼鈍条件を適正に制御していた場合であっても、中間焼鈍前や脱炭焼鈍前の鋼板の表面状態が変動した場合には、サブスケール品質が変動し、その結果電磁特性が劣化する場合があった。
そこで、発明者らは、サブスケール品質の変動によって最終的に磁気特性の劣化を生じた製品板の脱炭焼鈍段階におけるサブスケールの生成状況、およびサブスケール品質が変動せず最終的に良好な磁気特性が得られた製品板の脱炭焼鈍段階におけるサブスケールの生成状況の違いについて、調査を行った。
【0010】
図1(a), (b)にそれぞれ、最終的に磁気特性の劣化を招いた脱炭焼鈍板および最終的に良好な磁気特性が得られた脱炭焼鈍板のサブスケール断面を比較して、模式で示す。
同図(b) に示したとおり、最終的に良好な磁気特性が得られた脱炭焼鈍板では、鋼板の表面から内部にかけて均一にSiO2が形成されていたのに対し、最終的に磁気特性の劣化を招いた脱炭焼鈍板では、同図(a) に示したとおり、鋼板の表層直下にSiO2の欠乏層が生成していた。
【0011】
このように、脱炭焼鈍時に均一なSiO2が形成されず、鋼板の表層直下にSiO2の欠乏層が生成することによって、被膜形成ひいては電磁特性が劣化する理由は、次のとおりと考えられる。
すなわち、フォルステライト被膜の一方の原料物質であるMgOを主体とする焼鈍分離剤は、水に懸濁したスラリーとして鋼板に塗布されるため、乾燥された後も物理的に吸着したH2Oを保有する他、一部が水和してMg(OH)2 に変化しているため、仕上焼鈍中は 800℃程度まで、少量ながらH2Oを放出し続ける。このため鋼板表面はこのH2Oにより、いわゆる追加酸化を受ける。この追加酸化が多いと、フォルステライトの生成速度が抑制されるだけでなく、インヒビターの酸化や分解が促進される。
図1(a) に示すように、鋼板の表層直下にSiO2の欠乏層が存在すると、かような追加酸化が多くなると考えられ、その結果被膜特性および磁気特性の劣化を招くものと考えられる。
【0012】
また、特にAlNをインヒビターとする方向性電磁鋼板においては、この鋼板の表層直下SiO2欠乏層が仕上焼鈍中の脱N挙動あるいは焼鈍雰囲気からの鋼板への侵N挙動に影響を及ぼし、インヒビターの働きを通して磁気特性にも影響を与えるものと考えられる。すなわち、脱Nが進行するとインヒビターの抑制力は弱まり、磁気特性は劣化する。一方、侵Nが進行し過ぎると、インヒビターが強くなりすぎて正常な2次再結晶が起こり難くなり、この場合も特性劣化につながるわけである。
【0013】
従って、良好な被膜特性および電磁特性を得るためには、かようなSiO2欠乏層を生成させないことが重要なわけであるが、脱炭焼鈍時にかようなSiO2欠乏層が生成したかどうかを、コイル毎に試料を採取して断面調査を行うことは、多大の時間を要し、実際的でない。
そこで、脱炭焼鈍後にSiO2欠乏層の有無を的確に把握できる簡便な方法について検討を行った。その結果、かような判定方法としては表面反射赤外吸収スペクトル法(Fourier Transform Infra Red :FT-IR 法)が有利に適合することが判明した。
すなわち、このFT-IR 法によれば、鋼板の最表層における物質の存在状態を評価することができ、例えば図2に示すように、鋼板の最表層にSiO2およびその他の物質(ファイアライト等)が存在する場合、SiO2のピークをa、その他の物質のピークをbとすれば、a/(a+b)× 100 (%) によってSiO2の生成比率を求めることができる。
【0014】
図3に、SiO2欠乏層を有する脱炭焼鈍板およびSiO2欠乏層のない脱炭焼鈍板について、FT-IR 法によって測定したSiO2生成比率を比較して示す。
同図に示したとおり、FT-IR 測定によるSiO2生成比率は、SiO2欠乏層を有する脱炭焼鈍板よりもSiO2欠乏層のない脱炭焼鈍板の方がむしろ小さく、70%以下になっている。
【0015】
次に、図4に、脱炭焼鈍板のFT-IR 測定によるSiO2生成比率と最終製品板の磁束密度B8 との関係について調べた結果を示すが、同図によれば、FT-IR 測定によるSiO2生成比率が70%以下の範囲において、B8 が 1.895(T)以上という優れた電磁特性が得られることが判明した。
【0016】
図3および図4の結果から、最終製品板において優れた被膜特性および電磁特性を得るためには、FT-IR 測定によるSiO2生成比率を70%以下として、鋼板の表層直下におけるSiO2欠乏層の生成を抑制することが重要であることが判明した。
【0017】
そこで、次に、鋼板の表層直下におけるSiO2欠乏層の生成を抑制する手段について鋭意検討を重ねた結果、電解脱脂処理の際に鋼板表面にSiO2の発生核となるSiを適正量電着させ、かつ脱炭焼鈍の昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕を比較的高めに設定して、脱炭焼鈍の早い段階で鋼板の最表面に極薄で緻密なSiO2層を形成することが極めて有効であることの知見を得た。
すなわち、脱炭焼鈍の初期段階で鋼板の最表面に極薄のSiO2層が形成されていると、その後の均熱過程において、雰囲気中の酸素による鋼板表層部の強制的酸化に伴う表層直下域からのSiの表層への拡散が抑制され、その結果表層直下域におけるSiO2欠乏層の生成が効果的に阻止されることが究明されたのである。
【0018】
図5に、電解脱脂処理の際の電着Si量と脱炭焼鈍の昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕がSiO2欠乏層の生成に及ぼす影響について調べた結果を整理して示す。なお、SiO2欠乏層の生成の有無は、FT-IR 測定によるSiO2の生成比率によって判断するものとし、このSiO2生成比率が70%以下であればSiO2欠乏層は生成していないと考えることができる。
同図に示したとおり、電解脱脂処理の際の電着Si量を蛍光X線による測定強度で0.10〜0.45 kcps の範囲に制御すると共に、脱炭焼鈍の昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕を0.45以上とすることによって、脱炭焼鈍板のFT-IR 測定によるSiO2の生成比率を70%以下にすることができ、ひいては表層直下域におけるSiO2欠乏層の生成を効果的に抑制することができたのである。
この発明は、上記の知見に立脚するものである。
【0019】
すなわち、この発明の要旨構成は次のとおりである。
1.含けい素鋼スラブを、熱間圧延したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、ついで電解脱脂処理により鋼板表面に Si を電着させた後、脱炭焼鈍を施したのち、最終仕上焼鈍を施す一連の工程によって方向性電磁鋼板を製造するに際し、
上記電解脱脂処理における Si 電着量の調整と、上記脱炭焼鈍の昇温過程における雰囲気酸化性〔P (H 2 0)/ (H 2 ) 〕の調整により、上記脱炭焼鈍後の鋼板表面において、表層に生成した酸化物におけるSiO2生成比率を32 70%に制御することを特徴とする方向性電磁鋼板の製造方法。
【0020】
2.上記1における電解脱脂処理において、鋼板の表面に、蛍光X線による測定強度で0.10〜0.45 kcps に相当する量のSiを電着させると共に、上記脱炭焼鈍の昇温過程における雰囲気酸化性〔P(H20)/P(H2)〕を0.45 0.7とすることを特徴とする方向性電磁鋼板の製造方法。
【0021】
【発明の実施の形態】
以下、この発明で対象とする方向性電磁鋼板の好適成分組成について述べる。出発材である含けい素鋼としては、従来公知の成分組成のものいずれもが適合するが、代表組成を掲げると次のとおりである。
C:0.01〜0.10mass%
