JPS60240108A - Superlow iron loss grain oriented silicon steel plate and manufacture thereof - Google Patents

Superlow iron loss grain oriented silicon steel plate and manufacture thereof

Info

Publication number
JPS60240108A
JPS60240108A JP9604284A JP9604284A JPS60240108A JP S60240108 A JPS60240108 A JP S60240108A JP 9604284 A JP9604284 A JP 9604284A JP 9604284 A JP9604284 A JP 9604284A JP S60240108 A JPS60240108 A JP S60240108A
Authority
JP
Japan
Prior art keywords
silicon steel
iron loss
grain
steel sheet
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9604284A
Other languages
Japanese (ja)
Other versions
JPH0685373B2 (en
Inventor
Ujihiro Nishiike
西池 氏裕
Yoshiaki Iida
飯田 嘉明
Isao Matoba
的場 伊三夫
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59096042A priority Critical patent/JPH0685373B2/en
Publication of JPS60240108A publication Critical patent/JPS60240108A/en
Publication of JPH0685373B2 publication Critical patent/JPH0685373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a hitherto unequaled superlow iron loss uni-directional silicon steel plate by using a final product plate of a specific value or less thickness containing specific quantity of Si, having a forsterite film coated on the surface and the interface between the forsterite film and the steel being smooth. CONSTITUTION:A uni-directional silicon steel plate containing 2.0-4.0wt% of Si, coated with a forsterite film on the surface, the interface between the forsterite film and the steel being smooth, the thickness of the final product being 0.18mm. or less and the iron loss at 50Hz being 0.83W/kg at 1.7T is used. A material slab for uni-directional silicon steel containing 2.0-4.0wt% of Si is made a final product plate of 0.18mm. or less thickness by hot rolling and then by cold rolling and an oxide layer is formed on the surface of the steel plate by decarburization annealing. Then, a separating agent of annealing containing 0.01- 1.0wt% Sb of Sb or an Sb compound and 1.0-20.0wt% Sr of Sr an Sr compound is coated and annealed for final annealing.

Description

【発明の詳細な説明】 技 術 分 野 超低鉄損方向性けい素鋼板とその製造方法に関して、こ
の明細書で述べる技術内容は、とくに従来良好な鉄損値
を得るのが困難とされた板厚が0゜18mm以下の極薄
材につき、その表面への絶縁被膜の被成のし方に工夫を
加えることにより、鉄損特性の有利な改善を図ることに
関連している。
[Detailed Description of the Invention] Technical Field The technical content described in this specification regarding an ultra-low iron loss grain-oriented silicon steel sheet and its manufacturing method is particularly applicable to the ultra-low iron loss grain-oriented silicon steel sheet, which has been difficult to obtain in the past. It relates to the advantageous improvement of iron loss characteristics of ultra-thin materials with a plate thickness of 0.18 mm or less by adding innovation to the method of forming an insulating film on the surface.

背 景 技 術 方向性けい素鋼板は主として変圧器その他の電気磁気の
鉄心として利用され、その磁化特性が優れていること、
とくに鉄損(W1?150で代表される)が低いことが
要求されている。
Background Technology Grain-oriented silicon steel sheets are mainly used as cores for transformers and other electrical and magnetic equipment, and their magnetization properties are excellent.
In particular, low iron loss (represented by W1~150) is required.

このためには、第一に鋼板中の2次再結晶粒の<001
> 粒方位を圧延方向に高度に揃えることが必要であり
、第二には、最終製品の鋼中に存在する不純物や析出物
をできるだけ減少させる必要がある。かかる配慮の下に
製造される方向性けい素鋼板は、今日まで多くの改善努
力によって、その鉄損値も年を追って改善され、最近で
は板厚0、30mm の製品で−17150の値が1.
05W/kg 、また0、 23mmの製品でWI71
50の値が0.90W/kgの低鉄損のものが得られて
いる。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet should be <001
> It is necessary to highly align the grain orientation in the rolling direction, and secondly, it is necessary to reduce as much as possible the impurities and precipitates present in the final product steel. The iron loss value of grain-oriented silicon steel sheets manufactured under these considerations has been improved over the years due to many improvement efforts to date, and recently, the value of -17150 has improved to 1 for products with plate thicknesses of 0 and 30 mm. ..
05W/kg, and WI71 for 0 and 23mm products.
A low iron loss with a value of 50 of 0.90 W/kg has been obtained.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器をめる傾向が一段と強まり、それ
らの鉄芯材料として、さらに鉄損の低い一方向性けい素
鋼板が要請されるようになっている。
However, after the energy crisis a few years ago, there was a growing trend to use electrical equipment with lower power loss, and unidirectional silicon steel sheets with even lower iron loss were required as the iron core material for these devices. It looks like this.

従来技術とその問題点 ところで、方向性けい素鋼板の鉄損を下げる手刀として
は、Si含有量を高める、2次再結晶粒を細かくする、
不純物含有量を低減する、そして(110) C00L
 )方位の2次再結晶粒をより高度に揃えるなど、主に
冶金学的方法が一般に知られいるが、これらの手刀は、
現行の生産手段の上からはもはや限界に達していて、こ
れ以上の改善は極めて難しく、たとえ多少の改善が認め
られたとしても、その努力の割には鉄損改善の実効はわ
ずかとなるに至っている。
Conventional technology and its problems By the way, ways to reduce the iron loss of grain-oriented silicon steel sheets include increasing the Si content, making the secondary recrystallized grains finer, etc.
reduce impurity content, and (110) C00L
), metallurgical methods are generally known, such as aligning the secondary recrystallized grains in the orientation to a higher degree, but these hand swords
Current production methods have already reached their limits, and further improvements are extremely difficult, and even if some improvement is recognized, the effect of improving iron loss will be small compared to the efforts made. It has been reached.

