JP3799878B2 - Electrical steel sheet and method for manufacturing the same - Google Patents

Electrical steel sheet and method for manufacturing the same Download PDF

Info

Publication number
JP3799878B2
JP3799878B2 JP18939999A JP18939999A JP3799878B2 JP 3799878 B2 JP3799878 B2 JP 3799878B2 JP 18939999 A JP18939999 A JP 18939999A JP 18939999 A JP18939999 A JP 18939999A JP 3799878 B2 JP3799878 B2 JP 3799878B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
annealing
electrical steel
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18939999A
Other languages
Japanese (ja)
Other versions
JP2000087139A (en
Inventor
一郎 田中
克 高橋
光代 前田
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18939999A priority Critical patent/JP3799878B2/en
Publication of JP2000087139A publication Critical patent/JP2000087139A/en
Application granted granted Critical
Publication of JP3799878B2 publication Critical patent/JP3799878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧延方向と圧延直角方向の磁気特性のバランスに優れた電磁鋼板およびその製造方法に関する。とりわけ分割型ステータ鉄心を用いる小型モータに好適な電磁鋼板に関する。
【0002】
【従来の技術】
近年、地球環境問題やエネルギー問題がクローズアップされ、エネルギー変換機器であるモータの効率改善が求められている。例えば自動車においても化石燃料を消費しない電気自動車や、2種類以上の動力源を備えて燃料消費効率を改善したハイブリッド自動車が注目されているが、これらにはいずれも効率の良いモータの適用が望まれている。
【0003】
モータ効率にはステータ鉄心の性能が大きく影響する。図1はモータのステータ鉄心(以下、単に「鉄心」と記す)を構成する鉄心片であって、電磁鋼板から一体として打ち抜かれた鉄心片(以下、単に「一体型」とも記す)の形状例を示す概念図である。図1で符号3はヨーク部、符号4はティース部(歯部)である。なお、符号1はロータ、符号2はティース部に巻かれる巻線、符号5は鉄心内部の磁束の流れを模式的に示すもので、磁束はティース部4とヨーク部3を経てロータ1に至る。
【0004】
小型モータの鉄心は従来、一体型が使用されてきたが、最近では、モータ製造効率の向上や性能向上を目的として、以下に示すような種々の形態の分割鉄心片からなる鉄心(以下、単に「分割鉄心」とも記す)が提案され、実用化が進んでいる。
【0005】
図2はヨーク部とティース部をT型に配置した鉄心片6(T型分割鉄心片)の例を示す概念図である。図3はリング状のヨーク部7とI形状のティース部8で構成される分割型鉄心片(I型分割鉄心片)の例を示す概念図である。図4(a)は複数のT型鉄心片6のヨーク部9を直線状に連ねて打ち抜き加工した鉄心片(展開型分割鉄心片)の例を示す概念図である。図4(b)は前記展開型分割鉄心片のティース部10に巻線2を施し、全体を円環状に折り曲げて得た鉄心の概念図である。
【0006】