Cは、熱間圧延、冷間圧延中の組織の均一微細化だけでなく、ゴス方位粒の発達に有用な成分であり、少なくとも0.01mass%以上の添加が望ましい。しかしながら、0.10mass%を超えて含有させるとかえってゴス方位に乱れが生じるので、上限は0.10mass%程度とするのが望ましい。
【0022】
Si:2.0 〜5.5 mass%
Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与するが、5.5 mass%を上回る含有量では冷延性が損なわれ、一方2.0 mass%に満たないと比抵抗が低下するだけでなく、二次再結晶・純化のために行われる高温の最終仕上焼鈍中にα−γ変態によって結晶方位のランダム化を生じ、十分な鉄損改善効果が得られなくなるので、Si量は 2.0〜5.5 mass%程度とするのが好ましい。
【0023】
Mn:0.02〜2.5 mass%
Mnは、熱間脆化を防止するために少なくとも0.02mass%程度の含有を必要とするが、あまりに多過ぎると磁気特性を劣化させるので、上限は2.5 mass%程度に止めるのが好ましい。また、この範囲の含有量でインヒビターとしてMnS, MnSeを析出させることができる。
【0024】
二次再結晶によりゴス方位に揃う結晶粒を高度に集積させるためには、二次再結晶に先立って鋼中に均一微細に析出するインヒビターの存在が必須である。このインヒビターとしては、いわゆるMnS,Cu2-X S,MnSe,Cu2-X SeやAlNといった析出物型と、Sn,As, Sbなどの粒界偏析型とがある。
【0025】
析出物型のうちMnS,Cu2-X S,MnSe,Cu2-X Se系の場合には、S,Seの1種または2種:0.005 〜0.06mass%
S,Seはいずれも、方向性電磁鋼板の二次再結晶を制御するインヒビターとして有用な成分である。かかる抑制力確保の観点からは少なくとも0.005 mass%程度を必要とするが、0.06mass%を超えるとその効果が損なわれるので、その下限、上限はそれぞれ0.005 mass%、0.06mass%程度とするのが望ましい。
また、Cuをインヒビター成分として用いる場合には、Cu量は 0.005〜0.50mass%程度とするのが望ましい。
【0026】
AlN系の場合には、Al:0.005 〜0.10mass%、N:0.004 〜0.015 mass%
AlおよびNの含有量の範囲についても、上述したMnS,Cu2-X S,MnSe,Cu2-X Se系の場合と同様な理由により、上述した範囲が好適である。ここに、上記したMnS,Cu2-X S,MnSe,Cu2-X Se系およびAlN系はそれぞれ併用することがより望ましい。
【0027】
また、粒界偏析系インヒビターとして、Sn,Sbはそれぞれ、Sn:0.01〜0.25mass%、Sb:0.005 〜0.15mass%程度が好適であり、これらの各インヒビター成分についても単独または複合使用のいずれでも良い。これらの上限は、この値を超えて添加すると飽和磁束密度が下がり、良好な磁気特性が得られないからである。
さらに、従来から知られているCr,Te,Ge,As,Bi,Pなども磁気特性向上のために添加することができる。これらの好適範囲はCr:0.01〜0.15mass%、Te,As,GeおよびBi:0.005 〜0.1 mass%、P:0.01〜0.2 mass%程度が好適である。これらの各インヒビター成分についても、単独または複合使用のいずれでも良い。
【0028】
次に、方向性電磁鋼板の代表的製造条件について説明する。
素材として用いる含けい素鋼スラブは、連続鋳造されたものもしくはインゴットから分塊圧延されたものを対象とするが、連続鋳造後に予備圧延されたスラブも対象に含まれることはいうまでもない。
【0029】
上記の含けい素鋼スラブは、スラブの加熱処理によりインヒビターを溶体化する必要がある。この発明では、溶体化の条件については特に制限するものではないが、ガス炉または誘導式電気加熱炉もしくは両者の組み合わせによって各々のインヒビター成分の溶解度積以上の温度で5分以上加熱することが望ましい。また、加熱中もしくは加熱前に20%以下の軽圧下をすることにより、加熱後のスラブ組織を細粒化することも可能である。加熱後のスラブは、通常の粗圧延を行いシートバーとした後、熱間仕上圧延に供する。ついで、必要に応じて熱延板焼鈍を行う。
【0030】
上記の熱延板焼鈍後、二回冷延法を行う場合は、一回目の冷延圧延を圧下率:5〜50%程度で行う。ついで中間焼鈍後、最終冷間圧延を施し、目標の板厚とするが、最終冷間圧延を公知のように温間圧延もしくはパス間時効処理することにより、より一次再結晶の集合組織を改善することが可能となるのでこの発明の製造方法として採用することは、より好ましい結果を得る。一回強冷延法を行っても良いことはいうまでもない。
最終冷間圧延後、公知のように磁区細分化のため鋼板表面に線状の溝を設ける処理を行うのも可能である。
【0031】
上記の方法により最終板厚とした鋼板は、電解脱脂処理後、脱炭・一次再結晶焼鈍を施す。
まず、電解脱脂処理に際しては、鋼板の表面に蛍光X線による測定強度で0.10〜0.45 kcps(kiro count per second)に相当する量のSiを電着させることが肝要である。
というのは、電着Si量が蛍光X線による測定強度で 0.10 kcpsに満たないと、その後の脱炭焼鈍において適正な条件で昇温処理を行っても、鋼板の最表層に極薄で緻密なSiO2層を形成することができず、一方 0.45 kcpsを超えると、最表層でのSiO2の形成が過度に進み、表層直下にSiO2の欠乏層ができてしまうからである。
【0032】
ここに、電着Si量の調整手段としては、電解脱脂処理時における電気量の調整が有効である。この電解脱脂電気量は、浴組成により幾分変化するとはいえ、上記の好適電着Si量を得るためには、電気量を1.8 A/dm2 以下程度とすることが好ましい。
また、浴組成については、けい酸ソーダを含むアルカリ性水溶液を用いることが好ましく、ソーダの代わりにけい酸カリウム、けい酸リチウム等のアルカリ金属のけい酸塩を用いても良い。
また、濃度については、 0.5〜15mass%程度とすることが好ましく、より好適には 1.0〜8.0 mass%である。
【0033】
次に、脱炭・一次再結晶焼鈍を施すが、この脱炭焼鈍の昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕を0.45以上とする。
というのは、この雰囲気酸化度〔P(H20)/P(H2)〕が0.45に満たないと、電解脱脂処理時に適正量のSiを電着させたとしても、脱炭焼鈍の昇温過程で鋼板の最表層に極薄で緻密なSiO2層を形成することができないからである。
一方、この昇温過程における雰囲気酸化度0.7 を超えると、FeOが生成して緻密なSiO2層の形成を阻害し、サブスケールの保護性が劣化するので、上限は 0.7 することが好ましい。
なお、均熱時における雰囲気酸化度〔P(H20)/P(H2)〕については、従来と同様 0.2〜0.7 程度とすることが好ましい。
【0034】
上記の脱炭焼鈍後、鋼板表面に焼鈍分離剤を塗布・乾燥してから、最終仕上焼鈍を施す。この最終仕上焼鈍については、従来から公知の条件に従って行えば良い。
ついで、未反応の焼鈍分離剤を除去したのち、鋼板表面に絶縁コーティングを塗布して製品とするが、必要に応じて絶縁コーティングの塗布前に鋼板表面の鏡面化処理を施しても良いし、また絶縁コーティングとして張力コーティングを用いても良い。また、コーティングの塗布焼付け処理を、平坦化処理と兼ねて行ってもよい。
