JP2017157806A - Wound core and method of manufacturing wound core - Google Patents

Wound core and method of manufacturing wound core Download PDF

Info

Publication number
JP2017157806A
JP2017157806A JP2016042710A JP2016042710A JP2017157806A JP 2017157806 A JP2017157806 A JP 2017157806A JP 2016042710 A JP2016042710 A JP 2016042710A JP 2016042710 A JP2016042710 A JP 2016042710A JP 2017157806 A JP2017157806 A JP 2017157806A
Authority
JP
Japan
Prior art keywords
iron core
wound
core
steel sheet
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016042710A
Other languages
Japanese (ja)
Other versions
JP6658114B2 (en
Inventor
崇人 水村
Takahito Mizumura
崇人 水村
雅人 溝上
Masahito Mizogami
雅人 溝上
史明 高橋
Fumiaki Takahashi
史明 高橋
修一 中村
Shuichi Nakamura
修一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016042710A priority Critical patent/JP6658114B2/en
Publication of JP2017157806A publication Critical patent/JP2017157806A/en
Application granted granted Critical
Publication of JP6658114B2 publication Critical patent/JP6658114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets

Abstract

PROBLEM TO BE SOLVED: To provide a wound core which has an excellent iron loss characteristic, and a method of manufacturing the wound core.SOLUTION: A wound core 10 is provided that has wound thickness of 40 mm or more and is comprised of: an inner iron core which is arranged in an inner surface 11 side; and an outer iron core which is arranged on an outer surface side of the inner iron core. The wound thickness of the inner iron core is an inner dimension shown by the following formula (1), 19*Ln(t)-54-0.05*t≤v≤19*Ln(t)-54+0.05*t ---(1) (In the formula (1), v is an inner dimension, t is the wound thickness of the wound core, and Ln() is a logarithm with natural logarithm as a base). A grain-oriented magnetic steel sheet forming an inner iron core 13 of grain-oriented magnetic steel sheets, includes a plurality of curved bent parts in side view. In an outer iron core 23, a space factor of the grain-oriented magnetic steel sheet is higher than that of the inner iron core.SELECTED DRAWING: Figure 1

Description

本発明は、巻鉄心および巻鉄心の製造方法に関する。   The present invention relates to a wound core and a method for manufacturing the wound core.

巻鉄心は、リアクトルやフィルター、変圧器の磁心として用いられている。
従来、巻鉄心として、例えば、特許文献1〜特許文献4に記載のものがある。
特許文献1には、コーナ部における鉄心材の占積率がコーナ部を除く辺部における鉄心材の占積率よりも低くなっている巻鉄心が記載されている。特許文献1に記載の巻鉄心では、各鉄心材が形成する接合部が開いてしまうことを防止できることから、鉄損の増大を抑制できる。
A wound iron core is used as a magnetic core for a reactor, a filter, or a transformer.
Conventionally, as a wound iron core, for example, there are those described in Patent Documents 1 to 4.
Patent Document 1 describes a wound core in which the space factor of the iron core material in the corner portion is lower than the space factor of the iron core material in the side portion excluding the corner portion. In the wound iron core described in Patent Document 1, since it is possible to prevent the joint portion formed by each iron core material from opening, an increase in iron loss can be suppressed.

特許文献2には、金属薄帯を積層させた後、歪取り焼鈍工程を経て巻鉄心を製造するに際し、歪取り焼鈍雰囲気の露点を0℃以下とすることにより、鉄損が低い巻鉄心を製造する技術が記載されている。
特許文献3には、鉄芯を構成する鋼板の表面に、鋼板の圧延方向に概垂直な線状、または点列状の歪みを、レーザ照射により、圧延方向に概一定の間隔で付与することにより、鉄損を低減する技術が記載されている。
特許文献4には、環状に折曲された長さの異なる複数の磁性鋼板を外周方向に重ね合わせて形成された巻鉄心が記載されている。
In Patent Document 2, when a wound iron core is manufactured through a strain relief annealing process after laminating metal ribbons, the dew point of the stress relief annealing atmosphere is set to 0 ° C. or less to provide a wound iron core with low iron loss. The manufacturing technique is described.
In Patent Document 3, linear or point-strain distortion approximately perpendicular to the rolling direction of the steel sheet is applied to the surface of the steel sheet constituting the iron core at a substantially constant interval in the rolling direction by laser irradiation. Describes a technique for reducing iron loss.
Patent Document 4 describes a wound iron core formed by overlapping a plurality of magnetic steel plates bent in an annular shape and having different lengths in the outer circumferential direction.

また、非特許文献1には、鋼板を所定の長さにせん断して円形に巻き取り、プレス加工により所定の形状にする巻鉄心の製造方法が記載されている。また、非特許文献1には、プレス加工により変形した部分の形状が一定の曲率ではない巻鉄心が記載されている。   Non-Patent Document 1 describes a method of manufacturing a wound core in which a steel sheet is sheared into a predetermined length, wound into a circle, and pressed into a predetermined shape. Non-Patent Document 1 describes a wound iron core in which the shape of a portion deformed by press working is not a constant curvature.

特開2015−141930号公報Japanese Patent Laying-Open No. 2015-141930 特開平10−256065号公報Japanese Patent Laid-Open No. 10-256065 特開2003−347128号公報JP 2003-347128 A 実用新案登録第3081863号公報Utility Model Registration No. 3081863

Insulation/Circuits July 1975「A Case for Die Formed Transformer Cores」Insulation / Circuits July 1975 `` A Case for Die Formed Transformer Cores ''

しかしながら、従来の巻鉄心では、より一層、鉄損を低減することが要求されていた。
本発明は、上記の事情に鑑みてなされたものであり、鉄損特性の良好な巻鉄心および巻鉄心の製造方法を提供することを課題とする。
However, the conventional wound core has been required to further reduce the iron loss.
This invention is made | formed in view of said situation, and makes it a subject to provide the manufacturing method of a wound iron core with favorable iron loss characteristics, and a wound iron core.

[1]側面視環状の複数の方向性電磁鋼板が板厚方向に積層された巻厚40mm以上の巻鉄心であり、
内面側に配置された内側鉄心と、前記内側鉄心の外面側に配置された外側鉄心とからなり、前記内側鉄心の巻厚が、下記式(1)で示される内側寸法であり、
前記方向性電磁鋼板のうち前記内側鉄心を形成している方向性電磁鋼板は、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有し、
前記外側鉄心は、前記内側鉄心よりも前記方向性電磁鋼板の占積率が高いことを特徴とする巻鉄心。
19*Ln(t)−54−0.05*t≦v≦19*Ln(t)−54+0.05*t・・・(1)
(式(1)において、vは内側寸法を示し、tは巻鉄心の巻厚を示し、Ln()は自然対数を底とした対数を示す。)
[1] A wound iron core having a winding thickness of 40 mm or more in which a plurality of directional electrical steel sheets having a ring shape in a side view are laminated in a plate thickness direction;
It consists of an inner iron core disposed on the inner surface side and an outer iron core disposed on the outer surface side of the inner iron core, and the winding thickness of the inner iron core is an inner dimension represented by the following formula (1),
The directional electrical steel sheet forming the inner iron core among the directional electrical steel sheets has a plurality of bent portions that are curved in side view and formed of a metal structure including twins.
The outer iron core has a higher space factor of the grain-oriented electrical steel sheet than the inner iron core.
19 * Ln (t) −54−0.05 * t ≦ v ≦ 19 * Ln (t) −54 + 0.05 * t (1)
(In formula (1), v represents the inner dimension, t represents the winding thickness of the wound core, and Ln () represents the logarithm with the natural logarithm as the base.)

[2]前記内側鉄心における隣接する折曲部間の距離のうち最も短い距離が、6mm以上であることを特徴とする[1]に記載の巻鉄心。
[3]前記折曲部の曲率半径が0.1mm〜100mmであることを特徴とする[1]または[2]に記載の巻鉄心。
[4]前記内側鉄心を形成している方向性電磁鋼板が側面視で、直線部と外面方向に1つの頂点を有する曲線部とが交互に配置されてなる下記の式(2)を満たす曲げ形状を、4つ繋げた形状を有することを特徴とする[1]〜[3]のいずれかに記載の巻鉄心。
Φ×m(2≦m)=90°
(式(2)において、Φは曲線部を介して隣接する2つの直線部の延在方向の角度差を示し、mは曲線部の数を示す。)
[2] The wound iron core according to [1], wherein the shortest distance among the distances between adjacent bent portions in the inner iron core is 6 mm or more.
[3] The wound core according to [1] or [2], wherein a radius of curvature of the bent portion is 0.1 mm to 100 mm.
[4] A bending that satisfies the following formula (2) in which the directional electrical steel sheet forming the inner iron core is alternately arranged with straight portions and curved portions having one vertex in the outer surface direction in a side view. The wound core according to any one of [1] to [3], which has a shape in which four shapes are connected.
Φ × m (2 ≦ m) = 90 °
(In Formula (2), Φ indicates the angular difference in the extending direction of two linear portions adjacent to each other through the curved portion, and m indicates the number of curved portions.)

[5][1]〜[4]のいずれかに記載の巻鉄心の製造方法であって、
帯状の複数の方向性電磁鋼板を、それぞれ折り曲げ加工して側面視環状の相似型に成型し、板厚方向に積層することにより、巻厚が下記式(1)で示される内側寸法である内側鉄心を形成する内側鉄心形成工程と、
帯状の方向性電磁鋼板を予め決定した長さにせん断して円形に巻き取り、プレス加工により側面視環状の形状に成型した後、歪取り焼鈍を行って外側鉄心を形成する外側鉄心形成工程と、
前記外側鉄心の中心に前記内側鉄心を填め込み、巻厚40mm以上の巻鉄心を形成する填め込み工程とを有する巻鉄心の製造方法。
19*Ln(t)−54−0.05*t≦v≦19*Ln(t)−54+0.05*t・・・(1)
(式(1)において、vは内側寸法を示し、tは巻鉄心の巻厚を示し、Ln()は自然対数を底とした対数を示す。)
[5] A method for producing a wound core according to any one of [1] to [4],
A plurality of strip-shaped directional electrical steel sheets are each bent and formed into an annular similar shape in side view, and laminated in the thickness direction so that the inner thickness is the inner dimension represented by the following formula (1) An inner core forming process for forming an iron core;
An outer core forming step in which a strip-shaped directional electrical steel sheet is sheared to a predetermined length, wound into a circle, formed into an annular shape in a side view by pressing, and then subjected to strain relief annealing to form an outer iron core; ,
A method of manufacturing a wound iron core, comprising: a step of filling the inner iron core into the center of the outer iron core to form a wound iron core having a winding thickness of 40 mm or more.
19 * Ln (t) −54−0.05 * t ≦ v ≦ 19 * Ln (t) −54 + 0.05 * t (1)
(In formula (1), v represents the inner dimension, t represents the winding thickness of the wound core, and Ln () represents the logarithm with the natural logarithm as the base.)

[6]不活性ガス雰囲気中、700℃〜1000℃の温度で0.01〜30時間、前記折り曲げ加工後積層前の前記方向性電磁鋼板、前記外側鉄心の中心に填め込む前の前記内側鉄心、前記填め込み工程後の前記巻鉄心のいずれかを焼鈍する焼鈍工程を含む[5]に記載の巻鉄心の製造方法。
[7]前記方向性電磁鋼板の板温度を3℃以下もしくは200℃以上として、前記折り曲げ加工を行う[5]または[6]に記載の巻鉄心の製造方法。
[6] In the inert gas atmosphere, at the temperature of 700 ° C. to 1000 ° C., for 0.01 to 30 hours, the directional electrical steel sheet before lamination after the bending process, and the inner iron core before being inserted into the center of the outer iron core The method for producing a wound core according to [5], including an annealing step of annealing any of the wound cores after the filling step.
[7] The method for manufacturing a wound iron core according to [5] or [6], wherein the bending process is performed at a plate temperature of the grain-oriented electrical steel sheet of 3 ° C or lower or 200 ° C or higher.

