JP2010132977A - Extra-thin silicon steel sheet and manufacturing method therefor - Google Patents

Extra-thin silicon steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2010132977A
JP2010132977A JP2008310542A JP2008310542A JP2010132977A JP 2010132977 A JP2010132977 A JP 2010132977A JP 2008310542 A JP2008310542 A JP 2008310542A JP 2008310542 A JP2008310542 A JP 2008310542A JP 2010132977 A JP2010132977 A JP 2010132977A
Authority
JP
Japan
Prior art keywords
silicon steel
rolling
ratio
thickness
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008310542A
Other languages
Japanese (ja)
Other versions
JP5636627B2 (en
Inventor
Tatsuhiko Hiratani
多津彦 平谷
Minoru Takashima
高島  稔
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008310542A priority Critical patent/JP5636627B2/en
Publication of JP2010132977A publication Critical patent/JP2010132977A/en
Application granted granted Critical
Publication of JP5636627B2 publication Critical patent/JP5636627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extra-thin silicon steel sheet which is less in the quantity of coarse grains even when being subjected to heat treatment at ≥1,100°C, has high B8/Bs and is suitable to siliconizing treatment, and to provide a manufacturing method therefor,. <P>SOLUTION: This extra-thin silicon steel sheet having 0.03-0.10 mm sheet thickness, is obtained by re-rolling a unidirectional silicon steel secondary recrystallized sheet containing 2-4 mass% of recompression. The peculiarity is that the ratio of the coarse grain exceeding 5 times of the sheet thickness to the maximum width of crystallized grains is ≤15% after applying the heat-treatment under condition of temperature of 1,100°C for 1 minute during the nitrogen atmosphere and B8/Bs is ≥0.85. When this steel sheet is manufactured, on the surface of the unidirectional silicon steel secondary recrystallized sheet before re-rolling, for example, a mechanical-grinding or a chemical-corrosion is applied, and after making an arithmetic means Ra of the surface roughness from 0.6 μm to <3.5 μm, the re-rolling is applied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波電源の小型化・低損失化に効果のある高珪素鋼板の浸珪用素材として好適な、極薄珪素鋼板及びその製造方法に関するものである。   The present invention relates to an ultra-thin silicon steel plate suitable as a material for siliconization of a high silicon steel plate that is effective in reducing the size and loss of a high-frequency power source, and a method for manufacturing the same.

近年パワーエレクトロニクス技術は、大型の産業用電源のみならず、家電機器の電源やハイブリッドカーの駆動用電源等、様々な分野においても利用されている。とくにIGBT(絶縁ゲート型バイポーラ・トランジスタ)を代表とするスイッチング用半導体素子の発展は著しく、その適用範囲がますます高周波化、大容量化する傾向にある。
このようなスイッチング電源のトランス、リアクトルには、従来より珪素鋼板や鉄粉を固めたダストコアが用いられてきた。しかしながら、これらの材料は励磁周波数が高くなると鉄損が急激に上昇し発熱も顕著となる傾向がある。そのため、最近は高周波鉄損の低い鉄基アモルファスや、酸化鉄粉を主体とした軟磁性フェライトも鉄心素材として検討されつつある。ただし、アモルファスのコアは高価であり、また磁歪が大きいため騒音対策が必須となる。一方、軟磁性フェライトは固有抵抗が高く、高周波域で鉄損の主体となる渦電流損の大幅低減が期待される反面、鉄系素材に比べて磁束密度が低いため、周波数が数百kHzで容量の小さな電源には適しているが、IGBTが使われている数kHzで容量の比較的大きな電源では、鉄心が大型化してしまうため不向きと考えられる。
In recent years, power electronics technology has been used not only in large industrial power supplies but also in various fields such as power supplies for home appliances and power supplies for driving hybrid cars. In particular, switching semiconductor devices such as IGBT (Insulated Gate Bipolar Transistor) have been developed remarkably, and their application range tends to be higher and higher capacity.
Conventionally, a dust core obtained by solidifying a silicon steel plate or iron powder has been used for a transformer or a reactor of such a switching power supply. However, these materials have a tendency that when the excitation frequency increases, the iron loss increases rapidly and the heat generation becomes significant. For this reason, recently, iron-based amorphous materials having a low high-frequency iron loss and soft magnetic ferrite mainly composed of iron oxide powder are being studied as iron core materials. However, the amorphous core is expensive and has a large magnetostriction, so noise countermeasures are essential. On the other hand, soft magnetic ferrite has a high specific resistance and is expected to greatly reduce eddy current loss, which is the main cause of iron loss in the high-frequency range. On the other hand, the magnetic flux density is lower than that of iron-based materials. Although it is suitable for a power supply with a small capacity, it is considered unsuitable for a power supply with a relatively large capacity at several kHz where an IGBT is used because the iron core becomes large.

珪素鋼板は比較的安価であり磁束密度も高いことから、商用のみならず数百Hz〜数kHzの高周波電源においても使われている。ただし、商用向けの珪素鋼板をそのまま高周波に転用するのではなく、板厚の薄手化やSi含有量を高めて固有抵抗を高くするなど、渦電流損失を抑え高周波鉄損を低減するための対策が採られている。
板厚を薄手化したものとしては、重量で3%程度のSiを含む板厚0.05〜0.10mmの極薄珪素鋼板が現在市販されている。この極薄珪素鋼板には、板面内で均一な特性を示す無方向性の比較的磁束密度の低いものと、{110}<001>方位(ゴス方位)集積度を高めた磁束密度の高いものとがある。前記無方向性のものは、圧延の最終板厚を薄くして仕上焼鈍で一次再結晶させる点で、通常板厚の製造プロセスと基本的な違いはない。前記{110}<001>方位集積度を高めたものは、製造プロセスとして、通常の一方向性珪素鋼板と同様に最終仕上板厚まで冷延し、これを一次再結晶更には二次再結晶させて製造する方法(例えば、特許文献1)と、板厚0.3mm前後でいったん二次再結晶させて{110}<001>方位集積度を高めた一方向性珪素鋼板を作製した後、再圧延を施し板厚0.10mm以下とし、次いで700〜900℃で一次再結晶焼鈍する方法(例えば、特許文献2、3)とが考えられる。しかしながら、前者の方法は、冷延板厚が0.10mm以下になると二次再結晶が不安定となり{110}<001>方位の揃った組織を得ることが困難となるため、実際に採用されているのは後者の二次再結晶板の再圧延による方法である。また、このようにして得られた{110}<001>方位集積度の高い極薄珪素鋼板は、圧延方向の磁束密度が高いため、鉄心の小型化が期待されている。
Since silicon steel plates are relatively inexpensive and have high magnetic flux density, they are used not only for commercial use but also for high frequency power supplies of several hundred Hz to several kHz. However, measures to reduce high-frequency iron loss by suppressing eddy current loss, such as reducing the thickness of the plate and increasing the Si content to increase the specific resistance, rather than diverting commercial silicon steel plates directly to high frequencies. Has been adopted.
As a thin plate, an ultra-thin silicon steel plate having a thickness of 0.05 to 0.10 mm containing about 3% Si by weight is currently on the market. This ultra-thin silicon steel sheet has a non-directional, relatively low magnetic flux density that exhibits uniform characteristics within the plate surface, and a high magnetic flux density with a high degree of integration of {110} <001> orientation (Goth orientation). There is a thing. The non-directional one is not fundamentally different from a normal plate thickness manufacturing process in that the final plate thickness of rolling is reduced and primary recrystallization is performed by finish annealing. The one with a higher degree of {110} <001> orientation integration is cold-rolled to the final finished plate thickness as a normal unidirectional silicon steel sheet as a manufacturing process, and this is subjected to primary recrystallization and further secondary recrystallization. And producing a unidirectional silicon steel sheet having a high {110} <001> orientation integration by secondary recrystallization once with a thickness of about 0.3 mm, A method (for example, Patent Documents 2 and 3) in which rolling is performed to obtain a plate thickness of 0.10 mm or less and then primary recrystallization annealing at 700 to 900 ° C. is considered. However, the former method is actually used because the secondary recrystallization becomes unstable and it becomes difficult to obtain a {110} <001> oriented structure when the cold-rolled sheet thickness is 0.10 mm or less. The latter is a method by rerolling the latter secondary recrystallized plate. Further, the ultrathin silicon steel sheet having a high {110} <001> orientation integration obtained in this way has a high magnetic flux density in the rolling direction, and thus is expected to reduce the size of the iron core.

一方、鋼中Si含有量を高めて固有抵抗を高くして高周波鉄損を下げる方法は、Si量4%を超える薄板の圧延が実質的に困難なため、工業レベルでは、約3%Siの状態で板厚0.05〜0.3mmまで圧延後、焼鈍の最終工程でSi系のガスを用いてSi付加する浸珪プロセスが採用されている(例えば、特許文献4)。とくに6.5%Siの場合は高周波鉄損低減のみならず、磁歪がゼロに近いため電源の低騒音化にも絶大な効果がある。また、同板厚の6.5%Si鋼板より更に高周波鉄損を下げることが可能な、板厚方向に特定のSi濃度勾配を有する材料も製造されている(例えば、特許文献5)。さらに、浸珪プロセスにおいて製造された高Siの製品の加工性は重要である。そのため、トランス・リアクトルを作製するときのスリット加工、打ち抜き加工、曲げ加工等で破断することのないように、結晶粒径や粒界酸化など加工性改善の対策を講じる必要があり、例えば、特許文献6では、打ち抜き加工性が良好となるように平均粒径を規定している。   On the other hand, the method of reducing the high-frequency iron loss by increasing the Si content in steel and lowering the high-frequency iron loss is substantially difficult to roll a thin plate exceeding 4% Si content. A siliconization process is employed in which Si is added using a Si-based gas in the final annealing step after rolling to a thickness of 0.05 to 0.3 mm in the state (for example, Patent Document 4). In particular, 6.5% Si not only reduces high-frequency iron loss, but also has a tremendous effect in reducing noise in the power supply because the magnetostriction is close to zero. In addition, a material having a specific Si concentration gradient in the plate thickness direction that can further reduce the high-frequency iron loss compared to the 6.5% Si steel plate having the same plate thickness has been manufactured (for example, Patent Document 5). Furthermore, the workability of high Si products produced in the siliconization process is important. Therefore, it is necessary to take measures to improve workability such as crystal grain size and grain boundary oxidation so as not to be broken by slit processing, punching processing, bending processing, etc. when producing a transformer / reactor. In Reference 6, the average particle size is defined so that the punching processability is good.