また最近に至り、製品板の表面に圧延方向と直角の向き
に微小歪を導入し、磁区を細分化させることによって渦
電流損を低減する方法が提案されているが、この方法で
は、製品板の形状、平均結晶粒径および板厚などによっ
ては、その効果が十分に発揮されるとは限らないだけで
なく、巻きトランス製造時などに必要な歪取り焼鈍を施
した場合にはせっかく低下させた鉄損値が元に戻ってし
まうところに致命的な欠陥を残していた。
Recently, a method has been proposed to reduce eddy current loss by introducing minute strains on the surface of the product plate in a direction perpendicular to the rolling direction and subdividing the magnetic domains. Depending on the shape, average grain size, plate thickness, etc., the effect may not be fully demonstrated, and even if strain relief annealing, which is necessary during the manufacture of wound transformers, is applied, the This left a fatal flaw in that the iron loss value returned to its original value.

さらに上述した各改善策とは別に、製品板厚を薄くする
ことが、鉄損低域に有効であることが知られている。し
かしながら現実的には板厚を薄くすると、2次再結晶粒
が粗大化すると共に、2次再結晶にとって不可欠なイン
ヒビターが不安定になって、かえって磁気特性の劣化を
招いていたのである。この点、製品の2次粒径の粗大化
の防止対策として、グルロールを用いる方法く特開昭5
7−73127号公報)や、フォルステライト被膜の厚
みを制御して鉄損を良好にする方法(特開昭57−.4
1326号公報)などが提案さている。
Furthermore, apart from the above-mentioned improvement measures, it is known that reducing the thickness of the product plate is effective in reducing iron loss. However, in reality, when the plate thickness is made thinner, the secondary recrystallized grains become coarser, and the inhibitor that is essential for secondary recrystallization becomes unstable, resulting in a deterioration of the magnetic properties. In this regard, as a measure to prevent the secondary particle size of the product from becoming coarse, a method using Gulurol was proposed in Japanese Patent Laid-Open No. 5
7-73127) and a method for improving iron loss by controlling the thickness of the forsterite film (Japanese Patent Laid-Open No. 57-4.
1326), etc. have been proposed.

しかしながら上述した従来の改善策はいずれも板厚が0
.15〜0.25mm程度の範囲に限られ、実際には板
厚0.18mmの場合に最良の鉄損特性が得られ、それ
より薄くなると鉄損はかえって増大していたのである。
However, in all of the conventional improvement measures mentioned above, the plate thickness is 0.
.. The thickness is limited to a range of about 15 to 0.25 mm, and in reality, the best iron loss characteristics were obtained when the plate thickness was 0.18 mm, and as the thickness became thinner, the iron loss actually increased.

かような現象は従来からよく知られていて、たとえばL
ittmannをはじめとして多くの研究者によって確
認されていることである。すなわち鉄損(M丁) はヒ
ステリシス損(Wh) と渦電流損(’l!le) と
からなっているが、第1図に示したように、渦電流損は
板厚の減少と共に次第に低下するもののある板厚以下で
はその低下傾向は弱まり、一方ヒステリシス損はある板
厚以下になると急激に増大する結果、鉄損(1’lT 
) は板厚0,18mm〜0.20mm程度で極小値を
示し、従来、かかる現象は不変であると一般的に認識さ
れていたのである。
Such a phenomenon has been well known for a long time, for example, L
This has been confirmed by many researchers including Dr. Ittmann. In other words, iron loss (M) consists of hysteresis loss (Wh) and eddy current loss (l!le), but as shown in Figure 1, eddy current loss gradually decreases as the plate thickness decreases. Below a certain thickness, the decreasing tendency of hysteresis loss weakens, while below a certain thickness, hysteresis loss rapidly increases, resulting in iron loss (1'lT
) shows a minimum value at a plate thickness of about 0.18 mm to 0.20 mm, and it has been generally recognized that this phenomenon does not change.

なお、比較器厚い製品を機械的または化学的研磨によっ
て上記の範囲よりも板厚を薄くした場合に、良好な特性
が得られることがあるが、それらは表面にフォルステラ
イト被膜をそなえていないために実用性に乏しく、また
上記したような製造法は工業的規模での生産には適さな
い。さらに一旦研磨によって薄くしたのちにフォルステ
ライト被膜を被成した場合には、−鉄損の著しい劣化を
招くのが常であった。
In addition, good properties may be obtained if the thickness of comparator thick products is made thinner than the above range by mechanical or chemical polishing, but these products do not have a forsterite coating on the surface. However, the production method described above is not suitable for production on an industrial scale. Furthermore, if a forsterite film is formed after the material has been thinned by polishing, a significant deterioration in iron loss usually occurs.

発明の端緒 この発明は、上記した如き渦電流損とヒステリシス損の
板厚依存性について綿密な検討を重ねた末に開発された
もので、以下に述べるように、従来信じられていたこと
とは全く異なる新規な知見事実に立脚する。
Introduction to the Invention This invention was developed after careful study of the dependence of eddy current loss and hysteresis loss on plate thickness as described above, and as described below, it differs from what was previously believed. Based on completely different new knowledge and facts.

(1)渦電流損が、ある板厚以下になるとほとんど低下
しなくなる理由は、渦電流損を決定する大きな役割りを
果たす180°磁区の幅が次第に増大するためであり、
さらにそれに加えて板厚が薄い製品はど2次粒径が一般
的に大きくなることも関連している。
(1) The reason why eddy current loss hardly decreases below a certain plate thickness is that the width of the 180° magnetic domain, which plays a major role in determining eddy current loss, gradually increases.
In addition to this, it is also related that products with thinner plates generally have larger secondary particle sizes.