本発明の巻鉄心は、巻厚40mm以上であり、内面側に配置された内側鉄心と、内側鉄心の外面側に配置された外側鉄心とからなり、内側鉄心の巻厚が、下記式(1)で示される内側寸法であり、内側鉄心を形成している方向性電磁鋼板が、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有するため、鉄損特性が良好である。
しかも、本発明の巻鉄心では、外側鉄心が、内側鉄心よりも方向性電磁鋼板の占積率が高い。このため、例えば、巻厚を40mm以上とした上記の内側鉄心からなる巻鉄心と比較して、優れた鉄損特性が得られる。
The wound core of the present invention has a winding thickness of 40 mm or more, and is composed of an inner core disposed on the inner surface side and an outer core disposed on the outer surface side of the inner core, and the winding thickness of the inner core is represented by the following formula (1 ), And the grain-oriented electrical steel sheet forming the inner iron core has a plurality of bent portions formed in a metal structure including twins in a side view. It is good.
Moreover, in the wound iron core of the present invention, the outer iron core has a higher space factor of the grain-oriented electrical steel sheet than the inner iron core. For this reason, the iron loss characteristic which was excellent compared with the wound iron core which consists of said inner iron core which made winding thickness 40 mm or more, for example is acquired.

本実施形態の巻鉄心を方向性電磁鋼板の側面側から見た模式図である。It is the schematic diagram which looked at the wound iron core of this embodiment from the side surface side of a grain-oriented electrical steel sheet. 図1に示す巻鉄心の内側鉄心を形成している1枚の方向性電磁鋼板の一部を側面視した拡大図である。It is the enlarged view which looked at a part of one grain-oriented electrical steel plate which forms the inner core of the wound iron core shown in FIG. 図1に示す巻鉄心の内側鉄心を形成している1枚の方向性電磁鋼板の一部を側面視した拡大図である。It is the enlarged view which looked at a part of one grain-oriented electrical steel plate which forms the inner core of the wound iron core shown in FIG. 本実施形態の巻鉄心の製造方法において、内側鉄心形成工程を説明するための説明図である。In the manufacturing method of the wound iron core of this embodiment, it is explanatory drawing for demonstrating an inner iron core formation process. 本実施形態の巻鉄心の製造方法において、外側鉄心形成工程を説明するための説明図である。In the manufacturing method of the wound iron core of this embodiment, it is explanatory drawing for demonstrating an outer iron core formation process. (鉄心B’−1)に用いた内側鉄心(鉄心B)を形成している方向性電磁鋼板の光学顕微鏡写真である。It is an optical microscope photograph of the grain-oriented electrical steel sheet which forms the inner side iron core (iron core B) used for (iron core B'-1). (鉄心B’−2)に用いた内側鉄心(鉄心B−1)を形成している方向性電磁鋼板の光学顕微鏡写真である。It is an optical microscope photograph of the grain-oriented electrical steel sheet which forms the inner side iron core (iron core B-1) used for (iron core B'-2). (鉄心A)を形成している方向性電磁鋼板の光学顕微鏡写真である。It is an optical microscope photograph of the grain-oriented electrical steel sheet which forms (iron core A).

本発明者らは、上記課題を解決するために、帯状の方向性電磁鋼板を予め決定した長さにせん断して円形に巻き取り、プレス加工により側面視環状の形状に成型した後、歪取り焼鈍を行って形成する巻鉄心について鋭意検討し、以下に示す知見を得た。   In order to solve the above-mentioned problems, the present inventors sheared a band-shaped grain-oriented electrical steel sheet to a predetermined length, wound it into a circle, formed it into an annular shape in a side view by pressing, and then removed the distortion. The wound iron core formed by annealing was intensively studied and the following knowledge was obtained.

上記の製造方法によって得られた巻鉄心では、歪取り焼鈍を行っているにも関わらず、内面側に配置された方向性電磁鋼板の加工歪が十分に解放されていない場合があった。巻鉄心の内面側は、磁気抵抗が小さくなるため、磁束が集中する。したがって、巻鉄心の内面側に配置された方向性電磁鋼板に残留する加工歪は、鉄損劣化の要因となりやすい。   In the wound iron core obtained by the above-described manufacturing method, there is a case where the working strain of the grain-oriented electrical steel sheet disposed on the inner surface side is not sufficiently released in spite of performing strain relief annealing. Since the magnetic resistance is small on the inner surface side of the wound core, the magnetic flux is concentrated. Therefore, the working strain remaining on the grain-oriented electrical steel sheet disposed on the inner surface side of the wound iron core tends to cause iron loss deterioration.

また、上記の製造方法によって得られた巻鉄心では、内面側に配置された方向性電磁鋼板における側面視曲線状の部分のみに加工歪が残留している場合があった。方向性電磁鋼板に残留する加工歪は、磁歪を劣化させる。このため、巻鉄心を励磁することにより、加工歪が残留する部分の体積が局所的に膨張し、その外面側に配置された方向性電磁鋼板に応力を及ぼして、鉄損劣化を招く場合があった。   Further, in the wound iron core obtained by the above manufacturing method, there is a case where working strain remains only in a curved portion in a side view in the grain-oriented electrical steel sheet arranged on the inner surface side. The working strain remaining on the grain-oriented electrical steel sheet deteriorates the magnetostriction. For this reason, when the wound iron core is excited, the volume of the portion where the processing strain remains locally expands, and stress may be applied to the grain-oriented electrical steel sheet disposed on the outer surface side, leading to deterioration of the iron loss. there were.

そこで、本発明者らは、内面側に配置された方向性電磁鋼板に残留する加工歪に起因する鉄損劣化を抑制すべく、鋭意検討した。
その結果、巻鉄心の内面側を、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有する方向性電磁鋼板(以下「双晶含有鋼板」という場合がある。)を複数板厚方向に積層した鉄心で形成すればよいことを見出した。また、巻鉄心の内面側に用いる各双晶含有鋼板は、方向性電磁鋼板を折り曲げ加工して側面視環状に成型することにより得られることを見出した。
Then, the present inventors diligently studied to suppress the iron loss deterioration caused by the working strain remaining in the grain-oriented electrical steel sheet disposed on the inner surface side.
As a result, the grain-oriented electrical steel sheet (hereinafter sometimes referred to as “twinned steel sheet”) having a plurality of bent portions with a curved side view formed of a metallographic structure including twins on the inner surface side of the wound iron core. It has been found that a plurality of cores may be formed of iron cores laminated in the thickness direction. Moreover, it discovered that each twin-containing steel plate used for the inner surface side of a wound iron core was obtained by bending a directional electromagnetic steel plate and forming it into an annular shape when viewed from the side.

しかし、複数の双晶含有鋼板を板厚方向に積層してなる鉄心は、方向性電磁鋼板の占積率が低い。このため、巻鉄心の内面側を、上記の双晶含有鋼板を板厚方向に積層した鉄心で形成した場合、巻鉄心の巻厚中における上記の双晶含有鋼板からなる鉄心の巻厚の割合を多くしすぎると、巻鉄心全体の方向性電磁鋼板の占積率が低くなって、巻鉄心の鉄損特性が劣化する。   However, an iron core formed by laminating a plurality of twin-containing steel plates in the thickness direction has a low space factor of grain-oriented electrical steel plates. For this reason, when the inner surface side of the wound iron core is formed of an iron core obtained by laminating the twin-containing steel sheet in the thickness direction, the ratio of the winding thickness of the iron core made of the twin-containing steel sheet in the wound thickness of the wound iron core If the amount is excessively increased, the space factor of the directional electromagnetic steel sheet of the whole wound core becomes low, and the iron loss characteristic of the wound core is deteriorated.

そこで、本発明者らは、巻鉄心の外面側を、上記の双晶含有鋼板を板厚方向に積層した鉄心よりも方向性電磁鋼板の占積率が高い鉄心で形成し、外面側の鉄心と内面側の鉄心との境界の位置を最適化すべく検討した。
すなわち、方向性電磁鋼板の占積率の点からは、外面側の鉄心と内面側の鉄心との境界の位置を内面側にするほど好ましい。しかし、外面側の鉄心と内面側の鉄心との境界の位置を内面側にしすぎると、外面側の鉄心において、内面側に配置された方向性電磁鋼板の側面視形状が小さくなる。このため、外面側の鉄心における内面側に配置された方向性電磁鋼板の加工歪を十分に小さくできなくなり、方向性電磁鋼板の加工歪に起因する鉄損劣化を十分に抑制できなくなる。
Therefore, the present inventors formed the outer surface side of the wound iron core with an iron core having a higher space factor of the directional electromagnetic steel sheet than the iron core in which the twin-containing steel sheets are laminated in the plate thickness direction, and the outer surface side iron core. To optimize the position of the boundary between the inner core and the inner core.
That is, from the viewpoint of the space factor of the grain-oriented electrical steel sheet, the position of the boundary between the outer surface side iron core and the inner surface side iron core is preferably set to the inner surface side. However, if the position of the boundary between the outer surface side iron core and the inner surface side iron core is too much on the inner surface side, the shape of the grain-oriented electrical steel sheet arranged on the inner surface side in the outer surface side core becomes small. For this reason, the working strain of the grain-oriented electrical steel sheet disposed on the inner surface side of the outer iron core cannot be sufficiently reduced, and the iron loss deterioration due to the work strain of the grain-oriented electrical steel sheet cannot be sufficiently suppressed.

そこで、本発明者らは、さらに検討を重ね、巻鉄心の巻厚を40mm以上とすることにより、外面側の鉄心の内面側に配置された方向性電磁鋼板の側面視形状を十分に大きくしつつ、巻鉄心全体における外面側の鉄心の割合を十分に確保した上で、内面側の鉄心の巻厚を下記式(1)で示される内側寸法とした。この場合、外面側に形成した鉄心の内面側に配置された方向性電磁鋼板の加工歪を抑制できることによる鉄損特性の向上効果が、内面側の鉄心の占積率が低いことによる鉄損特性の劣化を大きく上回り、優れた鉄損特性を有する巻鉄心が得られる。   Therefore, the present inventors have further studied, and by making the winding thickness of the wound core 40 mm or more, the side view shape of the grain-oriented electrical steel sheet disposed on the inner surface side of the outer core is sufficiently increased. On the other hand, after sufficiently securing the ratio of the iron core on the outer surface side in the entire wound iron core, the winding thickness of the iron core on the inner surface side was set to the inner dimension represented by the following formula (1). In this case, the effect of improving the iron loss characteristic by suppressing the processing strain of the grain-oriented electrical steel sheet arranged on the inner surface side of the iron core formed on the outer surface side is the iron loss characteristic due to the lower space factor of the iron core on the inner surface side. Thus, a wound core having an excellent iron loss characteristic can be obtained.

以下、本発明の巻鉄心および巻鉄心の製造方法について詳細に説明する。
「巻鉄心」
図1は、本実施形態の巻鉄心を方向性電磁鋼板の側面側から見た模式図である。
図1に示す本実施形態の巻鉄心10は、側面視環状の相似型を有する複数の方向性電磁鋼板が板厚方向に積層されたものである。
巻鉄心10は、図1に示すように、内面11側に配置された内側鉄心13と、内側鉄心13の外面側に配置された外側鉄心23とからなる。
Hereinafter, the wound core and the manufacturing method of the wound core of the present invention will be described in detail.
"Maki iron core"
Drawing 1 is a mimetic diagram which looked at the wound iron core of this embodiment from the side of the grain-oriented electrical steel sheet.
A wound iron core 10 of the present embodiment shown in FIG. 1 is obtained by laminating a plurality of grain-oriented electrical steel sheets having a ring-like similarity type in the thickness direction.
As shown in FIG. 1, the wound core 10 includes an inner iron core 13 disposed on the inner surface 11 side and an outer iron core 23 disposed on the outer surface side of the inner iron core 13.