また、前記{110}<001>方位集積度を高めたものについて、Si含有量を高めて固有抵抗を高くする方法については、特許文献7において、{110}<001>方位を有しB8/Bs>1.9である一方向性珪素鋼板に圧下率60〜90%の冷間圧延を施して板厚0.15mm以下とし、次いで所定の条件で熱処理を施して一次再結晶組織とした後、SiCl4ガスにより浸珪処理を施すし、更にこれに磁区細分化処理を施すプロセスが開示されている。
特開平2-77524号公報 特開平2-277748号公報 米国特許第2473156号公報 特許第1836404号公報 特許第3896688号公報 特許第2998676号公報 特許第2784683号公報
As for the method of increasing the specific resistance by increasing the Si content with respect to the above-described {110} <001> orientation integration degree, in Patent Document 7, it has {110} <001> orientation and B8 / A unidirectional silicon steel sheet with Bs> 1.9 is cold-rolled at a rolling reduction of 60 to 90% to a thickness of 0.15 mm or less, then heat-treated under predetermined conditions to obtain a primary recrystallized structure, and then SiCl 4 A process is disclosed in which a siliconizing process is performed with a gas, and a magnetic domain refinement process is further performed on the silicon.
Japanese Patent Laid-Open No. 2-77524 JP-A-2-77748 U.S. Pat.No. 2,473,156 Japanese Patent No. 1836404 Japanese Patent No. 3896688 Japanese Patent No. 2998676 Japanese Patent No. 278483

しかしながら、上記従来技術には以下のような問題点がある。
例えば、圧延プロセスで4%を超えるSiを含む鋼板を板厚0.10mm以下の極薄珪素鋼板とするのは困難であるため、浸珪プロセス材を除くと、現在市販されている極薄珪素鋼板は、Si量3%前後のものである。この極薄珪素鋼板には無方向性のものと<001>{110}集合組織の集積度を高めたものがあるが、いずれの高周波鉄損も、浸珪プロセスで作製した同板厚の高珪素鋼板には及ばない。
However, the above prior art has the following problems.
For example, it is difficult to make a steel sheet containing Si exceeding 4% in the rolling process into an ultrathin silicon steel sheet with a thickness of 0.10 mm or less. Is about 3% Si. These ultrathin silicon steel sheets are non-oriented and those with a high degree of integration of <001> {110} textures. Both high-frequency iron losses are of the same thickness produced by the siliconization process. It does not reach silicon steel sheets.

また、特許文献4,5に記載の浸珪プロセスにより得られる高珪素鋼板は、主として無方向性珪素鋼板であり、この無方向性珪素鋼板の、磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比(以下、B8/Bsと称す)は0.7程度(3%SiでB8=1.42T、6.5%SiでB8=1.26Tに相当)しかない。パワーエレクトロニクス市場において電源の小型化要望は強く、高珪素鋼板についても大幅な特性向上(たとえば現行比2割以上の鉄心小型化)が望まれている。これに対応する指標はB8/Bs>0.85(3%SiでB8>1.73T、6.5%SiでB8>1.53Tに相当)であり、上記無方向性電磁鋼板では不十分である。また、二次再結晶を利用せずに冷延・焼鈍の繰り返しでB8/Bs>0.85の素材を得るのは極めて困難である。   The high silicon steel plate obtained by the siliconization process described in Patent Documents 4 and 5 is mainly a non-oriented silicon steel plate, and the magnetic flux density when this non-oriented silicon steel plate is excited with a magnetizing force of 800 A / m. The ratio of B8 to saturation magnetic flux density Bs (hereinafter referred to as B8 / Bs) is only about 0.7 (corresponding to B8 = 1.42T for 3% Si and B8 = 1.26T for 6.5% Si). There is a strong demand for miniaturization of power supplies in the power electronics market, and there is a demand for significant improvement in characteristics of high silicon steel sheets (for example, miniaturization of iron cores by more than 20% of the current level). The index corresponding to this is B8 / Bs> 0.85 (corresponding to B8> 1.73T at 3% Si and B8> 1.53T at 6.5% Si), and the non-oriented electrical steel sheet is insufficient. In addition, it is extremely difficult to obtain a material with B8 / Bs> 0.85 by repeated cold rolling and annealing without using secondary recrystallization.

例えば、特許文献7に開示されている極薄珪素鋼板の製造法では、1000℃以下で浸珪処理を行う場合、浸珪反応で発生する塩化鉄(沸点1023℃)が鋼板表面に残留して浸珪速度が著しく低下するうえ、Si均一化拡散処理にも数時間を要するため、現在行われているように連続ラインで処理するには不適である。連続ラインで浸珪処理を行なうためには、塩化鉄の沸点1023℃以上、より好ましくは1100℃以上、またSi均一化拡散処理も1100℃以上の温度で短時間で行うことが必須となる。   For example, in the method for producing an ultrathin silicon steel sheet disclosed in Patent Document 7, when the siliconizing process is performed at 1000 ° C. or lower, iron chloride (boiling point 1023 ° C.) generated by the siliconizing reaction remains on the steel sheet surface. Since the siliconization speed is significantly reduced and the silicon homogenization diffusion process takes several hours, it is unsuitable for processing on a continuous line as currently performed. In order to perform the siliconizing treatment on the continuous line, it is essential to perform the iron chloride boiling point of 1023 ° C. or higher, more preferably 1100 ° C. or higher, and the Si uniform diffusion treatment at a temperature of 1100 ° C. or higher in a short time.

以上のように、家電機器やハイブリッドカーの分野では、電源に対する小型・軽量化、高効率化の要望は極めて強く、鉄心素材に求められる特性も年々厳しくなっており、とくに周波数10kHz前後で比較的大きな電源容量で使われるケースも増えてきているが、現状では、このような使用条件に適合した素材は少なく、それぞれ特性改善が望まれている。   As described above, in the field of home appliances and hybrid cars, there is an extremely strong demand for miniaturization, weight reduction, and high efficiency of power supplies, and the characteristics required for iron core materials are becoming stricter year by year. The number of cases where large power supply capacity is used is increasing, but at present, there are few materials that meet these conditions of use, and improvements in characteristics are desired.

本発明は、かかる事情に鑑みなされたもので、1100℃以上で熱処理しても粗大粒が少なく、且つ高いB8/Bsを示す、浸珪処理に適した極薄珪素鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an ultra-thin silicon steel sheet suitable for siliconization treatment that has few coarse grains and exhibits high B8 / Bs even when heat-treated at 1100 ° C. or higher, and a method for producing the same. The purpose is to do.