(2)シかしながらさらに板厚を減少していくと、渦電
流損は再び低下してい(。
(2) As the plate thickness is further reduced, the eddy current loss decreases again (.

(3)板厚を低減することに伴うヒステリシス損増大の
原因は、けい素鋼そのもののもつ本来的な性質でなく、
フォルステライト被膜と地鉄との界面状態と強い相関が
ある。第2図に、けい素鋼板のもつ本来の鉄損と板厚と
の関係を示す。
(3) The cause of the increase in hysteresis loss associated with reducing the plate thickness is not the inherent properties of silicon steel itself;
There is a strong correlation with the state of the interface between the forsterite film and the steel base. Figure 2 shows the relationship between the original iron loss and thickness of silicon steel sheets.

(4)従って、かかる界面を適切に制御することにより
、板厚をさらに薄くして、より一層の鉄損の低減が望み
得る。
(4) Therefore, by appropriately controlling such interfaces, it is possible to further reduce the iron loss by further reducing the plate thickness.

この発明は、上記の知見に基づいて開発されたもので、
従来通常の技術では不可能とされていた極薄の板厚領域
において、今日得ることができる最良レベルの鉄損値を
も下回るすなわちW 1.7 / 50≦0.85 W
/kg の鉄損特性を有する超低鉄損方向性けい素鋼板
およびその製造方法を提案するものである。
This invention was developed based on the above knowledge,
In the ultra-thin plate thickness region, which was conventionally considered impossible with normal technology, the iron loss value is lower than the best level that can be obtained today, that is, W 1.7 / 50 ≦ 0.85 W
This paper proposes an ultra-low iron loss grain-oriented silicon steel sheet having an iron loss characteristic of /kg and a method for manufacturing the same.

発明の構成 すなわちこの発明は、Si:2.0〜4.0 重量%(
以下単に%で示す)を含有し、その表面にフォルステラ
イト被膜をそなえる一方向性けい素鋼板であて、該フォ
ルステライト被膜と地鉄との界面が平滑であり、しかも
最終製品板厚が0.18mm以下でがつ、50Hzl、
mおケル鉄損が1.77 において0.83%/ kg
以下である超鉄損方向性けい素鋼板である。
The structure of the invention, that is, the present invention is based on Si: 2.0 to 4.0% by weight (
(hereinafter simply expressed in %) and has a forsterite coating on its surface, the interface between the forsterite coating and the base steel is smooth, and the final product has a thickness of 0. 18mm or less, 50Hzl,
0.83%/kg when the iron loss is 1.77
This is a super core loss grain-oriented silicon steel sheet with the following:

ここに、フォルステライト被膜と地鉄との界面の平滑度
を、後述する平滑度Rで10以下、また2次再結晶粒の
平均粒径を3mm以下とすることがより好ましい。
Here, it is more preferable that the smoothness of the interface between the forsterite coating and the base iron be 10 or less in terms of smoothness R, which will be described later, and that the average grain size of the secondary recrystallized grains be 3 mm or less.

またこの発明は、Si:2.0〜4,0%を含有する一
方向性けい素鋼板の素材スラブに、熱間圧延ついで冷却
圧延を施して最終製品板厚としたのち、脱炭焼鈍を施し
て鋼板表面に酸化物層を形成させ、ついで焼鈍分離材を
塗布してから最終仕上げ焼鈍を施すことからなる方向性
けい素鋼板の製造方法において、最終製品板厚を0.1
8mm以下にすると共に、上記焼鈍分離材中に、アンチ
モンまたはその化合物を↓bとして0.01〜1.0%
と、ストロンチウムまたはその化合物をSrとして1.
0〜20.0%とを含有させることを特徴とする超低鉄
損方向性けい素鋼板の製造方法であり、この発明法にお
いてとくにに良好な鉄損特性を得るためには、脱炭焼鈍
後の表面酸化物層中の酸素目付量Os(g/m2)を、
最終製品板厚t (mm) に対して次式、 の関係を満足する範囲に制御することが一層好ましい。
In addition, the present invention provides a material slab of a unidirectional silicon steel sheet containing 2.0 to 4.0% Si, which is hot-rolled and then cool-rolled to obtain a final product thickness, and then subjected to decarburization annealing. In a method for producing a grain-oriented silicon steel sheet, the final product thickness is reduced to 0.1.
8 mm or less, and 0.01 to 1.0% of antimony or its compound as ↓b in the annealing separation material.
and strontium or its compound as Sr1.
0 to 20.0%, and in order to obtain particularly good iron loss properties in this invention method, decarburization annealing is required. The oxygen basis weight Os (g/m2) in the subsequent surface oxide layer is
It is more preferable to control the final product board thickness t (mm) within a range that satisfies the following relationship.

この発明法に従い、焼鈍分離剤中にアンチモンとストロ
ンチウムとを複合添加することにより、フォルステライ
ト被膜と地鉄との界面が効果的に平滑化され、鉄損低減
に関し望外の成果が得られたのである。
By adding antimony and strontium in combination to the annealing separator according to the method of this invention, the interface between the forsterite coating and the base steel was effectively smoothed, and unexpected results were obtained in terms of iron loss reduction. be.

以下この発明を具体的に説明する。This invention will be explained in detail below.

まずこの発明の素材について述べると、この発明ではS
lを2.0〜4.0%含有する一方向性けい素鋼用素材
を用いる必要がある。
First, let's talk about the material of this invention.
It is necessary to use a unidirectional silicon steel material containing 2.0 to 4.0% of l.