さらに、二次再結晶後の鋼板には、鉄損低減効果を得るため、公知の磁区細分化処理、すなわちプラズマジェットやレーザー照射を線状領域に施したり、突起ロールによる線状のへこみ領域を設けたりする処理を施すこともできる。
【0035】
【実施例】
C:0.041 mass%,Si:3.21mass%、Mn:0.070 mass%およびSe:0.021 mass%を含有し、残部はFeおよび不可避的不純物の組成になる含けい素鋼スラブを、熱間圧延し、ついで中間焼鈍を挟む2回の冷間圧延によって板厚:0.23mmの冷延板とした。
ついで、オルトけい酸ソーダ(Na4SiO4)を1〜10mass%、界面活性剤を0.5 mass%含有させた組成になる電解浴中にて、種々の電解電気量の下で電解脱脂処理を実施し、鋼板の表面に種々の量のSiを電着させた。
ついで、昇温過程の雰囲気酸化度〔P(H20)/P(H2)〕を表1に示すように種々に変化させて脱炭処理を行った。なお、均熱過程における雰囲気酸化度〔P(H20)/P(H2)〕は 0.5の一定とした。
上記の脱炭焼鈍後、MgOを主成分とする焼鈍分離剤を塗布してから、コイルに巻き取ったのち、水素雰囲気中にて 850℃,70時間の仕上焼鈍を施した。
【0036】
かくして得られた製品板の電磁特性について調べた結果を、電解脱脂処理時における電着Si量および昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕との関係で表1に示す。
また、製品板の被膜特性について調べた結果についても、同じく電解脱脂処理時における電着Si量および昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕との関係で表1に示す。なお、被膜特性は、被膜密着性(棒鋼に巻き付けた時、被膜剥離が生じない棒鋼の最小径)で評価した。
【0037】
【表1】

Figure 0004239454
【0038】
表1に示したとおり、この発明に従い、電解脱脂処理時に、鋼板の表面に蛍光X線による測定強度で0.10〜0.45 kcps に相当する量のSiを電着させると共に、脱炭焼鈍の昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕を0.45以上とし、表層酸化物におけるSiO2生成比率を70%以下とすることによって、優れた被膜特性および電磁特性を併せて得ることができる。
なお、この発明に従い、優れた被膜特性および電磁特性が得られた製品板の脱炭焼鈍後の鋼板について、SiO2欠乏層の有無について調査したが、発明例はいずれもSiO2欠乏層は生じていないことが確認されている。
【0039】
【発明の効果】
かくして、この発明によれば、脱炭焼鈍時におけるSiO2欠乏層の生成を効果的に防止して、被膜特性および磁気特性に優れた方向性電磁鋼板を安定して得ることができ、その工業的価値は極めて大といえる。
【図面の簡単な説明】
【図1】 最終的に磁気特性の劣化を招いた脱炭焼鈍板(a) および最終的に良好な磁気特性が得られた脱炭焼鈍板(b) のサブスケール断面を比較して示した図である。
【図2】 FT-IR 測定によるSiO2生成比率の算出要領を示した図である。
【図3】 SiO2欠乏層を有する脱炭焼鈍板およびSiO2欠乏層のない脱炭焼鈍板について、FT-IR 法により測定したSiO2生成比率を比較して示した図である。
【図4】 脱炭焼鈍板のFT-IR 測定によるSiO2生成比率と最終製品板の磁束密度B8 との関係を示したグラフである。
【図5】 電解脱脂処理の際の電着Si量と脱炭焼鈍の昇温過程における雰囲気酸化度〔P(H20)/P(H2)〕がSiO2欠乏層の生成に及ぼす影響を示したグラフである。[0001]
[Industrial application fields]
The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent coating characteristics and electromagnetic characteristics, and in particular, by appropriately controlling the state of subscale generation in decarburization annealing, the coating characteristics and electromagnetic characteristics are advantageously improved. It is something to try.
[0002]
[Prior art]
Oriented electrical steel sheets are mainly used as core materials for transformers and other electrical equipment, and basically have excellent electromagnetic properties such as magnetic flux density and iron loss, and coating properties such as insulation and adhesion. It is considered important.
[0003]
Such grain-oriented electrical steel sheet is obtained by hot rolling a steel slab containing an inhibitor necessary for secondary recrystallization, such as MnS, MnSe, AlN, etc., and then performing hot rolling sheet annealing as necessary, and then once or The final thickness is obtained by cold rolling at least twice with intermediate annealing, followed by decarburization annealing, followed by the application of an annealing separator such as MgO to the surface of the steel sheet, followed by final finish annealing. The In general, a forsterite (Mg 2 SiO 4 ) -like insulating film is formed on the surface of the grain-oriented electrical steel sheet except for special cases.
[0004]
This forsterite insulating coating electrically contributes to reducing the eddy current by electrically insulating the layers when the steel plates are laminated, but the insulating coating on the surface of the steel plate is not uniform. If the film is peeled off during the production of the wound core, not only will the product value be reduced, but the space factor will be reduced, and further, the insulation will be lowered due to tightening during the assembly of the iron core, causing local heat generation. It can also cause accidents in transformers.