従来の一体型鉄心では、隣接するティース部間の間隔が小さく、巻線施工時に空間的な制約があるために、巻線の密度が低くなりモータの効率が制限されると共に巻線施工時の生産性も低かった。
【0007】
これに対して分割鉄心では上記のような巻線施工時の空間的な制約が少なく、隣接するティースの干渉されないで巻線施工できるため、一体型鉄心に比較して巻線密度を高めることが可能で、モータ効率向上に有効であると共に、巻線施工が容易であるので生産性も改善できるという利点がある。
【0008】
モータ、特に小型モータの鉄心用素材としては、従来、一方向性電磁鋼板に比較して安価であり、打ち抜き加工もし易い無方向性電磁鋼板が使用されているが、その性能改善のために電磁鋼板の磁気特性改善方法が開示されている。
【0009】
特開平5−70833号公報には、重量%でC:0.010〜0.10%、Si:4.0%以下、Seおよび/またはS:0.005〜0.030%を含有する鋼を熱間圧延し冷間圧延した後、脱炭焼鈍し、さらに900〜1200℃で連続焼鈍する、無方向性珪素鋼板よりも磁気特性が優れた電磁鋼板の製造方法が開示されている。
【0010】
特開平7−18334号公報には、重量%でC:0.010%以下、Si:1.5〜4.0%、Mn:1.0〜4.0%、S:0.010%以下、sol.Al:0.003〜0.030%、N:0.001〜0.010%を含む鋼スラブを、熱間圧延してそのまま冷間圧延、あるいは熱間圧延後に焼鈍を施してから冷間圧延し、その後一次再結晶のための連続焼鈍および100%水素雰囲気中での二次再結晶焼鈍を施す、磁気特性の異方性のバランスが優れた電磁鋼板の製造方法が開示されている。
【0011】
【発明が解決しようとする課題】
鉄心のティース部では長手方向に磁束が集中する。分割鉄心では、全てのティース部の磁化方向を磁気特性に優れた鋼板の圧延方向(以下、単に「L方向」とも記す)に揃えることができるので、分割鉄心を有するモータのモータ効率改善にはL方向の磁気特性が優れていることが重要である。また、鉄心のヨーク部の磁化方向が磁気特性がよくない圧延直角方向(以下、単に「T方向」とも記す)に揃えられる場合には、T方向の磁気特性が悪くないことも重要である。
【0012】
また、小型モータではモータ効率に対する鉄心の占積率の影響度が大きく、鉄心の占積率を高めることも重要である。さらに鉄心片の加工に際しては、発電機や大型モータの場合に比べて鉄心打ち抜き回数が多いこと、およびトランス用鉄心に比較して打ち抜き加工される鉄心形状が複雑であることから、鉄心素材の打ち抜き加工性が優れていることも必要である。
【0013】
一方向性電磁鋼板はL方向の磁気特性は優れる。しかしながらT方向の磁化力5000A/mにおける磁束密度(B50)が1.55T前後と極めて劣るうえ、Si含有量が高く鋼が硬質であり、また鋼板素地と絶縁皮膜の間にフォルステライトを主とする厚さが3μm〜10μmもある硬質な酸化皮膜があるため、打ち抜き性が良くないうえ、占積率も低いという問題がある。またその製造時には脱炭焼鈍や1000℃を超える高温での二次再結晶焼鈍が必要となり、製造コストも高い。従って一方向性電磁鋼板は、分割鉄心を有する小型モータ用素材としては好ましくない。
【0014】
特開平5−70833号公報に開示されている方法で得られる製品はSi含有量が高く、小型モータ用鉄心素材としては打ち抜き性がよくない。また、その製造に際しては短時間の連続焼鈍で二次再結晶させるため磁気特性変動が大きくなりやすいうえ、脱炭焼鈍を必須工程として含むために必ずしも低コストとはならないという問題もある。また、短時間の連続焼鈍ではインヒビターとする微細なMnSおよび/またはMnSe析出物が製品に残存して磁気特性を損なうおそれもある。
【0015】
特開平7−18334号公報に開示されている方法で得られる製品はSiおよびMn含有量が高く、小型モータ用鉄心素材としては打ち抜き性が十分ではないうえ、高価なMn源を大量に含有させるために製造コストが高いという問題もある。
【0016】
以上述べたように、モータ効率の向上、特に分割鉄心を有する小型モータのモータ効率改善に好適な、L方向とT方向の望ましい磁気特性バランスと、鉄心片の打ち抜き加工時の生産効率を阻害しないような適度な硬さとを同時に満足する電磁鋼板は未だ開示されていない。