Slは、鋼の電気抵抗を高めて鉄損を低減するのに極め
て有効な元素であるが、2%より少ないとその効果に乏
しく、一方4%より多いと加工性が著しく劣化して工業
的規模での加工が事実上不可能になるので、Sl量は2
.0〜4.0%の範囲に限定した。
Sl is an extremely effective element for increasing the electrical resistance of steel and reducing iron loss, but if it is less than 2%, the effect is poor, while if it is more than 4%, the workability deteriorates significantly and it is not suitable for industrial use. Since large-scale processing becomes virtually impossible, the amount of Sl should be 2.
.. It was limited to a range of 0 to 4.0%.

この発明において成分的には1.上記したSlの他はと
くに限定されることはなく、方向性けい素鋼として通常
含有される元素を適宜に添加することができるが、参考
までにその代表組成を示すと、次のとおりである。
In this invention, the components are 1. Other than the above-mentioned Sl, there are no particular limitations, and elements normally contained in grain-oriented silicon steel can be added as appropriate; however, for reference, the typical composition is as follows. .

口 ≦0.06% 、 Sb2.0〜4.0 % 、M
n:0.01〜0.20%、 S、Se: 単独あるいは複合で0.005〜0.1%
、Sb : 0.005〜0.20% 、残部Re0ま
たこの発明では、最終製品板厚を0.18mm以下に限
定したが、その理由は、従来の方向性けい素鋼板におい
て鉄損の極小値を示した板厚が0.13mmであったこ
とおよび0.18mm以下の厚みになると渦電流損が再
び減少することによる。
Mouth ≦0.06%, Sb2.0-4.0%, M
n: 0.01-0.20%, S, Se: 0.005-0.1% singly or in combination
, Sb: 0.005-0.20%, remainder Re0 In addition, in this invention, the final product plate thickness was limited to 0.18 mm or less, and the reason for this is that the minimum value of iron loss in conventional grain-oriented silicon steel sheets This is because the thickness of the plate exhibiting this was 0.13 mm, and that the eddy current loss decreases again when the thickness becomes 0.18 mm or less.

さらにこの発明による方向性けい素鋼板はフォルステラ
イト被膜を有しているこまが必要であるが、その理由は
、かかるフォルステライト被膜の存在によって従来から
良く知られているように、製品表面“に絶縁性が付与さ
れると同時に渦電流損が低減し、加えてその形成過程で
ある仕上げ焼鈍時に鋼板地鉄中からの不純物が効果的に
除去されるからである。しかし、フォルステライト被膜
を有することでヒステリシス損が大きくなり全鉄損W1
?150 が0.’83W/kgを超えるおそれが生じ
るところ、かような特性劣化を防止するために前述した
ようにして地鉄とフォルステライト被膜との界面の制御
を行うわけである。
Furthermore, the grain-oriented silicon steel sheet according to the present invention requires a top having a forsterite coating, and the reason for this is that the presence of such a forsterite coating causes the surface of the product to This is because eddy current loss is reduced at the same time as insulation is imparted, and in addition, impurities from the steel base steel are effectively removed during final annealing, which is the formation process. As a result, the hysteresis loss increases and the total iron loss W1
? 150 is 0. In order to prevent such characteristic deterioration, the interface between the base steel and the forsterite coating is controlled as described above.

ここで平滑度Rの定義ならびにその測定法について述べ
る。
Here, the definition of smoothness R and its measurement method will be described.

平滑度Rは、第3図に示したような鋼板断面において、
0.1mm以上離れたフォルステライト/地鉄界面上の
2点Δ、B間の直線距離を1゜とじ、一方AB間に存在
するフォルステライト(地鉄中に独立に存在するフォル
ステライトを含む)と地鉄との境界線の全長をlとした
場合に、l/ β。で定義される。
The smoothness R is determined by the cross section of the steel plate as shown in Figure 3.
The straight line distance between two points Δ and B on the forsterite/substrate interface that are 0.1 mm or more apart is set at 1°, while the forsterite that exists between AB (including forsterite that exists independently in the substructure) If the total length of the boundary line between and the subway is l, then l/β. Defined by

従来、平滑度の測定は、表面粗さの測定などにおけるよ
うに、レコード針などのセンサーの機械的接触が可能な
領域にしか適用できなかった。従ってこの発明における
フォルステライトと地鉄との界面の如き表面に出現しな
い界1面の測定は極めて困難だったのであるが、これを
可能にしたのが、近年における画像解析装置の開発であ
る。
Conventionally, smoothness measurements have only been applicable to areas that can be mechanically contacted by a sensor such as a record stylus, such as in the measurement of surface roughness. Therefore, in this invention, it was extremely difficult to measure an interface that does not appear on the surface, such as the interface between forsterite and base iron, but this has been made possible by the development of image analysis equipment in recent years.

以下に標準的な平滑度Rの測定方法について説明する。A standard method for measuring smoothness R will be described below.

まず2次再結晶焼鈍後の鋼板断面を、常法に従って研磨
ついで検鏡に付す。得られる断面像は、第3図aに示し
たようなものであるが、これを一旦写真化してもよいし
、また直接画像解析装置にインプットしてもよい。
First, a cross section of the steel plate after secondary recrystallization annealing is polished according to a conventional method and then subjected to a microscope. The obtained cross-sectional image is as shown in FIG. 3a, but it may be made into a photograph, or it may be directly input into an image analysis device.

次に、かかる画像の界面上に2点Δ、Bを定める。ΔB
間の距離!。は簡単に測定できるが、!の測定は以下の
ようにして行う。
Next, two points Δ and B are defined on the interface of this image. ΔB
The distance between! . can be easily measured, but! The measurement is performed as follows.