[0005]
In addition, this forsterite insulating coating contributes to the improvement of iron loss and magnetostriction by applying tensile stress to the steel sheet using its low thermal expansion property as well as electrical insulation of the steel sheet surface. Yes.
Further, this forsterite insulating coating contributes to the improvement of magnetic properties by sucking up the inhibitor component which is no longer necessary after the completion of secondary recrystallization into the coating and purifying the steel.
Therefore, controlling the formation process of such an insulating film to form a uniform and smooth forsterite insulating film is one of the important points affecting the product quality of grain-oriented electrical steel sheets.
[0006]
By the way, the forsterite insulating coating as described above is formed by causing a solid-phase reaction between SiO 2 in the subscale generated during decarburization annealing and MgO in the annealing separator in accordance with the following equation during high-temperature finish annealing. It is formed.
2MgO + SiO 2 → Mg 2 SiO 4
Therefore, conventionally, various studies have been conducted on the subscale generated during decarburization annealing in order to form a good forsterite insulating coating.
[0007]
For example, in JP-A-6-336616, in the soaking process of decarburization annealing, the atmosphere in the furnace is set to a non-FeO production region, and in the temperature raising process, the atmosphere oxidation degree is set lower than that in the soaking process. In this way, a method for controlling oxidation is proposed.
JP-A-7-41861 discloses that the amount of SiO 2 in the oxide after decarburization annealing is set by setting the atmospheric oxidation degree in the intermediate annealing to a range of 0.4 to 2.0 and controlling the preferential oxidation of Si. A method for stabilizing the above has been proposed.
[0008]
[Problems to be solved by the invention]
However, even when the above technology is applied, if the surface condition of the steel plate before intermediate annealing or before decarburization annealing varies, the subscale quality after decarburization annealing varies, and additional oxidation occurs during final finish annealing. In some cases, the electromagnetic characteristics are deteriorated.
The present invention advantageously solves the above-mentioned problem, and effectively suppresses the variation in subscale quality after decarburization annealing to obtain a forsterite insulating coating film that is uniform and excellent in adhesion after finish annealing. It is an object of the present invention to propose a novel method for producing a grain-oriented electrical steel sheet that can obtain good electromagnetic characteristics.
[0009]
[Means for Solving the Problems]
The elucidation process of the present invention will be described below.
As described above, even if the decarburization annealing conditions are appropriately controlled in advance, if the surface state of the steel plate before intermediate annealing or before decarburization annealing varies, the subscale quality varies, As a result, electromagnetic characteristics may deteriorate.