発明者らは、上記課題を解決するために種々の検討を行った。以下、発明の契機となった検討内容について説明する。
一般に{110}<001>集積度の高い一方向性珪素鋼二次再結晶板を再圧延して熱処理すると、700〜900℃の温度の場合では{110}<001>集積度の高い一次再結晶組織が得られ高いB8を示すものの、更に高温で焼鈍すると、{110}<001>方位から大きくずれた結晶粒が周囲の一次再結晶粒を蚕食して粗大粒となり、B8が著しく低下することが良く知られている((1)C.G.Dunn:Acta Met., 1(1953), 163、(2)荒井他、日本金属学会会報31,5(1992),429)
そこで、この現象を詳細に調査するため、板厚0.30mmでB8/Bs=1.92の一方向性珪素鋼二次再結晶板を板厚0.085mmまで再圧延し、100%N2非酸化雰囲気中で連続焼鈍相当の昇温速度(20℃/s)で加熱し1000〜1200℃、2分間の熱処理を施した後、表面マクロ組織と磁束密度B8を評価した。なお、マクロ組織は塩酸を含む溶液で鋼板表面を酸洗した後、写真撮影することにより観察し、磁束密度B8は30mm幅×100mm長さの試料を単板磁化測定器にセットし800A/mまで磁化したときの磁束密度として測定した。
得られた結果を図1に示す。なお、本発明において、結晶の最大幅が板厚の5倍以上の粗大粒は、通常の一次再結晶粒とは異なる異常粒とみなし、結晶全板面に対する上記粗大粒の面積比を粗大粒比率と定義した図1より、熱処理温度が1050℃以下の場合では粗大粒がほとんど認められずB8は1.80T前後の値を示すのに対し、熱処理温度が1100℃以上の場合では板厚の5倍から数十倍の寸法の粗大粒が多数発生し、B8は1.55T程度まで大幅に低下しているのがわかる。
このような傾向は100%H2中、及びN2+H2混合雰囲気で熱処理を行った場合でも同様に認められた。
次に、上記粗大粒について、EBSP及びX線極点図で方位解析した。その結果、上記粗大粒は{110}<001>から大きくずれた方位であることがわかった。そして、本実験は連続焼鈍を前提とした短時間の熱処理であるにもかかわらず、上記引用文献に記載されているものと同じ現象が生じていると考えられる。
The inventors have made various studies in order to solve the above problems. Hereinafter, the contents of the examination that triggered the invention will be described.
In general, when a {110} <001> highly-integrated unidirectional silicon steel secondary recrystallized plate is re-rolled and heat treated, {110} <001> highly-integrated primary Although the crystal structure is obtained and shows high B8, when annealed at higher temperatures, the crystal grains greatly deviated from the {110} <001> orientation eroded the surrounding primary recrystallized grains to become coarse grains, and B8 significantly decreased. Is well known ((1) CGDunn: Acta Met., 1 (1953), 163, (2) Arai et al., The Metallurgical Society of Japan 31, 5 (1992), 429)
Therefore, in order to investigate this phenomenon in detail, a unidirectional silicon steel secondary recrystallized plate with a plate thickness of 0.30 mm and B8 / Bs = 1.92 was rerolled to a plate thickness of 0.085 mm in a 100% N 2 non-oxidizing atmosphere. After heating at 1000 ° C. to 1200 ° C. for 2 minutes at a heating rate equivalent to continuous annealing (20 ° C./s), the surface macrostructure and magnetic flux density B8 were evaluated. The macro structure is observed by picking up the steel plate surface with a solution containing hydrochloric acid and then taking a photograph. The magnetic flux density B8 is set to a sample with a 30 mm width x 100 mm length on a single plate magnetometer and is 800 A / m. It was measured as the magnetic flux density when magnetized up to.
The obtained results are shown in FIG. In the present invention, coarse grains having a maximum crystal width of 5 or more times the plate thickness are regarded as abnormal grains different from the normal primary recrystallized grains, and the area ratio of the coarse grains to the entire crystal plate surface is defined as coarse grains. From Fig. 1 defined as the ratio, when the heat treatment temperature is 1050 ° C or less, coarse particles are hardly observed, and B8 shows a value of around 1.80T, whereas when the heat treatment temperature is 1100 ° C or more, the plate thickness is 5 It can be seen that a large number of coarse grains having a size of double to several tens of times are generated, and B8 is greatly reduced to about 1.55T.
Such a tendency was similarly observed when heat treatment was performed in 100% H 2 and in a N 2 + H 2 mixed atmosphere.
Next, orientation analysis was performed on the coarse particles by EBSP and X-ray pole figures. As a result, it was found that the coarse grains had an orientation greatly deviated from {110} <001>. And although this experiment is a heat treatment for a short time on the premise of continuous annealing, it is considered that the same phenomenon as that described in the above cited reference occurs.

粗大粒が多く存在すると、浸珪処理を施してSiを6.5%含有する珪素鋼板とした場合、製品加工性の劣化が懸念される。特許文献6において、例えば、板厚0.10mmでは加工性劣化を避けるため平均粒径は253μm未満と規定されている。ただし、これは、比較的均一な粒度分布を有する無方向性の一次再結晶組織を前提としたものであって、板厚の5倍〜数十倍の粗大粒が混在する組織は対象外である。実際、現在市販されている板厚0.10mmの6.5%珪素鋼板では、結晶粒のほとんどが粒径100〜200μmの範囲にあり、板厚の5倍を超えるような粗大粒はほとんど認められない。   When there are many coarse grains, there is a concern about deterioration of product processability when a silicon steel sheet containing 6.5% Si is subjected to a siliconization treatment. In Patent Document 6, for example, when the plate thickness is 0.10 mm, the average particle size is defined to be less than 253 μm in order to avoid deterioration of workability. However, this is premised on a non-directional primary recrystallized structure having a relatively uniform particle size distribution, and a structure in which coarse grains of 5 to tens of times the plate thickness are mixed is excluded. is there. In fact, in a commercially available 6.5% silicon steel sheet having a thickness of 0.10 mm, most of the crystal grains are in the range of 100 to 200 μm, and there are almost no coarse grains exceeding 5 times the thickness.

次に、上記にて1050℃と1100℃で各々熱処理した試料を、ラボ装置を用いて1050℃で約30分間の浸珪・拡散処理を行いSi量を6.5%とした後、径の異なる丸棒に巻き付けてクラックの有無を観察した。また、浸珪後の試料についても上記と同様の方法にて表面マクロ組織を観察して粗大粒比率を求めた。得られた結果を表1に示す。   Next, the samples heat-treated at 1050 ° C. and 1100 ° C. as described above were subjected to silicification / diffusion treatment at 1050 ° C. for about 30 minutes using a lab apparatus to reduce the Si amount to 6.5%, It was wound around a rod and observed for cracks. In addition, the surface macrostructure was also observed for the sample after siliconization in the same manner as described above to obtain the coarse particle ratio. The obtained results are shown in Table 1.

Figure 2010132977
Figure 2010132977

表1より、粗大粒比率10%程度の試料(1050℃で熱処理した試料)ではクラックの発生なしに丸棒径4mmφまで巻き付けられるのに対し、粗大粒比率40%程度の試料(1100℃で熱処理した試料)では丸棒径10mmφでクラックが認められ丸棒径8mmφでは巻き付ける前に破断してしまった。なお浸珪処理前後で組織が大きく変わることはなかった。この結果から、粗大粒比率を小さくすることが高珪素鋼板の加工性劣化防止に有効であることがわかる。   From Table 1, samples with a coarse grain ratio of about 10% (samples heat-treated at 1050 ° C) can be wound up to a round bar diameter of 4mmφ without cracks, whereas samples with a coarse grain ratio of about 40% (heat treated at 1100 ° C) In the sample), cracks were observed at a round bar diameter of 10 mmφ, and when the round bar diameter was 8 mmφ, the sample broke before winding. Note that the structure did not change significantly before and after the siliconization treatment. From this result, it can be seen that reducing the coarse grain ratio is effective in preventing the deterioration of workability of the high silicon steel sheet.

一方で、図1から明らかなように、粗大粒増加とともに{110}<001>方位集積度も低下する。1100℃以上で熱処理すると無方向性珪素鋼レベルまでB8/Bsが下がるため、これでは浸珪用素材として一方向性珪素鋼二次再結晶板の再圧延板を用いる意味がなくなってしまうことになる。   On the other hand, as apparent from FIG. 1, the {110} <001> orientation accumulation degree decreases as the coarse grains increase. Since heat treatment at 1100 ° C or higher reduces B8 / Bs to the level of non-oriented silicon steel, there is no point in using a re-rolled plate of a unidirectional silicon steel secondary recrystallized plate as a material for siliconization. Become.

以上から、一方向性珪素鋼二次再結晶板を再圧延して得られる極薄珪素鋼板は、現状のままでは1100℃以上の温度で1〜30分間程度の熱処理を行なう連続浸珪ラインの素材としては不向きであることがわかる。そして、{110}<001>方位集積度が高い極薄の高珪素鋼板を連続浸珪ラインで製造するためには、1100℃以上で熱処理しても粗大粒が少なく、且つ高いB8/Bsを示す、浸珪処理に適した極薄珪素鋼板の開発が必須となる。
そこで、本発明では、高周波電源の小型化・低損失化に効果のある高珪素鋼板の浸珪用素材として、例えば1100℃で1分〜30分程度の熱処理をしても加工性を劣化させる粗大粒が少なく、かつB8/Bsの高い、連続浸珪プロセスに適した極薄珪素鋼板を得ることに主眼を置き検討を進めた。
From the above, the ultra-thin silicon steel sheet obtained by re-rolling the unidirectional silicon steel secondary recrystallized sheet is a continuous siliconized line that is heat-treated for about 1 to 30 minutes at a temperature of 1100 ° C or higher as it is. It turns out that it is unsuitable as a material. And, in order to produce ultrathin high silicon steel sheet with high {110} <001> orientation integration degree by continuous siliconization line, there are few coarse grains and high B8 / Bs even when heat-treated at 1100 ° C or higher. It is essential to develop an ultrathin silicon steel sheet suitable for siliconization treatment.
Therefore, in the present invention, as a material for siliconization of a high silicon steel plate that is effective in reducing the size and loss of a high-frequency power source, workability deteriorates even if heat treatment is performed at 1100 ° C. for about 1 to 30 minutes. We focused on obtaining ultra-thin silicon steel sheets with few coarse grains and high B8 / Bs suitable for continuous siliconization process.

今までの結果から、一般に{110}<001>集積度の高い一方向性珪素鋼二次再結晶板ほど、再圧延後の高温焼鈍で、方位の異なる粒が二次再結晶して粗大粒を形成しやすい傾向にあることがわかった。そして、逆に{110}<001>集積度の低い一方向性珪素鋼二次再結晶板を再圧延すれば、高温焼鈍しても粗大粒が発生し難くなるのではないかと考えられる。
そこで、素材からB8の異なるサンプルを切り出し、これらを圧下率71%で再圧延して仕上げ焼鈍した後の粗大粒比率及びB8を調査した。得られた結果を表2に示す。なお、粗大粒比率及びB8は上記と同様の方法で測定した。
From the results so far, generally, the higher the degree of integration of {110} <001> unidirectional silicon steel secondary recrystallized plates, the higher the annealing after rerolling, the grains with different orientations undergo secondary recrystallization and become coarse grains. It was found that it tends to form. On the other hand, if the unidirectional silicon steel secondary recrystallized plate with a low {110} <001> integration degree is re-rolled, it is thought that coarse grains are less likely to be generated even when high-temperature annealing is performed.
Therefore, samples with different B8 were cut out from the raw material, and these were re-rolled at a reduction rate of 71% and subjected to finish annealing, and the coarse grain ratio and B8 were investigated. The results obtained are shown in Table 2. The coarse particle ratio and B8 were measured by the same method as described above.

