JP2017222911A - Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method - Google Patents

Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method Download PDF

Info

Publication number
JP2017222911A
JP2017222911A JP2016119956A JP2016119956A JP2017222911A JP 2017222911 A JP2017222911 A JP 2017222911A JP 2016119956 A JP2016119956 A JP 2016119956A JP 2016119956 A JP2016119956 A JP 2016119956A JP 2017222911 A JP2017222911 A JP 2017222911A
Authority
JP
Japan
Prior art keywords
steel sheet
iron core
less
rolled steel
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016119956A
Other languages
Japanese (ja)
Other versions
JP6844127B2 (en
Inventor
鉄州 村川
Tesshu Murakawa
鉄州 村川
信次 山本
Shinji Yamamoto
信次 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016119956A priority Critical patent/JP6844127B2/en
Publication of JP2017222911A publication Critical patent/JP2017222911A/en
Application granted granted Critical
Publication of JP6844127B2 publication Critical patent/JP6844127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron core which has excellent magnetic properties and dimensional accuracy, and whose space factor decrease is suppressed.SOLUTION: An iron core composed of a steel sheet in which an area ratio of a crystal grain having a crystal orientation of {100}<001>(±30°) is 50% or more, and an area ratio of a crystal grain having a crystal orientation of {110}<110>(±30°) is 20% or more.SELECTED DRAWING: Figure 3

Description

本発明は、鉄心、再冷延鋼板、再冷延鋼板の製造方法、及び鉄心の製造方法に関するものである。   The present invention relates to an iron core, a re-cold rolled steel sheet, a method for producing a re-cold rolled steel sheet, and a method for producing the iron core.

近年、地球温暖化防止、省エネルギー化への要求の高まりに伴い、鉄心の材料である一方向性電磁鋼板に対しても、商用周波数での低鉄損及び低励磁場での高磁束密度といった高い磁気特性が求められている。
このような磁気特性を実現するためには、鉄の磁化容易軸である<001>軸を使用磁界方向に集積させることが有効とされている。
In recent years, with increasing demand for prevention of global warming and energy saving, unidirectional electrical steel sheets, which are core materials, also have high iron loss and high magnetic flux density in a low excitation field. Magnetic properties are required.
In order to realize such magnetic characteristics, it is effective to integrate the <001> axis, which is the easy axis of iron, in the direction of the magnetic field used.

一般的な方向性電磁鋼板は、{110}<001>方位(ゴス方位)、すなわち{110}面が鋼板に平行で、かつ<001>軸が圧延方向に収束した集合組織を有している。
これにより、一方向性電磁鋼板は、圧延方向に対して極めて高い磁気特性を示すことができる。このため、一方向性電磁鋼板は、巻き鉄心のような圧延方向にのみ磁束が流れる用途に適しており、有用な磁性材料として使用されている。
A general grain-oriented electrical steel sheet has a {110} <001> orientation (Goss orientation), that is, a texture in which the {110} plane is parallel to the steel sheet and the <001> axis converges in the rolling direction. .
Thereby, the unidirectional electrical steel sheet can exhibit extremely high magnetic properties in the rolling direction. For this reason, the unidirectional electrical steel sheet is suitable for applications in which magnetic flux flows only in the rolling direction, such as a wound iron core, and is used as a useful magnetic material.

一方で、近年、一方向だけでなく、それと直交する方向の磁気特性にも優れた用途に適する二方向性電磁鋼板が要求されている。二方向性電磁鋼板は、{100}<001>(いわゆるキューブ方位)集合組織を有する。そして、二方向性電磁鋼板は、<001>軸が鋼板面内の圧延方向と圧延直角方向(圧延方向に対して直交する方向)の両方に向いており、鋼板面内に直交する2つの方向で優れた磁気特性を示す電磁鋼板である。   On the other hand, in recent years, there has been a demand for a bi-directional electrical steel sheet suitable for applications that are excellent not only in one direction but also in magnetic characteristics in a direction perpendicular thereto. The bi-directional electrical steel sheet has a {100} <001> (so-called cube orientation) texture. In the bi-directional electrical steel sheet, the <001> axis is oriented in both the rolling direction in the steel sheet surface and the direction perpendicular to the rolling direction (direction orthogonal to the rolling direction), and two directions orthogonal to the steel sheet surface. It is an electrical steel sheet that exhibits excellent magnetic properties.

二方向性電磁鋼板は、例えば、特許文献1〜3に開示された製造方法によって得られることが知られている。
例えば、二方向性電磁鋼板は、クロス圧延による方法によって得られることが知られている(特許文献1)。この方法は、珪素鋼素材を一方向に冷間圧延した後、さらに、この冷間圧延方向と交差方向に冷間圧延を加え、その後、仕上げ焼鈍として、短時間焼鈍と900℃〜1300℃程度の高温焼鈍とを行う方法である。
しかし、仕上げ焼鈍前に交差圧延を行うことは、商業生産上、コイルの状態で幅方向に圧延しなければならず、特殊な装置が必要となる。
It is known that a bi-directional electrical steel sheet is obtained by the manufacturing method disclosed in Patent Documents 1 to 3, for example.
For example, it is known that a bi-directional electrical steel sheet can be obtained by a method by cross rolling (Patent Document 1). In this method, after the silicon steel material is cold-rolled in one direction, cold rolling is further performed in a direction intersecting with the cold-rolling direction, and then short-time annealing and about 900 ° C. to 1300 ° C. are performed as finish annealing. This is a method of performing high temperature annealing.
However, performing cross rolling before finish annealing requires rolling in the width direction in the state of a coil in commercial production, and a special device is required.

また、二方向性電磁鋼板を得るための他の製造方法としては、脱C、又は脱Cと脱Mnとを生じさせる高温焼鈍を利用した製造方法(特許文献2)も提案されている。
しかし、この手法では真空中で焼鈍しなければならず、やはり、特殊な装置が必要となる。
Moreover, as another manufacturing method for obtaining a bidirectional magnetic steel sheet, a manufacturing method (Patent Document 2) using high-temperature annealing that causes de-C or de-C and de-Mn has been proposed.
However, this method requires annealing in a vacuum, and a special device is still required.

さらに、結晶粒径が小さい二方向性電磁鋼板を得るための製造方法として、二次再結晶後の方向性電磁鋼板を浸炭させ、100℃〜400℃で焼鈍し、圧延方向に50%以上の圧下率で圧延した後、再結晶焼鈍をする方法(特許文献3)が知られている。
しかし、この手法では、浸炭によりセメンタイトが析出し、鉄損が劣位である。
Furthermore, as a manufacturing method for obtaining a bi-directional electrical steel sheet having a small crystal grain size, the directional electrical steel sheet after secondary recrystallization is carburized, annealed at 100 ° C. to 400 ° C., and 50% or more in the rolling direction. A method of performing recrystallization annealing after rolling at a rolling reduction (Patent Document 3) is known.
However, in this method, cementite precipitates due to carburization and the iron loss is inferior.

特公昭35−002657号公報Japanese Patent Publication No. 35-002657 特開平07−173542号公報Japanese Patent Laid-Open No. 07-173542 特許第4826312号公報Japanese Patent No. 4826312

ところで、二方向性電磁鋼板は、鋼板面内に直交する二方向に優れた磁気特性を示す電磁鋼板であることから、直交する両方向に優れた磁気特性が要求される用途に適用することが検討されている。このような用途としては、例えば、ティース部とヨーク部とで磁束が流れる方向が直交している鉄心の材料として適用することが提案されている。   By the way, since the bi-directional electrical steel sheet is an electrical steel sheet that exhibits excellent magnetic properties in two directions perpendicular to the plane of the steel plate, it may be applied to applications that require excellent magnetic properties in both orthogonal directions. Has been. As such an application, for example, it has been proposed to apply as an iron core material in which the direction of magnetic flux flow is orthogonal between the tooth portion and the yoke portion.

しかしながら、特許文献1〜3に開示されている二方向性電磁鋼板は、生成される{100}<001>方位の集積度が高すぎる。このため、これら従来の二方向性電磁鋼板をモータの鉄心として適用する場合に、打ち抜き加工時の寸法精度が低いという課題、及び曲げ加工時に板厚が減少し、占積率が低下するという課題があった。二方向性電磁鋼板をモータの鉄心として使用する際、主に打ち抜き加工が行われる。打ち抜き加工時の寸法精度が低いとモータ効率が低下する。また、モータの鉄心が、螺旋巻き鉄心であるとき、曲げ加工を行う場合がある。二方向性電磁鋼板の{100}<001>方位が多いと、曲げ加工時に板厚が減少し、占積率が低下しやすい。占積率の低下はモータ効率の低下につながる。   However, the bi-directional electrical steel sheets disclosed in Patent Documents 1 to 3 have too high a degree of integration of {100} <001> orientations that are generated. For this reason, when these conventional bi-directional electrical steel sheets are applied as the iron core of a motor, the problem that the dimensional accuracy at the time of punching is low, and the problem that the plate thickness is reduced at the time of bending and the space factor is reduced. was there. When the bi-directional electrical steel sheet is used as the iron core of a motor, stamping is mainly performed. If the dimensional accuracy at the time of punching is low, the motor efficiency decreases. Further, when the motor iron core is a spirally wound iron core, bending may be performed. If the {100} <001> orientation of the bi-directional electrical steel sheet is large, the plate thickness is reduced during bending, and the space factor tends to decrease. A decrease in the space factor leads to a decrease in motor efficiency.

このように、従来の二方向性電磁鋼板を用いて鉄心とする場合、直交する二方向に優れた磁気特性を有するだけでなく、さらに、寸法精度に優れ、占積率の低下が抑制された鉄心を得る技術は確立されていなかったのが実情である。   Thus, when using a conventional bi-directional electrical steel sheet as an iron core, it not only has excellent magnetic properties in two orthogonal directions, but also has excellent dimensional accuracy, and a decrease in space factor was suppressed. In fact, the technology to obtain the iron core has not been established.

本発明は、上記に鑑みてなされたものであり、優れた磁気特性を有し、さらに、寸法精度に優れ、占積率の低下が抑制された鉄心を提供するものである。また、これら特性を有する鉄心を製造するのに好適な再冷延鋼板とその製造方法を提供するものである。さらに上記特性を有する鉄心の製造方法を提供するものである。   The present invention has been made in view of the above, and provides an iron core having excellent magnetic properties, excellent dimensional accuracy, and suppressing a decrease in the space factor. The present invention also provides a re-cold rolled steel sheet suitable for producing an iron core having these characteristics and a method for producing the same. Furthermore, the manufacturing method of the iron core which has the said characteristic is provided.

本発明者らは、上記課題を解決するために、直交する二方向に優れた磁気特性を有する鉄心において、寸法精度に優れ、占積率の低下が抑制された鉄心とする観点から、鋭意研究を重ねた。
その結果、本発明者らは、主方位となる{100}<001>から±30度以内の結晶方位の結晶粒の占める面積比率が50%以上であり、副方位となる結晶の滑り面が板厚と平行な{110}<110>から±30度以内の結晶方位の結晶粒の面積比率が20%以上である集合組織を有する鋼板からなる鉄心とすることで、優れた磁気特性を有するとともに、寸法精度に優れ、占積率の低下が抑制されることを知見した。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research from the viewpoint of making an iron core having excellent magnetic characteristics in two orthogonal directions with excellent dimensional accuracy and suppressing a decrease in the space factor. Repeated.
As a result, the inventors of the present invention have an area ratio of 50% or more of crystal grains having a crystal orientation within ± 30 degrees from {100} <001> that is the main orientation, and the slip plane of the crystal that is the secondary orientation is By having an iron core made of a steel sheet having a texture with an area ratio of crystal grains having a crystal orientation within ± 30 degrees from {110} <110> parallel to the plate thickness, it has excellent magnetic properties. At the same time, it was found that the dimensional accuracy was excellent and the decrease in the space factor was suppressed.

本発明は上記の知見に基づきなされたものであり、その要旨は、以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

<1> {100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上である鋼板からなる鉄心。
<2> 前記鋼板の平均結晶粒径が350μm以下である<1>に記載の鉄心。
<3> 前記鋼板が、質量%で、
C:0.0100%以下、
Si:2.00%以上4.00%以下、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する請求項<1>又は<2>に記載の鉄心。
<1> The area ratio occupied by crystal grains of {100} <001> (± 30 °) is 50% or more, and the area occupied by crystal grains of {110} <110> (± 30 °) crystal orientation An iron core made of a steel sheet with a ratio of 20% or more.
<2> The iron core according to <1>, wherein the steel sheet has an average crystal grain size of 350 μm or less.
<3> The steel sheet is mass%,
C: 0.0100% or less,
Si: 2.00% to 4.00%,
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
And Al: Iron core as described in <1> or <2> which contains 0.5% or less and contains Fe and an impurity element as a remainder.