Therefore, the inventors have confirmed that the subscale generation status in the decarburization annealing stage of the product plate that has finally deteriorated the magnetic properties due to the change in the subscale quality, and the subscale quality does not change and is finally good. We investigated the difference in the generation of subscales in the decarburization annealing stage of the product plate with magnetic properties.
[0010]
Figures 1 (a) and 1 (b) compare the subscale cross sections of the decarburized and annealed sheet that ultimately caused the deterioration of the magnetic properties and the decarburized and annealed sheet that finally obtained good magnetic properties. , Schematically.
As shown in Fig. 2 (b), in the decarburized annealed plate that finally obtained good magnetic properties, SiO 2 was uniformly formed from the surface to the inside of the steel plate, whereas finally the magnetic In the decarburized and annealed sheet that deteriorated the characteristics, a SiO 2 -deficient layer was formed immediately below the surface layer of the steel sheet, as shown in FIG.
[0011]
Thus, not uniform SiO 2 is formed during decarburization annealing, by depletion layer of SiO 2 is produced directly under the surface layer of the steel sheet, why the film formation and thus the electromagnetic characteristics deteriorate is considered as follows .
That is, the annealing separator mainly composed of MgO, which is one of the raw materials of the forsterite coating, is applied to the steel sheet as a slurry suspended in water, so that the physically adsorbed H 2 O remains after drying. In addition to holding it, it partially hydrates and changes to Mg (OH) 2 , so it keeps releasing H 2 O in a small amount up to about 800 ° C during finish annealing. For this reason, the steel sheet surface is subjected to so-called additional oxidation by the H 2 O. When this additional oxidation is large, not only the forsterite production rate is suppressed, but also the oxidation and decomposition of the inhibitor are promoted.
As shown in FIG. 1 (a), when a SiO 2 deficient layer is present immediately below the surface layer of the steel sheet, it is considered that such additional oxidation increases, and as a result, the film characteristics and magnetic characteristics are deteriorated. .
[0012]
In particular, in grain-oriented electrical steel sheets using AlN as an inhibitor, the SiO 2 deficient layer immediately below the surface layer of this steel sheet affects the de-N-behavior during finish annealing or the N-penetration behavior of the steel from the annealing atmosphere. It is thought that the magnetic properties are also affected through the action of. That is, as de-N progresses, the inhibitor's suppressive power is weakened, and the magnetic properties deteriorate. On the other hand, when the penetration N proceeds too much, the inhibitor becomes too strong and normal secondary recrystallization hardly occurs, and this also leads to deterioration of characteristics.
[0013]
Therefore, whether in order to obtain good film characteristics and magnetic characteristics, although not important to not to generate such a SiO 2 depletion layer, and generated such a SiO 2 depletion layer during decarburization annealing Taking a sample for each coil and conducting a cross-sectional investigation takes a lot of time and is not practical.
Therefore, a simple method that can accurately grasp the presence or absence of a SiO 2 deficient layer after decarburization annealing was investigated. As a result, it was found that the surface reflection infrared absorption spectrum method (FT-IR method) is advantageously adapted as such a determination method.
That is, according to this FT-IR method, the existence state of the substance in the outermost layer of the steel sheet can be evaluated. For example, as shown in FIG. 2, SiO 2 and other substances (firelight etc.) are formed in the outermost layer of the steel sheet. ), The SiO 2 peak is a, and the peaks of other substances are b, and the production ratio of SiO 2 can be obtained by a / (a + b) × 100 (%).
[0014]
FIG. 3 shows a comparison of SiO 2 generation ratios measured by the FT-IR method for a decarburized annealed plate having a SiO 2 -deficient layer and a decarburized annealed plate having no SiO 2 -deficient layer.
As shown in the drawing, SiO 2 production ratio by FT-IR measurements, SiO 2 depletion layer decarburization annealing it is rather small decarburization annealed sheet with no SiO 2 depletion layer than plate having a 70% or less It has become.
[0015]
Next, Fig. 4 shows the results of examining the relationship between the SiO 2 production ratio and the magnetic flux density B 8 of the final product plate by FT-IR measurement of the decarburized annealed plate. It has been found that excellent electromagnetic characteristics of B 8 of 1.895 (T) or more can be obtained when the SiO 2 production ratio is 70% or less.
[0016]
From the results shown in FIGS. 3 and 4, in order to obtain excellent coating properties and electromagnetic properties in the final product plate, the SiO 2 generation ratio by the FT-IR measurement should be 70% or less, and the SiO 2 deficient layer immediately below the surface layer of the steel plate. It was found that it is important to suppress the production of.
[0017]
Therefore, as a result of intensive investigations on means for suppressing the formation of SiO 2 deficient layers immediately below the surface layer of the steel sheet, an appropriate amount of Si, which is the SiO 2 generation nucleus, was electrodeposited on the steel sheet surface during electrolytic degreasing. In addition, the atmospheric oxidation degree [P (H 2 0) / P (H 2 )] in the temperature raising process of decarburization annealing is set to a relatively high value so that the surface of the steel plate is exposed to the extreme surface at an early stage of decarburization annealing. It was found that it is extremely effective to form a thin and dense SiO 2 layer.
In other words, if an extremely thin SiO 2 layer is formed on the outermost surface of the steel sheet in the initial stage of decarburization annealing, in the subsequent soaking process, immediately below the surface layer due to forced oxidation of the steel sheet surface layer part by oxygen in the atmosphere It has been found that the diffusion of Si from the region to the surface layer is suppressed, and as a result, the formation of the SiO 2 -deficient layer in the region immediately below the surface layer is effectively prevented.