【0017】
本発明の目的はこれらの問題点を解決し、従来の無方向性電磁鋼板に比較してL方向の磁気特性が大幅に良好で、一方向性電磁鋼板に比べてT方向の磁気特性が良好であり、さらに打ち抜き性にも優れた、特に分割鉄心を有する小型モータの効率改善に好適な電磁鋼板およびその製造方法を提供することにある。
【0018】
【課題を解決するための手段】
本発明者らはティース部の磁化方向を電磁鋼板のL方向に揃えて打ち抜いた分割鉄心を用いた小型モータのエネルギー変換効率に対する電磁鋼板の磁気特性、その他の望ましい鋼板性状との関係について鋭意研究を進めた。さらにそのような鋼板の製造方法について研究を重ねた。その結果以下に述べるような新たな知見を得た。なお、本発明でいうエネルギー変換効率は、モータの出力エネルギーの入力エネルギーに対する比([出力エネルギー]/[入力エネルギー])を意味し、単に「モータ効率」とも記す。
【0019】
a.モータの作動時には、鉄心のティース部に高磁場の磁界が作用するため、モータ効率には鉄心素材となる電磁鋼板の高磁場での磁気特性が大きく影響する。上記のような分割鉄心を用いたモータの場合、電磁鋼板のL方向のB50が1.85T以上である場合にモータ効率が著しく改善された。また、鉄心素材のT方向のB50が1.58Tに満たない場合にはモータ効率の改善効果は得られなかった。
【0020】
さらに、複雑な形状での打ち抜き加工時の生産効率を高めるには、鋼素材の硬さを適正範囲にすることが重要であり、また、電磁鋼板製造時に発生し易い硬質な酸化皮膜の抑制と絶縁皮膜の最適化も有効であった。
【0021】
b.電磁鋼板の磁気特性は、二次再結晶焼鈍時に、インヒビターと称される析出物により多くの方位の結晶粒成長が抑制される中で、ミラー指数の{110}<001>で表示されるゴス方位の結晶粒が選択的に成長することにより形成される集合組織により大きく影響される。
【0022】
従来の一方向性電磁鋼板では、インヒビターによる結晶粒成長抑制効果が極めて強く、ゴス方位への集積度が極めて高い二次再結晶が生じるため、L方向の磁気特性は著しく良好になるがT方向の磁気特性が極端に劣化する。
【0023】
これに対し、極低炭素でSi、Al、Nなどの含有量を特定範囲に限定した化学組成を有する熱延鋼板を冷間圧延した後、特定の条件で焼鈍を施すことにより、従来の方向性電磁鋼板の場合よりもインヒビター効果を弱くした二次再結晶焼鈍が可能となり、これによりゴス方位の集積度を適正化してL方向とT方向の磁気特性バランスを改善し上記したような所望の電磁鋼板を容易に製造できる。この方法によれば、Si、Mnなどの合金含有量が少なく、好ましい硬さを有する電磁鋼板の製造ができる。
【0024】
本発明はこれらの知見を基にして完成されたものであり、その要旨は下記(1)および(2)に記載の電磁鋼板ならびに(3)に記載のその製造方法にある。
【0025】
(1)化学組成が重量%で、C:0.010%以下、Si:1.0%以上、3.0%未満、Mn:0.80%以下、P:0.10%以下、S:0.030%以下、sol.Al:0.020%以下、N:0.010%以下を含有し、残部がFeおよび不可避的不純物からなり、厚さが0.1μm以上0.5μm以下である樹脂を含有した絶縁皮膜を両面に備えた電磁鋼板であって、圧延方向の磁束密度B50が1.85T以上、ビッカース硬さが100以上、180未満であることを特徴とする電磁鋼板。
【0026】
(2)鋼板素地と絶縁皮膜との間の酸化皮膜の厚さが1μm以下であることを特徴とする上記(1)に記載の電磁鋼板。
【0027】
(3)化学組成が重量%で、C:0.010%以下、Si:1.0以上、3.0%未満、Mn:0.80%以下、P:0.10%以下、S:0.030%以下、sol.Al:0.003〜0.020%、N:0.001〜0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼のスラブを熱間圧延し、冷間圧延し、860〜980℃に加熱して一次再結晶焼鈍を施し、窒素含有量が5体積%以下、残部が水素ガスおよび/または窒素を除く不活性ガスからなる雰囲気中で750℃以上、Ac1変態点以下に加熱して二次再結晶焼鈍した後、樹脂を含有する絶縁皮膜を施すことを特徴とする上記(1)または(2)に記載の電磁鋼板の製造方法。