<4> {110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板。
<5> 質量%で、
C:0.0100%以下、
Si:2.00%以上4.00%以下、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する<4>に記載の再冷延鋼板。
<4> {110} <110> (± 30 °) A re-cold rolled steel sheet in which the area ratio occupied by crystal grains having a crystal orientation is 85% or more and the number of shear bands is 30 pieces / mm or more.
<5> By mass%
C: 0.0100% or less,
Si: 2.00% to 4.00%,
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
And Al: The re-cold-rolled steel sheet as described in <4> containing 0.5% or less and containing Fe and an impurity element as a remainder.

<6> {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延して、<4>又は<5>に記載の再冷延鋼板を得る工程を有する再冷延鋼板の製造方法。 <6> Cold rolling so that the reduction ratio is 20% to 50% in a direction orthogonal to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation. <4> or <5> The manufacturing method of the re-cold-rolled steel plate which has a process of obtaining the re-cold-rolled steel plate as described in <5>.

<7> <4>又は<5>に記載の再冷延鋼板を積層した鉄心。 <7> An iron core in which the re-cold rolled steel sheets according to <4> or <5> are laminated.

<8> {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、<4>又は<5>に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化して、700℃以上の温度域で焼鈍する工程と、
を有する<1>〜<3>のいずれか1項に記載の鉄心の製造方法。
<9> 前記温度域が、700℃〜1000℃である<8>に記載の鉄心の製造方法。
<8> Cold rolling so that the rolling reduction is 20% to 50% in a direction orthogonal to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation, <4> or <5> obtaining the re-cold rolled steel sheet according to
Punching the re-cold rolled steel sheet to obtain a punched member;
A step of laminating and integrating the punched members and annealing in a temperature range of 700 ° C. or higher;
The manufacturing method of the iron core of any one of <1>-<3> which has these.
<9> The method for manufacturing an iron core according to <8>, wherein the temperature range is 700 ° C to 1000 ° C.

<10> {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、<4>又は<5>に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と
を有する<7>に記載の鉄心の製造方法。
<11> <10>に記載の鉄心の製造方法であって、前記積層一体化する工程の後、700℃〜1000℃の温度域で焼鈍する工程をさらに有する鉄心の製造方法。
<10> Cold rolling so that the reduction ratio is 20% to 50% in a direction orthogonal to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation, <4> or <5> obtaining the re-cold rolled steel sheet according to
Punching the re-cold rolled steel sheet to obtain a punched member;
The method for producing an iron core according to <7>, further comprising a step of stacking and integrating the punched members.
<11> The method for manufacturing an iron core according to <10>, further including a step of annealing in a temperature range of 700 ° C. to 1000 ° C. after the step of stacking and integrating.

<12> {100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と、
を有する<1>〜<3>のいずれか1項に記載の鉄心の製造方法。
<12> The area ratio occupied by crystal grains having a crystal orientation of {100} <001> (± 30 °) is 50% or more, and the crystal grains having a crystal orientation of {110} <110> (± 30 °) Punching a bi-directional electrical steel sheet having an area ratio of 20% or more, and obtaining a punched member;
A step of stacking and integrating the punched members;
The manufacturing method of the iron core of any one of <1>-<3> which has these.

本発明によれば、優れた磁気特性を有し、さらに、寸法精度に優れ、占積率の低下が抑制された鉄心を提供できる。また、これら特性を有する鉄心を製造するのに好適な再冷延鋼板とその製造方法が提供できる。さらに上記特性を有する鉄心の製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding magnetic characteristic, Furthermore, it can provide the iron core which was excellent in dimensional accuracy, and the fall of the space factor was suppressed. Moreover, the re-cold-rolled steel plate suitable for manufacturing the iron core which has these characteristics, and its manufacturing method can be provided. Furthermore, the manufacturing method of the iron core which has the said characteristic can be provided.

本発明の鉄心に用いられる鋼板の(001)極点図を示す模式図である。It is a schematic diagram which shows the (001) pole figure of the steel plate used for the iron core of this invention. 従来の二方向性電磁鋼板の(001)極点図を示す模式図である。It is a schematic diagram which shows the (001) pole figure of the conventional bi-directional electrical steel sheet. 本発明例における鉄心に用いられる鋼板の(001)極点図である。It is a (001) pole figure of the steel plate used for the iron core in the example of the present invention. 本発明の鉄心の一例を表す模式図である。It is a schematic diagram showing an example of the iron core of this invention. 本発明の鉄心の他の一例を表す模式図である。It is a schematic diagram showing another example of the iron core of this invention.

以下、本発明について詳細に説明する。
なお、本明細書中において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
In addition, in this specification, the numerical range represented using "to" means the range which includes the numerical value described before and behind "to" as a lower limit and an upper limit.

本発明の鉄心は、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上の鋼板からなる。つまり、鉄心を構成する鋼板(鉄心となった状態の鉄心を構成している鋼板)は、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上である結晶粒を有する。   In the iron core of the present invention, the area ratio occupied by crystal grains of {100} <001> (± 30 °) is 50% or more, and the crystal grains of {110} <110> (± 30 °) crystal orientation It consists of a steel plate with an area ratio of 20% or more. In other words, the steel sheet constituting the iron core (the steel sheet constituting the iron core in the state of the iron core) has an area ratio occupied by crystal grains of {100} <001> (± 30 °) in a crystal orientation of 50% or more. Yes, it has crystal grains in which the area ratio of crystal grains of {110} <110> (± 30 °) crystal orientation is 20% or more.

本発明の鉄心を構成する鋼板は、200Hz以上の高周波鉄損を低減する点で、鉄心を構成する鋼板の平均結晶粒径を350μm以下とすることがよく、300μm以下とすることが好ましく、150μm以下とすることがより好ましい。
一方、平均結晶粒径の下限は特に限定されないが、平均結晶粒径が小さすぎると磁気特性が低くなるため、20μm以上にすることがよい。
In the steel sheet constituting the iron core of the present invention, the average crystal grain size of the steel sheet constituting the iron core is preferably 350 μm or less, preferably 300 μm or less, in terms of reducing high-frequency iron loss of 200 Hz or more, preferably 150 μm. More preferably, it is as follows.
On the other hand, the lower limit of the average crystal grain size is not particularly limited, but if the average crystal grain size is too small, the magnetic properties will be lowered, so it is preferable to set it to 20 μm or more.

鉄心を構成する鋼板の平均結晶粒径の測定方法は、以下のとおりである。
試験片を板厚断面が観察できるように切断し、ナイタールエッチングにより粒界を腐食させて発現させる。その後、100個以上の結晶粒の結晶粒径を線分法により測定し、平均結晶粒径を求める。
The measuring method of the average crystal grain size of the steel sheet constituting the iron core is as follows.
The test piece is cut so that the plate thickness cross section can be observed, and the grain boundary is corroded by the nital etching so as to be expressed. Thereafter, the crystal grain size of 100 or more crystal grains is measured by a line segment method to determine the average crystal grain size.

鉄心を構成する鋼板は、以下のような化学組成であることがよい。例えば、質量%で、C:0.0100%以下、Si:2.00%以上4.00%以下、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する。
なお、本明細書中において、不純物とは、原材料に含まれる成分、または、製造の過程で混入する成分であって、意図的に鋼板に含有させたものではない成分を指す。
The steel sheet constituting the iron core may have the following chemical composition. For example, in mass%, C: 0.0100% or less, Si: 2.00% to 4.00%, Mn: 0.5% or less, Sb: 0.2% or less, Sn: 0.2% or less Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5% or less, P: 0.3% or less, and Al: 0.5% or less, and the balance Fe And an impurity element.
In the present specification, an impurity refers to a component contained in a raw material or a component mixed in a manufacturing process and not intentionally included in a steel plate.

次に、本発明の鉄心に用いられる鋼板について説明する。
本発明の鉄心に用いられる好適な鋼板としては、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である集合組織を有する二方向性電磁鋼板が挙げられる。
なお、{100}<001>(±30°)は、{100}<001>から±30度以内を表し、{110}<110>(±30°)は、{110}<110>から±30度以内を表す。
まず、本発明の鉄心に用いられる鋼板の有する{100}<001>から±30度以内の結晶方位の結晶粒、及び{110}<110>から±30度以内の結晶方位の結晶粒について、図面を用いて説明する。
Next, the steel plate used for the iron core of the present invention will be described.
As a suitable steel plate used for the iron core of the present invention, the area ratio of crystal grains having a crystal orientation of {100} <001> (± 30 °) is 50% or more, and {110} <110> (± 30 There is a bi-directional electrical steel sheet having a texture in which the area ratio of crystal grains having a crystal orientation of 20) is 20% or more.
Note that {100} <001> (± 30 °) represents within ± 30 degrees from {100} <001>, and {110} <110> (± 30 °) represents {110} <110> to ± Represents within 30 degrees.
First, regarding the crystal grains having a crystal orientation within ± 30 degrees from {100} <001> and the crystal grains having a crystal orientation within ± 30 degrees from {110} <110> of the steel sheet used in the iron core of the present invention, This will be described with reference to the drawings.

図1は、本発明の鉄心に用いられる鋼板の(001)極点図の一例を示す模式図である。本発明の鉄心に用いられる鋼板は、例えば、図1に示す(001)極点図のように、主方位である{100}<001>(±30°)の結晶方位1(以下、「{100}<001>近傍方位1」と称する)に結晶粒を有し、かつ、副方位である{110}<110>(±30°)の結晶方位2(以下、「{110}<110>近傍方位2」と称する)に結晶粒を有している。   FIG. 1 is a schematic diagram showing an example of a (001) pole figure of a steel plate used for the iron core of the present invention. The steel plate used for the iron core of the present invention has, for example, a crystal orientation 1 (hereinafter referred to as “{100”) of {100} <001> (± 30 °) as the main orientation, as shown in the (001) pole figure shown in FIG. } <Referred to as <001> near azimuth 1>) and crystal orientation 2 of the {110} <110> (± 30 °) which is the sub-azimuth (hereinafter referred to as “near {110} <110>”) (Referred to as “azimuth 2”).

そして、本発明の鉄心に用いられる鋼板は、{100}<001>近傍方位1の結晶粒が、全結晶粒に対する面積比率で50%以上であり、{110}<110>近傍方位2の結晶粒が、全結晶粒に対する面積比率で20%以上である結晶方位を有している。本発明の鉄心に用いられる鋼板は、板厚中心層を観察したときに、このような結晶方位を有している視野が一つ以上存在している。   In the steel sheet used for the iron core of the present invention, the crystal grains of {100} <001> vicinity orientation 1 are 50% or more in terms of the area ratio to the total crystal grains, and the crystals of {110} <110> vicinity orientation 2 The grains have a crystal orientation that is 20% or more in terms of the area ratio with respect to all crystal grains. The steel plate used for the iron core of the present invention has one or more visual fields having such crystal orientation when the thickness center layer is observed.

一方、図2は、従来の二方向性電磁鋼板の(001)極点図を示す模式図である。従来の二方向性電磁鋼板は、図2に示す(001)極点図のように、{100}<001>近傍方位1に結晶粒を有しているが、{110}<110>近傍方位には結晶粒を有していない。
なお、図2に示す従来の二方向性電磁鋼板は、歪取り焼鈍を行っていない。
On the other hand, FIG. 2 is a schematic diagram showing a (001) pole figure of a conventional bi-directional electrical steel sheet. As shown in the (001) pole figure shown in FIG. 2, the conventional bi-directional electrical steel sheet has crystal grains in the {100} <001> neighborhood orientation 1, but in the {110} <110> neighborhood orientation. Does not have crystal grains.
Note that the conventional bi-directional electrical steel sheet shown in FIG. 2 is not subjected to strain relief annealing.

このように、本発明の鉄心に用いられる鋼板は、主方位である{100}<001>近傍方位1と、副方位である{110}<110>近傍方位2との両者に結晶方位を有している点で、従来の二方向性電磁鋼板とは、異なるものである。   Thus, the steel sheet used for the iron core of the present invention has crystal orientations in both the {100} <001> neighborhood orientation 1 which is the main orientation and the {110} <110> neighborhood orientation 2 which is the sub orientation. In that respect, the conventional bi-directional electrical steel sheet is different.

ここで、本発明の鉄心に用いられる鋼板が有する{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率、及び{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率を測定する方法について説明する。
なお、以下の説明において、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率、及び{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率は、それぞれ、「{100}<001>(±30°)の結晶粒の面積比率」、及び「{110}<110>(±30°)の結晶粒の面積比率」と称する場合がある。
Here, the area ratio occupied by the crystal grains of the crystal orientation of {100} <001> (± 30 °) and the crystal orientation of {110} <110> (± 30 °) of the steel sheet used for the iron core of the present invention. A method for measuring the area ratio occupied by crystal grains will be described.
In the following description, the area ratio occupied by crystal grains having a crystal orientation of {100} <001> (± 30 °) and the area occupied by crystal grains having a crystal orientation of {110} <110> (± 30 °) The ratio may be referred to as “area ratio of crystal grains of {100} <001> (± 30 °)” and “area ratio of crystal grains of {110} <110> (± 30 °)”, respectively. .