[0018]
FIG. 5 shows the effect of the amount of electrodeposited Si during electrolytic degreasing and the degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] in the temperature raising process of decarburization annealing on the formation of SiO 2 deficient layers. The results of the investigation are summarized and shown. In addition, the presence or absence of the generation of SiO 2 deficient layer shall be judged by the generation ratio of SiO 2 by FT-IR measurement. If this SiO 2 generation ratio is 70% or less, the SiO 2 deficient layer is not generated. Can think.
As shown in the figure, the amount of electrodeposited Si during the electrolytic degreasing treatment is controlled in the range of 0.10 to 0.45 kcps as measured by fluorescent X-ray, and the degree of atmospheric oxidation [P ( By setting H 2 0) / P (H 2 )] to 0.45 or more, the SiO 2 generation ratio by FT-IR measurement of the decarburized and annealed plate can be reduced to 70% or less. It was possible to effectively suppress the formation of 2- deficient layers.
The present invention is based on the above findings.
[0019]
That is, the gist configuration of the present invention is as follows.
1. After hot rolling the silicon-containing steel slab, after cold rolling at least once with intermediate or intermediate annealing to the final sheet thickness, and then electrodepositing Si on the steel sheet surface by electrolytic degreasing In producing a grain-oriented electrical steel sheet through a series of processes for performing final carbonization annealing after decarburization annealing,
Steel sheet after decarburization annealing by adjusting the amount of Si electrodeposition in the electrolytic degreasing process and adjusting the atmospheric oxidation [P (H 2 0) / P (H 2 ) ] in the temperature raising process of the decarburization annealing in the surface, the production method of the oriented electrical steel sheet towards you and controlling the SiO 2 generation ratio from 32 to 70% in the oxide formed on the surface layer.
[0020]
2. In the electrolytic degreasing treatment in 1 above, an amount of Si corresponding to 0.10 to 0.45 kcps in intensity measured by fluorescent X-rays is electrodeposited on the surface of the steel plate, and the atmospheric oxidizability in the temperature rising process of the decarburization annealing [P (H 2 0) / P method for producing oriented electrical steel sheets towards you, characterized in that (H 2)] is referred to as 0.45 to 0.7.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the preferred component composition of the grain-oriented electrical steel sheet targeted by the present invention will be described. As the starting silicon-containing steel, any conventionally known component composition can be used. The typical composition is as follows.
C: 0.01-0.10mass%
C is a component useful not only for uniform refinement of the structure during hot rolling and cold rolling, but also for the development of goth-oriented grains, and is preferably added in an amount of at least 0.01 mass%. However, if the content exceeds 0.10 mass%, the Goth orientation is disturbed. Therefore, the upper limit is preferably about 0.10 mass%.
[0022]
Si: 2.0 to 5.5 mass%
Si increases the specific resistance of the steel sheet and contributes effectively to the reduction of iron loss. However, if the content exceeds 5.5 mass%, the cold-rolling property is impaired. In addition, since the crystal orientation is randomized by the α-γ transformation during the high-temperature final finish annealing performed for secondary recrystallization and purification, a sufficient iron loss improvement effect cannot be obtained. It is preferably about mass%.
[0023]
Mn: 0.02-2.5 mass%
Mn needs to contain at least about 0.02 mass% in order to prevent hot embrittlement, but if it is too much, the magnetic properties are deteriorated, so the upper limit is preferably limited to about 2.5 mass%. Moreover, MnS and MnSe can be precipitated as an inhibitor with a content in this range.
[0024]
The presence of an inhibitor that precipitates uniformly and finely in the steel prior to the secondary recrystallization is indispensable for highly accumulating crystal grains aligned in the Goss direction by secondary recrystallization. As this inhibitor, there are a precipitate type such as so-called MnS, Cu 2 -X S, MnSe, Cu 2 -X Se and AlN, and a grain boundary segregation type such as Sn, As and Sb.
[0025]
MnS of precipitates type, Cu 2-X S, MnSe , in the case of Cu 2-X Se system, S, 1 kind of Se or two: 0.005 ~0.06mass%
Both S and Se are useful components as inhibitors for controlling secondary recrystallization of grain-oriented electrical steel sheets. From the standpoint of securing such a suppressive force, at least about 0.005 mass% is required, but if it exceeds 0.06 mass%, the effect is impaired, so the lower and upper limits should be about 0.005 mass% and 0.06 mass%, respectively. desirable.
Moreover, when using Cu as an inhibitor component, it is desirable that the amount of Cu is about 0.005 to 0.50 mass%.
[0026]
In the case of AlN, Al: 0.005 to 0.10 mass%, N: 0.004 to 0.015 mass%
For even range of the content of Al and N, MnS described above, Cu 2-X S, MnSe , for the same reason as in the case of Cu 2-X Se system, it is preferable ranges described above. Here, MnS described above, Cu 2-X S, MnSe , Cu 2-X Se system and AlN system may be more desirable combination, respectively.
[0027]
Further, as the grain boundary segregation inhibitor, Sn and Sb are preferably about Sn: 0.01 to 0.25 mass% and Sb: 0.005 to 0.15 mass%, respectively, and these inhibitor components may be used alone or in combination. good. The upper limit of these is because if the addition exceeds this value, the saturation magnetic flux density is lowered and good magnetic properties cannot be obtained.
Further, conventionally known Cr, Te, Ge, As, Bi, P, etc. can be added for improving the magnetic characteristics. These preferred ranges are preferably Cr: 0.01 to 0.15 mass%, Te, As, Ge and Bi: 0.005 to 0.1 mass%, and P: 0.01 to 0.2 mass%. Each of these inhibitor components may be used alone or in combination.
[0028]
Next, typical production conditions for the grain-oriented electrical steel sheet will be described.
The silicon-containing steel slab used as a raw material is one that is continuously cast or one that is subjected to partial rolling from an ingot, but it goes without saying that the slab that has been pre-rolled after continuous casting is also included in the object.