Figure 2010132977
Figure 2010132977

表2より、B8/Bs=0.79〜0.84の部分を再圧延した場合、予想通り1100〜1200℃で焼鈍しても粗大粒は認められなかった。しかしながらB8は1.50〜1.66T(B8/Bsで0.73〜0.83)と全体的に低い値に留まった。一方、同じ素材でB8/Bs=0.91の部分を再圧延したものは、従来通り1050℃までは粗大粒がほとんど無く高いB8を示すものの、1100℃以上では粗大粒が多数発生しB8が大幅に低下した。   From Table 2, when the part of B8 / Bs = 0.79-0.84 was re-rolled, coarse grains were not recognized even when annealed at 1100-1200 ° C. as expected. However, B8 stayed at a low overall value of 1.50 to 1.66 T (0.73 to 0.83 for B8 / Bs). On the other hand, the re-rolled part of B8 / Bs = 0.91 with the same material shows high B8 with almost no coarse particles up to 1050 ° C as before, but a lot of coarse particles are generated at 1100 ° C or higher and B8 is greatly increased. Declined.

以上から、{110}<001>集積度の低い板を再圧延した場合は、仕上焼鈍後にB8/Bs≧0.85を達成することはできず、また、{110}<001>集積度の高い板を再圧延した場合は、1100℃以上の高温焼鈍時に粗大粒が発生しB8も低下してしまうことになる。   From the above, when rerolling a plate with a low {110} <001> integration degree, B8 / Bs ≧ 0.85 cannot be achieved after finish annealing, and a plate with a high {110} <001> integration degree In the case of re-rolling, coarse grains are generated during high-temperature annealing at 1100 ° C. or higher, and B8 also decreases.

そこで、発明者らは鋭意検討したところ、再圧延に供する鋼板の粗度が焼鈍後の粗大粒に影響を及ぼしていることを突き止めた。その端緒となる実験について、詳細を以下に示す。
素材として板厚0.29mm、B8/Bs=0.93の一方向性珪素鋼二次再結晶板を用いた。被膜を酸洗により除去した状態で表面粗度を測定したところ、その算術平均Raは0.37μmであった。これを種々のエメリー紙で研磨して表面粗度の異なる試料を作製した。次いで圧下率71%で冷延し、昇温速度18℃/secで加熱し1150℃で2分間焼鈍した後、上記と同様の方法にて表面のマクロ組織とB8を評価した。
その結果、再圧延前の表面粗度の算術平均Raが0.6未満の試料では粗大粒が顕著に現れ、B8も低い値であるのに対し、算術平均Raが0.6μm以上の試料では粗大粒比率は小さく、B8も1.78Tと高い値を示すことが判明した。ただし、Raが3.7μmのものは、粗大粒が殆ど認められないにもかかわらず、焼鈍後のB8が1.67Tと低かった。なお再圧延後の表面粗度は、再圧延前のRaにかかわらず0.2〜0.3μmと同程度であり、明確な差は認められなかった。この実験結果から、再圧延前の表面粗度が再圧延・高温仕上焼鈍後の再結晶挙動に大きく影響していると考えられる。
Therefore, the inventors have intensively studied and found that the roughness of the steel sheet subjected to re-rolling affects the coarse grains after annealing. The details of the experiments that lead the way are shown below.
A unidirectional silicon steel secondary recrystallized plate having a thickness of 0.29 mm and B8 / Bs = 0.93 was used as a material. When the surface roughness was measured with the coating removed by pickling, the arithmetic average Ra was 0.37 μm. This was polished with various emery papers to produce samples with different surface roughness. Next, it was cold-rolled at a reduction rate of 71%, heated at a heating rate of 18 ° C./sec and annealed at 1150 ° C. for 2 minutes, and then the surface macrostructure and B8 were evaluated by the same method as described above.
As a result, in the sample with an arithmetic average Ra of surface roughness before re-rolling of less than 0.6, coarse particles appear prominently, and B8 is also a low value, whereas in samples with an arithmetic average Ra of 0.6 μm or more, the coarse particle ratio It was found that B8 also showed a high value of 1.78T. However, when Ra was 3.7 μm, B8 after annealing was as low as 1.67 T, though almost no coarse grains were observed. The surface roughness after re-rolling was about 0.2 to 0.3 μm regardless of Ra before re-rolling, and no clear difference was observed. From this experimental result, it is considered that the surface roughness before rerolling has a great influence on the recrystallization behavior after rerolling and high temperature finish annealing.

次に、浸珪処理して6.5%珪素鋼板とした場合の組織と加工性の関係を調査するため、上記の表面粗度の異なる試料に対して、再圧延して板厚0.080mmとし、昇温速度16℃/sで1150℃まで加熱し、SiCl4ガスを用いて8分間の浸珪・拡散処理を行うことで6.5%Si鋼板を作製した。またSiCl4ガスを用いずにN2中で同じ熱履歴で処理した試料も作製した。上記と同様の方法にてこれらの試料の組織を観察し比較したところ、差は殆ど認められなかった。
さらに、浸珪処理した試料に対し小径の丸棒に巻き付けて曲げ加工性を評価した。得られた結果を表3に示す。
Next, in order to investigate the relationship between the structure and workability of the 6.5% silicon steel plate by siliconizing, the above-mentioned samples with different surface roughnesses were re-rolled to a plate thickness of 0.080 mm. A 6.5% Si steel sheet was fabricated by heating to 1150 ° C at a temperature rate of 16 ° C / s and performing a silicon-soaking / diffusion treatment for 8 minutes using SiCl 4 gas. A sample treated with the same thermal history in N 2 without using SiCl 4 gas was also prepared. When the structures of these samples were observed and compared in the same manner as described above, almost no difference was observed.
Furthermore, the bendability was evaluated by winding the siliconized sample around a small-diameter round bar. The results obtained are shown in Table 3.

Figure 2010132977
Figure 2010132977

表3より、粗大粒比率が15%以下であれば丸棒径が4mmφの丸棒に巻き付けられるのに対し、粗大粒比率が15%を超えると巻き付ける途中で割れが多発することがわかった。丸棒径が4mmφの丸棒に巻き付けた場合は、板が塑性変形する領域であるが、それより大きな径で破断するのは、製品加工性上好ましくない。したがって、浸珪用素材としては粗大粒比率が15%以下とすべきである。
また、図2に、再圧延前の表面粗度Raと0.080mmに再圧延後1150℃で2分間焼鈍したときの粗大粒比率およびB8/Bsとの関係をまとめる。
From Table 3, it was found that when the coarse particle ratio was 15% or less, it was wound around a round bar having a diameter of 4 mmφ, whereas when the coarse particle ratio exceeded 15%, many cracks occurred during winding. When the round bar is wound around a round bar having a diameter of 4 mm, the plate is an area where the plate is plastically deformed, but it is not preferable in terms of product workability to break at a larger diameter. Therefore, the coarse grain ratio should be 15% or less for the siliconized material.
FIG. 2 summarizes the relationship between the surface roughness Ra before rerolling and the coarse grain ratio and B8 / Bs when annealed at 1150 ° C. for 2 minutes after rerolling to 0.080 mm.

以上から、一方向性珪素鋼二次再結晶板を再圧延して得られる板の再結晶挙動に及ぼす再圧延前の表面粗度の影響について、詳細は明らかではないが、観察結果から次のように考えられる。
再圧延直後の断面組織をエッチングして光学顕微鏡で観察すると、表面粗度の大きな試料では、殆ど全ての結晶粒内において、表面の凹凸を基点にして発生したと思われる双晶の跡が比較的均一に認められた。一方、表面粗度の小さな試料では、全体的に双晶跡が少なく、双晶が全く認められない結晶粒も多く存在していた。通常、二次再結晶板を圧延した後に焼鈍すると、もとの二次粒内からは{110}<001>方位に極めて近い方位の粒が発生して一次再結晶組織を形成する。これらの結晶粒の境界は小傾角粒界で形成され、焼鈍時に粒成長しにくい反面、ある一定以上の温度に達すると、もとの二次粒界付近から発生したごく少数の方位の異なる結晶粒に一挙に蚕食されて二次再結晶組織を形成する。一方、もとの二次粒内に双晶が多く発生した試料では、この双晶部分から周囲と異なる方位の結晶粒が発生しやすい。このような結晶粒が存在していると、高温で焼鈍した際、異常粒成長を抑えることができる。双晶の量が多すぎると、一次再結晶したとき全体の{110}<001>集積度を低下させるが、双晶が適度に存在していれば、一次再結晶組織の{110}<001>集積度をそれほど低下させることなく、また高温焼鈍したときの二次再結晶発生も抑制される。今回、圧延前の表面粗度を規定することで、圧延の際に適度の双晶が形成され、焼鈍時に{110}<001>集積度をそれほど低下させることなく高温焼鈍しても二次再結晶しにくい素材を得ることができたと考えられる。
From the above, although the details of the effect of surface roughness before rerolling on the recrystallization behavior of the plate obtained by rerolling the unidirectional silicon steel secondary recrystallized plate are not clear, the observation results show that I think so.
When the cross-sectional structure immediately after re-rolling is etched and observed with an optical microscope, in the sample with a large surface roughness, the traces of twins that appear to have originated from surface irregularities are compared in almost all crystal grains. Evenly. On the other hand, in the sample having a small surface roughness, there were few twinning traces as a whole, and there were many crystal grains in which no twinning was observed. Normally, when a secondary recrystallized sheet is rolled and then annealed, grains with an orientation very close to the {110} <001> orientation are generated from the original secondary grains to form a primary recrystallized structure. These crystal grain boundaries are formed at low-angle grain boundaries, and it is difficult for grains to grow during annealing.On the other hand, when a certain temperature is reached, only a few crystals with different orientations are generated near the original secondary grain boundary. A secondary recrystallized structure is formed by being engulfed by the grains. On the other hand, in a sample in which many twins are generated in the original secondary grains, crystal grains having different orientations from the surroundings are likely to be generated from the twins. When such crystal grains are present, abnormal grain growth can be suppressed when annealing is performed at a high temperature. If the amount of twins is too large, the total {110} <001> accumulation will be reduced when primary recrystallization occurs. However, if twins are present appropriately, {110} <001 > Suppression of secondary recrystallization during high temperature annealing is suppressed without significantly reducing the degree of integration. By defining the surface roughness before rolling this time, moderate twins are formed during rolling, and secondary annealing can be performed even if high temperature annealing is performed without significantly reducing {110} <001> accumulation during annealing. It is thought that the material which is hard to crystallize could be obtained.

以上のように、本発明は、上記実験結果および知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%でSi:2〜4%を含む一方向性珪素鋼二次再結晶板を再圧延して得られる板厚0.03〜0.10mmの極薄珪素鋼板であって、窒素雰囲気中、1100℃、1分の条件で熱処理を施した後の、結晶粒の最大幅が板厚の5倍を超える粗大粒の比率が15%以下であり、かつ、B8/Bsが0.85以上である極薄珪素鋼板。
ただし、粗大粒の比率は結晶全板面に対する粗大粒の面積比であり、B8/Bsは圧延方向に磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比である。
[2]質量%で、Si:2〜4%を含み、B8/Bsが0.9以上である一方向性珪素鋼二次再結晶板に機械的な研磨または化学的な腐食を施し、前記一方向性珪素鋼二次再結晶板表面の粗度の算術平均Raを0.6μm以上3.5μm未満とし、次いで、圧下率60〜90%で板厚0.03〜0.10mmまで圧延することを特徴とする極薄珪素鋼板の製造方法。
ただし、B8/Bsは、圧延方向に磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比である。
[3]質量%で、Si:2〜4%を含み、B8/Bsが0.9以上であり、フォルステライト被膜を除去した又はフォルステライト被膜を有しない一方向性珪素鋼二次再結晶板に、湿潤雰囲気で焼鈍を行い、前記一方向性珪素鋼二次再結晶板表面に厚さ1μm以上の内部酸化層を形成させ、次いで、化学的な腐食により内部酸化層を除去し、表面粗度の算術平均Raを0.6μm以上3.5μm未満とし、次いで、圧下率60〜90%ので板厚0.03〜0.10mmまで圧延することを特徴とする極薄珪素鋼板の製造方法。
ただし、B8/Bsは、圧延方向に磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比である。
[4]前記[2]または[3]において、前記圧延後、さらに、室温から1100℃までの温度範囲を昇温速度15℃/s以上で加熱することを特徴とする極薄珪素鋼板の製造方法。
As mentioned above, this invention was made | formed based on the said experimental result and knowledge, and the summary is as follows.
[1] An ultrathin silicon steel plate having a thickness of 0.03 to 0.10 mm obtained by re-rolling a unidirectional silicon steel secondary recrystallized plate containing Si: 2 to 4% by mass, and in a nitrogen atmosphere, After heat treatment at 1100 ° C for 1 minute, the ratio of coarse grains whose maximum grain width exceeds 5 times the plate thickness is 15% or less and B8 / Bs is 0.85 or more Thin silicon steel sheet.
However, the ratio of the coarse grains is the area ratio of the coarse grains to the entire crystal plate surface, and B8 / Bs is the ratio of the magnetic flux density B8 and the saturation magnetic flux density Bs when excited with a magnetizing force of 800 A / m in the rolling direction.
[2] A unidirectional silicon steel secondary recrystallized plate containing Si: 2 to 4% by mass and B8 / Bs of 0.9 or more is subjected to mechanical polishing or chemical corrosion, and the unidirectional The thin film is characterized in that the arithmetic average Ra of the roughness of the surface of the secondary recrystallized steel plate is 0.6 μm or more and less than 3.5 μm, and then rolled to a plate thickness of 0.03 to 0.10 mm at a rolling reduction of 60 to 90%. A method for producing a silicon steel sheet.
However, B8 / Bs is the ratio of the magnetic flux density B8 and the saturation magnetic flux density Bs when excited in the rolling direction with a magnetizing force of 800 A / m.
[3] In a unidirectional silicon steel secondary recrystallized plate containing, by mass%, Si: 2 to 4%, B8 / Bs of 0.9 or more, with the forsterite film removed or without the forsterite film, Annealing is performed in a humid atmosphere, and an internal oxide layer having a thickness of 1 μm or more is formed on the surface of the unidirectional silicon steel secondary recrystallized plate, and then the internal oxide layer is removed by chemical corrosion. A method for producing an ultrathin silicon steel sheet, characterized in that the arithmetic average Ra is 0.6 μm or more and less than 3.5 μm, and then rolled to a sheet thickness of 0.03 to 0.10 mm at a rolling reduction of 60 to 90%.
However, B8 / Bs is the ratio of the magnetic flux density B8 and the saturation magnetic flux density Bs when excited in the rolling direction with a magnetizing force of 800 A / m.
[4] Production of ultra-thin silicon steel sheet according to [2] or [3], wherein after the rolling, the temperature range from room temperature to 1100 ° C. is further heated at a rate of temperature increase of 15 ° C./s or more. Method.

なお、本明細書において、鋼の成分を示す%、ppmは、すべて質量%、質量ppmである。   In this specification, “%” and “ppm” indicating the components of steel are mass% and mass ppm, respectively.

本発明によれば、本発明により、1100℃以上で処理が行われる連続浸珪プロセスに好適な極薄珪素鋼板が得られる。そして、本発明の極薄珪素鋼板を浸珪処理することによって、従来より磁束密度が高く高周波低鉄損の低い珪素鋼板を提供することができる。   According to the present invention, an ultrathin silicon steel sheet suitable for a continuous siliconization process in which the treatment is performed at 1100 ° C. or higher can be obtained according to the present invention. Then, by subjecting the ultrathin silicon steel sheet of the present invention to a siliconization process, it is possible to provide a silicon steel sheet having a higher magnetic flux density and lower high frequency and low iron loss than in the past.

以下に本発明を詳細に説明する。
本発明の対象は、Si::2〜4%を含む一方向性珪素鋼二次再結晶板を再圧延して得られる板厚0.03〜0.10mmの極薄珪素鋼板とする。また、窒素雰囲気中、1100℃、1分の条件で熱処理を施した後の、結晶粒の最大幅が板厚の5倍を超える粗大粒の比率は15%以下であり、B8/Bsは0.85以上とする。ただし、粗大粒の比率は結晶全板面に対する粗大粒の面積比であり、B8/Bsは、圧延方向に磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比である(以下、この比を略してB8/Bsと称す)。これらは、本発明において最も重要な要件である。
Si:2〜4%
素材のSi量が少ないと浸珪処理の際に原料のSiCl4ガス使用量が増加すること、また浸珪処理が長時間化することでコストアップとなることから下限を2%とする。また、Si量が増加すると圧延困難となるためSi量の上限は4%とする。
板厚0.03〜0.10mm
板厚0.03mm未満では製造コストアップを招き、また鉄心組み立ての工数が増えることから望ましくない。一方、0.10mmを超える板厚では高周波鉄損が増大する。
連続ラインでの浸珪処理では、1100℃以上で1分以上熱処理が必要とされる。したがって、この条件で熱処理した後の粗大粒の比率が15%以下であれば浸珪処理後の曲げ加工性が確保できる。また、板厚0.1mm以下であれば、1200℃以下、30分以内の浸珪・拡散処理で十分特性の良い6.5%珪素鋼板を製造できることから、好ましくは、1200℃で30分熱処理した後の粗大粒の比率を15%以下とする。
The present invention is described in detail below.
The object of the present invention is an ultrathin silicon steel plate having a thickness of 0.03 to 0.10 mm obtained by rerolling a unidirectional silicon steel secondary recrystallized plate containing Si :: 2 to 4%. In addition, after heat treatment at 1100 ° C. for 1 minute in a nitrogen atmosphere, the ratio of coarse grains where the maximum width of crystal grains exceeds 5 times the plate thickness is 15% or less, and B8 / Bs is 0.85 That's it. However, the ratio of the coarse grains is the area ratio of the coarse grains to the entire crystal plate surface, and B8 / Bs is the ratio of the magnetic flux density B8 and the saturation magnetic flux density Bs when excited with a magnetizing force of 800 A / m in the rolling direction. (Hereafter, this ratio is abbreviated as B8 / Bs). These are the most important requirements in the present invention.
Si: 2-4%
If the amount of Si in the material is small, the amount of raw material SiCl 4 gas used will increase during the silicidation process, and the cost will increase due to the prolonged silicidation process, so the lower limit is set to 2%. In addition, if the Si content increases, rolling becomes difficult, so the upper limit of the Si content is 4%.
Thickness 0.03-0.10mm
If the plate thickness is less than 0.03 mm, the manufacturing cost increases and the man-hours for assembling the iron core increase, which is not desirable. On the other hand, when the plate thickness exceeds 0.10 mm, the high-frequency iron loss increases.
In the siliconization treatment in a continuous line, heat treatment is required at 1100 ° C or higher for 1 minute or longer. Therefore, if the ratio of coarse particles after heat treatment under these conditions is 15% or less, the bending workability after the siliconization treatment can be ensured. In addition, if the plate thickness is 0.1 mm or less, it is possible to produce a 6.5% silicon steel sheet with sufficiently good characteristics by immersion or diffusion treatment within 1200 minutes at 1200 ° C. or less, preferably after heat treatment at 1200 ° C. for 30 minutes. The ratio of coarse particles is 15% or less.

B8/Bsが0.85以上
冷延板を一次再結晶させて得られる3%Si無方向性電磁鋼板のB8は1.45T前後であり、現在工業生産されている6.5%Si鋼板もこのような素材を用いている。ところでリアクトル等の鉄心寸法は、このB8を指標として設計される。鉄心を小型化するためには材料のB8を高めることが求められている。鉄心小型化は、リアクトル全体としてみると、巻線の量が減り銅損も改善されること、ケースの材料費も抑えられること等の副次的改善効果も大きいため、ユーザーニーズも強い。ただし数%程度のB8の向上では設計変更の費用に吸収されてしまうため、実質的な改善効果を得るには2割以上のB8の向上が必要とされる。
3%Si素材のB8としては1.73T以上に相当する。そこで本発明では浸珪処理に適した素材のB8/Bsとして0.85以上とした。B8ではなく飽和磁束密度Bsとの比B8/Bsを用いたのは、これが素材Si量に依存しないためである。
B8 of 3% Si non-oriented electrical steel sheet obtained by primary recrystallization of cold-rolled sheet with B8 / Bs of 0.85 or more is around 1.45T, and the 6.5% Si steel sheet currently industrially produced is also made of this material. Used. By the way, the core dimensions of the reactor and the like are designed using this B8 as an index. In order to reduce the size of the iron core, it is required to increase the B8 of the material. The core downsizing, as a whole reactor, has strong user needs because it has many secondary improvement effects such as a reduced amount of windings and improved copper loss and reduced material costs for the case. However, the improvement of B8 of about several percent is absorbed in the cost of design change, so to obtain a substantial improvement effect, it is necessary to improve B8 by 20% or more.
3% Si material B8 is equivalent to 1.73T or more. Therefore, in the present invention, B8 / Bs of the material suitable for the siliconization treatment is set to 0.85 or more. The reason why the ratio B8 / Bs with the saturation magnetic flux density Bs is used instead of B8 is that this does not depend on the amount of material Si.

以上のような極薄珪素鋼板とすることで、一方向性珪素鋼二次再結晶板を再圧延した作製した従来の極薄珪素鋼板は、1100℃以上で粗大粒が発生するとともにB8も低下するため、浸珪用素材として不適であるのに対し、本発明では1100℃以上で焼鈍しても粗大粒比率が少なくB8低下もほとんど無い、優れた浸珪用素材を提供することになる。   By using the ultrathin silicon steel sheet as described above, the conventional ultrathin silicon steel sheet produced by re-rolling the unidirectional silicon steel secondary recrystallized sheet generates coarse grains at 1100 ° C or higher and decreases B8. Therefore, while being unsuitable as a material for siliconization, the present invention provides an excellent material for siliconization in which even if annealing is performed at 1100 ° C. or higher, the ratio of coarse particles is small and there is almost no decrease in B8.

次に、本発明の極薄珪素鋼板の製造方法について説明する。
質量%で、Si:2〜4%を含み、B8/Bsが0.9以上である一方向性珪素鋼二次再結晶板に機械的な研磨または化学的な腐食を施し、前記一方向性珪素鋼二次再結晶板表面の粗度の算術平均Raを0.6μm以上3.5μm未満とし、次いで、圧下率60〜90%で板厚0.03〜0.10mmまで圧延する。または、質量%で、Si:2〜4%を含み、B8/Bsが0.9以上である一方向性珪素鋼二次再結晶板に湿潤雰囲気で焼鈍を行い、前記一方向性珪素鋼二次再結晶板表面に厚さ1μm以上の内部酸化層を形成させ、次いで、化学的な腐食により内部酸化層を除去し、表面粗度の算術平均Raを0.6μm以上3.5μm未満とし、次いで、圧下率60〜90%で板厚0.03〜0.10mmまで圧延する。そして、好ましくは、前記圧延後、さらに、室温から1100℃までの温度範囲を昇温速度15℃/s以上で加熱処理する。
Next, the manufacturing method of the ultra-thin silicon steel plate of this invention is demonstrated.
A unidirectional silicon steel secondary recrystallized plate containing, by mass%, Si: 2 to 4% and B8 / Bs of 0.9 or more is subjected to mechanical polishing or chemical corrosion, and the unidirectional silicon steel The arithmetic average Ra of the roughness of the secondary recrystallized sheet surface is set to 0.6 μm or more and less than 3.5 μm, and then rolled to a sheet thickness of 0.03 to 0.10 mm at a rolling reduction of 60 to 90%. Alternatively, the unidirectional silicon steel secondary recrystallized plate containing, by mass%, Si: 2 to 4% and B8 / Bs of 0.9 or more is annealed in a wet atmosphere, and the unidirectional silicon steel secondary recrystallization is performed. An internal oxide layer with a thickness of 1 μm or more is formed on the crystal plate surface, then the internal oxide layer is removed by chemical corrosion, the arithmetic average Ra of the surface roughness is 0.6 μm or more and less than 3.5 μm, and then the reduction rate Roll to 60-90% to plate thickness 0.03-0.10mm. Preferably, after the rolling, a heat treatment is further performed at a temperature increase rate of 15 ° C./s or more in a temperature range from room temperature to 1100 ° C.

再圧延前の表面粗度の算術平均Ra(以下、Raと称す)は本発明で最も重要なポイントである。
通常、二次再結晶板の被膜を酸洗除去したときのRaは0.2〜0.4μmである。二次再結晶板の表面粗度を高めると、圧延・焼鈍したときに得られる一次再結晶組織の{110}<001>方位集積度が低下すると考えられるため、あえてRaを大きくしてから圧延するという発想はこれまで無かった。しかしながら本発明においては再圧延前のRaを0.6μm以上3.5μm以下とする。圧延前のRaを0.6μm以上3.5μm以下とすることで、再圧延して1100℃以上で焼鈍したときの粗大粒発生を抑え、且つB8を比較的高い値に維持できる。
表面粗度の調整は、機械的研磨を利用しても化学的腐食を利用しても良く、あるいはフォルステライト無しまたはいったん被膜除去した二次再結晶板表面に1μm以上の内部酸化層を形成させた後、化学的に腐食しても良い。
The arithmetic average Ra (hereinafter referred to as Ra) of the surface roughness before re-rolling is the most important point in the present invention.
Usually, Ra is 0.2 to 0.4 μm when the film of the secondary recrystallization plate is removed by pickling. When the surface roughness of the secondary recrystallized plate is increased, the {110} <001> orientation accumulation degree of the primary recrystallized structure obtained when rolling and annealing is considered to decrease. There has never been an idea to do. However, in the present invention, Ra before re-rolling is set to 0.6 μm or more and 3.5 μm or less. By setting Ra before rolling to 0.6 μm or more and 3.5 μm or less, generation of coarse grains when re-rolling and annealing at 1100 ° C. or more can be suppressed, and B8 can be maintained at a relatively high value.
To adjust the surface roughness, mechanical polishing or chemical corrosion may be used, or an internal oxide layer of 1 μm or more is formed on the surface of the secondary recrystallized plate without forsterite or once the film is removed. After that, it may be chemically corroded.

圧下率60〜90%ので板厚0.03〜0.10mmまで圧延
再圧延前に表面粗度の算術平均Raを0.6μm以上3.5μm未満とした後、再圧延を行う。圧下率が60%未満では焼鈍したときの一次再結晶組織の{110}<001>方位への集積が低く、十分なB8が得られない。一方、90%超えでも、焼鈍後の一次再結晶組織の{110}<001>方位への集積が低下し、B8が低下してしまう。また、板厚は上述した理由により、0.03〜0.10mmとする。
Since the rolling reduction is 60 to 90%, the arithmetic average Ra of the surface roughness is set to 0.6 μm or more and less than 3.5 μm before rolling and rolling to a sheet thickness of 0.03 to 0.10 mm, and then rolling is performed again. When the rolling reduction is less than 60%, the primary recrystallized structure in annealing is low in the {110} <001> orientation, and sufficient B8 cannot be obtained. On the other hand, even if it exceeds 90%, the accumulation of the primary recrystallized structure after annealing in the {110} <001> orientation decreases, and B8 decreases. The plate thickness is set to 0.03 to 0.10 mm for the reason described above.

室温から1100℃までの温度範囲を昇温速度15℃/s以上で加熱する(好適条件)。
再圧延板を焼鈍する際、昇温速度の大きい方が高温時の粗大粒比率が小さくなる傾向が認められた。具体的には昇温速度15℃/s以上とするのが望ましい。
A temperature range from room temperature to 1100 ° C is heated at a rate of temperature increase of 15 ° C / s (preferred conditions).
When the re-rolled sheet was annealed, it was recognized that the larger the rate of temperature rise, the smaller the coarse grain ratio at high temperatures. Specifically, it is desirable that the heating rate is 15 ° C./s or more.