まずフォルステライトのイメージだけを抽出するが、こ
のとき第3図a中にDで示したような独立したフォルス
テライト粒ならびにCで示したような連結しているフォ
ルステライト粒も計測する必要がある。そしてその余興
面長lを出すには、画像処理iこよって「細線化処理」
を行えばよいが、このとき独立したフォルステライト粒
りのようなものを正しく評価するためには、最近接界面
との「連結処理」を加えたのち「細線化処理」を行うこ
とが望ましい。というのは、独立粒は「細線化処理」に
よって極めて微細な点となってしまうからである。第3
図すに連結−細線化処理後の画像を示す。
First, only the forsterite image is extracted, but at this time, it is also necessary to measure independent forsterite grains, as shown by D in Figure 3a, as well as connected forsterite grains, as shown by C. . And in order to obtain the entertainment surface length l, image processing i is called "line thinning processing".
However, in order to correctly evaluate things like independent forsterite grains, it is desirable to perform the "thinning process" after adding the "connection process" with the nearest interface. This is because independent grains become extremely fine dots due to the "thinning process." Third
The figure shows an image after connection and thinning processing.

かような抽出一連結処理→細線化処理という一連の処理
を行えば、あとは容易に境界線実長βをめることができ
る。なおかかる一連の処理は自動的に行い、また少なく
とも10ケ所以上測定してその平均値を得るのが望まし
い。
By performing a series of processes such as extraction series processing and line thinning processing, the boundary line actual length β can be easily determined. It is preferable that this series of processes be performed automatically, and that measurements be taken at at least 10 locations to obtain the average value.

第4図に、板厚0.15mmの方向性けい素鋼板におけ
る平滑度Rと鉄損との関係について調べた結果を示す。
FIG. 4 shows the results of an investigation into the relationship between smoothness R and iron loss in a grain-oriented silicon steel plate with a thickness of 0.15 mm.

同図より明らかなように、鉄損W17150が0.83
W/kg以下であるためには、平滑度Rを10以下にす
る必要がある。
As is clear from the figure, the iron loss W17150 is 0.83
In order to be W/kg or less, the smoothness R needs to be 10 or less.

ところで上掲第4図からも明らかなように、平滑度が1
0以下であっても必ずしも0.83W/ kg以下の鉄
損値が得られるわけではない。この理由は、板厚が薄く
なると、2次粒径が増大するため、渦電流損が増大して
界面の平滑化にfる効果が減殺されるためと考えられる
By the way, as is clear from Figure 4 above, the smoothness is 1.
Even if it is 0 or less, it does not necessarily mean that an iron loss value of 0.83 W/kg or less can be obtained. The reason for this is thought to be that as the plate thickness decreases, the secondary grain size increases, which increases eddy current loss and reduces the effect of smoothing the interface.

この点、第5図に2次粒の平均粒径と鉄損との′関係を
示したように、2次粒径が3mm以下であれば、上記の
弊害は効果的に解消されることが判明した。
In this regard, as shown in Figure 5, which shows the relationship between the average particle size of secondary particles and iron loss, the above-mentioned adverse effects can be effectively eliminated if the secondary particle size is 3 mm or less. found.

次にこの発明に従う製造法について説明する。Next, a manufacturing method according to the present invention will be explained.

Si:2.0〜4.0%を含む一方向性けい素鋼板素材
は、常法4に従って熱間圧延ついで1回の冷間圧延また
は中間焼鈍を挟む2回以上の冷間圧延が施されて、厚み
0.18mm以下の最終製品板厚に仕上げられる。
A unidirectional silicon steel sheet material containing Si: 2.0 to 4.0% is hot rolled and then cold rolled once or cold rolled two or more times with intermediate annealing in between according to conventional method 4. The finished product is finished with a thickness of 0.18 mm or less.

ついでかかる冷延鋼板に、水蒸気を含む水素雰囲気中で
脱炭焼鈍を施してその表面に8102および鉄酸化物か
らなる層を形成したのち、引続いてMgOを主成分とす
る焼鈍分離剤を塗布してから仕上げ焼鈍を施して、表面
にフォルステライト絶縁被膜を形成させると共に2次再
結晶を行わせるのであるが、この焼鈍分離剤中にアンチ
モンまたはその化合物およびストロンチウムまたはその
化合物を複合添加するのである。
The cold-rolled steel sheet is then subjected to decarburization annealing in a hydrogen atmosphere containing water vapor to form a layer consisting of 8102 and iron oxide on its surface, and then an annealing separator mainly composed of MgO is applied. After that, finish annealing is performed to form a forsterite insulating film on the surface and to perform secondary recrystallization, but since antimony or its compound and strontium or its compound are added in combination to this annealing separation agent, be.

第3図に、焼鈍分離剤中にストロンチウム化合物(Sr
S、0=)を、単独(図中×印)、またはsb換算で0
.2%の5b20s と共に(図中合印)種々の割合で
添加した場合の、鉄損特性WIT150とSrSO4中
のSr分との関係を示す。
Figure 3 shows a strontium compound (Sr) in the annealing separator.
S, 0=) alone (x mark in the figure) or 0 in sb conversion
.. The relationship between the iron loss characteristic WIT150 and the Sr content in SrSO4 is shown when it is added in various proportions together with 2% 5b20s (marked in the figure).

同図より明らかなように、5rSOs の単独添加では
さほどの鉄損改善は期待できないが、sbと複合添加す
ることによって著しく鉄損が低減された。
As is clear from the figure, the addition of 5rSOs alone cannot be expected to significantly improve iron loss, but the addition of 5rSOs in combination with sb significantly reduces iron loss.