[0029]
In the silicon-containing steel slab, the inhibitor needs to be solutionized by heat treatment of the slab. In the present invention, the conditions for solution treatment are not particularly limited, but it is preferable to heat at a temperature equal to or higher than the solubility product of each inhibitor component for 5 minutes or more by a gas furnace or an induction electric furnace or a combination of both. . Moreover, it is also possible to refine the slab structure after heating by reducing the pressure by 20% or less during heating or before heating. The slab after heating is subjected to normal rough rolling to form a sheet bar, and then subjected to hot finish rolling. Then, hot-rolled sheet annealing is performed as necessary.
[0030]
When performing the cold rolling method twice after the hot-rolled sheet annealing, the first cold rolling is performed at a reduction ratio of about 5 to 50%. Next, after the intermediate annealing, the final cold rolling is performed to the target sheet thickness, but the final cold rolling is improved by improving the texture of primary recrystallization by warm rolling or aging between passes as is well known. since that is possible to adopt a manufacturing method of the present invention to obtain better results. Needless to say, the cold rolling method may be performed once.
After the final cold rolling, it is possible to perform a process of providing a linear groove on the surface of the steel plate for magnetic domain fragmentation as is well known.
[0031]
The steel sheet having the final thickness by the above method is subjected to decarburization and primary recrystallization annealing after electrolytic degreasing treatment.
First, in the electrolytic degreasing treatment, it is important to electrodeposit an amount of Si corresponding to 0.10 to 0.45 kcps (kiro count per second) as measured by fluorescent X-rays on the surface of the steel sheet.
This is because if the amount of electrodeposited Si is less than 0.10 kcps as measured by fluorescent X-rays, it is extremely thin and dense on the outermost layer of the steel sheet even if the temperature rise treatment is performed under appropriate conditions in the subsequent decarburization annealing. This is because a SiO 2 layer cannot be formed, and if it exceeds 0.45 kcps, the formation of SiO 2 on the outermost layer proceeds excessively, and a SiO 2 deficient layer is formed immediately below the surface layer.
[0032]
Here, as the means for adjusting the amount of electrodeposited Si, adjustment of the amount of electricity during the electrolytic degreasing treatment is effective. Although the amount of electricity for electrolytic degreasing varies somewhat depending on the bath composition, the amount of electricity is preferably about 1.8 A / dm 2 or less in order to obtain the preferred amount of electrodeposited Si.
As for the bath composition, it is preferable to use an alkaline aqueous solution containing sodium silicate, and alkali metal silicates such as potassium silicate and lithium silicate may be used instead of soda.
The concentration is preferably about 0.5 to 15 mass%, more preferably 1.0 to 8.0 mass%.
[0033]
Next, decarburization and primary recrystallization annealing are performed, and the degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] in the temperature rising process of decarburization annealing is set to 0.45 or more.
This is because if the degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] is less than 0.45, even if an appropriate amount of Si is electrodeposited during the electrolytic degreasing treatment, the decarburization annealing is increased. This is because an extremely thin and dense SiO 2 layer cannot be formed on the outermost surface layer of the steel sheet during the temperature process.
On the other hand, when the atmosphere of oxidation in the Atsushi Nobori process is more than 0.7, FeO inhibits the formation of generating and dense SiO 2 layer, the protective subscales is deteriorated, the upper limit is made 0.7 it Is preferred.
The degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] at the time of soaking is preferably about 0.2 to 0.7 as in the prior art.
[0034]
After the above decarburization annealing, an annealing separator is applied to the steel sheet surface and dried, followed by final finish annealing. This final finish annealing may be performed according to conventionally known conditions.
Next, after removing the unreacted annealing separator, an insulating coating is applied to the surface of the steel sheet to obtain a product, but if necessary, the surface of the steel sheet may be mirrored before applying the insulating coating, A tension coating may be used as the insulating coating. Moreover, you may perform the application | coating baking process of coating also with the planarization process.
Furthermore, in order to obtain the iron loss reduction effect, the steel sheet after the secondary recrystallization is subjected to a known magnetic domain refinement process, that is, a plasma jet or laser irradiation is applied to the linear region, or a linear dent region by a protruding roll is provided. It is also possible to perform processing to be provided.
[0035]
【Example】
C: 0.041 mass%, Si: 3.21 mass%, Mn: 0.070 mass% and Se: 0.021 mass%, and the balance is hot-rolled with a silicon steel slab having a composition of Fe and inevitable impurities, Subsequently, a cold-rolled sheet having a thickness of 0.23 mm was obtained by cold rolling twice with intermediate annealing.
Next, electrolytic degreasing treatment was carried out under various amounts of electrolytic electricity in an electrolytic bath containing 1 to 10 mass% of sodium orthosilicate (Na 4 SiO 4 ) and 0.5 mass% of surfactant. Then, various amounts of Si were electrodeposited on the surface of the steel plate.
Next, decarburization treatment was performed by varying the degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] in the temperature raising process as shown in Table 1. The degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] in the soaking process was kept constant at 0.5.
After the above decarburization annealing, an annealing separator containing MgO as a main component was applied, wound around a coil, and then subjected to finish annealing at 850 ° C. for 70 hours in a hydrogen atmosphere.
[0036]
The results of examining the electromagnetic characteristics of the product plate thus obtained are shown in relation to the amount of electrodeposited Si during electrolytic degreasing and the degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] during the temperature rising process. Table 1 shows.
In addition, the results of examining the coating properties of the product plate are also related to the amount of electrodeposited Si during electrolytic degreasing and the degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] during the temperature rising process. Table 1 shows. The coating properties were evaluated by coating adhesion (minimum diameter of a steel bar that does not cause peeling of the coating when wound on a steel bar).