なお、再圧延した極薄珪素鋼板は連続焼鈍ラインに通板して再結晶させた後、冷却せずに続けて炉内にSi系反応ガスを吹き込み浸珪処理を行っても良い。
浸珪処理は常法に従って行うことができる。SiCl4ガスの濃度は特に限定しないが5%〜50%程度が望ましい。低すぎると反応性に乏しく本発明の効果が得られにくい。高すぎると余剰のガスを使用することになり経済性が劣る。
The re-rolled ultrathin silicon steel plate may be recrystallized by passing through a continuous annealing line, and then may be subjected to a siliconizing process by blowing Si-based reaction gas into the furnace without cooling.
The siliconization treatment can be performed according to a conventional method. The concentration of SiCl 4 gas is not particularly limited, but is preferably about 5% to 50%. If it is too low, the reactivity is poor and it is difficult to obtain the effects of the present invention. If it is too high, excess gas will be used, resulting in poor economic efficiency.

Si:3.2%を含み、残部実質的にFeである板厚0.30mmの一方向性珪素鋼二次再結晶板(B8/Bs=1.93T)に対して絶縁被膜を酸洗除去した後、砥粒粗さ#60〜600のエメリー紙で表面を研磨して表面粗度Raの異なる試料を作製した。次いで板厚0.086mmまで冷間圧延した。以上により得られた極薄珪素鋼板に対して、100%N2中、昇温速度18℃/sで加熱し1100℃で1分間及び1200℃で30分間焼鈍した後、単板磁気測定装置でB8を評価した。また試料表面の組織観察を行い粗大粒比率を求めた。なお、粗大粒比率は、塩酸を含む溶液で鋼板表面を酸洗した後、写真撮影を行って、板厚の5倍以上すなわち粒径400μm以上の粗大粒の数と大きさを計測し、これを観察視野の面積で除することにより求めた。得られた結果を表4に示す。 After removing the insulating film by pickling and removing the unidirectional silicon steel secondary recrystallized plate (B8 / Bs = 1.93T) with a thickness of 0.30mm which contains Si: 3.2% and the balance is essentially Fe Samples with different surface roughness Ra were prepared by polishing the surface with emery paper with grain roughness # 60-600. Next, it was cold-rolled to a thickness of 0.086 mm. The ultrathin silicon steel sheet obtained as described above was heated at a heating rate of 18 ° C./s in 100% N 2 and annealed at 1100 ° C. for 1 minute and 1200 ° C. for 30 minutes. B8 was evaluated. The microstructure of the sample surface was observed to determine the coarse particle ratio. The coarse particle ratio is obtained by pickling the steel plate surface with a solution containing hydrochloric acid and then taking a photograph to measure the number and size of coarse particles having a particle size of 5 times or more, that is, a particle size of 400 μm or more. Was divided by the area of the observation field. Table 4 shows the obtained results.

Figure 2010132977
Figure 2010132977

表4より、Ra≦0.5μmのものは、再圧延・焼鈍後に粗大粒比率が15%を大幅に超え、B8の値が低いのに対し、Raが0.9〜2.1μmの試料では粗大粒はほとんど認められず、B8は1.75T以上の高い値を示した。Ra=3.7μmの試料は、粗大粒は見られないもののB8が1.64Tと低い値となった。1200℃で30分間の焼鈍では、1100℃で1分間の焼鈍の場合に比べて粗大粒がやや増加する傾向があるが、殆ど同じ結果であった。   Table 4 shows that for Ra ≤ 0.5 μm, the ratio of coarse grains after rerolling and annealing greatly exceeds 15%, and the value of B8 is low, whereas in the samples with Ra of 0.9 to 2.1 μm, coarse grains are almost Not recognized, B8 showed a high value of 1.75T or higher. In the sample with Ra = 3.7 μm, coarse particles were not seen, but B8 was as low as 1.64T. In annealing at 1200 ° C. for 30 minutes, coarse grains tended to increase slightly compared to annealing at 1100 ° C. for 1 minute, but the results were almost the same.

Si:3.2%を含み、残部実質的にFeである板厚0.30mmの一方向性珪素鋼二次再結晶板(B8/Bs=0.91)に対して絶縁被膜を酸洗除去した。この時点で表面粗度はRa=0.4μmであった。次いで、一部の試料を除き、この試料を更に10%硝酸(50℃)、10%塩酸(80℃)、10%硫酸(80℃)のいずれかで30秒〜5分間酸洗処理した後、再度表面粗度を計測した。次いで板厚0.075mmまで冷間圧延し、これを100%N2中、表5に示す温度、時間で焼鈍した後、実施例1と同様の方法にて表面組織観察及びB8評価を行った。得られた結果を表5に示す。 The insulating film was pickled and removed from a unidirectional silicon steel secondary recrystallized plate (B8 / Bs = 0.91) having a thickness of 0.30 mm containing Si: 3.2% and the balance being substantially Fe. At this time, the surface roughness was Ra = 0.4 μm. Next, after removing some samples, the samples were further pickled with 10% nitric acid (50 ° C), 10% hydrochloric acid (80 ° C), or 10% sulfuric acid (80 ° C) for 30 seconds to 5 minutes. The surface roughness was measured again. Subsequently, it was cold-rolled to a thickness of 0.075 mm, annealed in 100% N 2 at the temperature and time shown in Table 5, and then subjected to surface structure observation and B8 evaluation in the same manner as in Example 1. The results obtained are shown in Table 5.

Figure 2010132977
Figure 2010132977

表5より、再圧延前の表面粗度がRa<0.6μmの試料では粗大粒が多数発生したのに対し、Ra≧0.6μmでは粗大粒は殆ど認められなかった。またRa≧0.6μであればB8も高い値を示すことが確認できた。   From Table 5, many coarse grains were generated in the sample with the surface roughness Ra <0.6 μm before re-rolling, whereas almost no coarse grains were observed when Ra ≧ 0.6 μm. Further, it was confirmed that B8 also showed a high value when Ra ≧ 0.6 μm.

Si:3.2%を含み、残部実質的にFeであるフォルステライト被膜を有しない一方向性珪素鋼二次再結晶板(B8/Bs=0.91)に対して、850℃、露点40〜50℃、60%H2+40%N2雰囲気中で10〜30秒間熱処理を行った。内部酸化層の厚さは試料断面をエッチングしてSEM観察で確認した。
上記熱処理した試料を40℃に加熱した10%H2NO3液に3分間浸漬して内部酸化層を除去した後、表面粗度を計測した。なお内部酸化層形成前の素材のRaは0.3μmであった。次いで、上記試料を板厚0.065mmまで冷間圧延し、次いで100%N2中、表6に示す温度、時間で焼鈍した後、実施例1と同様の方法にて表面組織観察及びB8評価を行った。得られた結果を表6に示す。
Si: Containing 3.2%, unidirectional silicon steel secondary recrystallized plate (B8 / Bs = 0.91) having no forsterite film substantially comprising Fe, 850 ° C., dew point 40-50 ° C., Heat treatment was performed for 10 to 30 seconds in a 60% H 2 + 40% N 2 atmosphere. The thickness of the internal oxide layer was confirmed by SEM observation after etching the sample cross section.
The heat-treated sample was immersed in a 10% H 2 NO 3 solution heated to 40 ° C. for 3 minutes to remove the internal oxide layer, and then the surface roughness was measured. Note that Ra before the formation of the internal oxide layer was 0.3 μm. Next, the sample was cold-rolled to a thickness of 0.065 mm, and then annealed in 100% N 2 at the temperature and time shown in Table 6, followed by surface texture observation and B8 evaluation in the same manner as in Example 1. went. The results obtained are shown in Table 6.

Figure 2010132977
Figure 2010132977

表6より、内部酸化層の厚さを1μm以上とした後に酸洗除去すれば、十分な表面粗度が得られ、1100℃や1200での高温焼鈍後にも粗大粒が殆ど認められず、高いB8を示すことがわかった。   From Table 6, if the thickness of the internal oxide layer is 1 μm or more and then pickled and removed, sufficient surface roughness can be obtained, and almost no coarse particles are observed even after high-temperature annealing at 1100 ° C. or 1200. It was found to show B8.

実施例1で機械研磨により二次再結晶板の表面粗度を変化させた後、再圧延した鋼板に対して、昇温速度16℃/sで加熱後1150℃で7分間の浸珪・拡散処理を施し6.5%珪素鋼板とした。
得られた6.5%珪素鋼板に対して、実施例1と同様の方法にて組織観察、B8測定、及び径の異なる丸棒に巻き付けて加工性評価を行った。得られた結果を表7に示す。
After changing the surface roughness of the secondary recrystallized plate by mechanical polishing in Example 1, the rerolled steel plate was heated at a heating rate of 16 ° C / s, and then was subjected to silicification / diffusion for 7 minutes at 1150 ° C. The 6.5% silicon steel sheet was processed.
The obtained 6.5% silicon steel sheet was subjected to structure observation, B8 measurement, and workability evaluation by being wound around a round bar having a different diameter in the same manner as in Example 1. The results obtained are shown in Table 7.

Figure 2010132977
Figure 2010132977

表7より、再圧延前表面粗度Ra≧0.6μmであれば、粗大粒比率15%以下となり、加工性劣化せず高いB8/Bsを示す材料が得られることがわかる。   From Table 7, it can be seen that when the surface roughness before re-rolling Ra ≧ 0.6 μm, the coarse grain ratio is 15% or less, and a material showing high B8 / Bs without deterioration in workability can be obtained.

本発明の極薄珪素鋼板は、高周波特性に優れる上、1100℃以上で処理が行われる連続浸珪プロセスに好適であるため、変圧器、モータ、リアクトル等を中心に鉄心材料として多様な用途に用いることができる。   The ultra-thin silicon steel sheet of the present invention has excellent high-frequency characteristics and is suitable for a continuous siliconization process in which processing is performed at 1100 ° C. or higher. Therefore, the ultra-thin silicon steel sheet is suitable for various uses as a core material mainly for transformers, motors, reactors, etc. Can be used.

熱処理温度と磁束密度B8および粗大粒比率との関係を示す図である。It is a figure which shows the relationship between heat processing temperature, magnetic flux density B8, and a coarse grain ratio. 再圧延前の表面粗度Raと0.080mmに再圧延後1150℃で2分間焼鈍したときの粗大粒比率およびB8/Bsとの関係を示す図である。It is a figure which shows the relationship between the surface roughness Ra before re-rolling, a coarse grain ratio, and B8 / Bs when annealing at 1150 degreeC for 2 minutes after re-rolling to 0.080 mm.

Claims (4)

質量%でSi:2〜4%を含む一方向性珪素鋼二次再結晶板を再圧延して得られる板厚0.03〜0.10mmの極薄珪素鋼板であって、窒素雰囲気中、1100℃、1分の条件で熱処理を施した後の、結晶粒の最大幅が板厚の5倍を超える粗大粒の比率が15%以下であり、かつ、B8/Bsが0.85以上である極薄珪素鋼板。
ただし、粗大粒の比率は結晶全板面に対する粗大粒の面積比であり、B8/Bsは圧延方向に磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比である。
An ultrathin silicon steel sheet having a thickness of 0.03 to 0.10 mm obtained by rerolling a unidirectional silicon steel secondary recrystallized sheet containing Si: 2 to 4% by mass%, in a nitrogen atmosphere at 1100 ° C., The ultrathin silicon steel sheet with a ratio of coarse grains whose maximum width of crystal grains exceeds 5 times the plate thickness after heat treatment under 1 minute condition is 15% or less and B8 / Bs is 0.85 or more .
However, the ratio of the coarse grains is the area ratio of the coarse grains to the entire crystal plate surface, and B8 / Bs is the ratio of the magnetic flux density B8 and the saturation magnetic flux density Bs when excited with a magnetizing force of 800 A / m in the rolling direction.
質量%で、Si:2〜4%を含み、B8/Bsが0.9以上である一方向性珪素鋼二次再結晶板に機械的な研磨または化学的な腐食を施し、前記一方向性珪素鋼二次再結晶板表面の粗度の算術平均Raを0.6μm以上3.5μm未満とし、次いで、圧下率60〜90%で板厚0.03〜0.10mmまで圧延することを特徴とする極薄珪素鋼板の製造方法。
ただし、B8/Bsは、圧延方向に磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比である。
A unidirectional silicon steel secondary recrystallized plate containing, by mass%, Si: 2 to 4% and B8 / Bs of 0.9 or more is subjected to mechanical polishing or chemical corrosion, and the unidirectional silicon steel An arithmetic average Ra of the roughness of the secondary recrystallized sheet surface is 0.6 μm or more and less than 3.5 μm, and then rolled to a sheet thickness of 0.03 to 0.10 mm at a rolling reduction of 60 to 90%. Production method.
However, B8 / Bs is the ratio of the magnetic flux density B8 and the saturation magnetic flux density Bs when excited in the rolling direction with a magnetizing force of 800 A / m.
質量%で、Si:2〜4%を含み、B8/Bsが0.9以上であり、フォルステライト被膜を除去した又はフォルステライト被膜を有しない一方向性珪素鋼二次再結晶板に、湿潤雰囲気で焼鈍を行い、前記一方向性珪素鋼二次再結晶板表面に厚さ1μm以上の内部酸化層を形成させ、次いで、化学的な腐食により内部酸化層を除去し、表面粗度の算術平均Raを0.6μm以上3.5μm未満とし、次いで、圧下率60〜90%ので板厚0.03〜0.10mmまで圧延することを特徴とする極薄珪素鋼板の製造方法。
ただし、B8/Bsは、圧延方向に磁化力800A/mで励磁したときの磁束密度B8と飽和磁束密度Bsの比である。
In a wet atmosphere in a unidirectional silicon steel secondary recrystallized plate containing, by mass%, Si: 2 to 4%, B8 / Bs of 0.9 or more, with the forsterite film removed or without the forsterite film Annealing is performed to form an internal oxide layer having a thickness of 1 μm or more on the surface of the unidirectional silicon steel secondary recrystallized plate, and then the internal oxide layer is removed by chemical corrosion. Is made to be 0.6 μm or more and less than 3.5 μm, and then rolled to a sheet thickness of 0.03 to 0.10 mm at a rolling reduction of 60 to 90%.
However, B8 / Bs is the ratio of the magnetic flux density B8 and the saturation magnetic flux density Bs when excited in the rolling direction with a magnetizing force of 800 A / m.
前記圧延後、さらに、室温から1100℃までの温度範囲を昇温速度15℃/s以上で加熱することを特徴とする請求項2または3に記載の極薄珪素鋼板の製造方法。   4. The method for producing an ultrathin silicon steel sheet according to claim 2, wherein after the rolling, the temperature range from room temperature to 1100 ° C. is further heated at a temperature rising rate of 15 ° C./s or more. 5.
JP2008310542A 2008-12-05 2008-12-05 Ultra-thin silicon steel sheet and manufacturing method thereof Active JP5636627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310542A JP5636627B2 (en) 2008-12-05 2008-12-05 Ultra-thin silicon steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310542A JP5636627B2 (en) 2008-12-05 2008-12-05 Ultra-thin silicon steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010132977A true JP2010132977A (en) 2010-06-17
JP5636627B2 JP5636627B2 (en) 2014-12-10

Family

ID=42344528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310542A Active JP5636627B2 (en) 2008-12-05 2008-12-05 Ultra-thin silicon steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5636627B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140255720A1 (en) * 2011-11-09 2014-09-11 Jfe Steel Corporation Ultrathin electromagnetic steel sheet
JP2017157806A (en) * 2016-03-04 2017-09-07 新日鐵住金株式会社 Wound core and method of manufacturing wound core

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180806A (en) * 1984-09-28 1986-04-24 Nippon Kokan Kk <Nkk> Manufacture of high permeability magnetic thin steel plate
JPS62227032A (en) * 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel strip in continuous line
JPH0459928A (en) * 1990-06-29 1992-02-26 Nippon Steel Corp Production of extra thin silicon steel strip having high (110)<001> orientation integration degree and reduced in iron loss
JPH0463230A (en) * 1990-06-30 1992-02-28 Nippon Steel Corp Manufacture of extra thin silicon steel strip high in degree of integration in (110)<001> direction and low in core loss
JPH0598398A (en) * 1991-10-07 1993-04-20 Kawasaki Steel Corp High silicon grain-oriented silicon steel sheet and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180806A (en) * 1984-09-28 1986-04-24 Nippon Kokan Kk <Nkk> Manufacture of high permeability magnetic thin steel plate
JPS62227032A (en) * 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel strip in continuous line
JPH0459928A (en) * 1990-06-29 1992-02-26 Nippon Steel Corp Production of extra thin silicon steel strip having high (110)<001> orientation integration degree and reduced in iron loss
JPH0463230A (en) * 1990-06-30 1992-02-28 Nippon Steel Corp Manufacture of extra thin silicon steel strip high in degree of integration in (110)<001> direction and low in core loss
JPH0598398A (en) * 1991-10-07 1993-04-20 Kawasaki Steel Corp High silicon grain-oriented silicon steel sheet and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140255720A1 (en) * 2011-11-09 2014-09-11 Jfe Steel Corporation Ultrathin electromagnetic steel sheet
US9666350B2 (en) * 2011-11-09 2017-05-30 Jfe Steel Corporation Ultrathin electromagnetic steel sheet
JP2017157806A (en) * 2016-03-04 2017-09-07 新日鐵住金株式会社 Wound core and method of manufacturing wound core

Also Published As

Publication number Publication date
JP5636627B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6658338B2 (en) Electrical steel sheet excellent in space factor and method of manufacturing the same
CN111819301B (en) Non-oriented electromagnetic steel sheet
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JPWO2010110217A1 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound iron core, and wound iron core
JP2015507695A (en) High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
RU2608914C2 (en) Textured electrical steel sheet
JP2017040002A (en) Nonoriented electrical steel sheet for high frequency and method for producing the same
JP2009228117A (en) Method for manufacturing grain-oriented electrical steel sheet
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5636627B2 (en) Ultra-thin silicon steel sheet and manufacturing method thereof
EP3653757A1 (en) Oriented electromagnetic steel plate
JP3956621B2 (en) Oriented electrical steel sheet
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
EP1436433A4 (en) Method of producing (110) 001] grain oriented electrical steel using strip casting
JPWO2009093492A1 (en) Oriented electrical steel sheet with excellent magnetic properties
JP4276391B2 (en) High grade non-oriented electrical steel sheet
JP4272576B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP2009127073A (en) Method for manufacturing double oriented silicon steel sheet
WO2024063163A1 (en) Grain-oriented electrical steel sheet
JP2001164318A (en) Method for producing nonoriented silicon steel sheet excellent in magnetic property and surface property
JP7226677B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2022250161A1 (en) Method for producing grain-oriented electrical steel sheet
EP4321634A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250