巻鉄心10の巻厚tは40mm以上である。本実施形態における巻厚t(全巻厚)とは、鉄心全重量m(kg)を、鉄心長l(m)と電磁鋼板密度ρ(=7650kg/m)と使用した鋼板の板幅w(m)との積で割った値で定義される(t=m/(l*ρ*w))。ここで鉄心長l(m)は、鉄心の最外周と最内周との平均値である。
巻鉄心10の巻厚tは、内側鉄心13および外側鉄心23を形成している方向性電磁鋼板の厚みと積層枚数とによって変化させることができる。巻厚tは、40mm以上であればよく、巻鉄心10に励磁させる際の電圧(容量)に応じて適宜決定できる。
The winding thickness t of the wound core 10 is 40 mm or more. In the present embodiment, the winding thickness t (total winding thickness) means the total width m (kg) of the iron core, the steel core length l (m) and the electromagnetic steel sheet density ρ (= 7650 kg / m 3 ). defined by the product of m) (t = m / (l * ρ * w)). Here, the iron core length l (m) is an average value of the outermost and innermost circumferences of the iron core.
The winding thickness t of the wound core 10 can be changed depending on the thickness of the grain-oriented electrical steel sheets forming the inner core 13 and the outer core 23 and the number of laminated sheets. The winding thickness t should just be 40 mm or more, and can be suitably determined according to the voltage (capacity) at the time of exciting the wound core 10.

内側鉄心13の巻厚は、下記式(1)で示される内側寸法vである。
19*Ln(t)−54−0.05*t≦v≦19*Ln(t)−54+0.05*t・・・(1)
(式(1)において、vは内側寸法を示し、tは巻鉄心の巻厚を示し、Ln()は自然対数を底とした対数を示す。)
The winding thickness of the inner iron core 13 is an inner dimension v represented by the following formula (1).
19 * Ln (t) −54−0.05 * t ≦ v ≦ 19 * Ln (t) −54 + 0.05 * t (1)
(In formula (1), v represents the inner dimension, t represents the winding thickness of the wound core, and Ln () represents the logarithm with the natural logarithm as the base.)

内側鉄心13の巻厚は、内側鉄心13に使用する方向性電磁鋼板の厚みと積層枚数との積である。内側鉄心13の巻厚は、以下に示す状態であることが好ましい。
すなわち、内側鉄心13に使用されている方向性電磁鋼板の積層枚数が、下記式(3)で示される値が最小となる枚数である。
|v−k×n|・・・(3)
(式(3)において、vは下記式(5)で示される目標内側寸法を示し、kは方向性電磁鋼板の厚みを示し、nは方向性電磁鋼板の積層枚数を示し、| |は絶対値を示す。)
=19*Ln(t)−54・・・(5)
(式(5)において、vは目標内側寸法を示し、tは巻鉄心の巻厚を示し、Ln()は自然対数を底とした対数を示す。)
The winding thickness of the inner iron core 13 is the product of the thickness of the grain-oriented electrical steel sheet used for the inner iron core 13 and the number of laminated sheets. The winding thickness of the inner iron core 13 is preferably in the state shown below.
That is, the number of laminated directional electrical steel sheets used for the inner iron core 13 is the number that minimizes the value represented by the following formula (3).
| V 0 −k × n | (3)
(In Formula (3), v 0 represents the target inner dimension represented by the following Formula (5), k represents the thickness of the grain-oriented electrical steel sheet, n represents the number of laminated grain-oriented electrical steel sheets, and | Indicates absolute value.)
v 0 = 19 * Ln (t) −54 (5)
(In Expression (5), v 0 represents the target inner dimension, t represents the winding thickness of the wound core, and Ln () represents the logarithm with the natural logarithm as the base.)

図1に示す巻鉄心10では、方向性電磁鋼板のうち内側鉄心13を形成している方向性電磁鋼板が、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有する双晶含有鋼板となっている。図2は、図1に示す巻鉄心10の内側鉄心13を形成している1枚の方向性電磁鋼板(双晶含有鋼板17)の一部を側面視した拡大図である。図2には、双晶含有鋼板17の有する複数の折曲部のうちの1つの折曲部18とその周囲を示す。本実施形態における折曲部とは、双晶含有鋼板17の側面視曲線状の部分それぞれにおける図2に示す双晶含有鋼板17上の点D、E、F、Gで囲まれた領域sを意味する。   In the wound iron core 10 shown in FIG. 1, the directional electromagnetic steel sheet forming the inner iron core 13 among the directional electromagnetic steel sheets includes a plurality of bent portions having a curved shape in a side view formed of a metal structure including twins. It has a twin-containing steel plate. FIG. 2 is an enlarged view of a part of one grain-oriented electrical steel sheet (twinned steel sheet 17) forming the inner core 13 of the wound core 10 shown in FIG. In FIG. 2, one bending part 18 of the some bending part which the twin-containing steel plate 17 has, and its periphery are shown. The bent portion in the present embodiment refers to a region s surrounded by points D, E, F, and G on the twin-containing steel plate 17 shown in FIG. means.

図2に示す折曲部18(領域s)は、以下に示すように決定される。まず、図2に示す双晶含有鋼板17の側面視曲線状の部分における曲率半径r(折曲部18の曲率半径)の中心点Aと、側面視曲線状の部分の両側にそれぞれ配置された側面視直線部分の延在方向との交点Bとを線で結ぶ。そして、曲率半径rの中心点Aと上記交点Bとを結んだ線が、双晶含有鋼板17の内面と交わる点を原点Cと定義する。次に、双晶含有鋼板17の内面に沿って原点Cの両側に下記式(4)で示される距離mで移動した点を、それぞれ点Dおよび点Eとする。そして、双晶含有鋼板17の外面から点Dおよび点Eそれぞれに向かって引いた垂直線と、双晶含有鋼板17の外面との交点を、それぞれ点Fおよび点Gとする。
m=r*(1+π/4)・・・(4)
(式(4)において、mは距離を示し、rは曲率半径を示す。)
The bent portion 18 (region s) shown in FIG. 2 is determined as follows. First, the center point A of the radius of curvature r (the radius of curvature of the bent portion 18) in the side-curved portion of the twin-containing steel plate 17 shown in FIG. 2 is arranged on both sides of the side-curved portion. The intersection point B with the extending direction of the straight line portion in side view is connected by a line. The point where the line connecting the center point A of the radius of curvature r and the intersection point B intersects the inner surface of the twin-containing steel plate 17 is defined as the origin C. Next, the points moved along the inner surface of the twin-containing steel plate 17 on both sides of the origin C by the distance m represented by the following formula (4) are designated as point D and point E, respectively. The intersections of the vertical lines drawn from the outer surface of the twin-containing steel sheet 17 toward the points D and E and the outer surface of the twin-containing steel sheet 17 are defined as a point F and a point G, respectively.
m = r * (1 + π / 4) (4)
(In Expression (4), m represents a distance, and r represents a radius of curvature.)

双晶含有鋼板17の折曲部の金属組織に含まれる双晶の密度は、特に限定されない。
双晶含有鋼板17の折曲部の金属組織に双晶が含まれているか否かは、双晶含有鋼板17の断面を光学顕微鏡で観察することにより確認できる。光学顕微鏡としては、市販されている一般的な光学顕微鏡を用いることができる。双晶含有鋼板17の断面を光学顕微鏡で観察する際には、双晶含有鋼板17から断面を観察面とする試料を切り出し、観察面を鏡面研磨してから酸で腐食し、対象試料の粒界が観察できる程度に処理すればよい。
The density of twins included in the metal structure of the bent portion of the twin-containing steel sheet 17 is not particularly limited.
Whether or not the metal structure of the bent portion of the twin-containing steel sheet 17 contains twins can be confirmed by observing the cross section of the twin-containing steel sheet 17 with an optical microscope. As the optical microscope, a commercially available general optical microscope can be used. When observing the cross section of the twin-containing steel plate 17 with an optical microscope, a sample having the cross-section as the observation surface is cut out from the twin-containing steel plate 17, and the observation surface is mirror-polished and then corroded with acid. What is necessary is just to process to such an extent that a field can be observed.

双晶含有鋼板17の金属組織には、方向性電磁鋼板を折り曲げ加工したことに起因する転位が存在している場合がある。双晶含有鋼板17の金属組織には、転移が存在していてもよいし、転移が存在していなくてもよい。双晶含有鋼板17の金属組織に転移が存在していない場合、より一層優れた鉄損特性が得られるため好ましい。   In the metallographic structure of the twin-containing steel sheet 17, there may be dislocations resulting from bending the grain-oriented electrical steel sheet. In the metal structure of the twin-containing steel plate 17, a transition may exist or a transition may not exist. When there is no transition in the metal structure of the twin-containing steel plate 17, it is preferable because a more excellent iron loss characteristic can be obtained.

双晶含有鋼板17の金属組織に転位が存在するか否かは、折曲部の金属組織に双晶が含まれているか否かを確認する場合と同様に、双晶含有鋼板17の断面を光学顕微鏡で観察することにより確認できる。光学顕微鏡としては、市販されている一般的な光学顕微鏡を用いることができる。双晶含有鋼板17の断面を光学顕微鏡で観察する際には、双晶含有鋼板17から断面を観察面とする試料を切り出し、観察面を鏡面研磨してから酸で腐食し、対象試料の粒界が観察できる程度に処理すればよい。   Whether or not dislocations are present in the metal structure of the twin-containing steel sheet 17 is the same as in the case of confirming whether the metal structure of the bent portion contains twins or not. This can be confirmed by observing with an optical microscope. As the optical microscope, a commercially available general optical microscope can be used. When observing the cross section of the twin-containing steel plate 17 with an optical microscope, a sample having the cross-section as the observation surface is cut out from the twin-containing steel plate 17, and the observation surface is mirror-polished and then corroded with acid. What is necessary is just to process to such an extent that a field can be observed.

内側鉄心13における隣接する折曲部間の距離のうち最も短い距離は、6mm以上であることが好ましい。上記の距離が6mm以上であると、方向性電磁鋼板を折り曲げ加工することにより導入された歪が、隣接する折曲部を形成するために導入した歪と重なり合って抜けにくくなることが防止される。このため、より一層優れた鉄損特性が得られる。   The shortest distance among the distances between adjacent bent portions in the inner iron core 13 is preferably 6 mm or more. When the distance is 6 mm or more, it is possible to prevent the strain introduced by bending the grain-oriented electrical steel sheet from overlapping with the strain introduced to form the adjacent bent portion and becoming difficult to come off. . For this reason, even more excellent iron loss characteristics can be obtained.

図3は、図1に示す巻鉄心10の内側鉄心13を形成している1枚の方向性電磁鋼板(双晶含有鋼板17)の一部を側面視した拡大図である。図3には、双晶含有鋼板17の有する複数の折曲部のうちの2つの折曲部18、18’とその周囲を示す。図3において、図2と同じ部材については、図2と同じ符号を付し、説明を省略する。   FIG. 3 is an enlarged view of a part of one grain-oriented electrical steel sheet (twinned steel sheet 17) forming the inner core 13 of the wound core 10 shown in FIG. FIG. 3 shows two bent portions 18 and 18 ′ of the plurality of bent portions of the twin-containing steel plate 17 and the periphery thereof. 3, the same members as those in FIG. 2 are denoted by the same reference numerals as those in FIG.

本実施形態において、内側鉄心13における隣接する折曲部間の距離のうち最も短い距離とは、隣接する折曲部間それぞれにおける図3に示す双晶含有鋼板17の内面上の点C、C’間の双晶含有鋼板17の内面に沿う距離のうち、最も短い距離を意味する。図3に示す双晶含有鋼板17の内面上の原点C’は、原点Cと同様にして決定される。すなわち、折曲部18に隣接する折曲部18’の曲率半径r’の中心点A’と、側面視曲線状の部分の両側にそれぞれ配置された側面視直線部分の延在方向との交点B’とを線で結ぶ。そして、曲率半径r’の中心点A’と上記交点B’とを結んだ線が、双晶含有鋼板17の内面と交わる点を原点C’と定義する。   In this embodiment, the shortest distance among the distances between adjacent bent portions in the inner iron core 13 is points C and C on the inner surface of the twin-containing steel plate 17 shown in FIG. It means the shortest distance among the distances along the inner surface of the twin-containing steel plate 17 between. The origin C ′ on the inner surface of the twin-containing steel plate 17 shown in FIG. 3 is determined in the same manner as the origin C. That is, the intersection of the center point A ′ of the radius of curvature r ′ of the bent portion 18 ′ adjacent to the bent portion 18 and the extending direction of the side-view straight line portions respectively disposed on both sides of the side-view curved portion. Connect B 'with a line. The point where the line connecting the center point A ′ of the radius of curvature r ′ and the intersection point B ′ intersects the inner surface of the twin-containing steel sheet 17 is defined as the origin C ′.

なお、内側鉄心13は、側面視環状の相似型に成型された複数の双晶含有鋼板17が板厚方向に積層されたものであるため、隣接する折曲部間の距離のうち最も短い距離は各双晶含有鋼板17によって異なる。本実施形態における隣接する折曲部間の距離のうち最も短い距離とは、内側鉄心13を形成している双晶含有鋼板17のうち、最も内面側に配置された双晶含有鋼板17の有する上記の点C、C’間の双晶含有鋼板17の内面に沿う距離のうち、最も短い距離を意味する。   In addition, since the inner iron core 13 is formed by laminating a plurality of twin-containing steel plates 17 formed in a ring-like similar shape in the side view in the thickness direction, the shortest distance among the distances between the adjacent bent portions. Varies depending on each twin-containing steel plate 17. The shortest distance among the distances between adjacent bent portions in the present embodiment is the twin-containing steel sheet 17 arranged on the innermost surface side among the twin-containing steel sheets 17 forming the inner core 13. It means the shortest distance among the distances along the inner surface of the twin-containing steel plate 17 between the points C and C ′.

折曲部の曲率半径は0.1mm〜100mmであることが好ましい。折曲部の曲率半径が0.1mm以上であると、折り曲げ加工により導入された鋼板表層の微細な形状起伏(凹凸)によって、双晶含有鋼板17に施されている絶縁被膜が剥離することを防止できる。また、折曲部の曲率半径が0.1mm以上であると、双晶含有鋼板17を積層することにより各双晶含有鋼板17の表層に存在する微細な形状起伏が重なって、巻鉄心の使用時に巨大な渦電流を発生させ、特性を劣化させることを防止できる。また、折り曲げ加工により成型した折曲部の曲率半径が100mm以下である場合、双晶含有鋼板17に双晶が十分に導入されているため、より一層優れた鉄損特性が得られる。さらに、折曲部の曲率半径が100mm以下であると、折り曲げ加工により導入された歪量が少ないために、双晶含有鋼板17を積層する際に折曲部が弾性変形して応力が発生し、鉄損を劣化させることを防止できる。   The radius of curvature of the bent portion is preferably 0.1 mm to 100 mm. When the curvature radius of the bent portion is 0.1 mm or more, the insulating coating applied to the twin-containing steel plate 17 is peeled off by the fine shape undulation (unevenness) of the steel plate surface layer introduced by the bending process. Can be prevented. Further, when the curvature radius of the bent portion is 0.1 mm or more, by laminating the twin-containing steel plates 17, fine shape undulations existing on the surface layer of each twin-containing steel plate 17 overlap, and the use of the wound core At times, a huge eddy current can be generated to prevent deterioration of characteristics. Moreover, when the curvature radius of the bending part shape | molded by the bending process is 100 mm or less, since the twin is fully introduce | transduced into the twin-containing steel plate 17, the much more excellent iron loss characteristic is acquired. Furthermore, when the radius of curvature of the bent portion is 100 mm or less, since the amount of strain introduced by the bending process is small, the bent portion is elastically deformed when the twin-containing steel sheet 17 is laminated, and stress is generated. It is possible to prevent the iron loss from deteriorating.

内側鉄心13を形成している各双晶含有鋼板17は、図1に示すように、側面視で、直線部14と外面方向に1つの頂点を有する曲線部15とが交互に配置されてなる下記の式(2)を満たす曲げ形状16を、4つ繋げた形状を有することが好ましい。
Φ×m(2≦m)=90°
(式(2)において、Φは曲線部を介して隣接する2つの直線部の延在方向の角度差を示し、mは曲線部の数を示す。)
As shown in FIG. 1, each twin-containing steel plate 17 forming the inner iron core 13 is formed by alternately arranging straight portions 14 and curved portions 15 having one vertex in the outer surface direction in a side view. It is preferable to have a shape in which four bending shapes 16 satisfying the following formula (2) are connected.
Φ × m (2 ≦ m) = 90 °
(In Formula (2), Φ indicates the angular difference in the extending direction of two linear portions adjacent to each other through the curved portion, and m indicates the number of curved portions.)

図1〜図3に示すように、本実施形態では、各双晶含有鋼板17が、側面視で、曲線部15を介して隣接する2つの直線部14、14の延在方向の角度差Φが45°であり、曲線部15の数が2である曲げ形状16を4つ繋げた形状を有している。上記の角度差Φは、曲線部15の数が2以上となればよく、例えば、30°であってもよいし、10°であってもよい。上記の角度差Φが45°または30°である場合(すなわち曲線部15の数が2または3である場合)、より一層優れた鉄損特性が得られるため好ましい。上記の角度差Φが45°以上であると、方向性電磁鋼板を折り曲げ加工したことに起因する加工歪が大きくなり、双晶含有鋼板17が焼鈍したものであっても折曲部に加工歪が残留しやすくなるため、好ましくない。   As shown in FIGS. 1 to 3, in this embodiment, each twin-containing steel sheet 17 has an angle difference Φ in the extending direction between two straight portions 14 and 14 adjacent to each other via the curved portion 15 in a side view. Is 45 °, and has four bent shapes 16 in which the number of curved portions 15 is two. Said angle difference (PHI) should just be 2 or more of the curve parts 15, for example, 30 degrees may be sufficient and 10 degrees may be sufficient. It is preferable that the angle difference Φ is 45 ° or 30 ° (that is, when the number of the curved portions 15 is 2 or 3) because an even better iron loss characteristic can be obtained. When the angle difference Φ is 45 ° or more, the processing strain caused by bending the grain-oriented electrical steel sheet becomes large, and even if the twin-containing steel sheet 17 is annealed, the processing strain in the bent portion is increased. Is not preferred because it tends to remain.

巻鉄心10を形成している外側鉄心23は、内側鉄心13よりも方向性電磁鋼板の占積率が高い。外側鉄心23および内側鉄心13の占積率とは、巻鉄心の断面積に対し鉄心材が占める面積の割合を示すものであり、その定義は以下の通りである。
本実施形態における占積率は、実質の断面積Seffを、鉄心の見かけの断面積Simで除したSeff/Simの値に100を掛けた数値(%)である。ここで実質の断面積Seffは、鉄心全重量m(kg)と電磁鋼板密度ρ(=7650kg/m)との積を、鉄心長l(m)で除した数値(Seff=m*l*ρ)である。鉄心長l(m)は、鉄心の最外周と最内周との平均値である。また、鉄心の見かけの断面積Simは、公称板厚κと、板幅wと、積層枚数nとの積(Sim=κ*w*n)である。
The outer iron core 23 forming the wound iron core 10 has a higher space factor of the grain-oriented electrical steel sheet than the inner iron core 13. The space factor of the outer iron core 23 and the inner iron core 13 indicates the ratio of the area occupied by the iron core material to the cross-sectional area of the wound iron core, and its definition is as follows.
The space factor in the present embodiment is a value (%) obtained by multiplying the value of S eff / S im obtained by dividing the actual cross-sectional area S eff by the apparent cross-sectional area S im of the iron core by 100. Here, the substantial cross-sectional area S eff is a value obtained by dividing the product of the total weight m (kg) of the iron core and the density of the magnetic steel sheet ρ (= 7650 kg / m 3 ) by the iron core length l (m) (S eff = m * l * ρ). The iron core length l (m) is an average value of the outermost circumference and the innermost circumference of the iron core. The apparent cross-sectional area S im of the iron core is a product (S im = κ * w * n) of the nominal plate thickness κ, the plate width w, and the number n of stacked layers.

また、外側鉄心23は、図1に示すように、側面視略矩形であって、4つのコーナー部25が一定の曲率半径を有していることが好ましい。   Further, as shown in FIG. 1, the outer iron core 23 is preferably substantially rectangular in a side view, and the four corner portions 25 preferably have a constant radius of curvature.

「巻鉄心の製造方法」
次に、本実施形態の巻鉄心10の製造方法について説明する。
図1に示す本実施形態の巻鉄心10を製造するには、内側鉄心13を形成する内側鉄心形成工程と、外側鉄心23を形成する外側鉄心形成工程と、外側鉄心23の中心に、内側鉄心13を填め込む填め込み工程とを行う。
"Method of manufacturing wound core"
Next, the manufacturing method of the wound iron core 10 of this embodiment is demonstrated.
To manufacture the wound core 10 of the present embodiment shown in FIG. 1, an inner core forming process for forming the inner iron core 13, an outer core forming process for forming the outer iron core 23, and the inner iron core at the center of the outer iron core 23. 13 is carried out.

「内側鉄心形成工程」
内側鉄心形成工程では、まず、帯状の複数の方向性電磁鋼板を、図4(a)に示すように、それぞれ折り曲げ加工して、図4(b)に示すように、側面視環状の相似型に成型する。このことにより、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有する複数の双晶含有鋼板17を形成する。次いで、得られた双晶含有鋼板17を板厚方向に積層することにより、巻厚が式(1)で示される内側寸法vである内側鉄心13を形成する。
"Inner iron core formation process"
In the inner iron core forming step, first, a plurality of strip-shaped directional electrical steel sheets are respectively bent as shown in FIG. 4 (a), and as shown in FIG. To mold. As a result, a plurality of twin-containing steel plates 17 having a plurality of bent portions that are curved in a side view and formed of a metal structure containing twins are formed. Next, the obtained twin-containing steel plate 17 is laminated in the plate thickness direction, thereby forming the inner iron core 13 whose winding thickness is the inner dimension v represented by the formula (1).

折り曲げ加工により形成された双晶含有鋼板17の側面視での形状は、式(2)を満たす曲げ形状16を、4つ繋げた形状を有することが好ましい。
本実施形態において、折り曲げ加工することにより形成する双晶含有鋼板17の厚みおよび枚数は、内側鉄心13の巻厚が、式(1)で示される内側寸法vとなるように決定される。具体的には、内側鉄心13に使用される双晶含有鋼板17(方向性電磁鋼板)の積層枚数を、上記式(3)で示される値が最小になる枚数とすることが好ましい。
内側鉄心形成工程において、方向性電磁鋼板を折り曲げ加工する際に用いる加工機としては、ユニコア加工機など、従来公知のものを用いることができる。
The shape of the twin-containing steel sheet 17 formed by bending is preferably a shape in which four bent shapes 16 satisfying the formula (2) are connected.
In the present embodiment, the thickness and the number of twin-containing steel plates 17 formed by bending are determined so that the winding thickness of the inner iron core 13 becomes the inner dimension v represented by the formula (1). Specifically, the number of laminated twin-containing steel plates 17 (orientated electrical steel plates) used for the inner iron core 13 is preferably set to a number that minimizes the value represented by the above formula (3).
As a processing machine used when bending the grain-oriented electrical steel sheet in the inner core forming step, a conventionally known machine such as a unicore processing machine can be used.

内側鉄心形成工程では、方向性電磁鋼板の板温度を3℃以下もしくは200℃以上として、折り曲げ加工を行うことが好ましい。方向性電磁鋼板の板温度が3℃以下もしくは200℃以上であると、折り曲げ加工によって生じた機械歪が双晶に変化しやすい。このため、折り曲げ加工による機械歪によって、双晶含有鋼板17の金属組織に転位が形成されることを防止できる。したがって、双晶含有鋼板17の金属組織に存在する転移による鉄損特性の劣化が抑制され、より一層優れた鉄損特性を有する巻鉄心10が得られる。   In the inner iron core forming step, it is preferable to perform the bending process by setting the plate temperature of the grain-oriented electrical steel sheet to 3 ° C. or lower or 200 ° C. or higher. When the plate temperature of the grain-oriented electrical steel sheet is 3 ° C. or lower or 200 ° C. or higher, the mechanical strain generated by the bending process tends to change into twins. For this reason, it is possible to prevent dislocations from being formed in the metal structure of the twin-containing steel sheet 17 due to mechanical strain caused by bending. Therefore, the deterioration of the iron loss characteristic due to the transition existing in the metal structure of the twin-containing steel sheet 17 is suppressed, and the wound core 10 having even more excellent iron loss characteristics can be obtained.

「外側鉄心形成工程」
外側鉄心形成工程では、帯状の方向性電磁鋼板24(フープ材)(図5(a)参照。)を予め決定した長さにせん断して円形に巻き取り(図5(b)参照。)、プレス加工により側面視環状の形状に成型した後、歪取り焼鈍を行って外側鉄心23(図5(c)参照。)を形成する。
外側鉄心形成工程で行うプレス加工および歪取り焼鈍の条件としては、従来公知の巻鉄心の製造条件と同様の条件を用いることができる。
外側鉄心形成工程では、歪取り焼鈍後に形状矯正を行うことが好ましい。
"Outer iron core formation process"
In the outer iron core forming step, the band-shaped directional electromagnetic steel sheet 24 (hoop material) (see FIG. 5A) is sheared to a predetermined length and wound into a circle (see FIG. 5B). After forming into an annular shape in a side view by press working, strain relief annealing is performed to form the outer iron core 23 (see FIG. 5C).
As conditions for the press working and strain relief annealing performed in the outer iron core forming step, the same conditions as conventionally known conditions for manufacturing a wound iron core can be used.
In the outer iron core forming step, it is preferable to perform shape correction after strain relief annealing.

外側鉄心23の巻厚は、外側鉄心23に使用する方向性電磁鋼板の厚みと積層枚数とを調整することにより、内側鉄心13の巻厚と外側鉄心23の巻厚との合計寸法が40mm以上となるようにする。   The total thickness of the winding thickness of the inner iron core 13 and the winding thickness of the outer iron core 23 is 40 mm or more by adjusting the thickness of the grain-oriented electrical steel sheet used for the outer iron core 23 and the number of laminated layers. To be.

「填め込み工程」
次に、外側鉄心23の中心に、内側鉄心13を填め込み、巻厚40mm以上の巻鉄心10を形成する。
以上の工程により、図1に示す巻鉄心10が得られる。
"Filling process"
Next, the inner core 13 is inserted into the center of the outer core 23 to form the wound core 10 having a winding thickness of 40 mm or more.
Through the above steps, the wound core 10 shown in FIG. 1 is obtained.

本実施形態の製造方法では、不活性ガス雰囲気中、700〜1000℃の温度で0.01〜30時間、好ましくは1〜4時間、内側鉄心形成工程において折り曲げ加工後積層前の方向性電磁鋼板(双晶含有鋼板17)、填め込み工程において外側鉄心の中心に填め込む前の内側鉄心13、填め込み工程後の巻鉄心10のいずれかを焼鈍する焼鈍工程を含むことが好ましい。焼鈍工程は、1回のみ行ってもよいし、2回以上行ってもよい。
このような焼鈍工程を行うことで、双晶含有鋼板17から折り曲げ加工によって生じた機械歪を除去することができ、より一層優れた鉄損特性を有する巻鉄心10が得られる。
In the manufacturing method of the present embodiment, the grain-oriented electrical steel sheet after being bent in the inner core formation step and before lamination in an inert gas atmosphere at a temperature of 700 to 1000 ° C. for 0.01 to 30 hours, preferably 1 to 4 hours. (Twinned steel sheet 17) It is preferable to include an annealing step in which any one of the inner core 13 before being inserted into the center of the outer iron core and the wound core 10 after being inserted is included in the embedding step. An annealing process may be performed only once and may be performed twice or more.
By performing such an annealing step, the mechanical strain generated by the bending process can be removed from the twin-containing steel plate 17, and the wound core 10 having even more excellent iron loss characteristics can be obtained.

焼鈍工程における温度を1000℃以下にすることで、双晶含有鋼板17の金属組織に含まれる双晶を消失させずに、折り曲げ加工によって生じた機械歪を除去できる。また、焼鈍工程における温度を700℃以上とすることで、双晶含有鋼板17から折り曲げ加工によって生じた機械歪を十分に除去できる。   By setting the temperature in the annealing process to 1000 ° C. or less, the mechanical strain generated by the bending process can be removed without losing the twins contained in the metal structure of the twin-containing steel sheet 17. Moreover, the mechanical distortion which arose by the bending process from the twin-containing steel plate 17 can fully be removed because the temperature in an annealing process shall be 700 degreeC or more.

また、焼鈍工程における焼鈍時間は、1〜4時間であることが好ましい。焼鈍時間が1時間以上であると、焼鈍工程を行うことによる上記の効果が顕著となる。焼鈍時間が4時間以下であると、効率よく巻鉄心10を製造できる。
焼鈍工程における不活性ガス雰囲気としては、窒素雰囲気、アルゴン雰囲気などが挙げられる。また、不活性ガス雰囲気として、窒素および/またはアルゴンと、微量の水素とからなる混合雰囲気を用いてもよい。不活性ガス雰囲気として、水素を含有する雰囲気を用いた場合、焼鈍工程に伴う巻鉄心を形成している鋼板の酸化を抑制でき、好ましい。一方、設備費用および水素ガスの管理に伴う付加を考慮すると、不活性ガス雰囲気として、窒素雰囲気を用いることが好ましい。
Moreover, it is preferable that the annealing time in an annealing process is 1-4 hours. When the annealing time is 1 hour or longer, the above-described effect due to the annealing process becomes remarkable. When the annealing time is 4 hours or less, the wound core 10 can be manufactured efficiently.
Examples of the inert gas atmosphere in the annealing step include a nitrogen atmosphere and an argon atmosphere. Moreover, you may use the mixed atmosphere which consists of nitrogen and / or argon, and a trace amount hydrogen as inert gas atmosphere. When an atmosphere containing hydrogen is used as the inert gas atmosphere, oxidation of the steel sheet forming the wound iron core in the annealing process can be suppressed, which is preferable. On the other hand, in consideration of equipment costs and addition accompanying the management of hydrogen gas, it is preferable to use a nitrogen atmosphere as the inert gas atmosphere.

本実施形態の巻鉄心10は、巻厚40mm以上であり、内面11側に配置された内側鉄心13と、内側鉄心13の外面側に配置された外側鉄心23とからなり、内側鉄心13の巻厚が、式(1)で示される内側寸法であり、内側鉄心13を形成している方向性電磁鋼板が、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有するため、鉄損特性が良好である。
しかも、本実施形態の巻鉄心10では、外側鉄心23が、内側鉄心13よりも方向性電磁鋼板の占積率が高い。このため、例えば、巻厚を40mm以上とした上記の内側鉄心13からなる巻鉄心と比較して、優れた鉄損特性が得られる。
The wound core 10 according to the present embodiment has a winding thickness of 40 mm or more, and includes an inner iron core 13 disposed on the inner surface 11 side and an outer iron core 23 disposed on the outer surface side of the inner iron core 13. The directional electromagnetic steel sheet having a thickness of the inner dimension represented by the formula (1) and forming the inner iron core 13 includes a plurality of bent portions having a curved shape in a side view formed of a metal structure including twins. Therefore, the iron loss characteristics are good.
Moreover, in the wound core 10 of this embodiment, the outer iron core 23 has a higher space factor of the grain-oriented electrical steel sheet than the inner iron core 13. For this reason, the iron loss characteristic which was excellent compared with the wound iron core which consists of said inner iron core 13 which made winding thickness 40 mm or more, for example is acquired.

本実施形態の巻鉄心10の製造方法では、帯状の複数の方向性電磁鋼板を、それぞれ折り曲げ加工して側面視環状の相似型に成型し、板厚方向に積層することにより、巻厚が式(1)で示される内側寸法である内側鉄心13を形成する。また、帯状の方向性電磁鋼板を予め決定した長さにせん断して円形に巻き取り、プレス加工により環状の形状に成型した後、歪取り焼鈍を行うことにより、外側鉄心23を形成する。そして、得られた外側鉄心23の中心に、内側鉄心13を填め込み、巻厚40mm以上の巻鉄心を形成することにより、本実施形態の巻鉄心10が得られる。   In the manufacturing method of the wound core 10 of the present embodiment, a plurality of strip-shaped directional electrical steel sheets are each bent and formed into a similar shape with an annular shape when viewed from the side, and stacked in the thickness direction, whereby the winding thickness is calculated. The inner iron core 13 having the inner dimension indicated by (1) is formed. Further, the outer iron core 23 is formed by shearing the belt-shaped grain-oriented electrical steel sheet to a predetermined length, winding it into a circular shape, forming it into an annular shape by pressing, and then performing strain relief annealing. And the wound iron core 10 of this embodiment is obtained by inserting the inner iron core 13 in the center of the obtained outer iron core 23, and forming a wound core with a winding thickness of 40 mm or more.

なお、上述した実施形態では、内側鉄心13を形成している方向性電磁鋼板における複数の折曲部の形状が、全て同じである場合を例に挙げて説明したが、内側鉄心13を形成している方向性電磁鋼板における複数の折曲部の形状は、それぞれ異なる形状であってもよいし、一部または全てが同じ形状であってもよい。   In the above-described embodiment, the case where the shapes of the plurality of bent portions in the grain-oriented electrical steel sheet forming the inner iron core 13 are all the same has been described as an example, but the inner iron core 13 is formed. Different shape may be sufficient as the shape of the some bending part in the grain-oriented electrical steel plate which is, and one part or all may be the same shape.

以下、本発明を実施例により、具体的に説明する。
「実施例1」
表1〜4に示す全巻厚である以下に示す(鉄心A)(鉄心A’)(鉄心B)(鉄心B−1)(鉄心B’−1)(鉄心B’−2)の巻鉄心を形成し、以下に示す方法により鉄損特性として「鉄心鉄損」「素材鉄損」を測定し、「BF」を算出した。その結果を表1〜4に示す。
Hereinafter, the present invention will be specifically described by way of examples.
"Example 1"
The wound cores of the following (iron core A) (iron core A ') (iron core B) (iron core B-1) (iron core B'-1) (iron core B'-2), which are the total thicknesses shown in Tables 1 to 4, are shown below. Then, the “iron core loss” and “material iron loss” were measured as the iron loss characteristics by the method shown below, and “BF” was calculated. The results are shown in Tables 1-4.

(鉄心A)
幅152.4mm、厚み0.23mmの帯状の方向性電磁鋼板を予め決定した長さにせん断して円形に巻き取り、プレス加工により側面視環状の形状に成型した後、歪取り焼鈍を行い、その後、形状矯正行って鉄心Aを形成した。鉄心Aは、側面視略矩形であり、4つのコーナー部が一定の曲率半径を有するものとした。鉄心Aの占積率は、97%であった。
(Iron Core A)
A band-shaped grain-oriented electrical steel sheet having a width of 152.4 mm and a thickness of 0.23 mm is sheared to a predetermined length and wound into a circular shape, formed into an annular shape in a side view by pressing, and then subjected to strain relief annealing. Thereafter, the iron core A was formed by performing shape correction. The iron core A has a substantially rectangular shape when viewed from the side, and the four corner portions have a constant radius of curvature. The space factor of the iron core A was 97%.

(鉄心A’)
鉄心Aの内面側から表1〜4に示す内側巻厚分の厚みで方向性電磁鋼板を除去した。その後、方向性電磁鋼板を除去した後の鉄心Aの内面形状に沿う外形形状を有する別の鉄心を形成した。別の鉄心は、鉄心Aと同様にして形成した鉄心を焼鈍して加工歪を完全に除去する方法により形成した。そして、鉄心Aの方向性電磁鋼板を除去した部分に、別の鉄心を内側鉄心として填め込み、鉄心A’とした。
(Iron Core A ')
The grain-oriented electrical steel sheet was removed from the inner surface side of the iron core A with the thickness corresponding to the inner winding thickness shown in Tables 1 to 4. Thereafter, another iron core having an outer shape along the inner surface shape of the iron core A after removing the grain-oriented electrical steel sheet was formed. Another iron core was formed by annealing the iron core formed in the same manner as the iron core A to completely remove the processing strain. Then, another iron core was fitted as the inner iron core into the portion of the iron core A from which the grain-oriented electrical steel sheet was removed, and the iron core A ′ was obtained.

(鉄心B)
幅152.4mm、厚み0.25mmの帯状の複数の方向性電磁鋼板を、それぞれ常温(25℃)で折り曲げ加工して側面視曲線状の複数の折曲部を有する環状の相似型に成型し、板厚方向に積層することにより鉄心Bを形成した。鉄心Bの方向性電磁鋼板は、側面視で、曲線部を介して隣接する2つの直線部の延在方向の角度差Φが45°であり、曲線部の数が2である式(2)を満たす曲げ形状を4つ繋げた形状を有するものとした。また、鉄心Bは、隣接する折曲部間の距離のうち最も短い距離を6mmとし、折曲部の曲率半径を1mmとした。鉄心Bの占積率は、95.5%であった。
(鉄心B−1)
鉄心Bを窒素雰囲気中、800℃の温度で2時間焼鈍し、鉄心B−1とした。鉄心B−1の占積率は、95.5%であった。
(Iron Core B)
A plurality of belt-shaped grain-oriented electrical steel sheets having a width of 152.4 mm and a thickness of 0.25 mm are each bent at room temperature (25 ° C.) to form an annular similar type having a plurality of bent portions in a side view. The iron core B was formed by laminating in the plate thickness direction. In the directional electrical steel sheet of the iron core B, as viewed from the side, the angle difference Φ in the extending direction of two linear portions adjacent to each other through the curved portion is 45 °, and the number of curved portions is two (2) It shall have the shape which connected the bending shape which satisfy | fills four. In the iron core B, the shortest distance among the distances between adjacent bent portions was 6 mm, and the radius of curvature of the bent portion was 1 mm. The space factor of the iron core B was 95.5%.
(Iron Core B-1)
The iron core B was annealed in a nitrogen atmosphere at a temperature of 800 ° C. for 2 hours to obtain an iron core B-1. The space factor of the iron core B-1 was 95.5%.

(鉄心B’−1)
鉄心Aの内面側から表1〜4に示す内側巻厚分の厚みで方向性電磁鋼板を除去した。その後、方向性電磁鋼板を除去した後の鉄心Aの内面形状に沿う外形形状を有する別の鉄心を形成した。別の鉄心は、鉄心Bと同様にして形成した。そして、鉄心Aの方向性電磁鋼板を除去した部分に、別の鉄心を内側鉄心として填め込み、鉄心B’−1とした。
(Iron core B'-1)
The grain-oriented electrical steel sheet was removed from the inner surface side of the iron core A with the thickness corresponding to the inner winding thickness shown in Tables 1 to 4. Thereafter, another iron core having an outer shape along the inner surface shape of the iron core A after removing the grain-oriented electrical steel sheet was formed. Another iron core was formed in the same manner as the iron core B. Then, another iron core was fitted as an inner iron core into the portion of the iron core A from which the directional electromagnetic steel sheet was removed, and an iron core B′-1 was obtained.

(鉄心B’−2)
別の鉄心として、鉄心B−1を形成したこと以外は鉄心B’−1と同様にして、鉄心B’−2を形成した。
(Iron core B'-2)
As another iron core, an iron core B′-2 was formed in the same manner as the iron core B′-1 except that the iron core B-1 was formed.

なお、(鉄心A’)(鉄心B’−1)(鉄心B’−2)においては、内側鉄心を形成している方向性電磁鋼板の厚みと積層枚数との積が、表1〜4に示す(鉄心A’)(鉄心B’−1)(鉄心B’−2)の内側巻厚に最も近い寸法となるように、方向性電磁鋼板の積層枚数を調整して形成した。   In (Iron Core A ′) (Iron Core B′-1) (Iron Core B′-2), the product of the thickness of the grain-oriented electrical steel sheet forming the inner iron core and the number of laminated sheets is shown in Tables 1 to 4. It was formed by adjusting the number of laminated directional electrical steel sheets so as to have a dimension closest to the inner winding thickness of (iron core A ′) (iron core B′-1) (iron core B′-2) shown.

「鉄心鉄損」
JIS C 2550−1に記載の励磁電流法を用いて、W17/50(W/kg)(50Hzでの設定磁束密度が1.7Tの条件)での鉄心の鉄損値を測定した。
「素材鉄損」
鉄心の内面側から表1〜4に示す内側巻厚分の厚みの位置までに配置された方向性電磁鋼板の折曲部以外の部分から幅60mm長さ300mmの単板を採取し、窒素雰囲気中、800℃の温度で2時間焼鈍した。その後、JIS C 2556に記載のHコイル法によって、単板鉄損を測定した。
なお、(鉄心A)(鉄心B)(鉄心B−1)は、別の鉄心を内側鉄心として填め込んだものではなく、内面側から内側巻厚分の厚みの位置までと、その外側とは、同素材である。
「BF」
上記の方法により測定した鉄心鉄損を上記の方法により測定した素材鉄損で除し、BF(ビルディングファクタ)(鉄心鉄損/素材鉄損)を算出した。
"Core loss"
Using the excitation current method described in JIS C 2550-1, the iron loss value of the iron core at W17 / 50 (W / kg) (conditions where the set magnetic flux density at 50 Hz is 1.7 T) was measured.
"Material iron loss"
A single plate having a width of 60 mm and a length of 300 mm is taken from a portion other than the bent portion of the grain-oriented electrical steel sheet disposed from the inner surface side of the iron core to the position corresponding to the thickness of the inner winding thickness shown in Tables 1 to 4, and a nitrogen atmosphere Inside, it annealed at the temperature of 800 degreeC for 2 hours. Thereafter, the single plate iron loss was measured by the H coil method described in JIS C2556.
In addition, (Iron Core A) (Iron Core B) (Iron Core B-1) is not inserted with another iron core as the inner iron core, and from the inner surface side to the position of the thickness of the inner winding thickness, , The same material.
"BF"
The iron core loss measured by the above method was divided by the material iron loss measured by the above method to calculate BF (building factor) (iron core loss / material iron loss).

表1〜4に示す鉄損特性と内側巻厚との関係を評価するために、巻鉄心の巻厚(全巻厚)に対する下記式(5)で示される目標内側寸法vの数値を計算した。その結果を表5に示す。
=19*Ln(t)−54・・・(5)
(式(5)において、vは目標内側寸法を示し、tは巻鉄心の巻厚を示し、Ln()は自然対数を底とした対数を示す。)
In order to evaluate the relationship between the iron loss characteristics shown in Tables 1 to 4 and the inner winding thickness, the numerical value of the target inner dimension v 0 represented by the following formula (5) with respect to the winding thickness (total winding thickness) of the wound core was calculated. . The results are shown in Table 5.
v 0 = 19 * Ln (t) −54 (5)
(In Expression (5), v 0 represents the target inner dimension, t represents the winding thickness of the wound core, and Ln () represents the logarithm with the natural logarithm as the base.)

表5に示す全巻厚40mm、50mm、100mm、250mmでの式(5)で示される目標内側寸法vを参照し、表1〜4のうち特に、式(1)を満たす内側寸法である全巻厚40mm、内側巻厚15mmの結果、全巻厚50mm、内側巻厚20mmの結果、全巻厚100mm、内側巻厚30mmの結果、全巻厚250mm、内側巻厚50mmの結果に注目すると、(鉄心A)(鉄心A’)(鉄心B)(鉄心B−1)(鉄心B’−1)(鉄心B’−2)のうち、(鉄心B’−1)(鉄心B’−2)の鉄損特性が優れていることが分かる。 Whole volume thickness 40mm shown in Table 5, 50 mm, 100 mm, with reference to the target inner dimension v 0 of the formula (5) at 250 mm, in particular of the Tables 1, whole volume is an inner dimension which satisfies the equation (1) As a result of the thickness of 40 mm, the inner winding thickness of 15 mm, the total winding thickness of 50 mm, the inner winding thickness of 20 mm, the total winding thickness of 100 mm, the inner winding thickness of 30 mm, the total winding thickness of 250 mm, and the inner winding thickness of 50 mm. Iron loss characteristics of (iron core B′-1) (iron core B′-2) among (iron core A ′) (iron core B) (iron core B-1) (iron core B′-1) (iron core B′-2) It turns out that is excellent.

(鉄心B’−1)(鉄心B’−2)は、鉄心Bまたは鉄心B−1を、鉄心Aの方向性電磁鋼板を除去した部分に内側鉄心として填め込むことにより形成したものである。鉄心Bおよび鉄心B−1は、折り曲げ加工して側面視曲線状の複数の折曲部を有する環状の相似型に成型し、板厚方向に積層することにより形成したものである。特に、内側鉄心として(鉄心B)を焼鈍した(鉄心B−1)を用いた(鉄心B’−2)では、優れた鉄損特性が得られた。   (Iron core B'-1) (Iron core B'-2) is formed by inserting the iron core B or the iron core B-1 as an inner iron core in the portion where the directional electromagnetic steel sheet of the iron core A is removed. The iron core B and the iron core B-1 are formed by bending to form an annular similar shape having a plurality of bent portions that are curved in side view, and are laminated in the thickness direction. In particular, in the case of (iron core B'-2) using (iron core B-1) obtained by annealing (iron core B) as the inner iron core, excellent iron loss characteristics were obtained.

一方、全巻厚が20mmである場合、(鉄心B’−1)(鉄心B’−2)における鉄損特性の向上効果が確認できなかった。
また、内側巻厚が、式(1)で示される内側寸法vよりも大きくても小さくても、鉄損特性が劣化する結果となった。
On the other hand, when the total winding thickness was 20 mm, the effect of improving the iron loss characteristics in (iron core B′-1) (iron core B′-2) could not be confirmed.
Moreover, even if the inner winding thickness was larger or smaller than the inner dimension v shown by the formula (1), the iron loss characteristic was deteriorated.

これらのことから、以下の(ア)〜(オ)を満たす巻鉄心とすることにより、優れた鉄損特性が得られることが確認できた。
(ア)全巻厚を40mm以上とすること。
(イ)内側鉄心と、内側鉄心の外面側に配置された外側鉄心とからなる巻鉄心とすること。
(ウ)内側巻厚を式(1)で示される内側寸法vとすること。
(エ)内側鉄心として(鉄心B)または(鉄心B−1)を用いること。
(オ)外側鉄心(鉄心A)として、内側鉄心(鉄心B)または(鉄心B−1)よりも方向性電磁鋼板の占積率が高いものを用いること。
From these facts, it was confirmed that excellent iron loss characteristics were obtained by using a wound core satisfying the following (A) to (E).
(A) The total winding thickness should be 40 mm or more.
(B) A wound core composed of an inner iron core and an outer iron core disposed on the outer surface side of the inner iron core.
(C) The inner winding thickness is set to the inner dimension v represented by the formula (1).
(D) Use (Iron Core B) or (Iron Core B-1) as the inner iron core.
(E) As the outer iron core (iron core A), use one having a higher space factor of the grain-oriented electrical steel sheet than the inner iron core (iron core B) or (iron core B-1).

また、表1〜4に示す(鉄心A)を形成している方向性電磁鋼板と、(鉄心B’−1)(鉄心B’−2)に用いた別の鉄心(内側鉄心)を形成している方向性電磁鋼板とにおいて、側面視曲線状の部分の断面を100倍の倍率で光学顕微鏡(商品名:ECLIPSE LD100V、ニコン社製)により観察した。観察試料は、方向性電磁鋼板から側面視曲線状の部分の断面を観察面とする試料を切り出し、観察面を鏡面研磨してから酸で腐食することにより作製した。その結果を図6〜図8に示す。   Moreover, the directional electrical steel sheet which forms (iron core A) shown in Tables 1-4, and another iron core (inner iron core) used for (iron core B'-1) (iron core B'-2) are formed. The cross-section of the curved portion in side view was observed with an optical microscope (trade name: ECLIPSE LD100V, manufactured by Nikon Corporation) at a magnification of 100 times. The observation sample was produced by cutting out a sample from the grain-oriented electrical steel sheet with the cross section of the curved portion in the side view as the observation surface, mirror-polishing the observation surface, and then corroding with an acid. The results are shown in FIGS.

図6は、(鉄心B’−1)に用いた内側鉄心(鉄心B)を形成している方向性電磁鋼板の光学顕微鏡写真である。図6に示すように、方向性電磁鋼板には双晶を含む金属組織が形成されていた。このことから、折り曲げ加工により、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有する方向性電磁鋼板が得られることが確認できた。また、図6に示すように、方向性電磁鋼板の金属組織には、折り曲げ加工したことに起因する転位が存在していた。   FIG. 6 is an optical micrograph of the grain-oriented electrical steel sheet forming the inner iron core (iron core B) used for (iron core B′-1). As shown in FIG. 6, a metal structure including twins was formed on the grain-oriented electrical steel sheet. From this, it was confirmed that a grain-oriented electrical steel sheet having a plurality of bent portions having a curved shape in a side view formed of a metal structure including twins can be obtained by bending. Moreover, as shown in FIG. 6, the dislocation resulting from the bending process existed in the metal structure of the grain-oriented electrical steel sheet.

図7は、(鉄心B’−2)に用いた内側鉄心(鉄心B−1)を形成している方向性電磁鋼板の光学顕微鏡写真である。図7に示すように、方向性電磁鋼板には、折り曲げ加工により双晶を含む金属組織が形成されていた。しかし、図7に示すように、方向性電磁鋼板の金属組織には、折り曲げ加工したことに起因する転位が存在していなかった。このことから、(鉄心B)を上記の条件で焼鈍して(鉄心B−1)とすることにより、金属組織に含まれる双晶を消失させずに、方向性電磁鋼板から折り曲げ加工によって生じた機械歪を除去できることが確認できた。   FIG. 7 is an optical micrograph of the grain-oriented electrical steel sheet forming the inner iron core (iron core B-1) used in (iron core B′-2). As shown in FIG. 7, a metal structure including twins was formed on the grain-oriented electrical steel sheet by bending. However, as shown in FIG. 7, there was no dislocation resulting from the bending process in the metallographic structure of the grain-oriented electrical steel sheet. From this, (iron core B) was annealed under the above conditions to make (iron core B-1), and it was produced by bending from grain-oriented electrical steel sheets without losing twins contained in the metal structure. It was confirmed that mechanical strain could be removed.

図8は、(鉄心A)を形成している方向性電磁鋼板の光学顕微鏡写真である。図8に示すように、方向性電磁鋼板の金属組織では、双晶が観察されなかった。このことから、方向性電磁鋼板を予め決定した長さにせん断して円形に巻き取り、プレス加工により側面視環状の形状に成型した後、歪取り焼鈍を行った場合には、方向性電磁鋼板に双晶を含む金属組織が形成されないことが確認できた。   FIG. 8 is an optical micrograph of the grain-oriented electrical steel sheet forming (Iron Core A). As shown in FIG. 8, twins were not observed in the metallographic structure of the grain-oriented electrical steel sheet. From this, when the directional electrical steel sheet is sheared to a predetermined length and wound into a circular shape, and formed into an annular shape in a side view by pressing, the directional electrical steel sheet is subjected to strain relief annealing. It was confirmed that a metal structure containing twins was not formed.

表1〜4および図6〜図8の結果から、(鉄心B’−1)(鉄心B’−2)は、内側鉄心を形成している方向性電磁鋼板が、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有しているため、良好な鉄損特性が得られることが分かった。   From the results of Tables 1 to 4 and FIGS. 6 to 8, (iron core B′-1) (iron core B′-2) is a metal structure in which the grain-oriented electrical steel sheet forming the inner iron core includes twins. Since it has a plurality of bent portions formed in a side view, it has been found that good iron loss characteristics can be obtained.

「実施例2」
全巻厚80mm、内側巻厚30mmの(鉄心B’−2)であり、内側鉄心を形成している方向性電磁鋼板が側面視で、下記の式(2)を満たす表6に示す角度差Φ、曲線部の数mである曲げ形状を、4つ繋げた形状を有する巻鉄心をそれぞれ形成した。なお、各内側鉄心における複数の折曲部の曲率半径は、全て表6に示す折曲部の曲率半径とした。
Φ×m(2≦m)=90°
(式(2)において、Φは曲線部を介して隣接する2つの直線部の延在方向の角度差を示し、mは曲線部の数を示す。)
"Example 2"
Angular difference Φ shown in Table 6 which is (iron core B′-2) having a total winding thickness of 80 mm and an inner winding thickness of 30 mm, and the directional electrical steel sheet forming the inner core satisfies the following formula (2) in side view: The wound iron cores each having a shape in which four bent shapes, which are several m in the curved portion, are connected to each other were formed. In addition, the curvature radius of the some bending part in each inner iron core was made into the curvature radius of all the bending parts shown in Table 6.
Φ × m (2 ≦ m) = 90 °
(In Formula (2), Φ indicates the angular difference in the extending direction of two linear portions adjacent to each other through the curved portion, and m indicates the number of curved portions.)

得られた各巻鉄心について、実施例1と同様にして「鉄心鉄損」を測定した。次いで「鉄心鉄損」を測定した後の各巻鉄心を、窒素雰囲気中、800℃の温度で2時間焼鈍した。その後、実施例1と同様にして「素材鉄損」を測定し、実施例1と同様にして「BF」を算出した。その結果を表6に示す。   About each obtained wound iron core, it carried out similarly to Example 1, and measured "iron core iron loss." Subsequently, each wound iron core after measuring “iron core loss” was annealed in a nitrogen atmosphere at a temperature of 800 ° C. for 2 hours. Thereafter, “material iron loss” was measured in the same manner as in Example 1, and “BF” was calculated in the same manner as in Example 1. The results are shown in Table 6.

表6に示すように、式(2)における角度差Φが45°または30°(すなわち曲線部15の数が2または3)である場合、より一層優れた鉄損特性が得られることが分かった。
また、表6に示すように、折曲部の曲率半径が0.1mm〜100mmである場合、より一層優れた鉄損特性が得られることが分かった。
As shown in Table 6, when the angle difference Φ in the formula (2) is 45 ° or 30 ° (that is, the number of the curve portions 15 is 2 or 3), it is found that even better iron loss characteristics can be obtained. It was.
Moreover, as shown in Table 6, when the curvature radius of the bending part was 0.1 mm-100 mm, it turned out that the further outstanding iron loss characteristic is acquired.

「実施例3」
全巻厚80mm、内側巻厚30mmの(鉄心B’−2)であり、内側鉄心を形成している方向性電磁鋼板のうち、最も内面側に配置された方向性電磁鋼板の隣接する折曲部間の距離のうち最も短い距離を、表7に示すように異ならせた巻鉄心をそれぞれ形成した。なお、内側鉄心を形成している方向性電磁鋼板は側面視で、式(2)を満たす角度差Φが45°、曲線部の数mが2である曲げ形状を、4つ繋げた形状を有するものとした。また、各内側鉄心における複数の折曲部の曲率半径は、全て1mmとした。
"Example 3"
Folded part adjacent to the directional electromagnetic steel sheet arranged on the innermost surface side among the directional electromagnetic steel sheets that are (iron core B′-2) having a total winding thickness of 80 mm and an inner winding thickness of 30 mm. As shown in Table 7, the wound cores were formed by varying the shortest distance among the distances between them. In addition, the grain-oriented electrical steel sheet forming the inner iron core has a shape obtained by connecting four bending shapes in which the angle difference Φ satisfying the formula (2) is 45 ° and the number m of curved portions is 2 in a side view. It was supposed to have. Moreover, all the curvature radii of the some bending part in each inner side iron core were 1 mm.

得られた各巻鉄心について、実施例2と同様にして「鉄心鉄損」「素材鉄損」を測定し、「BF」を算出した。その結果を表7に示す。   About each obtained wound iron core, it carried out similarly to Example 2, and measured "iron core iron loss" and "material iron loss", and calculated "BF". The results are shown in Table 7.

表7に示すように、内側鉄心における隣接する折曲部間の距離のうち最も短い距離が、6mm以上である場合、より一層優れた鉄損特性が得られることが分かった。   As shown in Table 7, it was found that when the shortest distance among the distances between adjacent bent portions in the inner iron core is 6 mm or more, even better iron loss characteristics can be obtained.

「実施例4」
方向性電磁鋼板の板温度を表8に示す温度として折り曲げ加工を行ったこと以外は、表7に示す実施例3の隣接する折曲部間の距離が6mmである巻鉄心を同様にして、巻鉄心を形成した。
得られた各巻鉄心について、実施例2と同様にして「鉄心鉄損」「素材鉄損」を測定し、「BF」を算出した。その結果を表8に示す。
Example 4
Except for performing the bending process with the plate temperature of the grain-oriented electrical steel sheet set to the temperature shown in Table 8, similarly to the wound iron core in which the distance between adjacent bent portions of Example 3 shown in Table 7 is 6 mm, A wound core was formed.
About each obtained wound iron core, it carried out similarly to Example 2, and measured "iron core iron loss" and "material iron loss", and calculated "BF". The results are shown in Table 8.

表8に示すように、方向性電磁鋼板の板温度を3℃以下もしくは200℃以上として、折り曲げ加工を行うことで、より一層優れた鉄損特性が得られることが分かった。これは、板温度が3℃以下もしくは200℃以上であると、折り曲げ加工によって生じた機械歪が双晶に変化しやすいため、方向性電磁鋼板に多くの双晶を導入されることによるものと推定される。   As shown in Table 8, it was found that even better iron loss characteristics can be obtained by bending the grain-oriented electrical steel sheet at a temperature of 3 ° C. or lower or 200 ° C. or higher. This is because when the plate temperature is 3 ° C. or lower or 200 ° C. or higher, the mechanical strain generated by the bending process is likely to change into twins, so that many twins are introduced into the grain-oriented electrical steel sheet. Presumed.

10 巻鉄心、11 内面、13 内側鉄心、14 直線部、15 曲線部、16 曲げ形状、17 双晶含有鋼板、18、18’ 折曲部、23 外側鉄心、t 巻鉄心の巻厚(全巻厚)、v 内側寸法。   10 cores, 11 inner surfaces, 13 inner cores, 14 straight sections, 15 curved sections, 16 bent shapes, 17 twinned steel sheets, 18, 18 'bent sections, 23 outer cores, winding thickness of t core (total thickness) ), V Inside dimensions.

Claims (7)

側面視環状の複数の方向性電磁鋼板が板厚方向に積層された巻厚40mm以上の巻鉄心であり、
内面側に配置された内側鉄心と、前記内側鉄心の外面側に配置された外側鉄心とからなり、前記内側鉄心の巻厚が、下記式(1)で示される内側寸法であり、
前記方向性電磁鋼板のうち前記内側鉄心を形成している方向性電磁鋼板は、双晶を含む金属組織で形成された側面視曲線状の複数の折曲部を有し、
前記外側鉄心は、前記内側鉄心よりも前記方向性電磁鋼板の占積率が高いことを特徴とする巻鉄心。
19*Ln(t)−54−0.05*t≦v≦19*Ln(t)−54+0.05*t・・・(1)
(式(1)において、vは内側寸法を示し、tは巻鉄心の巻厚を示し、Ln()は自然対数を底とした対数を示す。)
A plurality of grain-oriented electrical steel sheets that are annular in a side view are wound cores having a winding thickness of 40 mm or more laminated in the thickness direction,
It consists of an inner iron core disposed on the inner surface side and an outer iron core disposed on the outer surface side of the inner iron core, and the winding thickness of the inner iron core is an inner dimension represented by the following formula (1),
The directional electrical steel sheet forming the inner iron core among the directional electrical steel sheets has a plurality of bent portions that are curved in side view and formed of a metal structure including twins.
The outer iron core has a higher space factor of the grain-oriented electrical steel sheet than the inner iron core.
19 * Ln (t) −54−0.05 * t ≦ v ≦ 19 * Ln (t) −54 + 0.05 * t (1)
(In formula (1), v represents the inner dimension, t represents the winding thickness of the wound core, and Ln () represents the logarithm with the natural logarithm as the base.)
前記内側鉄心における隣接する折曲部間の距離のうち最も短い距離が、6mm以上であることを特徴とする請求項1に記載の巻鉄心。   2. The wound core according to claim 1, wherein the shortest distance among adjacent bent portions in the inner iron core is 6 mm or more. 前記折曲部の曲率半径が0.1mm〜100mmであることを特徴とする請求項1または請求項2に記載の巻鉄心。   The wound core according to claim 1 or 2, wherein a curvature radius of the bent portion is 0.1 mm to 100 mm. 前記内側鉄心を形成している方向性電磁鋼板が側面視で、直線部と外面方向に1つの頂点を有する曲線部とが交互に配置されてなる下記の式(2)を満たす曲げ形状を、4つ繋げた形状を有することを特徴とする請求項1〜請求項3のいずれか一項に記載の巻鉄心。
Φ×m(2≦m)=90°
(式(2)において、Φは曲線部を介して隣接する2つの直線部の延在方向の角度差を示し、mは曲線部の数を示す。)
The directional electrical steel sheet forming the inner iron core has a bent shape satisfying the following formula (2) in which a straight line portion and a curved portion having one vertex in the outer surface direction are alternately arranged in a side view, The wound core according to any one of claims 1 to 3, wherein the wound core has four connected shapes.
Φ × m (2 ≦ m) = 90 °
(In Formula (2), Φ indicates the angular difference in the extending direction of two linear portions adjacent to each other through the curved portion, and m indicates the number of curved portions.)
請求項1〜請求項4のいずれか一項に記載の巻鉄心の製造方法であって、
帯状の複数の方向性電磁鋼板を、それぞれ折り曲げ加工して側面視環状の相似型に成型し、板厚方向に積層することにより、巻厚が下記式(1)で示される内側寸法である内側鉄心を形成する内側鉄心形成工程と、
帯状の方向性電磁鋼板を予め決定した長さにせん断して円形に巻き取り、プレス加工により側面視環状の形状に成型した後、歪取り焼鈍を行って外側鉄心を形成する外側鉄心形成工程と、
前記外側鉄心の中心に前記内側鉄心を填め込み、巻厚40mm以上の巻鉄心を形成する填め込み工程とを有する巻鉄心の製造方法。
19*Ln(t)−54−0.05*t≦v≦19*Ln(t)−54+0.05*t・・・(1)
(式(1)において、vは内側寸法を示し、tは巻鉄心の巻厚を示し、Ln()は自然対数を底とした対数を示す。)
It is a manufacturing method of the volume iron core according to any one of claims 1 to 4,
A plurality of strip-shaped directional electrical steel sheets are each bent and formed into an annular similar shape in side view, and laminated in the thickness direction so that the inner thickness is the inner dimension represented by the following formula (1) An inner core forming process for forming an iron core;
An outer core forming step in which a strip-shaped directional electrical steel sheet is sheared to a predetermined length, wound into a circle, formed into an annular shape in a side view by pressing, and then subjected to strain relief annealing to form an outer iron core; ,
A method of manufacturing a wound iron core, comprising: a step of filling the inner iron core into the center of the outer iron core to form a wound iron core having a winding thickness of 40 mm or more.
19 * Ln (t) −54−0.05 * t ≦ v ≦ 19 * Ln (t) −54 + 0.05 * t (1)
(In formula (1), v represents the inner dimension, t represents the winding thickness of the wound core, and Ln () represents the logarithm with the natural logarithm as the base.)
不活性ガス雰囲気中、700℃〜1000℃の温度で0.01〜30時間、前記折り曲げ加工後積層前の前記方向性電磁鋼板、前記外側鉄心の中心に填め込む前の前記内側鉄心、前記填め込み工程後の前記巻鉄心のいずれかを焼鈍する焼鈍工程を含む請求項5に記載の巻鉄心の製造方法。   In an inert gas atmosphere, at a temperature of 700 ° C. to 1000 ° C., for 0.01 to 30 hours, after the bending, before the lamination, the grain-oriented electrical steel sheet, the inner iron core before filling the center of the outer iron core, the filling The manufacturing method of the wound iron core of Claim 5 including the annealing process which anneals either of the said wound iron cores after a setting process. 前記方向性電磁鋼板の板温度を3℃以下もしくは200℃以上として、前記折り曲げ加工を行う請求項5または請求項6に記載の巻鉄心の製造方法。   The method for manufacturing a wound core according to claim 5 or 6, wherein the bending process is performed at a plate temperature of the grain-oriented electrical steel sheet of 3 ° C or lower or 200 ° C or higher.
JP2016042710A 2016-03-04 2016-03-04 Wound core and method of manufacturing the wound core Active JP6658114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016042710A JP6658114B2 (en) 2016-03-04 2016-03-04 Wound core and method of manufacturing the wound core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042710A JP6658114B2 (en) 2016-03-04 2016-03-04 Wound core and method of manufacturing the wound core

Publications (2)

Publication Number Publication Date
JP2017157806A true JP2017157806A (en) 2017-09-07
JP6658114B2 JP6658114B2 (en) 2020-03-04

Family

ID=59810243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042710A Active JP6658114B2 (en) 2016-03-04 2016-03-04 Wound core and method of manufacturing the wound core

Country Status (1)

Country Link
JP (1) JP6658114B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087619A (en) * 2017-11-06 2019-06-06 新日鐵住金株式会社 Bf estimation method of wound core
JP2019117155A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Method for specifying iron loss inferior part of wound iron core
JP2019125651A (en) * 2018-01-15 2019-07-25 日本製鉄株式会社 Pile core and electric device
JPWO2018131613A1 (en) * 2017-01-10 2019-11-07 日本製鉄株式会社 Wrapped iron core and manufacturing method thereof
JP2020013852A (en) * 2018-07-17 2020-01-23 東芝産業機器システム株式会社 Wound iron core for stationary induction apparatus
WO2020071512A1 (en) 2018-10-03 2020-04-09 日本製鉄株式会社 Wound core and transformer
JPWO2020218607A1 (en) * 2019-04-25 2020-10-29
RU2777448C1 (en) * 2019-04-25 2022-08-04 Ниппон Стил Корпорейшн Tape core and method for its manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394608A (en) * 1986-10-09 1988-04-25 Kawasaki Steel Corp Wound core for low iron-loss transformer
JPH03268311A (en) * 1990-03-19 1991-11-29 Toshiba Corp Iron core of transformer
JPH09219321A (en) * 1996-02-09 1997-08-19 Toyo Electric Mfg Co Ltd Iron core for electric equipment
JP2010132977A (en) * 2008-12-05 2010-06-17 Jfe Steel Corp Extra-thin silicon steel sheet and manufacturing method therefor
JP2011243792A (en) * 2010-05-19 2011-12-01 Takaoka Kasei Kogyo Kk Wound core
JP2016009792A (en) * 2014-06-25 2016-01-18 東芝産業機器システム株式会社 Wound iron core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394608A (en) * 1986-10-09 1988-04-25 Kawasaki Steel Corp Wound core for low iron-loss transformer
JPH03268311A (en) * 1990-03-19 1991-11-29 Toshiba Corp Iron core of transformer
JPH09219321A (en) * 1996-02-09 1997-08-19 Toyo Electric Mfg Co Ltd Iron core for electric equipment
JP2010132977A (en) * 2008-12-05 2010-06-17 Jfe Steel Corp Extra-thin silicon steel sheet and manufacturing method therefor
JP2011243792A (en) * 2010-05-19 2011-12-01 Takaoka Kasei Kogyo Kk Wound core
JP2016009792A (en) * 2014-06-25 2016-01-18 東芝産業機器システム株式会社 Wound iron core

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018131613A1 (en) * 2017-01-10 2019-11-07 日本製鉄株式会社 Wrapped iron core and manufacturing method thereof
US10886055B2 (en) 2017-01-10 2021-01-05 Nippon Steel Corporation Wound core and manufacturing method thereof
JP2019087619A (en) * 2017-11-06 2019-06-06 新日鐵住金株式会社 Bf estimation method of wound core
JP7009937B2 (en) 2017-11-06 2022-01-26 日本製鉄株式会社 BF estimation method for winding core
JP2019117155A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Method for specifying iron loss inferior part of wound iron core
JP2019125651A (en) * 2018-01-15 2019-07-25 日本製鉄株式会社 Pile core and electric device
JP2020013852A (en) * 2018-07-17 2020-01-23 東芝産業機器システム株式会社 Wound iron core for stationary induction apparatus
JP7160589B2 (en) 2018-07-17 2022-10-25 東芝産業機器システム株式会社 Wound core for static induction equipment
WO2020071512A1 (en) 2018-10-03 2020-04-09 日本製鉄株式会社 Wound core and transformer
KR20210021578A (en) 2018-10-03 2021-02-26 닛폰세이테츠 가부시키가이샤 Coil core and transformer
KR20210148353A (en) * 2019-04-25 2021-12-07 닛폰세이테츠 가부시키가이샤 Wound iron core and manufacturing method thereof
CN113785370A (en) * 2019-04-25 2021-12-10 日本制铁株式会社 Wound core and method for manufacturing same
WO2020218607A1 (en) * 2019-04-25 2020-10-29 日本製鉄株式会社 Wound iron core and method for producing same
EP3961665A4 (en) * 2019-04-25 2022-06-29 Nippon Steel Corporation Wound iron core and method for producing same
RU2777448C1 (en) * 2019-04-25 2022-08-04 Ниппон Стил Корпорейшн Tape core and method for its manufacture
JP7115634B2 (en) 2019-04-25 2022-08-09 日本製鉄株式会社 Wound core and manufacturing method thereof
JPWO2020218607A1 (en) * 2019-04-25 2020-10-29
AU2020263862B2 (en) * 2019-04-25 2022-12-22 Nippon Steel Corporation Wound iron core and method for producing same
KR102521243B1 (en) 2019-04-25 2023-04-14 닛폰세이테츠 가부시키가이샤 Iron core and its manufacturing method
US11742140B2 (en) 2019-04-25 2023-08-29 Nippon Steel Corporation Wound core and method for producing same

Also Published As

Publication number Publication date
JP6658114B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6658114B2 (en) Wound core and method of manufacturing the wound core
JP2018148036A (en) Wound core
JP6658338B2 (en) Electrical steel sheet excellent in space factor and method of manufacturing the same
JP2002529929A (en) Bulk amorphous metal magnetic components
JP2011111658A (en) Method for producing non-oriented magnetic steel sheet having high magnetic flux density
WO2019168158A1 (en) Magnetic core and method for manufacturing same, and coil component
JP6710209B2 (en) Fe-Si-B-C type amorphous alloy ribbon and transformer magnetic core made of the same
JP5256594B2 (en) Iron core transformer and method for manufacturing the same
JP4895606B2 (en) Transformer
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2008235525A (en) Reactor core and reactor
JP2018092979A (en) Transformer, plate-shaped iron core for transformer, and method for manufacturing plate-shaped iron core for transformer
JP6844127B2 (en) Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method
JP6943544B2 (en) Inverter power supply Reactor Electromagnetic steel sheet for iron core and its manufacturing method
JP7151946B1 (en) Wound core and method for manufacturing wound core
TWI779904B (en) Manufacturing method and manufacturing device of wound iron core
TWI778842B (en) Wound iron core, manufacturing method of wound iron core, and wound iron core manufacturing device
WO2023167015A1 (en) Three-phased three-legged wound core and method for manufacturing same
JP6786900B2 (en) Bidirectional electromagnetic steel sheet and its manufacturing method
JPS5911609A (en) Manufacture of laminated core
JP2022070242A (en) Manufacturing method and manufacturing device for wound core
TW202224932A (en) Wound core
JP2001295001A (en) Nonoriented silicon steel sheet excellent in high frequency magnetic property and weldability
JP2021070845A (en) Thin alloy strip and manufacturing method of the same
KR20230070021A (en) Cheol Shim Kwon

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6658114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151