[0037]
[Table 1]
Figure 0004239454
[0038]
As shown in Table 1, according to the present invention, during electrolytic degreasing, the surface of the steel sheet was electrodeposited with an amount of Si corresponding to 0.10 to 0.45 kcps in intensity measured by fluorescent X-ray, and the decarburization annealing temperature rising process By making the atmospheric oxidation degree [P (H 2 0) / P (H 2 )] at 0.45 or more and the SiO 2 production ratio in the surface layer oxide at 70% or less, it is possible to combine excellent film characteristics and electromagnetic characteristics. Obtainable.
Incidentally, according to the present invention, the steel sheet after decarburization annealing of excellent coating properties and electromagnetic properties obtained product sheet has been investigated for the presence of SiO 2 depletion layer, invention examples Both the SiO 2 depletion layer occurs Has not been confirmed.
[0039]
【The invention's effect】
Thus, according to the present invention, it is possible to effectively prevent the formation of a SiO 2 deficient layer during decarburization annealing, and to stably obtain a grain-oriented electrical steel sheet having excellent coating properties and magnetic properties. Target value is extremely high.
[Brief description of the drawings]
FIG. 1 shows a comparison of subscale cross sections of a decarburized and annealed sheet (a) that ultimately deteriorated magnetic properties and a decarburized and annealed sheet (b) that finally achieved good magnetic properties. FIG.
FIG. 2 is a diagram showing a calculation procedure of a SiO 2 generation ratio by FT-IR measurement.
FIG. 3 is a diagram showing a comparison of SiO 2 production ratios measured by the FT-IR method for a decarburized annealed plate having a SiO 2 -deficient layer and a decarburized annealed plate having no SiO 2 -deficient layer.
FIG. 4 is a graph showing the relationship between the SiO 2 production ratio by FT-IR measurement of a decarburized annealed plate and the magnetic flux density B 8 of the final product plate.
[Fig. 5] Effect of electrodeposited Si amount during electrolytic degreasing and the degree of atmospheric oxidation [P (H 2 0) / P (H 2 )] in the temperature rise process of decarburization annealing on the formation of SiO 2 deficient layers It is the graph which showed.

Claims (2)

含けい素鋼スラブを、熱間圧延したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、ついで電解脱脂処理により鋼板表面に Si を電着させた後、脱炭焼鈍を施したのち、最終仕上焼鈍を施す一連の工程によって方向性電磁鋼板を製造するに際し、
上記電解脱脂処理における Si 電着量の調整と、上記脱炭焼鈍の昇温過程における雰囲気酸化性〔P (H 2 0)/ (H 2 ) 〕の調整により、上記脱炭焼鈍後の鋼板表面において、表層に生成した酸化物におけるSiO2生成比率を32 70%に制御することを特徴とする方向性電磁鋼板の製造方法。
After hot rolling the silicon-containing steel slab, after cold rolling at least once with intermediate or intermediate annealing to the final sheet thickness, and then electrodepositing Si on the steel sheet surface by electrolytic degreasing In producing a grain-oriented electrical steel sheet through a series of processes for performing final carbonization annealing after decarburization annealing,
Steel sheet after decarburization annealing by adjusting the amount of Si electrodeposition in the electrolytic degreasing process and adjusting the atmospheric oxidation [P (H 2 0) / P (H 2 ) ] in the temperature raising process of the decarburization annealing in the surface, the production method of the oriented electrical steel sheet towards you and controlling the SiO 2 generation ratio from 32 to 70% in the oxide formed on the surface layer.
請求項1における電解脱脂処理において、鋼板の表面に、蛍光X線による測定強度で0.10〜0.45 kcps に相当する量のSiを電着させると共に、上記脱炭焼鈍の昇温過程における雰囲気酸化性〔P(H20)/P(H2)〕を0.45 0.7とすることを特徴とする方向性電磁鋼板の製造方法。In the electrolytic degreasing treatment according to claim 1, an amount of Si corresponding to 0.10 to 0.45 kcps measured by fluorescent X-rays is electrodeposited on the surface of the steel sheet, and the atmospheric oxidation property in the temperature raising process of the decarburization annealing P (H 2 0) / P method for producing oriented electrical steel sheets towards you, characterized in that (H 2)] is referred to as 0.45 to 0.7.
JP2001375581A 2001-12-10 2001-12-10 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4239454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375581A JP4239454B2 (en) 2001-12-10 2001-12-10 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375581A JP4239454B2 (en) 2001-12-10 2001-12-10 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2003171720A JP2003171720A (en) 2003-06-20
JP4239454B2 true JP4239454B2 (en) 2009-03-18

Family

ID=19183926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375581A Expired - Fee Related JP4239454B2 (en) 2001-12-10 2001-12-10 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4239454B2 (en)

Also Published As

Publication number Publication date
JP2003171720A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
KR101294624B1 (en) A method of manufacturing oriented si steel containing cu
JP6057108B2 (en) Method for producing grain-oriented electrical steel sheet
JP6103281B2 (en) Method for producing grain-oriented electrical steel sheet
CN111411294A (en) Grain-oriented electromagnetic steel sheet
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP4784347B2 (en) Method for producing grain-oriented electrical steel sheet
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP2017122247A (en) Production method of grain oriented magnetic steel sheet
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JP3873489B2 (en) Method for producing grain-oriented silicon steel sheet having excellent coating properties and magnetic properties
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP4259037B2 (en) Method for producing grain-oriented electrical steel sheet
JP7352108B2 (en) grain-oriented electrical steel sheet
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP4239454B2 (en) Method for producing grain-oriented electrical steel sheet
JP4569353B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
KR20220128653A (en) Method for manufacturing grain-oriented electrical steel sheet
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP4258202B2 (en) Oriented electrical steel sheet having no forsterite coating and method for producing the same
JP2006316314A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and film property
JP5011712B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP2002194445A (en) Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4239454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees