JP2002069532A - Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density - Google Patents

Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JP2002069532A
JP2002069532A JP2000268321A JP2000268321A JP2002069532A JP 2002069532 A JP2002069532 A JP 2002069532A JP 2000268321 A JP2000268321 A JP 2000268321A JP 2000268321 A JP2000268321 A JP 2000268321A JP 2002069532 A JP2002069532 A JP 2002069532A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
silicon steel
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000268321A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Shuichi Nakamura
修一 中村
Yukio Sasaki
行雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000268321A priority Critical patent/JP2002069532A/en
Publication of JP2002069532A publication Critical patent/JP2002069532A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To industrially stably produce a bidirectioanlly oriented silicon steel sheet having high magnetic flux density, in the method for producing a bidirectionally oriented silicon steel sheet in which [100]<;001>; orientation is developed by a cross cold rolling method, by suppressing the development of [110] suborientation deteriorating its magnetic properties. SOLUTION: In this method for producing a bidirectionally oriented silicon steel sheet, a silicon steel hot rolled sheet containing, by mass, 0.8 to 6.7% Si, <=0.085% C, 0.021 to 0.048% acid soluble Al and <=0.012% N, and the balance Fe with inevitable impurities is subjected to cold rolling at a draft of 40 to 80% in a direction identical with that in hot rolling, is further subjected to cold rolling at a draft of 30 to 70% in a direction crossing the above cold rolling direction and is then subjected to decaruburizing annealing, thereafter, a separation agent for annealing is applied thereto, and finish annealing for secondary recrystallization and purification is performed. In the crystal grain structure after the decarburizing annealing, the ratio of I[111]/I[211] is controlled to <=1, and moreover, the content of oxygen in an oxidized layer in the steel sheet is controlled to <=2.3 g/m2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶粒がミラー指
数で{100}<001>(Cube)方位に集積し
た、いわゆる二方向性電磁鋼板の製造方法に関するもの
である。この鋼板は、圧延方向ならびに圧延方向と直角
な方向に磁化容易軸(<001>軸)を有しており、こ
れらの方向での磁気特性が優れているので、圧延方向に
のみ磁気特性の優れた一方向性電磁鋼板に比べて二方向
に磁束を流す必要がある機器、例えば大型発電器の鉄芯
材料として用いると有利である。また小型静止器の分野
では、一般的に磁化容易軸を高度に集積していない無方
向性電磁鋼板が用いられているが、二方向性電磁鋼板を
用いることにより、小型化・高効率化への可能性があ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a so-called bidirectional electromagnetic steel sheet in which crystal grains are accumulated in a {100} <001> (Cube) orientation with a Miller index. This steel sheet has an easy axis of magnetization (<001> axis) in the rolling direction and a direction perpendicular to the rolling direction, and has excellent magnetic properties in these directions. It is advantageous to use it as an iron core material of a device that needs to flow magnetic flux in two directions, for example, a large generator, as compared with a unidirectional magnetic steel sheet. In the field of miniature stationary devices, non-oriented electrical steel sheets that do not have a high degree of integration of easy axes are generally used, but by using bi-directional electrical steel sheets, miniaturization and higher efficiency can be achieved. There is a possibility.

【0002】[0002]

【従来の技術】二方向性電磁鋼板は、磁気特性として励
磁特性と鉄損特性が要求される。励磁特性を表す指標と
しては、磁場の強さ800A/mにおける磁束密度:B
8 が通常使用される。また鉄損特性を表す指標として
は、周波数50Hzで1.7Tまで磁化した時の鋼板1
kgあたりの鉄損:W17/50 が用いられる。磁束密度:
B8 は鉄損特性の最大の支配因子であり、磁束密度:B
8 値が高いほど鉄損特性も良好になる。磁束密度:B8
を高めるためには結晶方位を高度に揃えることが重要で
ある。
2. Description of the Related Art A bidirectional electrical steel sheet is required to have an excitation property and an iron loss property as magnetic properties. As an index representing the excitation characteristic, a magnetic flux density at a magnetic field strength of 800 A / m: B
8 is usually used. As an index representing iron loss characteristics, the steel sheet 1 when magnetized to 1.7 T at a frequency of 50 Hz is used.
Iron loss per kg: W17 / 50 is used. Magnetic flux density:
B8 is the largest controlling factor of iron loss characteristics, and the magnetic flux density: B
8 The higher the value, the better the iron loss characteristics. Magnetic flux density: B8
In order to increase the crystallinity, it is important to make the crystal orientation highly uniform.

【0003】この二方向性電磁鋼板の製造方法として
は、主に次の二つの方法が開示されている。一つは、特
公昭37−7110号公報に開示されているように極性
ガス、例えば硫化水素を含む雰囲気中で高温焼鈍を行
い、表面エネルギ−を利用して{100}<001>方
位粒を優先的に成長させる方法である。しかしながらこ
の方法は鋼板の表面清浄度を高度に制御する必要がある
ために、大量生産プロセスとしては適していない。
The following two methods are mainly disclosed as a method for producing such a bidirectional magnetic steel sheet. One is to perform high temperature annealing in an atmosphere containing a polar gas, for example, hydrogen sulfide, as disclosed in Japanese Patent Publication No. 377-1110, and to form {100} <001> oriented grains using surface energy. It is a method of growing preferentially. However, this method is not suitable for a mass production process because the surface cleanliness of the steel sheet needs to be highly controlled.

【0004】他の一つは、特公昭35−2657号公報
に開示されているように、熱間圧延と同一方向に冷間圧
延を行った後、上記冷間圧延と交叉する方向に冷間圧延
を施し、その後短時間焼鈍と900〜1300℃の高温
焼鈍により{100}<001>方位粒を二次再結晶に
より優先的に成長させる、いわゆる「交叉冷間圧延法」
である。この二次再結晶を制御するためには、二次再結
晶前の一次再結晶組織の調整と、インヒビターとよばれ
る微細析出物の調整を行うことが必要である。これらの
一次再結晶組織の調整技術と、インヒビターとよばれる
微細析出物の調整技術に関して、{110}<001>
方位を発達させる一方向性電磁鋼板の製造技術について
は以下の知見がある。
As another method, as disclosed in Japanese Patent Publication No. 35-2657, after cold rolling is performed in the same direction as hot rolling, cold rolling is performed in a direction crossing the cold rolling. Rolling, then short-time annealing and high-temperature annealing at 900 to 1300 ° C, so that {100} <001> oriented grains are preferentially grown by secondary recrystallization, so-called “cross cold rolling method”.
It is. In order to control the secondary recrystallization, it is necessary to adjust the primary recrystallization structure before the secondary recrystallization and to adjust a fine precipitate called an inhibitor. Regarding the technique for adjusting the primary recrystallization structure and the technique for adjusting fine precipitates called inhibitors, {110} <001>
There is the following knowledge about the manufacturing technology of the grain-oriented electrical steel sheet that develops the orientation.

【0005】インヒビターは、一次再結晶組織のなかで
一般の方位粒の成長を抑制し、特定の方位粒のみを優先
成長させる機能を持つ。析出物として代表的なものとし
ては、M.F.Littmann(特公昭30−365
1号公報)及びJ.E.May&D.Turnbull
(Trans.Met.Soc.AIME212(19
58年)p769等はMnSを、田口ら(特公昭40−
15644号公報)はAlNを、今中ら(特公昭51−
13469号公報)はMnSeを提示している。これら
の析出物は、熱間圧延前のスラブ加熱時に完全固溶させ
た後に、熱間圧延及びその後の焼鈍工程で微細析出させ
る方法が基本的にとられている。これらの析出物を完全
固溶させるためには、1350〜1400℃以上の高温
で加熱する必要がある。
[0005] The inhibitor has the function of suppressing the growth of general orientation grains in the primary recrystallized structure and preferentially growing only specific orientation grains. As typical precipitates, M.P. F. Littmann (Japanese Patent Publication No. 30-365)
No. 1) and J.I. E. FIG. May & D. Turnbull
(Trans. Met. Soc. AIM 212 (19
(1983) p769 and others used MnS and Taguchi et al.
No. 15644) discloses AlN and Imanaka et al.
No. 13469) discloses MnSe. Basically, a method is employed in which these precipitates are completely dissolved in slab heating before hot rolling, and then finely precipitated in hot rolling and a subsequent annealing step. In order to completely dissolve these precipitates, it is necessary to heat at a high temperature of 1350 to 1400 ° C or more.

【0006】また近年、上記の高温スラブ加熱によらな
い低温スラブ加熱による製造方法として、小松ら(特公
昭62ー45285号公報)は窒化処理により(Al,
Si)Nをインヒビターとして用いる方法を開示してい
る。しかしながら、二次再結晶前の一次再結晶組織調整
に関する知見はあまり開示されておらず、本発明者らは
例えば特公平8−32929号公報、特開平9−256
051号公報等にその重要性を開示している。
In recent years, Komatsu et al. (Japanese Patent Publication No. 62-45285) discloses a method of manufacturing by low-temperature slab heating without heating by high-temperature slab heating.
A method using Si) N as an inhibitor is disclosed. However, knowledge on the adjustment of the primary recrystallized structure before the secondary recrystallization has not been disclosed much, and the present inventors have disclosed, for example, Japanese Patent Publication No. 8-32929 and Japanese Patent Application Laid-Open No. 9-256.
No. 051 discloses its importance.

【0007】一方、二方向性電磁鋼板の製造技術におい
てインヒビターとして田口らの開示した、AlNが{1
00}<001>方位粒を優先成長させるのに有効であ
ることが特公昭35−2657号公報に、またインヒビ
ターとして小松らの開示した、(Al,Si)Nが{1
00}<001>方位粒を優先成長させるのに有効であ
ることが特公平6−99752号公報に開示されている
が、二次再結晶前の一次再結晶粒組織調整に関する知見
は殆どない。
On the other hand, AlN disclosed by Taguchi et al. As an inhibitor in the manufacturing technology of a bidirectional magnetic steel sheet is $ 1.
Japanese Patent Publication No. 35-2657 discloses that it is effective to preferentially grow grains having a <001><001> orientation, and (Al, Si) N disclosed by Komatsu et al.
It is disclosed in Japanese Patent Publication No. Hei 6-99752 that it is effective for preferential growth of 00 ° <001> orientation grains, but there is almost no knowledge about adjustment of the primary recrystallized grain structure before secondary recrystallization.

【0008】上述のように、二方向性電磁鋼板は二つの
磁化容易軸を鋼板面内に配向させた理想的な材料である
にも関わらず、今日まで工業的に製造されていない。こ
れは上述の製造方法が工業的に行うことが困難であるの
に対し、期待されるほどの{100}<001>方位へ
の集積度が安定的に得られないことによる。
[0008] As described above, although the bidirectional electrical steel sheet is an ideal material having two easy axes oriented in the plane of the steel sheet, it has not been industrially manufactured to date. This is because the above-mentioned manufacturing method is difficult to perform industrially, but the expected degree of integration in the {100} <001> orientation cannot be obtained stably.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の「交
叉冷間圧延法」を基に{100}<001>方位を二次
再結晶により発達させる二方向性電磁鋼板の製造方法に
おいて、脱炭焼鈍後の粒組織を制御することにより、工
業的に安定して磁束密度の高い優れた磁気特性をもつ二
方向性電磁鋼板を製造する方法を開示するものである。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a bi-directional electrical steel sheet in which the {100} <001> orientation is developed by secondary recrystallization based on the above "cross cold rolling method". The present invention discloses a method for manufacturing a grain-oriented electrical steel sheet having high magnetic flux density and excellent magnetic properties by controlling the grain structure after decarburizing annealing.

【0010】[0010]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1)質量で、 Si:0.8〜6.7%、 C:0.085%以下、 酸可溶性Al:0.01〜0.048%、N:0.012%以下 を含み、残部Fe及び不可避的不純物からなる珪素鋼熱
延板を、圧下率40〜80%で熱間圧延と同一方向に冷
間圧延し、更に前記冷間圧延方向と交叉する方向に圧下
率30〜70%で冷間圧延し、次いで脱炭焼鈍後、焼鈍
分離剤を塗布して、二次再結晶と純化を目的とした仕上
げ焼鈍を施す二方向性電磁鋼板の製造方法において、脱
炭焼鈍後の結晶粒組織においてI[111] /I[211] の比
率を1以下にするとともに、鋼板の酸化層の酸素量を
2.3g/m2 以下にすることを特徴とする磁束密度の
高い二方向性電磁鋼板の製造方法。 (2)質量でSnを0.02〜0.2%を添加すること
を特徴とする前記(1)記載の磁束密度の高い二方向性
電磁鋼板の製造方法。 ここで、I[111] 及びI[211] は、X線回折測定により
板厚1/2層において測定された回折強度値を表してお
り、それぞれ{111}及び{211}面が板面に平行
である粒の割合を評価したものである。
The gist of the present invention is as follows. (1) Mass: Si: 0.8 to 6.7%, C: 0.085% or less, Acid-soluble Al: 0.01 to 0.048%, N: 0.012% or less, balance Fe And a hot rolled silicon steel sheet comprising unavoidable impurities is cold rolled in the same direction as hot rolling at a rolling reduction of 40 to 80%, and further, at a rolling reduction of 30 to 70% in a direction crossing the cold rolling direction. Cold rolling, then after decarburizing annealing, in the method of manufacturing a bidirectional electrical steel sheet to apply an annealing separator, and to perform finish annealing for the purpose of secondary recrystallization and purification, the crystal grains after decarburizing annealing A two-way electromagnetic having a high magnetic flux density, wherein the ratio of I [111] / I [211] is set to 1 or less in the structure and the oxygen content of the oxide layer of the steel sheet is set to 2.3 g / m 2 or less. Steel plate manufacturing method. (2) The method for producing a bidirectional electrical steel sheet having a high magnetic flux density according to the above (1), wherein 0.02 to 0.2% of Sn is added by mass. Here, I [111] and I [211] represent the diffraction intensity values measured at a plate thickness of 1/2 layer by X-ray diffraction measurement, and the {111} and {211} planes respectively correspond to the plate surface. The ratio of grains that are parallel is evaluated.

【0011】以下、実験結果をもとに説明する。本発明
者らは、「交叉冷間圧延法」を基に{100}<001
>(Cube)方位を二次再結晶により発達させる二方
向性電磁鋼板の製造方法において、その{100}<0
01>方位への集積度を劣化させる大きな要因は、Cu
be方位とともに、二次再結晶組織の副方位として発達
する{110}<001>や{110}<110>等
の、いわゆるGoss方位系が原因であること、またこ
れらの方位がそれぞれ鋼板の板厚中央部及び板厚表面部
から発達することを示した(例えば特公平7−3354
6号公報)。
Hereinafter, description will be made based on the experimental results. The present inventors have made {100} <001 based on the “cross cold rolling method”.
> (Cube) orientation by secondary recrystallization, a method for producing a bidirectional electrical steel sheet, wherein {100} <0
The major factor that deteriorates the degree of integration in the <01> orientation is Cu
The so-called Goss orientation system, such as {110} <001> or {110} <110>, which develops as a secondary orientation of the secondary recrystallized structure together with the be orientation, is caused by these orientations. It was shown to develop from the thick central part and the thick surface part (for example, Japanese Patent Publication No. 7-3354).
No. 6).

【0012】これらのCube方位及びGoss系方位
が二次再結晶方位として優先的に発達するには、マトリ
ックス粒の集合組織が大きな影響を持つことを見いだし
た。Cube方位に対しては、対応方位関係にある{6
32}方位がCube方位を発達させるために重要であ
る。
[0012] It has been found that the texture of matrix grains has a great effect on the preferential development of the Cube orientation and the Goss system orientation as secondary recrystallization orientations. For the Cube orientation, there is a corresponding orientation relationship of # 6
The 32 ° orientation is important for developing the Cube orientation.

【0013】交叉冷間圧延法で作製した一次再結晶マト
リックスの集合組織は、{632}近傍方位である{2
11}〜{311}〜{310}方位においてピ−クを
持つので、実質的にはこのピ−クの制御が重要となる。
このピ−ク値の代表値として{211},{311},
{310}等の測定値、またはこれらの複数の測定値の
合計値等をもちいて評価することができる。ここではC
ube方位の二次再結晶粒を成長させるマトリックスと
して、X線回折測定により測定された{211}回折強
度値(I[211] )を用いて評価を行った。また、Gos
s系方位に対しては、マトリックスの{111}方位粒
を蚕食して成長するものと考えられるので、X線回折測
定により測定された{111}回折強度値(I[111] )
を用いて評価を行った。測定はCube方位が発達する
板厚中央部(板厚1/2厚位置)で行った。
[0013] The texture of the primary recrystallized matrix produced by the cross cold rolling method is {2} near {632}.
Since there are peaks in the directions from 11 ° to {311} to {310}, control of these peaks is substantially important.
As typical values of the peak values, {211}, {311},
The evaluation can be performed using a measured value such as {310} or a total value of the plurality of measured values. Here C
Evaluation was performed using a {211} diffraction intensity value (I [211]) measured by X-ray diffraction measurement as a matrix for growing secondary recrystallized grains having a ube orientation. Also, Gos
For the s-system orientation, it is considered that the grains grow by eating the grains of the {111} orientation in the matrix, so the {111} diffraction intensity value (I [111]) measured by X-ray diffraction measurement
The evaluation was performed using. The measurement was performed at the center of the sheet thickness where the Cube orientation developed (the sheet thickness 1/2 thickness position).

【0014】脱炭焼鈍工程におけるこれらの一次再結晶
集合組織の発達挙動を詳細に研究した結果、一次再結晶
集合組織を制御する方法としては、例えば脱炭焼鈍工程
の加熱速度、均熱温度、均熱時間等の脱炭焼鈍の焼鈍サ
イクル条件を調整することにより制御可能であることを
解明した。また、その際に一次再結晶集合組織を制御す
ると同時に、鋼板の酸素量が2.3g/m2 以下となる
ように雰囲気ガスの酸化度(P H2 O /P H2 )及び焼
鈍時間を制御することが、AlNまたは(Al,Si)
Nインヒビターを活用するうえで重要であることを見い
だした。
As a result of a detailed study of the development behavior of these primary recrystallization textures in the decarburization annealing step, methods for controlling the primary recrystallization texture include, for example, the heating rate, soaking temperature, It has been clarified that it can be controlled by adjusting the annealing cycle conditions of decarburization annealing such as soaking time. At the same time, while controlling the primary recrystallization texture, the oxidation degree (P H 2 O / P H 2 ) and the annealing time of the atmosphere gas were adjusted so that the oxygen content of the steel sheet was 2.3 g / m 2 or less. Controlling can be achieved with AlN or (Al, Si)
It was found to be important in utilizing N inhibitors.

【0015】図1は製品の磁束密度:B8 に及ぼす一次
再結晶集合組織(I[111] /I[211] )と鋼板酸素量の
影響を示したものである。ここでは、Si:3.2%、
C:0.05%、酸可溶性Al:0.027%、N:
0.008%、Mn:0.1%、S:0.007%、含
有する珪素鋼スラブを1150℃に加熱し、熱間圧延に
より1.8mm厚とした。この熱間圧延板を1100℃
で焼鈍し、熱間圧延と同じ方向に0.81mmまで冷間
圧延し、次いでこの冷間圧延方向と直交する方向に最終
板厚0.39mmまで冷間圧延した。その後、加熱速度
5℃/秒〜100℃/秒の範囲で810℃まで加熱した
後に室温まで冷却した。
FIG. 1 shows the influence of the primary recrystallization texture (I [111] / I [211]) and the oxygen content of the steel sheet on the magnetic flux density B8 of the product. Here, Si: 3.2%,
C: 0.05%, acid-soluble Al: 0.027%, N:
A silicon steel slab containing 0.008%, Mn: 0.1%, and S: 0.007% was heated to 1150 ° C. and hot-rolled to a thickness of 1.8 mm. This hot-rolled sheet is heated to 1100 ° C
And cold-rolled to 0.81 mm in the same direction as hot rolling, and then cold-rolled to a final thickness of 0.39 mm in a direction orthogonal to the cold rolling direction. Then, after heating to 810 ° C at a heating rate of 5 ° C / sec to 100 ° C / sec, it was cooled to room temperature.

【0016】次に加熱速度15℃/秒で加熱し、810
℃〜850℃で2分間、酸化度(PH2 O /P H2 )が
0.33〜0.70の範囲の雰囲気ガスで90秒焼鈍し
た後、アンモニア含有雰囲気中で750℃で30秒焼鈍
し、鋼板中の窒素量を0.02%とした。次いでMgO
を主成分とする焼鈍分離剤を塗布した後、1200℃で
20時間仕上げ焼鈍を施した。その結果、図1に示すよ
うに、鋼板の酸素量が2.3g/m2 以下の場合に二次
再結晶組織は安定に発達し、一次再結晶集合組織として
I[111] /I[211] の比率が1以下で磁束密度:B8 が
1.90T以上の製品を安定して製造できることが分か
った。
Next, heating is performed at a heating rate of 15 ° C./sec.
After annealing at 90 ° C. to 850 ° C. for 2 minutes with an atmosphere gas having an oxidation degree (PH 2 O / P H 2 ) in the range of 0.33 to 0.70, annealing at 750 ° C. for 30 seconds in an ammonia-containing atmosphere. Then, the amount of nitrogen in the steel sheet was set to 0.02%. Then MgO
After applying an annealing separating agent containing as a main component, finish annealing was performed at 1200 ° C. for 20 hours. As a result, as shown in FIG. 1, when the oxygen content of the steel sheet is 2.3 g / m 2 or less, the secondary recrystallized structure develops stably, and I [111] / I [211 ) And a magnetic flux density B8 of 1.90 T or more can be stably manufactured.

【0017】本発明者等は脱炭焼鈍の加熱速度を高めた
場合、また雰囲気露点を高めた場合に、一部の試料で二
次再結晶が不安定になることを見いだし、その原因を追
求するために、詳細な調査を行った。その結果、まず加
熱速度を高めた場合には、加熱時間と均熱時間の両方を
合わせた在炉時間が短いにもかかわらず、脱炭焼鈍後の
鋼板の表面酸化量が多くなることが分かった。これは、
加熱速度により鋼板の加熱過程における初期酸化状態が
変化して、その後の均熱過程における酸化挙動に影響を
与えたものと考えられる。また、雰囲気ガスの酸化度を
高めた場合も表面酸化量が多くなる。
The present inventors have found that when the heating rate of the decarburizing annealing is increased or the dew point of the atmosphere is increased, the secondary recrystallization becomes unstable in some of the samples, and the cause is investigated. In order to do so, a detailed survey was conducted. As a result, it was found that when the heating rate was first increased, the amount of surface oxidation of the steel sheet after decarburizing annealing increased, despite the short oven time combining the heating time and soaking time. Was. this is,
It is considered that the initial oxidation state in the heating process of the steel sheet changed depending on the heating rate, which affected the oxidation behavior in the subsequent soaking process. Also, when the degree of oxidation of the atmosphere gas is increased, the amount of surface oxidation increases.

【0018】この表面酸化層の二次再結晶に及ぼす影響
を調べたところ、多量の表面酸化物が形成された場合に
は、仕上げ焼鈍の二次再結晶温度域において(Al,S
i)Nインヒビターが急速に分解して、二次再結晶が不
安定になってしまうことが解明された。表面酸化物が多
量に形成された場合に(Al,Si)Nインヒビターの
分解速度が速まるのは、表面酸化層の改質による脱N促
進、ないしは表面酸化物によるAlの酸化が促進される
ためであると推定される。二次再結晶が不安定になる原
因は一次再結晶組織の影響ではなく、インヒビターの影
響である。従って、脱炭焼鈍の均熱帯の温度と雰囲気ガ
スの酸化度を管理して、一次再結晶粒組織の調整と併せ
て、表面酸化層の酸素量を2.3g/m2 以下の範囲に
限定することにより、(Al,Si)Nインヒビターの
分解を抑制して、二次再結晶を安定させることができた
ものと推定される。
The effect of this surface oxide layer on secondary recrystallization was examined. When a large amount of surface oxide was formed, (Al, S) was found in the secondary recrystallization temperature range of the finish annealing.
i) It was elucidated that the N inhibitor rapidly decomposed and the secondary recrystallization became unstable. When a large amount of surface oxide is formed, the decomposition rate of the (Al, Si) N inhibitor is increased because the removal of N by the modification of the surface oxide layer or the oxidation of Al by the surface oxide is promoted. Is estimated. The cause of the instability of the secondary recrystallization is not the influence of the primary recrystallization structure but the effect of the inhibitor. Therefore, by controlling the temperature in the tropical zone and the degree of oxidation of the atmosphere gas during the decarburization annealing, and adjusting the primary recrystallized grain structure, the oxygen content of the surface oxide layer is limited to a range of 2.3 g / m 2 or less. It is presumed that by doing so, the decomposition of the (Al, Si) N inhibitor was suppressed, and the secondary recrystallization was stabilized.

【0019】[0019]

【発明の実施の形態】次に、本発明の実施形態を述べ
る。本発明鋼の成分としては、Si:0.8〜6.7
%、C:0.085%以下、酸可溶性Al:0.01〜
0.048%、N:0.012%以下が必要である。S
iは、添加量を多くすると電気抵抗が高くなり、鉄損特
性が改善される。しかしながら、4.8%を超えると圧
延時に割れが発生しやすくなり冷間圧延が困難になる
が、温間圧延により圧延可能であるので、軟磁気特性の
改善に有効な6.7%を上限とする。また、0.8%よ
り少ないと、仕上げ焼鈍時にγ変態が生じ結晶方位が損
なわれてしまう。
Next, an embodiment of the present invention will be described. As the components of the steel of the present invention, Si: 0.8 to 6.7
%, C: 0.085% or less, acid-soluble Al: 0.01 to
0.048%, N: 0.012% or less is required. S
As for i, when the amount of addition is increased, the electric resistance increases and the iron loss characteristics are improved. However, if it exceeds 4.8%, cracks are likely to occur during rolling and cold rolling becomes difficult. However, since rolling can be performed by warm rolling, the upper limit is 6.7% which is effective in improving soft magnetic properties. And On the other hand, if it is less than 0.8%, γ transformation occurs at the time of finish annealing, and the crystal orientation is impaired.

【0020】Cは、一次再結晶組織を制御するうえで有
効な元素であるが、磁気特性に悪影響を及ぼすので仕上
げ焼鈍前に脱炭する必要がある。Cが0.085%より
多いと脱炭焼鈍時間が長くなり生産性が損なわれてしま
う。
C is an element effective in controlling the primary recrystallization structure, but has an adverse effect on the magnetic properties, so that it is necessary to decarbonize before the final annealing. If C is more than 0.085%, the decarburization annealing time will be long and productivity will be impaired.

【0021】酸可溶性Alは、本発明においてNと結合
してAlNもしくは(Al,Si)Nとしてインヒビタ
ーとしての機能をはたすために必須の元素である。二次
再結晶が安定する0.01〜0.048%を限定範囲と
する。
In the present invention, acid-soluble Al is an essential element for bonding with N to function as AlN or (Al, Si) N as an inhibitor. The limited range is 0.01 to 0.048% at which the secondary recrystallization is stabilized.

【0022】Nは、0.012%を超えると冷延時にブ
リスターとよばれる鋼板中の空孔を生じる。この他、一
方向性電磁鋼板の製造において有効なインヒビターであ
るMnS,MnSe,Cu2 S等を併用して、公知の範
囲で添加して活用することも二次再結晶を安定化させる
うえで有効である。
If N exceeds 0.012%, pores in a steel sheet called blisters are generated during cold rolling. In addition, MnS, MnSe, Cu 2 S and the like, which are effective inhibitors in the production of a grain-oriented electrical steel sheet, may be used in combination in a known range and used to stabilize the secondary recrystallization. It is valid.

【0023】またSnは、上記の脱炭焼鈍後の{11
1}及び{411}等の集合組織を改善し、磁束密度の
高い製品を安定して製造するのに有効な元素である。後
述の実施例5に示すように、Snは0.02〜0.2%
添加することが望ましい。この下限値未満では集合組織
改善効果が少なく、実質的な磁束密度向上効果が得られ
ない。またこの上限値を超えると鋼板中への窒化が難し
くなり、二次再結晶が不安定になる場合を生じる。
Further, Sn is the value of # 11 after the above decarburization annealing.
It is an element effective for improving the texture such as 1} and {411} and stably producing a product having a high magnetic flux density. As shown in Example 5 described later, Sn is 0.02 to 0.2%.
It is desirable to add. Below this lower limit, the texture improving effect is small, and a substantial magnetic flux density improving effect cannot be obtained. If the upper limit is exceeded, nitriding into the steel sheet becomes difficult, and secondary recrystallization may become unstable.

【0024】その他、微量のCu,Sb,Mo,Bi,
Ti等を鋼中に含有することは、本発明の主旨を損なう
ものではない。
In addition, trace amounts of Cu, Sb, Mo, Bi,
The inclusion of Ti or the like in steel does not impair the gist of the present invention.

【0025】上記の珪素鋼スラブは転炉、または電気炉
等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処
理し、次いで連続鋳造もしくは造塊後分塊圧延すること
によって得られる。その後、熱間圧延に先だってスラブ
加熱がなされる。スラブ加熱に関しては、田口ら(特公
昭40−15644号公報)の製造方法のように、13
50〜1400℃以上の温度で加熱してAlN等のイン
ヒビターを固溶させ、熱間圧延時またはその後の焼鈍の
冷却時に微細析出させる方法、または小松ら(特公昭6
2−45285号公報)の製造方法のように、スラブ加
熱温度は1280℃以下とし、その後の工程における窒
化処理により析出する(Al,Si)Nをインヒビター
として用いる方法の、いずれを用いても良い。
The above-mentioned silicon steel slab is obtained by smelting steel in a converter or an electric furnace, subjecting the molten steel to vacuum degassing if necessary, and then subjecting the steel to continuous casting or ingot casting followed by slab rolling. . Thereafter, slab heating is performed prior to hot rolling. Regarding slab heating, as in the production method of Taguchi et al. (Japanese Patent Publication No. 40-15644), 13
A method in which an inhibitor such as AlN is dissolved in a solid solution by heating at a temperature of 50 to 1400 ° C. or higher and finely precipitated during hot rolling or subsequent cooling of annealing, or Komatsu et al.
As disclosed in Japanese Patent Application Laid-Open No. 2-45285, any of the methods using a slab heating temperature of 1280 ° C. or lower and using (Al, Si) N precipitated by nitriding treatment in a subsequent step as an inhibitor may be used. .

【0026】上記の熱間圧延板は、通常、磁気特性を高
めるために900〜1200℃で30秒〜30分間の短
時間焼鈍を施す。その後、一回もしくは焼鈍を挟んだ二
回以上に冷間圧延により最終板厚とする。望む製品の特
性レベルとコストを勘案して採否を決めるとよい。その
後、圧下率40〜80%で熱間圧延と同一方向に圧延
し、更に前記冷間圧延方向と交叉する方向に圧下率30
〜70%で冷間圧延する。
The above-mentioned hot-rolled sheet is usually subjected to short-time annealing at 900 to 1200 ° C. for 30 seconds to 30 minutes in order to enhance magnetic properties. Thereafter, cold rolling is performed once or twice or more after annealing to obtain a final thickness. It is advisable to decide whether or not to take into account the desired product characteristic level and cost. Thereafter, rolling is performed in the same direction as the hot rolling at a rolling reduction of 40 to 80%, and a rolling reduction of 30 in the direction crossing the cold rolling direction.
Cold roll at ~ 70%.

【0027】冷間圧延後の鋼板は、鋼中に含まれるCを
除去するために湿潤雰囲気中で脱炭焼鈍を施す。その
際、脱炭焼鈍後の粒組織においてI[111] /I[211] の
比率を1以下に、鋼板の酸化層の酸素量を2.3g/m
2 以下に調整することにより、高い磁束密度の製品を安
定して製造することができる。この脱炭焼鈍後の一次再
結晶集合組織を制御する方法としては、例えば脱炭焼鈍
工程の加熱速度、均熱温度、均熱時間等の脱炭焼鈍の焼
鈍サイクル条件を調整することにより制御される。その
際に一次再結晶集合組織を制御すると同時に、鋼板の酸
素量が2.3g/m2 以下となるように雰囲気ガスの酸
化度(P H2 O/P H2 )及び焼鈍時間を制御すること
が、本発明のポイントである。
The steel sheet after cold rolling is subjected to decarburizing annealing in a humid atmosphere in order to remove C contained in the steel. At this time, the ratio of I [111] / I [211] in the grain structure after decarburizing annealing was set to 1 or less, and the oxygen content of the oxide layer of the steel sheet was set to 2.3 g / m 2.
By adjusting the value to 2 or less, a product having a high magnetic flux density can be stably manufactured. As a method of controlling the primary recrystallization texture after this decarburization annealing, for example, it is controlled by adjusting the annealing cycle conditions of the decarburization annealing such as the heating rate in the decarburization annealing step, the soaking temperature, and the soaking time. You. At this time, while controlling the primary recrystallization texture, the oxidation degree (P H 2 O / P H 2 ) and the annealing time of the atmosphere gas are controlled so that the oxygen content of the steel sheet is 2.3 g / m 2 or less. That is the point of the present invention.

【0028】脱炭焼鈍の加熱速度は、一次再結晶集合組
織({111},{211})を制御する大きな因子で
あり、15℃/秒程度以上が好適である。この加熱速度
で加熱する必要がある温度域は、少なくとも600℃か
ら750〜900℃までの温度域である。600℃以上
では一次再結晶が開始し集合組織が変化し始めるので、
600℃以下の温度から所定の加熱速度で加熱を行う必
要がある。また、上限温度が750℃未満で効果が発揮
されないのは、750℃未満では一次再結晶が完了して
おらず、所望の一次再結晶集合組織を得るためには再結
晶を完了させる必要があるためである。また、900℃
超の温度まで加熱すると、試料の一部に変態組織が生
じ、その後の脱炭焼鈍完了時点での組織が混粒組織にな
るためであると考えられる。
The heating rate of the decarburizing annealing is a large factor for controlling the primary recrystallization texture ({111}, {211}), and is preferably about 15 ° C./sec or more. The temperature range that needs to be heated at this heating rate is a temperature range of at least 600 ° C to 750 to 900 ° C. At 600 ° C or higher, primary recrystallization starts and the texture starts to change.
It is necessary to perform heating at a predetermined heating rate from a temperature of 600 ° C. or less. The reason why the effect is not exhibited when the upper limit temperature is less than 750 ° C. is that primary recrystallization is not completed below 750 ° C., and it is necessary to complete recrystallization in order to obtain a desired primary recrystallization texture. That's why. 900 ° C
It is considered that when the sample was heated to an excessive temperature, a transformed structure was generated in a part of the sample, and the structure at the time of completion of the subsequent decarburization annealing became a mixed grain structure.

【0029】上記の脱炭焼鈍の加熱速度を制御する方法
は特に限定するものではなく、100℃/秒程度以下の
加熱速度に対しては、従来の通常輻射熱を利用したラジ
アントチューブ等による脱炭焼鈍設備を改造した設備、
また100℃/秒以上の加熱速度に対しては、新たなレ
ーザー、プラズマ等の高エネルギー熱源を利用する方
法、誘導加熱、通電加熱装置等を適用することが有効で
ある。また、従来の通常輻射熱を利用したラジアントチ
ューブ等による脱炭焼鈍設備に新たなレーザー、プラズ
マ等の高エネルギー熱源を利用する方法、誘導加熱、通
電加熱装置等を適用する方法等を組み合わせることも可
能である。
The method of controlling the heating rate of the decarburization annealing is not particularly limited. For a heating rate of about 100 ° C./sec or less, a conventional decarburization method using a radiant tube or the like using radiant heat is used. Equipment converted from annealing equipment,
For a heating rate of 100 ° C./sec or more, it is effective to apply a new method using a high-energy heat source such as laser or plasma, an induction heating, an electric heating device, or the like. In addition, it is also possible to combine a method using a new energy source such as a new laser or plasma, a method using an induction heating, a current heating device, etc., to the conventional decarburization annealing equipment using a radiant tube using normal radiant heat. It is.

【0030】均熱温度に関しては、通常は770〜90
0℃の範囲で行う。集合組織の制御の観点からは、例え
ば特公平8−32929号公報に開示されるように粒組
織の分布が不均一にならない温度範囲では、高温で焼鈍
して粒成長させることが好ましい。また、均熱の前段で
脱炭した後に、粒調整のために均熱の後段の温度を高め
ることも有効である。昇温段階での加熱速度を高めた場
合には均熱時の酸化が促進されるので、酸素量を一定の
範囲内に管理するためには雰囲気酸化度、または均熱時
間を制御する必要がある。
As for the soaking temperature, it is usually 770-90.
Perform at 0 ° C. From the viewpoint of controlling the texture, for example, as disclosed in Japanese Patent Publication No. 8-32929, in a temperature range in which the distribution of the grain structure does not become non-uniform, it is preferable to perform the grain growth by annealing at a high temperature. It is also effective to increase the temperature after the soaking for the purpose of grain adjustment after decarburizing before the soaking. If the heating rate in the heating stage is increased, oxidation during soaking is promoted, so it is necessary to control the degree of atmospheric oxidation or soaking time to control the oxygen content within a certain range. is there.

【0031】窒化処理としては、アンモニア等の窒化能
のあるガスを含有する雰囲気中で焼鈍する方法、MnN
等の窒化能のある粉末を焼鈍分離剤中に添加すること等
により仕上げ焼鈍中に行う方法等がある。その後、マグ
ネシアを主成分とする焼鈍分離剤を塗布した後に、仕上
げ焼鈍を行い、{100}<001>方位粒を二次再結
晶により優先成長させる。その場合、特公平8−329
29号公報に開示する方法で二次再結晶と純化を分離し
て二次再結晶温度を制御することは、製品の磁束密度を
高めるうえで有効である。
As the nitriding treatment, a method of annealing in an atmosphere containing a gas having a nitriding ability such as ammonia, MnN
And the like, for example, by adding a powder having a nitriding ability to the annealing separator during the final annealing. Then, after applying an annealing separator containing magnesia as a main component, finish annealing is performed, and {100} <001> oriented grains are preferentially grown by secondary recrystallization. In that case, Tokuhei 8-329
Controlling the secondary recrystallization temperature by separating the secondary recrystallization and purification by the method disclosed in Japanese Patent No. 29 is effective in increasing the magnetic flux density of the product.

【0032】[0032]

【実施例】[実施例1]Si:3.2%、C:0.05
%、酸可溶性Al:0.027%、N:0.008%、
Mn:0.1%、S:0.007%を含有する珪素鋼ス
ラブを1150℃加熱し、板厚1.8mmに熱間圧延し
た。この熱間圧延板を1100℃で焼鈍し、熱間圧延と
同じ方向に0.81mmまで冷間圧延し、次いでこの冷
間圧延方向と直交する方向に最終板厚0.39mmまで
冷間圧延した。その後、加熱速度15℃/秒で810℃
まで加熱した後、810℃で150〜600秒間、雰囲
気酸化度0.52で脱炭焼鈍した。その後、750℃で
30秒間アンモニア含有雰囲気中で焼鈍し、鋼板中の窒
素量を0.019%とした。MgOを主成分とする焼鈍
分離剤を塗布した後、1200℃で20時間仕上げ焼鈍
を施した。製品の特性値を表1に示す。鋼板の酸素量が
2.35g/m2 と多くなった場合には、磁気特性が劣
化していることが分かる。
[Example 1] Si: 3.2%, C: 0.05
%, Acid-soluble Al: 0.027%, N: 0.008%,
A silicon steel slab containing Mn: 0.1% and S: 0.007% was heated at 1150 ° C. and hot-rolled to a sheet thickness of 1.8 mm. The hot-rolled sheet was annealed at 1100 ° C., cold-rolled to 0.81 mm in the same direction as the hot-rolling, and then cold-rolled to a final sheet thickness of 0.39 mm in a direction perpendicular to the cold-rolling direction. . Thereafter, at a heating rate of 15 ° C./sec, 810 ° C.
After heating to 810 ° C., decarburization annealing was performed at an atmosphere oxidation degree of 0.52 at 810 ° C. for 150 to 600 seconds. Thereafter, the steel sheet was annealed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere to reduce the amount of nitrogen in the steel sheet to 0.019%. After applying an annealing separator containing MgO as a main component, finish annealing was performed at 1200 ° C. for 20 hours. Table 1 shows the characteristic values of the products. It can be seen that when the oxygen content of the steel sheet increased to 2.35 g / m 2 , the magnetic properties were deteriorated.

【0033】[0033]

【表1】 [Table 1]

【0034】[実施例2]実施例1で用いた冷延板を、
酸化度0.033の窒素と水素の混合ガス中において、
加熱速度(1)3℃/秒、(2)20℃/秒、(3)1
00℃/秒で810℃まで加熱し、810℃で150秒
焼鈍し一次再結晶させた。その後、750℃で30秒間
アンモニア含有雰囲気中で焼鈍し、アンモニア含有量を
変えることにより鋼板中の窒素量を0.021%とし
た。これらの鋼板にマグネシアを主成分とする焼鈍分離
剤を塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は1
200℃まではN2 :25%+H2 :75%の雰囲気ガ
ス中で15℃/hrの加熱速度で行い、1200℃でH
2 100%に切りかえ20時間焼鈍を行った。表2に示
すように、加熱速度を高めるほどI[111] /I[211] が
小さくなり、磁束密度は高くなることが分かる。
Example 2 The cold-rolled sheet used in Example 1 was
In a mixed gas of nitrogen and hydrogen having an oxidation degree of 0.033,
Heating rate (1) 3 ° C / sec, (2) 20 ° C / sec, (3) 1
It was heated to 810 ° C. at a rate of 00 ° C./sec, and was annealed at 810 ° C. for 150 seconds for primary recrystallization. Thereafter, the steel sheet was annealed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere, and the amount of nitrogen in the steel sheet was reduced to 0.021% by changing the ammonia content. After applying an annealing separator containing magnesia as a main component to these steel sheets, finish annealing was performed. Finish annealing is 1
Up to 200 ° C., at a heating rate of 15 ° C./hr in an atmosphere gas of N 2 : 25% + H 2 : 75%,
2 Switching to 100% and annealing for 20 hours. As shown in Table 2, it can be seen that as the heating rate increases, I [111] / I [211] decreases and the magnetic flux density increases.

【0035】[0035]

【表2】 [Table 2]

【0036】[実施例3]実施例1で用いた冷延板を、
酸化度0.033の窒素と水素の混合ガス中において、
加熱速度20℃/秒で770℃〜850℃まで加熱し、
各温度で210秒焼鈍し一次再結晶させた。その後、7
50℃で30秒間アンモニア含有雰囲気中で焼鈍し、鋼
板中の窒素量を0.020%とした。これらの鋼板にマ
グネシアを主成分とする焼鈍分離剤を塗布した後、仕上
げ焼鈍を施した。仕上げ焼鈍は1200℃まではN2
25%+H2 :75%の雰囲気ガス中で15℃/hrの
加熱速度で行い、1200℃でH2 100%に切りかえ
20時間焼鈍を行った。表3に示すように、均熱温度を
高めるほどI[111] /I[211] が小さくなり、磁束密度
は高くなることが分かる。
Example 3 The cold rolled sheet used in Example 1 was
In a mixed gas of nitrogen and hydrogen having an oxidation degree of 0.033,
Heating to 770 ° C to 850 ° C at a heating rate of 20 ° C / sec,
Annealing was performed for 210 seconds at each temperature to perform primary recrystallization. Then 7
Annealing was performed at 50 ° C. for 30 seconds in an ammonia-containing atmosphere to reduce the amount of nitrogen in the steel sheet to 0.020%. After applying an annealing separator containing magnesia as a main component to these steel sheets, finish annealing was performed. Finish annealing is N 2 up to 1200 ° C:
The heating was performed at a heating rate of 15 ° C./hr in an atmosphere gas of 25% + H 2 : 75%, and switching to H 2 100% was performed at 1200 ° C. for 20 hours. As shown in Table 3, as the soaking temperature increases, I [111] / I [211] decreases and the magnetic flux density increases.

【0037】[0037]

【表3】 [Table 3]

【0038】[実施例4]Si:3.1%、C:0.0
7%、酸可溶性Al:0.027%、N:0.007
%、Mn:0.07%、S:0.025%、Cu:0.
07%、Sn:0.1%含有する珪素鋼スラブを135
0℃加熱し、板厚2.3mmに熱間圧延した。この熱間
圧延板を1100℃で焼鈍し、熱間圧延と同じ方向に
1.1mmまで冷間圧延し、次いでこの冷間圧延方向と
直交する方向に最終板厚0.5mmまで冷間圧延した。
その後、加熱速度3℃/秒〜100℃/秒で830℃ま
で加熱した後、830℃で210秒間、雰囲気酸化度
0.59で脱炭焼鈍した。鋼板酸素量はいずれの試料も
2.3g/mm2 以下であった。その後、マグネシアを
主成分とする焼鈍分離剤を塗布した後、1200℃で2
0時間仕上げ焼鈍を施した。表4に示すように、加熱速
度を高めるほどI[111] /I[211] が小さくなり、磁束
密度は高くなることが分かる。
Example 4 Si: 3.1%, C: 0.0
7%, acid-soluble Al: 0.027%, N: 0.007
%, Mn: 0.07%, S: 0.025%, Cu: 0.
135% silicon steel slab containing 0.7% Sn and 0.1% Sn
The sheet was heated at 0 ° C. and hot-rolled to a thickness of 2.3 mm. This hot-rolled sheet was annealed at 1100 ° C., cold-rolled to 1.1 mm in the same direction as the hot-rolling, and then cold-rolled to a final thickness of 0.5 mm in a direction orthogonal to the cold-rolling direction. .
Then, after heating to 830 ° C. at a heating rate of 3 ° C./sec to 100 ° C./sec, decarburizing annealing was performed at 830 ° C. for 210 seconds at an atmospheric oxidation degree of 0.59. The oxygen content of each steel sheet was 2.3 g / mm 2 or less for each sample. After that, an annealing separator containing magnesia as a main component was applied,
Finish annealing was performed for 0 hours. As shown in Table 4, as the heating rate increases, I [111] / I [211] decreases and the magnetic flux density increases.

【0039】[0039]

【表4】 [Table 4]

【0040】[実施例5]Si:3.1%、C:0.0
7%、酸可溶性Al:0.027%、N:0.007
%、Mn:0.07%、S:0.025%、Cu:0.
07%、Sn:0%〜0.3%含有する珪素鋼スラブを
1350℃加熱し、板厚2.3mmに熱間圧延した。こ
の熱間圧延板を1100℃で焼鈍し、熱間圧延と同じ方
向に1.1mmまで冷間圧延し、次いでこの冷間圧延方
向と直交する方向に最終板厚0.5mmまで冷間圧延し
た。その後、加熱速度3℃/秒〜100℃/秒で830
℃まで加熱した後、830℃で210秒間、雰囲気酸化
度0.59で脱炭焼鈍した。鋼板酸素量はいずれの試料
も2.3g/mm2 以下であった。その後、マグネシア
を主成分とする焼鈍分離剤を塗布した後、1200℃で
20時間仕上げ焼鈍を施した。表5に示すように、Sn
を好ましくは0.02〜0.2%添加することにより、
I[111] /I[211] が小さくなり、磁束密度は高くなる
ことが分かる。
Example 5 Si: 3.1%, C: 0.0
7%, acid-soluble Al: 0.027%, N: 0.007
%, Mn: 0.07%, S: 0.025%, Cu: 0.
A silicon steel slab containing 07% and Sn: 0% to 0.3% was heated at 1350 ° C. and hot-rolled to a thickness of 2.3 mm. This hot-rolled sheet was annealed at 1100 ° C., cold-rolled to 1.1 mm in the same direction as the hot-rolling, and then cold-rolled to a final thickness of 0.5 mm in a direction orthogonal to the cold-rolling direction. . Thereafter, 830 at a heating rate of 3 ° C./sec to 100 ° C./sec.
After heating to ℃, decarburization annealing was performed at 830 ° C. for 210 seconds at an atmospheric oxidation degree of 0.59. The oxygen content of each steel sheet was 2.3 g / mm 2 or less for each sample. Thereafter, an annealing separator containing magnesia as a main component was applied, followed by finish annealing at 1200 ° C. for 20 hours. As shown in Table 5, Sn
By adding preferably 0.02 to 0.2%
It can be seen that I [111] / I [211] decreases and the magnetic flux density increases.

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【発明の効果】本発明により、一次再結晶組織、表面酸
化層を規定することにより、磁束密度の高い優れた磁気
特性をもつ二方向性電磁鋼板を工業的に安定して製造す
ることができる。
According to the present invention, by defining the primary recrystallization structure and the surface oxide layer, it is possible to industrially stably produce a bidirectional electrical steel sheet having a high magnetic flux density and excellent magnetic properties. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】製品の磁束密度(B8 )に及ぼす脱炭焼鈍板の
集合組織(I[111] /I[211]比率)と脱炭焼鈍板の酸
素量の影響を示した図である。
FIG. 1 is a graph showing the influence of the texture (I [111] / I [211] ratio) of the decarburized annealed sheet and the oxygen content of the decarburized annealed sheet on the magnetic flux density (B8) of the product.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/06 C22C 38/06 (72)発明者 佐々木 行雄 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4E002 AA07 BC06 BC07 CB01 4K033 AA03 BA01 CA02 CA09 DA02 HA00 LA00 MA00 NA00 RA04 SA02 SA03 TA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/06 C22C 38/06 (72) Inventor Yukio Sasaki 20-1 Shintomi, Futtsu Nippon Steel Corporation F-term in the Technology Development Division (reference) 4E002 AA07 BC06 BC07 CB01 4K033 AA03 BA01 CA02 CA09 DA02 HA00 LA00 MA00 NA00 RA04 SA02 SA03 TA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量で、 Si:0.8〜6.7%、 C :0.085%以下、 酸可溶性Al:0.01〜0.048%、 N :0.012%以下 を含み、残部Fe及び不可避的不純物からなる珪素鋼熱
延板を、圧下率40〜80%で熱間圧延と同一方向に冷
間圧延し、更に前記冷間圧延方向と交叉する方向に圧下
率30〜70%で冷間圧延し、次いで脱炭焼鈍後、焼鈍
分離剤を塗布して、二次再結晶と純化を目的とした仕上
げ焼鈍を施す二方向性電磁鋼板の製造方法において、脱
炭焼鈍後の結晶粒組織においてI[111] /I[211] の比
率を1以下にするとともに、鋼板の酸化層の酸素量を
2.3g/m2 以下にすることを特徴とする磁束密度の
高い二方向性電磁鋼板の製造方法。
1. A mass containing: Si: 0.8 to 6.7%, C: 0.085% or less, acid-soluble Al: 0.01 to 0.048%, N: 0.012% or less, A hot rolled silicon steel sheet consisting of the balance of Fe and unavoidable impurities is cold-rolled at a reduction of 40 to 80% in the same direction as hot rolling, and a reduction of 30 to 70 in a direction crossing the cold rolling direction. %, Followed by decarburizing annealing, then applying an annealing separator, and performing finish annealing for the purpose of secondary recrystallization and purification. A two-way high magnetic flux density characterized in that the ratio of I [111] / I [211] in the grain structure is 1 or less and the oxygen content of the oxide layer of the steel sheet is 2.3 g / m 2 or less. Manufacturing method of conductive electrical steel sheet.
【請求項2】 質量で、Snを0.02〜0.2%を添
加することを特徴とする請求項1記載の磁束密度の高い
二方向性電磁鋼板の製造方法。
2. The method according to claim 1, wherein 0.02 to 0.2% of Sn is added by mass.
JP2000268321A 2000-09-05 2000-09-05 Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density Withdrawn JP2002069532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268321A JP2002069532A (en) 2000-09-05 2000-09-05 Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268321A JP2002069532A (en) 2000-09-05 2000-09-05 Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density

Publications (1)

Publication Number Publication Date
JP2002069532A true JP2002069532A (en) 2002-03-08

Family

ID=18755113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268321A Withdrawn JP2002069532A (en) 2000-09-05 2000-09-05 Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JP2002069532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122269A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
JP2017222910A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Bidirectional electromagnetic steel sheet and manufacturing process therefor
JP2017222911A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122269A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
JP2017222910A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Bidirectional electromagnetic steel sheet and manufacturing process therefor
JP2017222911A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2013189712A (en) Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
JP2008001979A (en) Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method
JP5332134B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4456317B2 (en) Method for producing grain-oriented electrical steel sheet
JP2007314823A (en) Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JP3943837B2 (en) Method for producing grain-oriented electrical steel sheet
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002060843A (en) Method for producing mirror finished grain oriented silicon steel sheet having high magnetic flux density
JPH055126A (en) Production of nonoriented silicon steel sheet
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2002069532A (en) Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106