なおかようなSrとsbとの複合添加によって、上記し
た如き顕著な鉄損低減効果が得られる理由は、まだ明確
には解明されていないけれども、フォルステライト被膜
と地鉄との界面の平滑化に寄与するSrの効果が、製品
板厚の薄肉化に伴う2次粒径の粗大化によって阻止され
る弊害が、sbの細粒化効果によって解消されるためと
考えられる。
Although the reason why such a combined addition of Sr and sb achieves the above-mentioned remarkable iron loss reduction effect is not yet clearly elucidated, it is due to the smoothing of the interface between the forsterite coating and the base steel. It is thought that this is because the effect of Sr contributing to sb is suppressed by the coarsening of the secondary grain size due to the thinning of the product board, which is eliminated by the grain-refining effect of sb.

ここにストロンチウムまたはストロンチウム化合物の添
加量が、S「として1.0%に満たないと前掲第3図に
も示したようにその添加効果に乏しく、一方20.0%
を超えるとかえって被膜の平滑度が失われ鉄損特性はむ
しろ低下する傾向にあるためである。
If the amount of strontium or strontium compound added is less than 1.0% as S, the effect of the addition will be poor as shown in Figure 3 above;
This is because, if it exceeds this value, the smoothness of the film will be lost and the iron loss characteristics will tend to deteriorate.

またアンチモンまたはアンチモン化合物の添加量を、s
bとして0,01〜1.0%の範囲に限定したのは、0
.01%未満ではその添加効果に乏しく、一方1.0%
を超えると鋼板全面が細粒化されて鉄損特性が急激に劣
化するためである。
In addition, the amount of antimony or antimony compound added is s
b is limited to a range of 0.01% to 1.0%.
.. If it is less than 0.01%, the effect of its addition is poor; on the other hand, if it is less than 1.0%
This is because, if it exceeds, the entire surface of the steel sheet will become fine grained and the iron loss characteristics will deteriorate rapidly.

なおストロンチウム化合物およびアンチモン化合物とし
ては、酸化物、硫化物および窒化物などいずれもが適合
するが、代表例を示すと次のとふりである。
Note that as the strontium compound and antimony compound, oxides, sulfides, nitrides, etc. are all suitable, but the following are typical examples.

ストロンチウム化合物 5rSO<、 Sr (叶)2. SrCO3,Sr 
(NO3) 2などアンチモン化合物 5b203.5b20S、 5bS2,5bS3.5b
2(SO4)3など上記のようにして焼鈍分離中にSr
とsbとを複合添加することによって初期した低鉄損の
方向性けい素鋼板が得られるが、時として特性値に若干
のばらつきが生じることが認められた。
Strontium compound 5rSO<, Sr (Kano)2. SrCO3, Sr
Antimony compounds such as (NO3) 2 5b203.5b20S, 5bS2, 5bS3.5b
2(SO4)3 etc. during annealing separation as described above.
Although a grain-oriented silicon steel sheet with an initial low core loss can be obtained by the combined addition of sb and sb, it has been found that some variations in the characteristic values sometimes occur.

この理由は主として、インヒビクーが板厚の薄肉化によ
って不安定になるためと考えられるが、この点について
は、脱炭焼鈍時における表面酸化物中の酸素目付量Os
(g/m2)を、板厚t (mm) に応じて、下記式
、 の関係を満足する範囲に制御することによって、効果的
に解消されることが究明された。
The reason for this is thought to be that the inhibitor becomes unstable due to thinning of the plate, but regarding this point, the oxygen basis weight Os in the surface oxide during decarburization annealing is
It has been found that this problem can be effectively solved by controlling (g/m2) according to the plate thickness t (mm) within a range that satisfies the following equation.

第7図に、種々の板厚のものを、H250%−N250
%。
Figure 7 shows various thicknesses of H250%-N250.
%.

55〜63℃の種々の露点の雰囲気中で、830 ℃、
3分の焼鈍を施した場合における酸素目付量と鉄損との
関係について調べた結果を示す。
830 °C in an atmosphere with various dew points of 55-63 °C,
The results of an investigation into the relationship between oxygen basis weight and iron loss when annealing for 3 minutes are shown.

同図より明らかなように、酸素目付量Osが板厚tに対
し上掲式の関係を満足すせることにより所期した効果が
安定して得られている。
As is clear from the figure, the desired effect is stably obtained by making the oxygen basis weight Os satisfy the above-mentioned relationship with respect to the plate thickness t.

実 施 例 実施例I Si:3.2%を含有する方向性けい素鋼熱延板を、2
回冷延法で0.15mmの最終板厚としたのち、■25
0%、 N250%、露点61℃の雰囲気中で830 
℃、3分間の 焼鈍を施して酸素目付量2.0g/m2
 の酸化物層を得た。ついでこの脱炭焼鈍板の表面に、
5rSOnとS b 2 U 3 または5b2s、と
を種々の割合で配合したMgOを主成分とする焼鈍分離
剤をスラリー状て塗布し、乾燥したのち、1200℃、
10hの仕上げ焼鈍を施した。
Examples Example I A grain-oriented silicon steel hot rolled sheet containing 3.2% Si was
After making the final plate thickness to 0.15mm by cold rolling method, ■25
0%, N250%, 830 in an atmosphere with a dew point of 61℃
Annealed at ℃ for 3 minutes to give an oxygen basis weight of 2.0g/m2.
An oxide layer was obtained. Next, on the surface of this decarburized annealed plate,
An annealing separator mainly composed of MgO containing 5rSOn and S b 2 U 3 or 5b2s in various proportions was applied in the form of a slurry, dried, and then heated at 1200°C.
Finish annealing was performed for 10 hours.

得られた絶縁被膜付き一方向性けい素鋼板の鉄損特性に
ついて調べた結果を表1に示す。なお比較のため焼鈍分
離剤中にSr化合物やsb化合物を全く含有させないも
のならびに片方のみそれぞれ添加したものについても同
様の調査を行い、得られた結果を表1に併記した。
Table 1 shows the results of examining the iron loss characteristics of the obtained unidirectional silicon steel sheet with an insulating coating. For comparison, the same investigation was conducted on an annealing separator containing no Sr compound or sb compound and one containing only one of them, and the obtained results are also listed in Table 1.

同表より明らかなように、この発明に従い得られた方向
性けい素鋼板は、仕較材に較べて格段に低い鉄損値が肖
られている。
As is clear from the table, the grain-oriented silicon steel sheet obtained according to the present invention exhibits a much lower core loss value than the control material.

実施例2 Si:3.2%を含有する方向性けい、素鋼熱延板を、
2回冷延法で0.1On+mの最終板厚としたのち、■
250%、N250%、 露点55〜62℃の雰囲気中
テ820t。
Example 2 A grain-oriented silicon, raw steel hot-rolled plate containing 3.2% Si was
After making the final plate thickness 0.1On+m by cold rolling twice, ■
250%, N250%, 820 tons in an atmosphere with a dew point of 55 to 62°C.

3分間の条件で脱炭焼鈍を行った。その後5b2s3を
sb純分として0.2% と、5rSL をSr純分と
して10%とを含有する焼鈍分離剤を塗布したのち仕上
げ焼鈍を行った。
Decarburization annealing was performed for 3 minutes. Thereafter, an annealing separator containing 0.2% of 5b2s3 as an sb pure content and 10% of 5rSL as an Sr pure content was applied, and then final annealing was performed.

得られた絶縁被膜付き一方向性けい素鋼板の鉄損値を、
脱炭焼鈍後の酸素目付量と共に表2に示す。
The iron loss value of the obtained unidirectional silicon steel plate with insulation coating is
Table 2 shows the oxygen basis weight after decarburization annealing.

表 2 表2の成績から明らかなように、この発明法に従い得ら
れた方向性けい素鋼板はいずれもl’117150が0
.83以下の優れた鉄損特性を示し、中でも前掲式の関
係を満足する場合にとりわけ良好な結果が得られた。
Table 2 As is clear from the results in Table 2, all of the grain-oriented silicon steel sheets obtained according to the method of this invention had l'117150 of 0.
.. It exhibited excellent iron loss characteristics of 83 or less, and especially good results were obtained when the relationship expressed by the above formula was satisfied.

発明の効果 かくしてこの発明によれば、一方向性けい素鋼板におい
て従来比類のない超低鉄損を得ることができる。
Effects of the Invention Thus, according to the present invention, it is possible to obtain an ultra-low core loss that is unparalleled heretofore in a grain-oriented silicon steel sheet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1、従来の一方向性けい素鋼板における板厚と
鉄損値との関係を示したグラフ、′f52図は、けい素
鋼板のもつ本来の、板厚と鉄損値との関係を示したグラ
フ、 第3図aは、フォルステライト被膜付き方向性けい素鋼
板の断面図、同図すは、その連結−細線化処理後の画像
、 第4図は、界面の平滑度と鉄損値との関係を示したグラ
フ、 第5図は、鋼板の平均粒径と鉄損との関係を示したグラ
フ、 第6図は、Sr添加量と鉄損値との関係を、sbを複合
添加した場合とsb無添加の場合とて、仕較して示した
グラフ、 第7図は、鉄損値に及ぼす板厚と酸素目付量との関係を
示したグラフである。 第1図 第2図 板厚(mps) 第3図 (b) 第4図 ! 本 手婦泉R 第5図 平均H措伽fItノ 第6図 第7図 飯屑を−莞ン
Figure 1 is a graph showing the relationship between plate thickness and iron loss value in conventional unidirectional silicon steel sheets, and Figure 52 is a graph showing the relationship between plate thickness and iron loss value, which is the original characteristic of silicon steel plates. A graph showing the relationship. Figure 3a is a cross-sectional view of a grain-oriented silicon steel plate with a forsterite coating, and the same figure is an image after the connection-thinning process. Figure 4 is a graph showing the smoothness of the interface and A graph showing the relationship between the iron loss value and Figure 5 is a graph showing the relationship between the average grain size of the steel plate and the iron loss. Figure 6 is a graph showing the relationship between the Sr addition amount and the iron loss value. Figure 7 is a graph showing the relationship between plate thickness and oxygen basis weight on iron loss value. Figure 1 Figure 2 Plate thickness (mps) Figure 3 (b) Figure 4! Honte Fusen R Figure 5 Average H Measurement Figure 6 Figure 7 Rice scraps - Guan

Claims (1)

【特許請求の範囲】 1、 3i:2.0〜4.0 重量%を含有し、その表
面にフォルステライト被膜をそなえる一方向性けい素鋼
板であって、該フォルステライト被膜と地鉄との界面が
平滑であり、しかも最終製品板厚が0.18mm以下で
かつ、50Hzにおける鉄損が1,7Tにおいて0.8
3W/ kg以下である超低鉄損方向性けい素鋼板。 2、 フォルステライト被膜と地鉄との界面の平滑度が
、鋼板断面における地鉄/フォルステライト被膜界面上
の任意の直線距離β。に対する実際の境界線実長βの比
で表される平滑度RでIO以下である特許請求の範囲第
1項記載の方向性けい素鋼板。 3 鋼板の2次再結晶粒の平均粒径が、8mm以下であ
る特許請求の範囲第1または2項記載の方向性けい素鋼
板。 4、3i;2.0〜4.0重量%を含有する一方向性け
い素鋼用の素材スラブに、熱間圧延ついで冷間圧延を施
して最終製品板厚としたのち、脱炭焼鈍を施して鋼板表
面に酸化物層を形成させ、ついで焼鈍分離剤を塗布して
から最終仕上げ焼鈍を施すことからなる方向性けい素鋼
板の製造方法において、 最終製品板厚を0.18mm以下にすると共に、上記焼
鈍分離剤中に、アンチモンまたはその化合物をsbとし
て0.01〜1.0 重量% と、ストロンチウムまた
はその化合物をSrとして1.0〜20.0重量%工を
含有させることを特徴とする超低鉄損方向性けい素鋼板
の製造方法。 5、 脱炭焼鈍後の表面酸化物中の酸素目付量Is (
g/m2)が、最終製品板厚t (mm) に対して次
式、 の関係を満足するものである特許請求の範囲第2項記載
の方法。
[Claims] 1. A unidirectional silicon steel sheet containing 2.0 to 4.0% by weight of 3i and having a forsterite coating on its surface, wherein the forsterite coating and the base steel are bonded together. The interface is smooth, the thickness of the final product is 0.18mm or less, and the iron loss at 50Hz is 0.8 at 1.7T.
Ultra-low iron loss grain-oriented silicon steel sheet of 3W/kg or less. 2. The smoothness of the interface between the forsterite film and the base steel is determined by the arbitrary straight line distance β on the base steel/forsterite film interface in the cross section of the steel plate. The grain-oriented silicon steel sheet according to claim 1, wherein the smoothness R expressed as the ratio of the actual boundary line actual length β to the actual boundary line actual length β is less than or equal to IO. 3. The grain-oriented silicon steel sheet according to claim 1 or 2, wherein the average grain size of the secondary recrystallized grains of the steel sheet is 8 mm or less. 4,3i: A material slab for unidirectional silicon steel containing 2.0 to 4.0% by weight is hot-rolled and then cold-rolled to obtain the final product thickness, and then subjected to decarburization annealing. A method for producing a grain-oriented silicon steel sheet, which comprises applying an annealing separator to form an oxide layer on the surface of the steel sheet, and then applying a final annealing, in which the thickness of the final product is 0.18 mm or less. In addition, the annealing separator contains 0.01 to 1.0% by weight of antimony or its compound as sb, and 1.0 to 20.0% by weight of strontium or its compound as Sr. A method for producing grain-oriented silicon steel sheets with ultra-low iron loss. 5. Oxygen basis weight Is in the surface oxide after decarburization annealing (
3. The method according to claim 2, wherein the final product board thickness t (mm) satisfies the following relationship: g/m2).
JP59096042A 1984-05-14 1984-05-14 Manufacturing method of ultra-low iron loss grain-oriented silicon steel sheet Expired - Lifetime JPH0685373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096042A JPH0685373B2 (en) 1984-05-14 1984-05-14 Manufacturing method of ultra-low iron loss grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096042A JPH0685373B2 (en) 1984-05-14 1984-05-14 Manufacturing method of ultra-low iron loss grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS60240108A true JPS60240108A (en) 1985-11-29
JPH0685373B2 JPH0685373B2 (en) 1994-10-26

Family

ID=14154429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096042A Expired - Lifetime JPH0685373B2 (en) 1984-05-14 1984-05-14 Manufacturing method of ultra-low iron loss grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0685373B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525467A2 (en) * 1991-07-10 1993-02-03 Nippon Steel Corporation Grain oriented silicon steel sheet having excellent primary glass film properties
JP2016145419A (en) * 2015-01-30 2016-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732716A (en) * 1980-08-04 1982-02-22 Daido Steel Co Ltd Treating method for waste gas
JPS5741326A (en) * 1980-08-27 1982-03-08 Kawasaki Steel Corp Unidirectional silicon steel plate of extremely low iron loss and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732716A (en) * 1980-08-04 1982-02-22 Daido Steel Co Ltd Treating method for waste gas
JPS5741326A (en) * 1980-08-27 1982-03-08 Kawasaki Steel Corp Unidirectional silicon steel plate of extremely low iron loss and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525467A2 (en) * 1991-07-10 1993-02-03 Nippon Steel Corporation Grain oriented silicon steel sheet having excellent primary glass film properties
JP2016145419A (en) * 2015-01-30 2016-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and method therefor

Also Published As

Publication number Publication date
JPH0685373B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
KR20130106407A (en) Method for producing directional electromagnetic steel sheet
KR102568156B1 (en) Grain-oriented electrical steel sheet and production method therefor
KR20030013258A (en) Method of manufacturing grain-oriented electrical steel sheet
EP0607440A1 (en) Process for producing mirror-finished directional electric sheet
KR101216656B1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JPS60240108A (en) Superlow iron loss grain oriented silicon steel plate and manufacture thereof
JPS6311406B2 (en)
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JPH0762440A (en) Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JPH0776736A (en) Production of grain-oriented silicon steel sheet extremely excellent in glass film and magnetic characteristic
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JPH08239771A (en) Grain-oriented silicon steel sheet having high tensile strength insulating film and formation of the same insulating film
JPH06101059A (en) Separation agent for annealing for grain-oriented silicon steel sheet for obtaining uniform high tensile strength glass film and excellent magnetic property
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2671088B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties and remarkably excellent iron core workability, and manufacturing method thereof
JPS6130009B2 (en)
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JPS62167822A (en) Production of grain oriented silicon steel sheet of extremely low iron loss
JPS60262980A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
JPH10152780A (en) Insulating film for grain oriented silicon steel sheet, and its formation
JPH08193220A (en) Production of semiprocessed nonoriented silicon steel sheet
JPH03229822A (en) Production of grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term