【0028】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。なお、以下に記す化学組成の%表示は重量%を意味する。
【0029】
鋼の化学組成:
C:製品中に残存すると鉄損に悪影響を及ぼすので少ないほど好ましい。C含有量が0.010%以下であれば磁気特性への悪影響は小さいのでC含有量は0.010%を上限とする。好ましくは0.005%以下である。
【0030】
Si:鋼の電気抵抗を高め、渦電流損が低下し鉄損を減少させる効果がある。Si含有量が1.0%に満たない場合には本発明が目的とする低鉄損が得られないため、Siは1.0%以上含有させる。好ましくは1.1%以上である。
【0031】
他方、Siを過度に含有させると飽和磁束密度の低下が著しくなり、鉄心を小型化するのが困難になる。また、鋼板が過度に硬くなり、打ち抜き性が損なわれる。このためSi含有量は3.0%未満とする。好ましくは2.8%以下、さらに好ましくは2.0%以下、なお好ましくは1.8%以下である。
【0032】
Mn:本発明の鋼の二次再結晶挙動にはさほど影響せず磁気特性の異方性に対する影響は小さい。従ってMnは必須元素ではないが、Mnには鋼の電気抵抗を高め鉄損を減少させ、鋼を硬くして打ち抜き性を改善するなどの作用があり、これらの効果を得るために含有させてもよい。これらの効果を得るにはMnを0.05%以上、より好ましくは0.10%を超えて含有させるのがよい。Mn含有量が0.8%を超えると飽和磁束密度が小さくなるうえ、鋼素材の硬さが増し打ち抜き性が劣化し製造コストも高くなる。従ってMnを含有させる場合でもその上限は0.80%とするのがよい。より好ましくは0.70%以下がよい。
【0033】
P:磁気特性への影響が少ないので必須元素ではないが、鋼を硬くして打ち抜き性を向上させる作用があるので、0.10%以下の範囲で含有させてもよい。P含有量が0.10%を超えると鋼が脆くなり、冷間圧延時に破断しやすくなるのでPを含有させる場合でもその上限は0.10%とするのがよい。
【0034】
S:Mnと結合してMnSとなり鋼の磁気特性を損なうのでSは少ないほどよく、0.030%以下、より好ましくは0.015%以下、なおさらに好ましくは0.005%未満とするのがよい。
【0035】
sol.Al:製品としての電磁鋼板では必須元素ではないので、製品としての電磁鋼板には含有させなくてもよい。しかしながらsol.Alはその製造過程で良好な二次再結晶を生じさせるのに重要なインヒビターであるAlNや、(Al、Si)Nを形成する元素であるので、圧延前の鋼においてはsol.Alを0.003%以上含有させるのがよい。好ましくは0.005%以上含有させるのがよい。
【0036】
sol.Al含有量が0.020%を超えるとインヒビターが過剰になると共にその分散状態が不適切になり、二次再結晶が不安定になる。従って圧延前の鋼ではsol.Al含有量を0.020%以下とするのがよい。好ましくは0.018%以下がよい。上記圧延前の鋼に含有されるsol.Alは焼鈍時に減少することもあるが、そのまま鋼中に残留することもある。従って製品としての電磁鋼板のsol.Al含有量は0.020%以下である。
【0037】
N:製品としての電磁鋼板では必須元素ではないので、製品としての電磁鋼板には含有させなくても構わない。しかしながらNはインヒビターとなる窒化物を形成するのに必要な元素であるので、圧延前の鋼においてはNを0.001%以上含有させるのがよい。好ましくは0.002%以上がよい。また、N含有量が0.010%を超えるとインヒビター効果が飽和するので、圧延前の鋼におけるN含有量は0.010%以下とするのがよい。好ましくは0.008%以下がよい。上記圧延前の鋼に含有されるNは焼鈍時に減少することもあるがそのまま鋼中に残留することもある。従って製品としての電磁鋼板のN含有量は0.010%以下である。
残部はFeおよび不可避的不純物である。
【0038】
磁気特性:
本発明の電磁鋼板は、モータ効率を改善するために、JIS−C−2550の規定に従って測定したL方向の磁束密度がB50で1.85T以上のものとする。好ましくは1.88T以上である。T方向のB50は1.59T以上が好ましい。より好ましくはT方向のB50を1.60T以上とするのがよい。
【0039】
ここでいうモータ効率とはモータの出力エネルギーの入力エネルギーに対する比([出力エネルギー]/[入力エネルギー])を意味する。入力エネルギーは、モータに加えられる電圧と電流から算出され、出力エネルギーはトルクと回転数から計算される。
【0040】
絶縁皮膜:
本発明の電磁鋼板は、電磁鋼板の打ち抜き性を良好に保ち、かつ、積層された鉄心片間の絶縁性を確保するために、電磁鋼板の少なくとも片面に、一般に無方向性電磁鋼板に使用されている公知の樹脂と無機成分が含有された絶縁皮膜を備える。この絶縁皮膜としては、例えば、重クロム酸塩−ホウ酸−樹脂からなる皮膜、リン酸塩−樹脂からなる皮膜、シリカ−樹脂からなる皮膜等がある。
【0041】
樹脂としてはアクリル系樹脂、アクリルスチレン系樹脂、アクリルシリコン系樹脂、シリコン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、フッ素系樹脂などが使用できる。塗工性(ロールコート性)をよくするためにエマルジョンタイプの樹脂が好ましい。
【0042】
絶縁皮膜の構成内容は乾燥後の皮膜重量に対する比で、無機成分:50〜99%、樹脂:1〜50%であればよい。絶縁皮膜の上記以外の構成物質として、アルミナ、ジルコニア、チタニア等の顔料を含有させてもよい。
【0043】
絶縁皮膜が薄すぎると絶縁性が不足し鉄損が大きくなるので、その厚さは0.1μm以上とする。絶縁皮膜の厚さが0.5μmを超えると占積率が低下し有効な断面積当たりの磁束密度が低下してモータの効率が低下する。これを防ぐために絶縁皮膜の厚さは0.5μm以下とする。好ましくは0.4μm以下である。絶縁皮膜は鋼板の両面に備えるのがよいが、片面のみでも構わない。
【0044】
酸化皮膜:
本発明の電磁鋼板のL方向の磁束密度を向上させるには、焼鈍前の鋼板のL方向に<001>軸を有する核(ゴス核)を源にして、十分な二次再結晶をおこなわせる必要があるため、二次再結晶焼鈍は、無方向性電磁鋼板の製造に一般的に用いられている焼鈍時間が短い連続焼鈍法ではなく、鋼板を高温で長時間焼鈍できる箱焼鈍法でおこなうのがよい。箱焼鈍前には焼付防止用の焼鈍分離剤を鋼板に塗布し、焼鈍後にこれを除去するが、除去困難な酸化皮膜が鋼板表面に残存することがある。
【0045】
酸化皮膜が過度に厚くなると連続打ち抜き性が損なわれるうえ、占積率が低下し、特に小型モータの効率を大きく損なう。従って酸化膜の厚さは1μm以下、さらに好ましくは0.4μm以下とするのがよい。
【0046】
硬さ:
鋼板が硬すぎると鉄心を打ち抜き加工する際に金型の摩耗が著しく生産性が損なわれるうえ、製品の破面性状や平坦形状が悪くなる。また、展開型鉄心を環状に成形する際にはヨーク部外周には引張変形が加えられるので、電磁鋼板にはこれに耐えるだけの延性が必要とされる。このため本発明の電磁鋼板は、試験荷重1kgでのビッカース硬さ(以下、単に「HV」と記す)で180未満とする必要がある。好ましくはHVが175以下がよい。
【0047】
鋼板が軟らかすぎると打ち抜き破面性状が悪くなるうえダレも大きくなる。これを避けるためには鋼板の硬さ(HV)を100以上とする必要がある。好ましくは110以上である。
【0048】
焼きなまし状態である電磁鋼板の硬さと化学組成とは一定の関係がある。例えば、Si:3.3%、Al:0.6%、Mn:0.15%を含有した一般の無方向性電磁鋼板は、HV:200程度、Siを3%含有する一般の一方向性電磁鋼板のHVは190程度である。
【0049】
電磁鋼板の厚さ:
電磁鋼板の厚さは特に限定するものではないが、打ち抜き加工時や組み立て時の生産性を確保するために0.20mm以上とするのが良い。さらに好ましくは0.35mm以上とするのがよい。厚さを過度に厚くすると鉄損が大きくなりモータ効率が低下するので厚さは1.0mm以下、より好ましくは0.65mm以下とするのがよい。
【0050】
製造方法:
本発明の鋼板は以下の方法で製造するのが好適である。