これらの面積比率は、以下の方法によって求められる。
本発明の鉄心に用いられる鋼板の結晶方位は、電子線後方散乱回折法(EBSD)を用いて観察する。結晶方位の{}内は圧延面の法線方向のミラー指数を示し、<>内は2次再結晶前の冷延における圧延方向と平行な方向をミラー指数で示している。
These area ratios are obtained by the following method.
The crystal orientation of the steel sheet used for the iron core of the present invention is observed using an electron beam backscatter diffraction method (EBSD). In {} of the crystal orientation, the Miller index in the normal direction of the rolling surface is shown, and in <>, the direction parallel to the rolling direction in cold rolling before secondary recrystallization is shown by the Miller index.

EBSDの測定条件の詳細は次の通りである。
・測定装置:電子線後方散乱回折装置付き走査型電子顕微鏡(SEM−EBSD)
(SEMの型番「JSM−6400」(JEOL社製))
・ステップ間隔:10μm
・倍率:100倍
・測定対象:鋼板の圧延面の中心層
・測定領域:7500μm×7500μm
・測定結晶粒数:1000個
The details of the EBSD measurement conditions are as follows.
・ Measurement device: Scanning electron microscope (SEM-EBSD) with electron beam backscatter diffraction device
(SEM model number "JSM-6400" (manufactured by JEOL))
・ Step interval: 10μm
・ Magnification: 100 times ・ Measurement object: Center layer of rolled surface of steel sheet ・ Measurement area: 7500 μm × 7500 μm
-Number of crystal grains measured: 1000

以上の測定条件により測定された全結晶粒に対して、{100}<001>(±30°)の結晶粒、及び{110}<110>(±30°)の結晶粒について、全結晶粒に対する面積比率を求める。なお、面積比率は平均値で表される。   For all crystal grains measured under the above measurement conditions, all crystal grains are {100} <001> (± 30 °) and {110} <110> (± 30 °). The area ratio to is obtained. The area ratio is expressed as an average value.

鉄心の磁気特性が特に優れる点で、{100}<001>(±30°)の結晶粒の面積比率は、50%以上であることが好ましく、70%以上であることがより好ましい。上限は特に限定されないが、鉄心の寸法精度、占積率の低下抑制の点で、80%以下であることがよい。
また、鉄心の磁気特性、及び寸法精度、並びに占積率の低下抑制の点で、鉄心に用いられる鋼板は、{110}<110>(±30°)の結晶粒の面積比率が、20%以上であることが好ましく、30%以上であることがより好ましい。上限は磁気特性の点で、49%以下であることがよい。
In terms of particularly excellent magnetic properties of the iron core, the area ratio of crystal grains of {100} <001> (± 30 °) is preferably 50% or more, and more preferably 70% or more. The upper limit is not particularly limited, but is preferably 80% or less from the viewpoint of suppressing the decrease in the dimensional accuracy of the iron core and the space factor.
Further, in terms of the magnetic properties and dimensional accuracy of the iron core, and the suppression of the decrease in the space factor, the steel sheet used for the iron core has an area ratio of crystal grains of {110} <110> (± 30 °) of 20%. It is preferable that it is above, and it is more preferable that it is 30% or more. The upper limit is preferably 49% or less in terms of magnetic properties.

本発明の鉄心は、鉄心に用いられる鋼板が上記構成を有することで、特に、寸法精度に優れ、占積率の低下が抑制される。この理由は定かではないが、以下のように推測される。   In the iron core of the present invention, the steel sheet used in the iron core has the above-described configuration, so that the dimensional accuracy is particularly excellent and the reduction in the space factor is suppressed. The reason for this is not clear, but is presumed as follows.

鉄心に用いられる鋼板が、{110}<110>結晶粒を有することで、寸法精度が向上すると本発明者らは考えている。鉄心を得るための鋼板を打ち抜いたとき(例えば、円形)、鋼板が{100}<001>結晶粒のみ有する場合は、鋼板の加工異方性が強いため、鉄心の寸法精度が出にくい。しかしながら、鉄心を得るための鋼板が{110}<110>を有することで寸法精度が向上すると考えられる。
また、本発明の鉄心は、占積率の低下が抑制される点については、鉄心を得るための鋼板のr値(引張加工時における(幅減少量)/(板厚減少量))が高いことに起因していると本発明者らは考えている。{100}<001>のr値は{110}<110>のr値よりも低いことが知られている。鉄心を得るための鋼板は、{110}<110>結晶粒を有することで、従来の二方向性電磁鋼板よりもr値が高い。つまり、{110}<110>結晶粒を有する鋼板は、曲げ加工時の板厚が減少しにくくなっていると考えられる。それによって、鉄心の占積率の低下が抑制される。
なお、{110}<110>方位粒が、例えば、螺旋巻き鉄心のような螺旋状等の曲げ加工に適していることは、特許3631523号公報で述べられている。
The present inventors consider that the steel sheet used for the iron core has {110} <110> crystal grains to improve the dimensional accuracy. When a steel sheet for obtaining an iron core is punched (for example, circular), if the steel sheet has only {100} <001> crystal grains, the processing anisotropy of the steel sheet is strong, so that the dimensional accuracy of the iron core is difficult to be obtained. However, it is considered that the dimensional accuracy is improved when the steel plate for obtaining the iron core has {110} <110>.
Moreover, the iron core of the present invention has a high r value ((width reduction amount) / (thickness reduction amount) at the time of tensile processing) of the steel sheet for obtaining the iron core in that the decrease in the space factor is suppressed. The present inventors believe that this is due to this. It is known that the r value of {100} <001> is lower than the r value of {110} <110>. A steel plate for obtaining an iron core has {110} <110> crystal grains, and thus has an r value higher than that of a conventional bi-directional electrical steel plate. That is, it is considered that the steel plate having {110} <110> crystal grains is less likely to reduce the thickness at the time of bending. Thereby, the fall of the space factor of an iron core is suppressed.
In addition, it is described in Japanese Patent No. 3631523 that {110} <110> oriented grains are suitable for a bending process such as a spiral like a spirally wound iron core.

本発明の鉄心に用いられる鋼板は、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上であればよく、その化学組成は特に限定されない。鋼板の化学組成は、例えば、質量%で、C:0.0030%以下、Si:2.00%以上4.00%以下、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素からなる鋼板であることが挙げられる。   In the steel sheet used for the iron core of the present invention, the area ratio occupied by crystal grains of {100} <001> (± 30 °) is 50% or more, and {110} <110> (± 30 °). The area ratio of crystal grains in the crystal orientation may be 20% or more, and the chemical composition is not particularly limited. The chemical composition of the steel sheet is, for example, mass%, C: 0.0030% or less, Si: 2.00% or more and 4.00% or less, Mn: 0.5% or less, Sb: 0.2% or less, Sn : 0.2% or less, Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5% or less, P: 0.3% or less, and Al: 0.5% or less In addition, the steel sheet is composed of Fe and impurity elements as the balance.

これらの元素のうち、Cは、鉄損を低下させる成分であり、磁気時効の原因ともなる元素であるため、0.0100%以下(0.0000%〜0.0100%)とすることがよい。   Among these elements, C is a component that lowers iron loss and is an element that causes magnetic aging, so it is preferable that the C content be 0.0100% or less (0.0000% to 0.0100%). .

また、Siは、電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であり、さらに、降伏比を増大させることにより、打ち抜き精度を向上させる作用も有する。これらの作用を奏するためには、2.00%以上含有させることがよい。
一方、Siは、含有量が増え過ぎると、磁束密度が低下し、かつ、硬度の上昇を招いて、打ち抜き精度が低下しやすくなる。また、鋼板(二方向性電磁鋼板)の製造工程において、冷延等の作業性の低下、コスト高ともなり得るので、4.00%以下とすることがよい。
In addition, Si is a component having an action of reducing iron loss by increasing eddy current loss by increasing electric resistance, and also has an action of improving punching accuracy by increasing a yield ratio. . In order to exhibit these effects, it is preferable to contain 2.00% or more.
On the other hand, when the content of Si is excessively increased, the magnetic flux density is decreased and the hardness is increased, and the punching accuracy is likely to be decreased. Moreover, in the manufacturing process of a steel plate (bidirectional electrical steel plate), workability such as cold rolling may be reduced and the cost may be high, so 4.00% or less is preferable.

なお、鋼板中には、上記したC、Siの他、Mn、Sb、Sn、Ni、Cu、Cr、P、及びAl等の元素を含んでいてもよい。これらの成分については、上述のような一般的な量で含有していてもよい。具体的には、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有する。そして、残部としてFeおよび不純物元素を含有する。ただし、Mn、Sb、Sn、Ni、Cu、Cr、P、及びAlの下限としては、0.0%である。   The steel sheet may contain elements such as Mn, Sb, Sn, Ni, Cu, Cr, P, and Al in addition to the above-described C and Si. These components may be contained in the general amounts as described above. Specifically, Mn: 0.5% or less, Sb: 0.2% or less, Sn: 0.2% or less, Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5 % Or less, P: 0.3% or less, and Al: 0.5% or less. And the remainder contains Fe and impurity elements. However, the lower limit of Mn, Sb, Sn, Ni, Cu, Cr, P, and Al is 0.0%.

ここで、本発明の好適な鉄心としては、例えば、図4および図5に示す鉄心が挙げられる。
図4に示す鉄心100は、本発明の鉄心の一例を表す模式図である。図4に示す鉄心100は、分割鉄心を表す。鉄心100は、図4に示すように、円弧上のヨーク部17と、ヨーク部17の内周面から径方向内側に向かって突出しているティース部15とを備えた分割鉄心用の打ち抜き部材11を有する。そして、鉄心100は、分割鉄心用の打ち抜き部材11を円環状に連結し、複数枚積層して一体化した積層体13として形成されている。なお、分割鉄心用の打ち抜き部材11は、図4に示す形状、個数、積層数等に限らず、目的に応じて設計すればよい。
Here, as a suitable iron core of this invention, the iron core shown in FIG. 4 and FIG. 5 is mentioned, for example.
The iron core 100 shown in FIG. 4 is a schematic diagram showing an example of the iron core of the present invention. The iron core 100 shown in FIG. 4 represents a split iron core. As shown in FIG. 4, the iron core 100 includes a yoke portion 17 on an arc and a punching member 11 for a split iron core including a tooth portion 15 projecting radially inward from the inner peripheral surface of the yoke portion 17. Have The iron core 100 is formed as a laminated body 13 in which a plurality of punched members 11 for a split iron core are connected in an annular shape, and are laminated and integrated. Note that the punching member 11 for the split iron core is not limited to the shape, the number, the number of stacked layers, and the like shown in FIG. 4, and may be designed according to the purpose.

図5に示す鉄心300は、本発明の鉄心の他の一例を表す模式図である。図5に示す鉄心300は、螺旋巻き鉄心を表す。鉄心300は、図5に示すように、外周側にヨーク部37、ヨーク部37の内周面から径方向内側に向かって突出しているティース部35を備えた螺旋巻き鉄心用の打ち抜き部材31を有する。螺旋巻き鉄心用の打ち抜き部材31は、ヨーク部37を外周側、ティース部35を内周側となるように、螺旋状の曲げ加工が行われている。そして、鉄心300は、打ち抜き部材31を複数枚積層して一体化した積層体33として形成されている。なお、螺旋巻き鉄心用の打ち抜き部材31は、図4に示す形状、積層数等に限らず、目的に応じて設計すればよい。   An iron core 300 shown in FIG. 5 is a schematic diagram showing another example of the iron core of the present invention. An iron core 300 shown in FIG. 5 represents a spirally wound iron core. As shown in FIG. 5, the iron core 300 includes a punching member 31 for a spirally wound iron core provided with a yoke portion 37 on the outer peripheral side and a teeth portion 35 protruding radially inward from the inner peripheral surface of the yoke portion 37. Have. The punching member 31 for the spirally wound iron core is subjected to helical bending so that the yoke portion 37 is on the outer peripheral side and the teeth portion 35 is on the inner peripheral side. The iron core 300 is formed as a laminated body 33 in which a plurality of punching members 31 are laminated and integrated. The punching member 31 for the spirally wound iron core is not limited to the shape shown in FIG. 4 and the number of stacked layers, and may be designed according to the purpose.

以上、図4および図5に示す鉄心について説明したが、本発明の鉄心はこれらに限定されるものではない。   Although the iron core shown in FIGS. 4 and 5 has been described above, the iron core of the present invention is not limited to these.

次に、本発明の鉄心の好適な製造方法について説明する。本発明の鉄心の好適な製造方法としては、例えば、下記のような製造方法が挙げられる。   Next, the suitable manufacturing method of the iron core of this invention is demonstrated. As a suitable manufacturing method of the iron core of this invention, the following manufacturing methods are mentioned, for example.

{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%である二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る工程と、打ち抜き部材を積層一体化して鉄心を得る工程と、を有していてもよい。なお、積層一体化した鉄心は、加工歪みを除くための焼鈍を行ってもよい。   The area ratio occupied by crystal grains of {100} <001> (± 30 °) is 50% or more, and the area ratio occupied by crystal grains of {110} <110> (± 30 °) is You may have the process of punching 20% of the bi-directional electrical steel sheet to obtain a punched member and the process of stacking and integrating the punched members to obtain an iron core. Note that the laminated and integrated iron core may be annealed to remove processing strain.

具体的には、まず、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板を準備する。準備した一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延する。冷間圧延の後、700℃以上(好ましくは700℃以上1100℃未満)の温度域で焼鈍して、{100}<001>(±30°)の結晶粒を50%以上有し、{110}<110>(±30°)の結晶粒を20%以上有する二方向性電磁鋼板を得る。   Specifically, first, a unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation is prepared. Cold rolling is performed so that the rolling reduction is 20% to 50% in a direction orthogonal to the rolling direction of the prepared unidirectional electrical steel sheet. After cold rolling, annealing is performed at a temperature range of 700 ° C. or more (preferably 700 ° C. or more and less than 1100 ° C.), and has {100} <001> (± 30 °) crystal grains of 50% or more, {110 } A bi-directional electrical steel sheet having 20% or more of <110> (± 30 °) crystal grains is obtained.

この二方向性電磁鋼板から、打ち抜き部材を得て、打ち抜き部材を積層一体化する。打ち抜き部材を得る方法、及び打ち抜き部材を積層一体化する方法は、通常工業的に採用されている方法によって鉄心を製造すればよい。   A punching member is obtained from the bi-directional electrical steel sheet, and the punching members are laminated and integrated. What is necessary is just to manufacture an iron core by the method normally employ | adopted as the method of obtaining the punching member, and the method of laminating and integrating a punching member.

例えば、鉄心が分割鉄心である場合、この二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る。そして、打ち抜き部材を組み合わせて積層し、積層一体化して鉄心を得る。
打ち抜き部材は、例えば、ティース部とヨーク部とを有する所定形状の打ち抜き部材でもよい。また、所定形状の打ち抜き部材は、所定の枚数を打ち抜く。所定形状の打ち抜き部材は、例えば、所定の形状に打ち抜かれるときに、積層して一体化するための凹凸部が形成されてもよい。次に、所定形状の打ち抜き部材を所定の枚数を組み合わせて積層し、積層一体化させて鉄心を得る。積層一体化は、例えば、かしめ加工により、各々の打ち抜き板に形成された凹凸部が機械的に相互に嵌め合わされて固定され、打ち抜き部材が積層一体化される。
For example, when the iron core is a split iron core, this bi-directional electrical steel sheet is punched to obtain a punched member. Then, the punching members are combined and stacked, and stacked and integrated to obtain an iron core.
For example, the punching member may be a punching member having a predetermined shape having a teeth portion and a yoke portion. Further, the punching member having a predetermined shape punches a predetermined number of sheets. The punching member having a predetermined shape may be provided with an uneven portion for stacking and integrating when punching into a predetermined shape, for example. Next, a predetermined number of punched members are laminated in a predetermined number and laminated and integrated to obtain an iron core. In the lamination integration, for example, the concavo-convex portions formed on the punched plates are mechanically fitted to each other and fixed by caulking, and the punching members are stacked and integrated.

また、例えば、鉄心が螺旋巻き鉄心である場合、この二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る。そして、打ち抜き部材に螺旋状の曲げ加工を施し、曲げ加工部材を得る。その後、曲げ加工部材を積層一体化して鉄心を得る。
螺旋巻き鉄心用の打ち抜き部材は、例えば、帯状の打ち抜き部材の長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。螺旋巻き鉄心用の打ち抜き部材は、例えば、一周分の螺旋状の曲げ加工を行うことが可能な長さでもよく、螺旋状に曲げ加工を行い巻き回しながら積層することが可能な長さでもよい。この打ち抜き部材は、例えば、所定の形状に打ち抜かれるときに、積層して一体化するための凹凸部が形成されてもよい。
螺旋巻き鉄心用の打ち抜き部材は、螺旋状の曲げ加工により、曲げ加工部材とした後、この曲げ加工部材を積層し、積層一体化させて鉄心を得る。例えば、打ち抜き部材を板面方向に、ティース部を内側、ヨーク部を外側にして、螺旋状に曲げ加工を行ってもよい。曲げ加工部材の積層は、複数枚の曲げ加工部材を積層してもよい。この場合、回し積みによって積層してもよい。また、曲げ加工部材を巻き回して積層してもよい。積層一体化は、例えば、かしめ加工により、各々の打ち抜き板に形成された凹凸部が機械的に相互に嵌め合わされて固定され、打ち抜き部材が積層一体化される。
以上の工程を経て、二方向性電磁鋼板を用いた鉄心が得られる。すなわち、二方向性電磁鋼板を用いて得た鉄心は、直交する二方向に優れた磁気特性を有する。
For example, when the iron core is a spirally wound iron core, the bi-directional electrical steel sheet is punched to obtain a punched member. Then, the punching member is subjected to a helical bending process to obtain a bending process member. Thereafter, the bent members are laminated and integrated to obtain an iron core.
A plurality of punching members for the spirally wound iron core are provided, for example, a yoke portion continuously extending in a direction along the longitudinal direction of the strip-shaped punching member and a one end side in the short side direction of the yoke portion. And a tooth portion. The punching member for the spirally wound iron core may be, for example, a length that can be spirally bent for one round, or a length that can be laminated while being spirally bent and wound. . The punching member may be formed with an uneven portion for stacking and integrating when punched into a predetermined shape, for example.
A punching member for a spirally wound iron core is formed into a bent member by spiral bending, and then the bent member is laminated and laminated to obtain an iron core. For example, the punching member may be bent in a spiral manner with the punching member in the plate surface direction, the teeth portion on the inside and the yoke portion on the outside. For the lamination of the bending members, a plurality of bending members may be laminated. In this case, the layers may be stacked by turning. Further, the bent member may be wound and laminated. In the lamination integration, for example, the concavo-convex portions formed on the punched plates are mechanically fitted to each other and fixed by caulking, and the punching members are stacked and integrated.
An iron core using a bi-directional electrical steel sheet is obtained through the above steps. That is, the iron core obtained using the bi-directional electrical steel sheet has excellent magnetic properties in two orthogonal directions.

なお、鉄心を得るために用いる上記一方向性電磁鋼板の化学組成は、例えば、質量%で、C:0.0030%以下、Si:2.00%以上4.00%以下、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素からなる鋼板であることがよい。   The chemical composition of the unidirectional electrical steel sheet used for obtaining the iron core is, for example, mass%, C: 0.0030% or less, Si: 2.00% or more and 4.00% or less, Mn: 0.00. 5% or less, Sb: 0.2% or less, Sn: 0.2% or less, Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5% or less, P: 0.3% It is preferable that the steel plate contains less than 0.5% Al and 0.5% or less, and the balance is Fe and impurity elements.

次に、本発明の鉄心に用いられる好適な他の鋼板について説明する。
本発明の鉄心に用いられる好適な他の鋼板としては、得られる鉄心が寸法精度に優れる点および占積率の低下を抑制する点で、例えば、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上(好ましくは90%〜100%、さらに好ましくは95%〜100%)であり、せん断帯の数が30個/mm以上(好ましくは40個/mm以上、さらに好ましくは50個/mm以上)である再冷延鋼板が挙げられる。
Next, another preferred steel sheet used for the iron core of the present invention will be described.
As another preferred steel sheet used for the iron core of the present invention, for example, {110} <110> (± 30 °), in that the obtained iron core has excellent dimensional accuracy and suppresses a decrease in the space factor. The area ratio of crystal grains in the crystal orientation is 85% or more (preferably 90% to 100%, more preferably 95% to 100%), and the number of shear bands is 30 pieces / mm or more (preferably 40 pieces / piece). mm or more, more preferably 50 pieces / mm or more).

再冷延鋼板が、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であることに加えて、せん断帯の数が30個/mm以上であることで、打ち抜き加工を行うときの打ち抜き寸法精度、及び曲げ加工を行うときの曲げ加工性に優れる。そのため、これら特性を有する再冷延鋼板を用いることで、得られる鉄心は寸法精度に優れ、占積率の低下が抑制される。   In the re-cold rolled steel sheet, in addition to the area ratio occupied by crystal grains of {110} <110> (± 30 °) being 85% or more, the number of shear bands is 30 pieces / mm or more. Therefore, it is excellent in punching dimensional accuracy when performing punching and bending workability when performing bending. Therefore, by using a re-cold rolled steel sheet having these characteristics, the obtained iron core is excellent in dimensional accuracy, and a decrease in the space factor is suppressed.

ここで、再冷延鋼板及び再冷延鋼板を焼鈍した鋼板についての結晶方位は、{}内の面が鋼板に平行で、かつ<>内の軸が再圧延方向に平行であることを示す。なお、結晶方位の観察は、EBSDを用いて既述の条件で行う。   Here, the crystal orientation of the re-cold rolled steel sheet and the steel sheet annealed from the re-cold rolled steel sheet indicates that the face in {} is parallel to the steel sheet and the axis in <> is parallel to the re-rolling direction. . The crystal orientation is observed under the above-described conditions using EBSD.

上記の再冷延鋼板を得る方法としては、例えば、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の切板の幅方向(一方向性電磁鋼板の圧延方向に対して直交する方向)に冷間圧延(以下、「冷延」と称する場合がある)を行う。この冷延により、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上(例えば、95%以上)であり、せん断帯の数が30個/mm以上(例えば、40個/mm以上)である再冷延鋼板を得る。この冷延において、圧下率は20%〜50%の範囲とすることがよい。   As a method for obtaining the re-cold rolled steel sheet, for example, the width direction of the cut sheet of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation (relative to the rolling direction of the unidirectional electrical steel sheet) Cold rolling (hereinafter sometimes referred to as “cold rolling”). By this cold rolling, the area ratio of the crystal grains with the crystal orientation of {110} <110> (± 30 °) is 85% or more (for example, 95% or more), and the number of shear bands is 30 pieces / mm or more. A re-cold rolled steel sheet is obtained (for example, 40 pieces / mm or more). In this cold rolling, the rolling reduction is preferably in the range of 20% to 50%.

ここで、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板を板厚方向に90度回転させると{110}<110>方位となる。この{110}<110>方位を冷間圧延すると、剪断変形により圧下率に応じて{110}<110>が一部{100}<001>に方位変化する。
このとき、圧下率が20%未満のときは{100}<001>方位の発生量が少な過ぎる。そのため、この{100}<001>方位の発生量が少な過ぎる再冷延鋼板を用いて鉄心を得た場合、得られた鉄心は磁気特性が低下する。また、再冷延鋼板のせん断帯の数が30個/mm未満となるため、鉄心の寸法精度が劣位となる。
一方、圧下率が50%超のときは{110}<110>方位粒が磁気特性の低い{111}<110>に変化するため、得られる鉄心の磁気特性が低下する。また、鉄心の寸法精度および占積率が低下する。しかも、再冷延鋼板の焼鈍後の方位が、磁気特性の悪い{111}<211>に変化しやすくなるため、得られる鉄心の磁気特性がより低下する。
このように、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板を、圧延方向に対して直交する方向に圧下率が20%〜50%となるように冷延した再冷延鋼板を用いると、上記特性を有する再冷延鋼板が得られる。そして、この再冷延鋼板を用いて得られた鉄心は、磁気特性、及び寸法精度に優れ、占積率の低下が抑制される。
Here, when the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation is rotated 90 degrees in the thickness direction, the {110} <110> orientation is obtained. When the {110} <110> orientation is cold-rolled, {110} <110> is partially changed to {100} <001> according to the reduction ratio due to shear deformation.
At this time, when the rolling reduction is less than 20%, the amount of {100} <001> orientation is too small. For this reason, when an iron core is obtained using a re-cold rolled steel sheet in which the amount of {100} <001> orientation is too small, the obtained iron core has reduced magnetic properties. Moreover, since the number of shear bands of the re-cold rolled steel sheet is less than 30 / mm, the dimensional accuracy of the iron core is inferior.
On the other hand, when the rolling reduction is over 50%, the {110} <110> oriented grains change to {111} <110> having low magnetic properties, so that the magnetic properties of the obtained iron core are deteriorated. In addition, the dimensional accuracy and space factor of the iron core are reduced. Moreover, since the orientation of the re-cold rolled steel sheet after annealing is likely to change to {111} <211> having poor magnetic properties, the magnetic properties of the obtained iron core are further lowered.
In this manner, the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation was cold-rolled so that the rolling reduction was 20% to 50% in the direction orthogonal to the rolling direction. When a cold-rolled steel sheet is used, a re-cold-rolled steel sheet having the above characteristics can be obtained. And the iron core obtained using this re-cold-rolled steel plate is excellent in a magnetic characteristic and dimensional accuracy, and the fall of a space factor is suppressed.

なお、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率は、既述の方法により測定する。
また、再冷延鋼板のせん断帯の数は、次のようにして測定する。
試験片を板厚断面が観察できるように圧延方向に平行に切断し、ナイタールエッチングによりせん断帯を腐食させて発現させる。結晶粒径観察に用いた写真の板厚中心部に1mmの線分を描く。その線分とせん断帯との交点を数え、その交点数を個/mmの単位で表す。この時、せん断帯とは結晶粒内に圧延方向から10°から70°傾いた斜め線状のエッチング痕のことを指す。
In addition, the area ratio which the crystal grain of the crystal orientation of {110} <110> (± 30 °) occupies is measured by the method described above.
Further, the number of shear bands of the re-cold rolled steel sheet is measured as follows.
The test piece is cut in parallel to the rolling direction so that the plate thickness cross section can be observed, and the shear band is corroded by the nital etching to be expressed. A line segment of 1 mm is drawn at the center of the plate thickness of the photograph used for observing the crystal grain size. The intersections of the line segments and the shear bands are counted, and the number of intersections is expressed in units of pieces / mm. At this time, the shear band refers to etching traces in the form of diagonal lines inclined in the crystal grains by 10 ° to 70 ° from the rolling direction.

再冷延鋼板としては、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上であれば、再冷延鋼板の化学組成は特に限定されない。再冷延鋼板は、例えば、以下の化学組成を有する再冷延鋼板が挙げられる。
質量比で、C:0.0000%〜0.0030%、Si:2.00%〜4.00%、Mn:0.0%〜0.5%、Sb:0.0%〜0.2%、Sn:0.0%〜0.2%、Ni:0.0%〜0.5%、Cu:0.0%〜0.5%、Cr:0.0%〜0.5%、P:0.0%〜0.3%、及びAl:0.0%〜0.5%を含有する。そして、残部は、Feおよび不純物元素からなる鋼板である。
再冷延鋼板の化学組成は、前述の鉄心に用いる好適な鋼板(二方向性電磁鋼板)で例示した化学組成と同様の点で、上記範囲の化学組成とすることがよい。
As the re-cold rolled steel sheet, if the area ratio occupied by crystal grains of {110} <110> (± 30 °) is 85% or more and the number of shear bands is 30 / mm or more, The chemical composition of the cold rolled steel sheet is not particularly limited. Examples of the re-cold rolled steel sheet include a re-cold rolled steel sheet having the following chemical composition.
By mass ratio, C: 0.0000% to 0.0030%, Si: 2.00% to 4.00%, Mn: 0.0% to 0.5%, Sb: 0.0% to 0.2% %, Sn: 0.0% to 0.2%, Ni: 0.0% to 0.5%, Cu: 0.0% to 0.5%, Cr: 0.0% to 0.5%, P: 0.0% to 0.3% and Al: 0.0% to 0.5%. The balance is a steel plate made of Fe and impurity elements.
The chemical composition of the re-cold rolled steel sheet is preferably within the above range in terms of the same chemical composition as exemplified by the preferred steel sheet (bidirectional electrical steel sheet) used for the iron core described above.

なお、再冷延鋼板を用いて得られる好適な鉄心としては、例えば、前述の図4および図5に示す鉄心が挙げられる。   In addition, as a suitable iron core obtained using a re-cold-rolled steel sheet, the iron core shown in above-mentioned FIG. 4 and FIG. 5 is mentioned, for example.

次に、本発明の鉄心の好適な他の製造方法について説明する。
本発明の鉄心の好適な他の製造方法は、例えば、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板を得る工程と、再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、打ち抜き部材を積層一体化して、700℃以上の温度域で焼鈍する工程と、を有する。
Next, another preferred method for producing the iron core of the present invention will be described.
Another preferred method for producing the iron core of the present invention is, for example, a rolling reduction of 20% in the direction orthogonal to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation. Cold-rolled to ˜50%, the area ratio occupied by crystal grains of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is 30 pieces / mm or more A step of obtaining a re-cold rolled steel sheet, a step of punching the re-cold rolled steel sheet to obtain a punched member, and a step of stacking and integrating the punched members and annealing in a temperature range of 700 ° C. or higher.

まず、一方向性電磁鋼板から特定の再冷延鋼板を得る。
具体的には、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板のコイルの幅方向に切断された鋼板(以下、「切板」と称する)を準備する。一方向性電磁鋼板としては、絶縁コーティング、及びフォルステライト皮膜を有しない鋼板を準備してもよい。又は、絶縁コーティング、及びフォルステライト皮膜を有している鋼板を準備し、絶縁コーティング、及びフォルステライト皮膜を切削等で機械的に除去した鋼板としてもよい。
First, a specific re-cold rolled steel sheet is obtained from a unidirectional electrical steel sheet.
Specifically, a steel sheet (hereinafter referred to as “cut sheet”) cut in the width direction of the coil of a unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation is prepared. As the unidirectional electrical steel sheet, a steel sheet having no insulating coating and forsterite film may be prepared. Alternatively, a steel plate having an insulating coating and a forsterite film may be prepared, and the insulating coating and the forsterite film may be mechanically removed by cutting or the like.

また、一方向性電磁鋼板としては、{110}<001>方位に集積した結晶粒を有するのであれば、一方向性電磁鋼板の化学組成は特に限定されない。{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板としては、例えば、以下の化学組成を有する一方向性電磁鋼板であることがよい。
このような一方向性電磁鋼板としては、質量比で、C:0.0000%〜0.0030%、Si:2.00%〜4.00%、Mn:0.0%〜0.5%、Sb:0.0%〜0.2%、Sn:0.0%〜0.2%、Ni:0.0%〜0.5%、Cu:0.0%〜0.5%、Cr:0.0%〜0.5%、P:0.0%〜0.3%、及びAl:0.0%〜0.5%を含有する。そして、残部は、Feおよび不純物元素からなる鋼板である。
In addition, as the unidirectional electrical steel sheet, the chemical composition of the unidirectional electrical steel sheet is not particularly limited as long as it has crystal grains accumulated in the {110} <001> orientation. The unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation is preferably, for example, a unidirectional electrical steel sheet having the following chemical composition.
As such a unidirectional electrical steel sheet, by mass ratio, C: 0.0000% to 0.0030%, Si: 2.00% to 4.00%, Mn: 0.0% to 0.5% , Sb: 0.0% to 0.2%, Sn: 0.0% to 0.2%, Ni: 0.0% to 0.5%, Cu: 0.0% to 0.5%, Cr : 0.0% to 0.5%, P: 0.0% to 0.3%, and Al: 0.0% to 0.5%. The balance is a steel plate made of Fe and impurity elements.

次に、準備した切板の幅方向(一方向性電磁鋼板の圧延方向に対して直交する方向)に、圧下率が20%〜50%となるように、冷間圧延を行い、前述の再冷延鋼板と同様の再冷延鋼板を得る。すなわち、再冷延鋼板は、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である。   Next, cold rolling is performed in the width direction of the prepared cut plate (direction perpendicular to the rolling direction of the unidirectional electrical steel sheet) so that the rolling reduction is 20% to 50%, A re-cold rolled steel sheet similar to the cold rolled steel sheet is obtained. That is, in the re-cold rolled steel sheet, the area ratio occupied by the crystal grains of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is 30 / mm or more.

次に、再冷延鋼板を打ち抜き、打ち抜き部材(打ち抜き板)を得る。打ち抜き部材は、目的に合わせた鉄心に応じて、所定の形状に打ち抜く。打ち抜き部材を得る方法は特に限定されず、通常工業的に採用されている方法によって行えばよい。
なお、打ち抜き部材を得る工程は、例えば、所定形状の打ち抜き部材よりも大きい予備打ち抜き部材を得る工程と、予備打ち抜き部材から目的とする所定形状の打ち抜き部材を得る工程とを有する2段階の工程としてもよい。
Next, the re-cold rolled steel sheet is punched to obtain a punched member (punched plate). The punching member is punched into a predetermined shape according to the iron core suited to the purpose. The method for obtaining the punched member is not particularly limited, and may be performed by a method that is usually employed industrially.
In addition, the process of obtaining a punching member is, for example, a two-stage process including a process of obtaining a preliminary punching member larger than a punching member having a predetermined shape and a process of obtaining a punching member having a predetermined shape from the preliminary punching member. Also good.

鉄心が分割鉄心である場合、分割鉄心用の打ち抜き部材は、例えば、ティース部とヨーク部とを有する分割された形状の打ち抜き部材が挙げられる。
また、鉄心が螺旋巻き鉄心である場合、螺旋巻き鉄心用の打ち抜き部材は、例えば、帯状の打ち抜き部材であり、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一方の端部側に突出して複数個設けられたティース部とを有する形状の打ち抜き部材が挙げられる。螺旋巻き鉄心用の打ち抜き部材は、例えば、一周分の螺旋状の曲げ加工を行うことが可能な長さでもよく、螺旋状に曲げ加工を行い巻き回しながら積層することが可能な長さでもよい。
これらの打ち抜き部材は、積層一体化する場合に、ティース部とヨーク部とを有する所定の形状に打ち抜かれるときに、例えば、積層して一体化するための凹凸部が形成されてもよい。
When the iron core is a split iron core, examples of the punching member for the split iron core include a punching member having a divided shape having a teeth portion and a yoke portion.
When the iron core is a spirally wound iron core, the punching member for the spirally wound iron core is, for example, a belt-like punching member, and a yoke portion continuously extending in the direction along the longitudinal direction, and a short side of the yoke portion The punching member of the shape which has the teeth part which protruded in the one edge part side of the direction and was provided with two or more is mentioned. The punching member for the spirally wound iron core may be, for example, a length that can be spirally bent for one round, or a length that can be laminated while being spirally bent and wound. .
When these punching members are laminated and integrated, when punched into a predetermined shape having a tooth portion and a yoke portion, for example, an uneven portion for stacking and integrating may be formed.

次に、打ち抜き部材を積層一体化する。
例えば、鉄心が分割鉄心である場合、分割鉄心用の打ち抜き部材の所定枚数を組み合わせて環状に連結させ、これを積層する。そして、例えば、かしめ加工により、各々の打ち抜き板に形成された凹凸部が機械的に相互に嵌め合わされて固定され、打ち抜き部材が積層一体化される。
Next, the punching member is laminated and integrated.
For example, when the iron core is a split iron core, a predetermined number of punched members for the split iron core are combined and connected in an annular shape, and are laminated. Then, for example, the concavo-convex portions formed on each punching plate are mechanically fitted and fixed to each other by caulking, and the punching members are laminated and integrated.

鉄心が螺旋巻き鉄心である場合、螺旋巻き鉄心用の打ち抜き部材に曲げ加工を行い、曲げ加工された打ち抜き部材(以下、「曲げ加工部材」とも称する)を得る。曲げ加工は、打ち抜き部材の板面方向に対して、例えば、ヨーク部を外周側、ティース部を内周側となるように螺旋状の曲げ加工を行い、曲げ加工部材を得る。そして、曲げ加工部材を積層する。曲げ加工部材の積層は、一周分の曲げ加工を行った曲げ加工部材を所定枚数積層してもよい。この場合、回し積みによって積層してもよい。また、曲げ加工部材を巻き回して積層してもよい。その後、例えば、かしめ加工により、積層された曲げ加工部材が機械的に相互に嵌め合わされて固定され、曲げ加工部材が積層一体化される。
なお、かしめ加工により積層一体化する方法を例に挙げて説明したが、積層一体化する方法は特に限定されず、通常工業的に採用されている方法で行えばよい。
When the iron core is a spirally wound iron core, the punched member for the spirally wound core is bent to obtain a bent punched member (hereinafter also referred to as “bending member”). In the bending process, for example, the bending process is performed with respect to the plate surface direction of the punching member so that the yoke part is on the outer peripheral side and the teeth part is on the inner peripheral side. And a bending process member is laminated | stacked. The bending member may be laminated by laminating a predetermined number of bending members subjected to one round of bending. In this case, the layers may be stacked by turning. Further, the bent member may be wound and laminated. After that, for example, by caulking, the laminated bending members are mechanically fitted and fixed to each other, and the bending members are laminated and integrated.
In addition, although the method of laminating and integrating by caulking is described as an example, the method of laminating and integrating is not particularly limited, and may be performed by a method that is usually employed industrially.

次に、積層一体化された積層体に対して焼鈍を行う。焼鈍温度は、得られる鉄心の磁気特性が優位となる点で、700度以上で焼鈍をすることがよく、800度以上であることが好ましい。なお、焼鈍の温度域の上限は特に限定されないが、焼鈍温度が高すぎると、得られる鉄心の磁気特性が劣位となる場合があるので、焼鈍の温度域の上限は、1100℃未満(好ましくは1000℃以下)とすることがよい。
以上の工程を経て、再冷延鋼板を用いた鉄心が得られる。
Next, annealing is performed on the laminated body integrated. The annealing temperature is preferably 700 ° C. or higher, and preferably 800 ° C. or higher, in that the magnetic properties of the obtained iron core are superior. The upper limit of the annealing temperature range is not particularly limited, but if the annealing temperature is too high, the magnetic properties of the resulting iron core may be inferior, so the upper limit of the annealing temperature range is less than 1100 ° C. (preferably 1000 ° C. or lower).
An iron core using a re-cold rolled steel sheet is obtained through the above steps.

ここで、再冷延鋼板は、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である。この再冷延鋼板では、{100}<001>方位から±30度以内の結晶粒の面積比率は15%未満である。この再冷延鋼板を再結晶させた後の鋼板は、{100}<001>方位から±30度以内の結晶粒の面積比率を50%以上に増加し得る。このとき、再結晶比率を100%にすることが望ましい。再冷延鋼板を再結晶させるためには、700度以上(好ましくは700℃〜1000℃)の温度域で焼鈍をすることがよい。この焼鈍により、再結晶させた後の鋼板は、{100}<001>(±30°)の結晶粒を50%以上有し、{110}<110>(±30°)の結晶粒を20%以上有する。すなわち、再冷延鋼板を用いて得た鉄心は、上記の焼鈍により、直交する二方向に優れた磁気特性を有する。   Here, in the re-cold rolled steel sheet, the area ratio occupied by the crystal grains of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is 30 / mm or more. In this re-rolled steel sheet, the area ratio of crystal grains within ± 30 degrees from the {100} <001> orientation is less than 15%. The steel sheet after recrystallizing the re-cold rolled steel sheet can increase the area ratio of crystal grains within ± 30 degrees from the {100} <001> orientation to 50% or more. At this time, it is desirable to set the recrystallization ratio to 100%. In order to recrystallize the re-cold rolled steel sheet, it is preferable to perform annealing in a temperature range of 700 ° C. or higher (preferably 700 ° C. to 1000 ° C.). The steel plate after recrystallization by this annealing has 50% or more of {100} <001> (± 30 °) crystal grains and 20 crystal grains of {110} <110> (± 30 °). % Or more. That is, the iron core obtained using the re-cold rolled steel sheet has excellent magnetic properties in two orthogonal directions due to the above annealing.

なお、本発明の鉄心は、再冷延鋼板を積層したものとしてもよい。再冷延鋼板を積層した鉄心とする場合、この鉄心の製造方法としては、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板を得る工程と、再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、打ち抜き部材を積層一体化する工程とを有することが挙げられる。
また、この再冷延鋼板を積層した鉄心は、例えば、700℃〜1000℃の温度域で焼鈍を施してもよい。この温度域で焼鈍することで、鉄心を構成する鋼板は、{100}<001>(±30°)の結晶粒を50%以上有し、{110}<110>(±30°)の結晶粒を20%以上有するものとなる。つまり、鉄心は、前述の直交する二方向に優れた磁気特性を有するものとなる。
In addition, the iron core of this invention is good also as what laminated | stacked the re-cold-rolled steel plate. When making the iron core laminated with the re-cold rolled steel sheet, as a manufacturing method of this iron core, in the direction orthogonal to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation, Cold rolling so that the reduction ratio is 20% to 50%, the area ratio occupied by crystal grains of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is It includes a step of obtaining a re-cold rolled steel sheet of 30 pieces / mm or more, a step of punching the re-cold rolled steel plate to obtain a punched member, and a step of stacking and integrating the punched members.
Moreover, you may anneal the iron core which laminated | stacked this re-cold-rolled steel plate in the temperature range of 700 to 1000 degreeC, for example. By annealing in this temperature range, the steel sheet constituting the iron core has 50% or more of {100} <001> (± 30 °) crystal grains, and {110} <110> (± 30 °) crystals. It has 20% or more of grains. That is, the iron core has excellent magnetic properties in the two orthogonal directions described above.

以上、本発明の鉄心を得るための好適な鋼板として、二方向性電磁鋼板および再冷延鋼板を例に挙げて説明したが、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上の鋼板からなる鉄心が得られるのであれば、上記の鋼板に限定されるものではない。   As described above, as the preferred steel sheet for obtaining the iron core of the present invention, the description has been given taking the example of the bi-directional electrical steel sheet and the re-cold rolled steel sheet, but the crystal with the crystal orientation of {100} <001> (± 30 °) If an iron core made of a steel sheet having an area ratio of grains of 50% or more and an area ratio of grains of {110} <110> (± 30 °) crystal orientation of 20% or more can be obtained, It is not limited to steel plates.

なお、従来の二方向性電磁鋼板を用いて鉄心を得る方法では、二方向性電磁鋼板を得るための特殊な装置を必要としていた。これに対して、本発明の鉄心は、二方向性電磁鋼板を得るための特殊な装置を必要とせず、二方向に優れた磁気特性を有する鉄心が簡便に製造し得る。   In addition, in the method of obtaining an iron core using the conventional bidirectional magnetic steel plate, the special apparatus for obtaining a bidirectional magnetic steel plate was required. On the other hand, the iron core of the present invention does not require a special device for obtaining a bidirectional magnetic steel sheet, and an iron core having excellent magnetic properties in two directions can be easily produced.

以上のように、本発明によれば、鉄心は、優れた磁気特性を有し、寸法精度に優れおよび占積率の低下が抑制されているため、電気機器鉄心(特に、モータの螺旋巻き鉄心)として適用することが望ましい。本発明によれば、電気機器の分野における喫緊の高効率化、小型化要請に十分に応えることができ、その工業的価値は極めて高いものである。   As described above, according to the present invention, the iron core has excellent magnetic properties, excellent dimensional accuracy, and suppression of a decrease in the space factor. ) Is desirable. According to the present invention, it is possible to satisfactorily meet the urgent demand for high efficiency and miniaturization in the field of electrical equipment, and its industrial value is extremely high.

なお、本発明は、上記に限定されるものではない。上記は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above. The above is an exemplification, and any technology that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same operational effects can be used. To be included in the scope.

以下、実施例を例示して、本発明を具体的に説明するが、本発明はこれに限定されるものではない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

(実施例1)
−主方位および副方位の確認−
本発明の鉄心を構成する鋼板が、主方位および副方位を有することについて確認試験を行う。
まず、質量%で、C:0.0030%、Si:3.10%、Mn:0.1%、を含有する厚さ0.30mmの一方向性電磁鋼板の切板を準備する。次に、絶縁コーティングを水酸化ナトリウム水溶液で、フォルステライト皮膜を硫酸で除去する。しかる後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に対して40%の圧下率で冷延を行い、再冷延鋼板を得る。この再冷延鋼板は、{110}<110>から30°以内の結晶粒が91%、せん断帯の数が72個/mmである。
この再冷延鋼板を窒素雰囲気中にて850℃で1秒焼鈍する。焼鈍終了後、鋼板を空冷する。
Example 1
-Confirmation of main direction and sub-direction-
A confirmation test is performed on the steel sheet constituting the iron core of the present invention having a main orientation and a sub-orientation.
First, a cut plate of a unidirectional electrical steel sheet having a thickness of 0.30 mm containing, in mass%, C: 0.0030%, Si: 3.10%, and Mn: 0.1% is prepared. Next, the insulating coating is removed with an aqueous sodium hydroxide solution and the forsterite film is removed with sulfuric acid. Thereafter, cold rolling is performed at a rolling reduction of 40% with respect to the width direction of the cut plate from which the insulating coating and the forsterite film have been removed to obtain a re-cold rolled steel sheet. This re-cold rolled steel sheet has 91% of crystal grains within 30 ° from {110} <110>, and the number of shear bands is 72 / mm.
This re-rolled steel sheet is annealed at 850 ° C. for 1 second in a nitrogen atmosphere. After the annealing, the steel sheet is air-cooled.

上記焼鈍後の鋼板の中心層を既述の測定条件により、EBSDにより観察を行う。
上記焼鈍後の鋼板の(001)極点図を図3に示す。図3に示すとおり、焼鈍後の鋼板は、主方位である{100}<001>近傍方位1Aと、副方位である{110}<110>近傍方位2Aとの2方位で結晶粒が観察される。この鉄心に用いられる鋼板における各結晶粒の面積比率は、{100}<001>から30°以内の結晶粒は61%であり、{110}<110>から30°以内の結晶粒は37%である。
The center layer of the steel sheet after annealing is observed by EBSD under the measurement conditions described above.
FIG. 3 shows a (001) pole figure of the steel plate after the annealing. As shown in FIG. 3, in the steel sheet after annealing, crystal grains are observed in two orientations: a {100} <001> neighborhood orientation 1A which is a main orientation and a {110} <110> neighborhood orientation 2A which is a sub orientation. The The area ratio of each crystal grain in the steel sheet used for this iron core is 61% for grains within 30 ° from {100} <001>, and 37% for grains within 30 ° from {110} <110>. It is.

また、上記の再冷延鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化した積層体を得る。その後、この積層体を窒素雰囲気中にて、850℃の各温度条件で1秒間焼鈍して鉄心を得る。焼鈍終了後、鉄心を空冷する。   Moreover, a strip | belt-shaped punching member is pierce | punched from said re-cold-rolled steel plate so that several teeth part may be formed with respect to the direction along a cold rolling direction. This strip-shaped punching member has a yoke portion that continuously extends in a direction along the longitudinal direction, and a plurality of teeth portions that protrude toward one end in the short direction of the yoke portion. Next, the band-shaped punched member is bent to obtain a bent member. In the bending process, a spiral bending process is performed so that the strip-shaped punching member makes one round, and the yoke part is on the outer peripheral side and the teeth part is on the inner peripheral side. Thereafter, the bending members are laminated and caulking is performed to obtain a laminated body that is laminated and integrated. Then, this laminated body is annealed for 1 second on each temperature condition of 850 degreeC in nitrogen atmosphere, and an iron core is obtained. After annealing, the iron core is air-cooled.

得られる鉄心において、ティース部とヨーク部から鋼板を採取し、その板厚中心層を既述の測定条件により、EBSDにより観察を行う。この採取した鋼板における結晶粒の面積比率は、{100}<001>から30°以内の結晶粒が61%であり、{110}<110>から30°以内の結晶粒が37%である。   In the obtained iron core, a steel plate is collected from the teeth portion and the yoke portion, and the center layer of the plate thickness is observed by EBSD under the measurement conditions described above. The area ratio of the crystal grains in the collected steel sheet is 61% for grains within 30 ° from {100} <001> and 37% for grains within 30 ° from {110} <110>.

このように、上記の再冷延鋼板を用いて得る鉄心は、再冷延鋼板を焼鈍して得られる鋼板の主方位と副方位とに対応する結晶方位の結晶粒を有することが分かる。   Thus, it turns out that the iron core obtained using said re-rolled steel plate has the crystal grain of the crystal orientation corresponding to the main orientation and sub-orientation of the steel plate obtained by annealing a re-cold rolled steel plate.

(実施例2)
−圧下率および焼鈍条件の影響−
まず、質量%で、C:0.0002%、Si:3.09%を含有する0.30mmの一方向性電磁鋼板の切板を準備する。次に、水酸化ナトリウム水溶液で絶縁コーティングを除去し、硫酸でフォルステライト皮膜を除去する。その後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に対して圧下率10%〜60%で冷延を行い、再冷延鋼板を得る。
(Example 2)
-Effect of rolling reduction and annealing conditions-
First, a 0.30 mm unidirectional electrical steel sheet containing C: 0.0002% and Si: 3.09% by mass% is prepared. Next, the insulating coating is removed with an aqueous sodium hydroxide solution, and the forsterite film is removed with sulfuric acid. Then, cold rolling is performed at a rolling reduction of 10% to 60% with respect to the width direction of the cut plate from which the insulating coating and the forsterite film have been removed to obtain a re-cold rolled steel sheet.

この再冷延鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化した積層体を得る。その後、この積層体を窒素雰囲気中にて、600℃〜1100℃の各温度条件で1秒間焼鈍して鉄心を得る。焼鈍終了後、鉄心を空冷する。   A strip-shaped punching member is punched out from the re-cold rolled steel sheet so that a plurality of teeth are formed in the direction along the cold rolling direction. This strip-shaped punching member has a yoke portion that continuously extends in a direction along the longitudinal direction, and a plurality of teeth portions that protrude toward one end in the short direction of the yoke portion. Next, the band-shaped punched member is bent to obtain a bent member. In the bending process, a spiral bending process is performed so that the strip-shaped punching member makes one round, and the yoke part is on the outer peripheral side and the teeth part is on the inner peripheral side. Thereafter, the bending members are laminated and caulking is performed to obtain a laminated body that is laminated and integrated. Then, this laminated body is annealed for 1 second on each temperature conditions of 600 to 1100 degreeC in nitrogen atmosphere, and an iron core is obtained. After annealing, the iron core is air-cooled.

上記方法で得られる鉄心について、磁気特性の各評価を行う。上記方法で得られる鉄心において、ティース部とヨーク部とから鋼板を採取し、その板厚中心層を既述の測定条件により、EBSDにより観察を行う。さらに、上記方法で得られる鉄心において、鋼板を採取し、平均結晶粒径の測定を行う。また、再冷延鋼板について、打ち抜き精度、及び曲げ加工性の各評価を行う。
EBSD観察および平均結晶粒径の測定は、既述の方法により測定を行う。
磁気特性はB50(T)(磁化力5000A/mにおける磁束密度)およびW10/400(W/kg)(磁束密度1.0T、周波数400Hzの時の鉄損)の測定を行う。
50(T)と、W10/400(W/kg)は、鉄心における径方向に沿う方向と、周の接線方向との平均値である。
寸法精度と曲げ加工性は下記操作方法により評価を行う。
なお、再冷延鋼板の寸法精度、及び曲げ加工性を評価することにより、鉄心の寸法精度、及び占積率が評価される。
Each evaluation of a magnetic characteristic is performed about the iron core obtained by the said method. In the iron core obtained by the above method, a steel plate is collected from the tooth portion and the yoke portion, and the thickness center layer is observed by EBSD under the measurement conditions described above. Furthermore, in the iron core obtained by the above method, a steel plate is collected and the average crystal grain size is measured. Moreover, each evaluation of a punching precision and bending workability is performed about a re-cold-rolled steel plate.
The EBSD observation and the average crystal grain size are measured by the method described above.
Magnetic properties are measured by B 50 (T) (magnetic flux density at a magnetizing force of 5000 A / m) and W 10/400 (W / kg) (iron loss at a magnetic flux density of 1.0 T and a frequency of 400 Hz).
B 50 (T) and W 10/400 (W / kg) are average values of the direction along the radial direction of the iron core and the circumferential tangential direction.
Dimensional accuracy and bending workability are evaluated by the following operation method.
In addition, the dimensional accuracy and space factor of an iron core are evaluated by evaluating the dimensional accuracy and bending workability of a re-cold rolled steel sheet.

・打ち抜き精度
内径100mm、外径120mmのリング状試料を打ち抜き、真円からの平均差(真円からのズレ)を求める。平均差が2μm以下であれば、得られる鉄心の寸法精度は良いと考える。
-Punching accuracy A ring-shaped sample having an inner diameter of 100 mm and an outer diameter of 120 mm is punched, and an average difference from a perfect circle (deviation from a perfect circle) is obtained. If the average difference is 2 μm or less, the dimensional accuracy of the obtained iron core is considered good.

・曲げ加工性
20mm幅×800mm長さの鋼板を作製し、内径200mm、外径240mmの曲げ加工を行う。その際の板厚変化量(%)を測定する。板厚変化量が6%以下であれば、得られる鉄心の占積率の低下が抑制されていると考える。ただし、曲げ加工時に割れが発生しやすい場合は、300℃以下での温間加工をしても良い。
-Bending workability A steel plate having a width of 20 mm and a length of 800 mm is produced, and bending is performed with an inner diameter of 200 mm and an outer diameter of 240 mm. The thickness change (%) at that time is measured. If the plate thickness change amount is 6% or less, it is considered that the decrease in the space factor of the obtained iron core is suppressed. However, if cracking is likely to occur during bending, warm working at 300 ° C. or lower may be performed.

表1に示すように、符号2−2〜符号2−6は本発明の範囲内であり、これらの鉄心は、磁束密度B50が高く、打ち抜き精度及び、曲げ加工性が良好である。符号2−1の鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率が少ない。そのため、符号2−1の鉄心は磁束密度B50が低い。また、符号2−1は、再冷延鋼板のせん断帯の数が少ないため、寸法精度が劣位である。さらに、せん断帯が少ないため、再結晶後の{100}<001>(±30°)の結晶粒の面積比率も少なくなり、鉄心の磁気特性も劣位である。
符号2−7及び符号2−8の鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率と{110}<110>(±30°)の結晶粒の面積比率が少ない。そのため、符号2−7及び符号2−8の鉄心は磁束密度B50が低い。また、符号2−7の再冷延鋼板は、{110}<110>(±30°)の結晶粒の面積比率が少ない。そのため、曲げ加工性が劣位である。さらに、符号2−8の鉄心の鋼板は、未再結晶部が残存しているため、鉄心のW10/400が著しく劣位である。
また、表1に示すように、圧下率が低すぎると、鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率が少ない。圧下率が高すぎる、又は焼鈍温度が低すぎると、鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率、及び{110}<110>(±30°)の結晶粒の面積比率が少ない。さらに、同じ圧下率であって、焼鈍温度が高い場合は、鉄心の鋼板は平均結晶粒径が大きくなる傾向がある。
なお、符号2−6の鉄心の鋼板は本発明の範囲内であるが、結晶粒径が320μmと粗大である。そのため、同一再冷延条件の符号2−3の鉄心よりも鉄損が高く、磁気特性的に不利である。
As shown in Table 1, numerals 2-2 to the code 2-6 is within the scope of the present invention, these core has a high magnetic flux density B 50, punching accuracy and, bending workability is good. The steel plate of the core 2-1 has a small area ratio of crystal grains of {100} <001> (± 30 °). Therefore, the iron core of the code 2-1 is low flux density B 50. Moreover, since the code | symbol 2-1 has few shear bands of a re-cold-rolled steel plate, its dimensional accuracy is inferior. Furthermore, since there are few shear bands, the area ratio of the {100} <001> (± 30 °) crystal grains after recrystallization is reduced, and the magnetic properties of the iron core are inferior.
The steel sheets of the cores 2-7 and 2-8 have {100} <001> (± 30 °) crystal grain area ratio and {110} <110> (± 30 °) crystal grain area ratio. Few. Therefore, the core code 2-7 and codes 2-8 lower magnetic flux density B 50. Further, the re-cold rolled steel sheet 2-7 has a small area ratio of crystal grains of {110} <110> (± 30 °). Therefore, bending workability is inferior. Furthermore, in the steel sheet having the core 2-8, the non-recrystallized portion remains, so the W 10/400 of the core is remarkably inferior.
Moreover, as shown in Table 1, when the rolling reduction is too low, the steel sheet of the iron core has a small area ratio of crystal grains of {100} <001> (± 30 °). When the rolling reduction is too high or the annealing temperature is too low, the steel sheet of the iron core has {100} <001> (± 30 °) crystal grain area ratio and {110} <110> (± 30 °) crystal. The area ratio of grains is small. Furthermore, when the rolling reduction is the same and the annealing temperature is high, the steel sheet of the iron core tends to have a large average grain size.
In addition, although the steel plate of the iron core of a code | symbol 2-6 is in the scope of the present invention, the crystal grain size is as coarse as 320 μm. Therefore, the iron loss is higher than that of the core 2-3 of the same re-cold rolling condition, which is disadvantageous in terms of magnetic characteristics.

(実施例3)
−化学組成による影響−
まず、質量%で、表2に示す化学組成を有し、厚さ0.30mmの一方向性電磁鋼板(鋼板と表記)の切板を準備する。次に、水酸化ナトリウム水溶液で絶縁コーティングを除去し、硫酸でフォルステライト皮膜を除去する。その後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に圧下率40%で冷延を行い、再冷延鋼板を得る。
(Example 3)
-Effects of chemical composition-
First, a cut plate of a unidirectional electrical steel sheet (noted as a steel sheet) having a chemical composition shown in Table 2 in mass% and having a thickness of 0.30 mm is prepared. Next, the insulating coating is removed with an aqueous sodium hydroxide solution, and the forsterite film is removed with sulfuric acid. Thereafter, cold rolling is performed at a rolling reduction of 40% in the width direction of the cut plate from which the insulating coating and the forsterite film have been removed, to obtain a re-cold rolled steel sheet.

この再冷延鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化した積層体を得る。この積層体を窒素雰囲気中にて850℃で1秒焼鈍して鉄心を得る。焼鈍終了後、鉄心を空冷する。   A strip-shaped punching member is punched out from the re-cold rolled steel sheet so that a plurality of teeth are formed in the direction along the cold rolling direction. This strip-shaped punching member has a yoke portion that continuously extends in a direction along the longitudinal direction, and a plurality of teeth portions that protrude toward one end in the short direction of the yoke portion. Next, the band-shaped punched member is bent to obtain a bent member. In the bending process, a spiral bending process is performed so that the strip-shaped punching member makes one round, and the yoke part is on the outer peripheral side and the teeth part is on the inner peripheral side. Thereafter, the bending members are laminated and caulking is performed to obtain a laminated body that is laminated and integrated. This laminated body is annealed at 850 ° C. for 1 second in a nitrogen atmosphere to obtain an iron core. After annealing, the iron core is air-cooled.

上記方法で得られる再冷延鋼板および鉄心について、実施例2と同様の評価方法により、各評価を行う。   Each evaluation is performed by the same evaluation method as Example 2 about the re-cold-rolled steel sheet and iron core obtained by the said method.

表3に示すように、鉄心を構成する鋼板は、再冷延鋼板を得るために用いる一方向性電磁鋼板の化学組成によらずに、{100}<001>(±30°)の結晶粒の面積比率、及び{110}<110>(±30°)の結晶粒の面積比率が本発明の範囲内であることが分かる。そして、{100}<001>(±30°)の結晶粒の面積比率、及び{110}<110>(±30°)の結晶粒の面積比率が本発明の範囲内である鋼板からなる鉄心は、磁束密度B50が高いことが分かる。また、{110}<110>(±30°)の結晶粒の面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板は、打ち抜き精度及び曲げ加工性が良好であることが分かる。これにより、この再冷延鋼板を用いて得られる鉄心は、寸法精度及び占積率の低下が抑制されることが分かる。
しかし、化学成分の推奨範囲を外れると別の課題が発生する。符号3−9の鋼板はCが多く、磁気時効を起こすためモータ鉄心への適用は不向きである。また、符号3−10の鋼板はSiが多く、冷延時の作業性が低下するため、商業生産には向いていない。符号3−11の鋼板はSi量が少なく、相変態をするため、一方向性電磁鋼板を商業的に生産するには不向きである。したがって、これらの鋼板を用いて、鉄心を商業的に製造することは困難であり、鉄心を生産できても、鉄心としての安定した十分な性能が得られ難い。
As shown in Table 3, the steel sheets constituting the iron core are {100} <001> (± 30 °) crystal grains, regardless of the chemical composition of the unidirectional electrical steel sheet used for obtaining the re-cold rolled steel sheet. And the area ratio of crystal grains of {110} <110> (± 30 °) are within the scope of the present invention. And the iron core which consists of a steel plate whose area ratio of the crystal grain of {100} <001> (± 30 degrees) and the area ratio of the crystal grain of {110} <110> (± 30 degrees) is in the range of the present invention. Shows that the magnetic flux density B 50 is high. Further, a re-cold rolled steel sheet having an area ratio of crystal grains of {110} <110> (± 30 °) of 85% or more and the number of shear bands of 30 pieces / mm or more has punching accuracy and bending workability. Is found to be good. Thereby, it turns out that the fall of a dimensional accuracy and a space factor is suppressed for the iron core obtained using this cold-rolled steel plate.
However, if the recommended range of chemical components is deviated, another problem occurs. The steel sheet of reference number 3-9 has a large amount of C and is not suitable for application to a motor core because it causes magnetic aging. Moreover, since the steel plate of 3-10 has many Si and workability | operativity at the time of cold rolling falls, it is not suitable for commercial production. Since the steel sheet of reference number 3-11 has a small amount of Si and undergoes phase transformation, it is not suitable for commercial production of a unidirectional electrical steel sheet. Therefore, it is difficult to produce an iron core commercially using these steel plates, and even if the iron core can be produced, it is difficult to obtain stable and sufficient performance as the iron core.

(実施例4)
−他の例による主方位および副方位の確認−
本発明の鉄心が、主方位および副方位を有する二方向性電磁鋼板から製造しても、鉄心を構成する鋼板が、主方位と副方位とを有することについて確認試験を行う。
質量%で、C:0.0030%、Si:3.10%、Mn:0.1%、を含有する厚さ0.30mmの一方向性電磁鋼板の切板を準備する。次に、絶縁コーティングを水酸化ナトリウム水溶液で、フォルステライト皮膜を硫酸で除去する。しかる後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に対して40%の圧下率で冷延を行う。その後、冷延板を窒素雰囲気中にて850℃で1秒焼鈍する。焼鈍終了後、鋼板を空冷し、二方向性電磁鋼板を得る。
Example 4
-Confirmation of main direction and sub-direction by other examples-
Even if the iron core of the present invention is manufactured from a bi-directional electrical steel sheet having a main orientation and a sub-orientation, a confirmation test is performed on the steel sheet constituting the iron core having a main orientation and a sub-direction.
A cut plate of a unidirectional electrical steel sheet having a thickness of 0.30 mm containing C: 0.0030%, Si: 3.10%, and Mn: 0.1% in mass% is prepared. Next, the insulating coating is removed with an aqueous sodium hydroxide solution and the forsterite film is removed with sulfuric acid. Thereafter, cold rolling is performed at a rolling reduction of 40% with respect to the width direction of the cut plate from which the insulating coating and the forsterite film have been removed. Thereafter, the cold-rolled sheet is annealed at 850 ° C. for 1 second in a nitrogen atmosphere. After the annealing, the steel sheet is air-cooled to obtain a bi-directional electrical steel sheet.

この鋼板の中心層を既述の測定条件により、EBSDにより観察を行う。その結果、この二方向性電磁鋼板における結晶粒の面積比率は、{100}<001>から30°以内の結晶粒は61%であり、{110}<110>から30°以内の結晶粒は37%である。   The central layer of this steel sheet is observed by EBSD under the measurement conditions described above. As a result, the area ratio of crystal grains in this bi-directional electrical steel sheet is 61% for grains within 30 ° from {100} <001>, and for grains within 30 ° from {110} <110> 37%.

この二方向性電磁鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化して鉄心を得る。   From this bi-directional electrical steel sheet, a strip-shaped punching member is punched so that a plurality of teeth are formed in the direction along the cold rolling direction. This strip-shaped punching member has a yoke portion that continuously extends in a direction along the longitudinal direction, and a plurality of teeth portions that protrude toward one end in the short direction of the yoke portion. Next, the band-shaped punched member is bent to obtain a bent member. In the bending process, a spiral bending process is performed so that the strip-shaped punching member makes one round, and the yoke part is on the outer peripheral side and the teeth part is on the inner peripheral side. Thereafter, the bent members are laminated, caulked, and laminated and integrated to obtain an iron core.

上記方法で得られる鉄心において、鉄心のティース部とヨーク部から鋼板を採取し、その板厚中心層を既述の測定条件により、EBSDにより観察を行う。その結果、採取した鋼板における結晶粒の面積比率は、{100}<001>から30°以内の結晶粒は61%であり、{110}<110>から30°以内の結晶粒は37%である。   In the iron core obtained by the above method, a steel plate is taken from the tooth portion and the yoke portion of the iron core, and the thickness center layer thereof is observed by EBSD under the measurement conditions described above. As a result, the area ratio of crystal grains in the collected steel sheet was 61% for grains within 30 ° from {100} <001>, and 37% for grains within 30 ° from {110} <110>. is there.

このように、上記の主方位と副方位とを有する二方向性電磁鋼板を用いて得る鉄心は、曲げ加工による方位変化をほとんどせず、二方向性電磁鋼板に対応する主方位と副方位とを有することが分かる。   Thus, the iron core obtained using the bi-directional electrical steel sheet having the main orientation and the sub-azimuth hardly changes the orientation by bending, and the main orientation and sub-azimuth corresponding to the bi-directional electrical steel sheet It can be seen that

Claims (12)

{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である鋼板からなる鉄心。   The area ratio occupied by crystal grains of {100} <001> (± 30 °) is 50% or more, and the area ratio occupied by crystal grains of {110} <110> (± 30 °) is An iron core made of steel sheet that is 20% or more. 前記鋼板の平均結晶粒径が350μm以下である請求項1に記載の鉄心。   The iron core according to claim 1, wherein the steel sheet has an average crystal grain size of 350 μm or less. 前記鋼板が、質量%で、
C:0.0100%以下、
Si:2.00%以上4.00%以下、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する請求項1又は2に記載の鉄心。
The steel sheet is in mass%,
C: 0.0100% or less,
Si: 2.00% to 4.00%,
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
And Al: 0.5% or less, and the iron core according to claim 1 or 2 containing Fe and an impurity element as a balance.
{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板。   A re-cold rolled steel sheet in which the area ratio of crystal grains having a crystal orientation of {110} <110> (± 30 °) is 85% or more and the number of shear bands is 30 pieces / mm or more. 質量%で、
C:0.0100%以下、
Si:2.00%以上4.00%以下、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する請求項4に記載の再冷延鋼板。
% By mass
C: 0.0100% or less,
Si: 2.00% to 4.00%,
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
And Al: 0.5% or less is contained, and the re-cold-rolled steel sheet according to claim 4 containing Fe and an impurity element as a balance.
{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延して、請求項4又は5に記載の再冷延鋼板を得る工程を有する再冷延鋼板の製造方法。   Cold rolling in a direction perpendicular to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation so that the reduction ratio is 20% to 50%. A method for producing a re-cold rolled steel sheet, comprising a step of obtaining the re-cold rolled steel sheet according to 4 or 5. 請求項4又は5に記載の再冷延鋼板を積層した鉄心。   An iron core in which the re-cold rolled steel sheets according to claim 4 or 5 are laminated. {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、請求項4又は5に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化して、700℃以上の温度域で焼鈍する工程と、
を有する請求項1〜3のいずれか1項に記載の鉄心の製造方法。
5. Cold rolling so that the rolling reduction is 20% to 50% in a direction orthogonal to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation, Or a step of obtaining a re-cold rolled steel sheet according to 5,
Punching the re-cold rolled steel sheet to obtain a punched member;
A step of laminating and integrating the punched members and annealing in a temperature range of 700 ° C. or higher;
The manufacturing method of the iron core of any one of Claims 1-3 which have these.
前記温度域が、700℃〜1000℃である請求項8に記載の鉄心の製造方法。   The said temperature range is 700 to 1000 degreeC, The manufacturing method of the iron core of Claim 8. {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、請求項4又は5に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と
を有する請求項7に記載の鉄心の製造方法。
5. Cold rolling so that the rolling reduction is 20% to 50% in a direction orthogonal to the rolling direction of the unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation, Or a step of obtaining a re-cold rolled steel sheet according to 5,
Punching the re-cold rolled steel sheet to obtain a punched member;
The method for manufacturing an iron core according to claim 7, further comprising: stacking and integrating the punched members.
請求項10に記載の鉄心の製造方法であって、前記積層一体化する工程の後、700℃〜1000℃の温度域で焼鈍する工程をさらに有する鉄心の製造方法。   It is a manufacturing method of the iron core of Claim 10, Comprising: The manufacturing method of the iron core which further has the process of annealing in a 700 to 1000 degreeC temperature range after the said lamination | stacking integration process. {100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と、
を有する請求項1〜3のいずれか1項に記載の鉄心の製造方法。
The area ratio occupied by crystal grains of {100} <001> (± 30 °) is 50% or more, and the area ratio occupied by crystal grains of {110} <110> (± 30 °) is Punching a bi-directional electrical steel sheet that is 20% or more to obtain a punched member;
A step of stacking and integrating the punched members;
The manufacturing method of the iron core of any one of Claims 1-3 which have these.
JP2016119956A 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method Active JP6844127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016119956A JP6844127B2 (en) 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016119956A JP6844127B2 (en) 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method

Publications (2)

Publication Number Publication Date
JP2017222911A true JP2017222911A (en) 2017-12-21
JP6844127B2 JP6844127B2 (en) 2021-03-17

Family

ID=60688082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016119956A Active JP6844127B2 (en) 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method

Country Status (1)

Country Link
JP (1) JP6844127B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184226B1 (en) * 2021-03-31 2022-12-06 日本製鉄株式会社 Rotating electric machine, stator core and rotor core set, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and set of non-oriented electrical steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322A (en) * 1990-04-16 1992-01-06 Nippon Steel Corp Production of double oriented silicon steel sheet having high magnetic flux density
JPH042721A (en) * 1990-04-20 1992-01-07 Nippon Steel Corp Production of double oriented silicon steel sheet having high magnetic flux density
JP2000104144A (en) * 1998-07-29 2000-04-11 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property in l orientation and c orientation and its production
JP2000309858A (en) * 1999-04-22 2000-11-07 Sumitomo Metal Ind Ltd Silicon steel sheet and its manufacture
JP2000309859A (en) * 1999-04-23 2000-11-07 Kawasaki Steel Corp Silicon steel sheet excellent in mean magnetic property in rolling plane, and its manufacture
JP2001158950A (en) * 1999-12-03 2001-06-12 Kawasaki Steel Corp Silicon steel sheet for small-size electrical equipment, and its manufacturing method
JP2002069532A (en) * 2000-09-05 2002-03-08 Nippon Steel Corp Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
KR20090079055A (en) * 2008-01-16 2009-07-21 성진경 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322A (en) * 1990-04-16 1992-01-06 Nippon Steel Corp Production of double oriented silicon steel sheet having high magnetic flux density
JPH042721A (en) * 1990-04-20 1992-01-07 Nippon Steel Corp Production of double oriented silicon steel sheet having high magnetic flux density
JP2000104144A (en) * 1998-07-29 2000-04-11 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property in l orientation and c orientation and its production
JP2000309858A (en) * 1999-04-22 2000-11-07 Sumitomo Metal Ind Ltd Silicon steel sheet and its manufacture
JP2000309859A (en) * 1999-04-23 2000-11-07 Kawasaki Steel Corp Silicon steel sheet excellent in mean magnetic property in rolling plane, and its manufacture
JP2001158950A (en) * 1999-12-03 2001-06-12 Kawasaki Steel Corp Silicon steel sheet for small-size electrical equipment, and its manufacturing method
JP2002069532A (en) * 2000-09-05 2002-03-08 Nippon Steel Corp Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
KR20090079055A (en) * 2008-01-16 2009-07-21 성진경 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184226B1 (en) * 2021-03-31 2022-12-06 日本製鉄株式会社 Rotating electric machine, stator core and rotor core set, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and set of non-oriented electrical steel sheet
US12009709B2 (en) 2021-03-31 2024-06-11 Nippon Steel Corporation Rotating electrical machine, stator core and rotor core set, method for manufacturing rotating electrical machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and non-oriented electrical steel sheet set

Also Published As

Publication number Publication date
JP6844127B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP5375559B2 (en) Non-oriented electrical steel sheet shearing method and electromagnetic component manufactured using the method
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
KR20130047735A (en) Process for producing non-oriented electromagnetic steel sheet
JP6606988B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP2017157806A (en) Wound core and method of manufacturing wound core
JP7192887B2 (en) Non-oriented electrical steel sheet, split type stator and rotating electric machine
JP2003213385A (en) Nonoriented silicon steel sheet
JP6844127B2 (en) Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7243938B1 (en) Non-oriented electrical steel sheet, iron core, iron core manufacturing method, motor, and motor manufacturing method
JP6409521B2 (en) Electrical steel sheet for spiral wound core and method for producing the same, spiral wound core, and method for producing spirally wound core
JP5671871B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7243936B1 (en) Non-oriented electrical steel sheet, iron core, iron core manufacturing method, motor, and motor manufacturing method
JP5979129B2 (en) Manufacturing method of motor core
JP6786900B2 (en) Bidirectional electromagnetic steel sheet and its manufacturing method
JP7159592B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP5979128B2 (en) Motor core and manufacturing method thereof
JP2020115721A (en) Split type stator and rotary electrical machine
TWI758951B (en) Stator iron core and rotating electrical machine
EP4060872A1 (en) Rotor core, rotor, and rotating electric machine
JP7492105B2 (en) Laminated cores and electrical equipment
JP2005298935A (en) Method for producing non-oriented silicon steel sheet excellent in whole peripheral magnetic characteristic and punch-out workability
CN116745452A (en) Non-oriented electromagnetic steel sheet, iron core, method for manufacturing iron core, motor, and method for manufacturing motor
JP2012036456A (en) Non-oriented magnetic steel sheet and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201223

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R151 Written notification of patent or utility model registration

Ref document number: 6844127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151