上記の化学組成を有する鋼(但し、sol.Alを0.003%以上、およびNを0.001%以上含有する鋼)は、転炉、電気炉などで溶製し、必要があれば真空脱ガスなどの処理を施した溶鋼を連続鋳造するか、または鋼塊にしてから分塊圧延することでスラブとされ、熱間圧延される。
【0051】
熱間圧延の条件は特に限定されるものではないが、熱間圧延に先立ってスラブ加熱を施す場合にはその温度は1050〜1270℃とするのがよい。連続鋳造後や分塊圧延後のスラブの温度が十分高い場合にはスラブ加熱を施さないで直接熱間圧延しても構わない。熱間圧延での仕上温度は700〜950℃、巻取温度は450〜800℃の範囲とするのがよい。
【0052】
熱間圧延後は、常法に従って酸洗し、そのまま冷間圧延するのが経済性に優れるので好ましいが、酸洗の前または後に熱延板焼鈍を施しても構わない。熱延板焼鈍を施す場合の焼鈍温度は、箱焼鈍方式であれば600℃以上、800℃未満、連続焼鈍方式であれば800℃以上、950℃未満とするのが好ましい。
【0053】
冷間圧延は1回の冷間圧延で製品の厚さまで冷間圧延する方法(1回冷間圧延法)が経済性に優れるので好ましいが、中間焼鈍を挟んだ2回の冷間圧延でおこなう方法(2回冷間圧延法)でも構わない。
【0054】
冷間圧延の圧下率は特に限定するものではないが、65%に満たない場合には二次再結晶が不安定となる場合があるので、65%以上とするのが好ましい。65%に満たない場合には、二次再結晶時にゴス方位の結晶粒が成長するのに好適な{111}方位の強い一次再結晶集合組織が形成できないからである。より好ましくは70%以上である。
【0055】
冷間圧延圧下率が85%を超えると一次再結晶集合組織のゴス方位が少なくなり、二次再結晶が不安定となる場合があるので圧下率は85%以下とするのが好ましい。より好ましくは83%以下である。2回冷間圧延法の場合の圧下率は、熱延板から最終製品の厚さまでの総圧下率を上記の範囲とするのがよい。
【0056】
一次再結晶焼鈍温度は860〜980℃の範囲とする。焼鈍温度が860℃に満たない場合には一次再結晶粒径が小さく、ゴス方位に集積した二次再結晶が生じない。好ましくは880℃以上である。焼鈍温度が980℃を超える場合には、一次再結晶粒径が大きくなりすぎて、次工程の二次再結晶焼鈍時に二次再結晶が生じにくい。好ましくは960℃以下である。
【0057】
焼鈍時間(均熱時間)は5秒以上、10分以下とするのがよい。焼鈍時間が5秒に満たない場合には鋼板内での一次再結晶粒径がばらついて安定した二次再結晶が生じにくい。また、10分を超える場合には一次再結晶粒径のばらつき抑制の効果が飽和するために経済的に無意味である。
【0058】
一次再結晶焼鈍温度への加熱速度は、後述する二次再結晶焼鈍で安定した二次再結晶を生じさせるために、1℃/秒以上の急速加熱とするのがよい。このためには、連続焼鈍方法で焼鈍するのが好適である。
【0059】
二次再結晶焼鈍温度は750℃以上、Ac1変態点以下とする。二次再結晶焼鈍の目的は適度のゴス方位集積度を持つ結晶組織を得ることにある。従って二次再結晶が生じる温度域でインヒビター強度を適切に制御することが重要である。
【0060】
二次再結晶焼鈍温度が750℃に満たない場合には、インヒビター効果が強すぎて二次再結晶が生じない。好ましくは800℃以上である。二次再結晶焼鈍温度がAc1変態点を超えるとオーステナイト変態が生じるうえ、インヒビター効果も弱くなるためにゴス方位に集積した二次再結晶が生じないのでよくない。好ましくは950℃以下、さらに好ましくは900℃以下がよい。
【0061】
二次再結晶焼鈍の焼鈍時間は4〜100時間とするのがよい。焼鈍時間が4時間に満たない場合には、二次再結晶がコイル全長全幅で均一かつ十分に発達できないことがある。より好ましくは8時間以上がよい。100時間以内の保持で二次再結晶は十分に完了する。より好ましくは80時間以下である。
【0062】
二次再結晶焼鈍の雰囲気は、窒素含有量が5体積%以下、残部が水素ガスおよび/または窒素を除く不活性ガスからなる雰囲気とする。窒素含有量が5体積%を超える場合には、雰囲気ガスから鋼板への窒化が生じてインヒビター効果が強くなり、ゴス方位への集積度が過度に大きい二次再結晶が生じる。この場合には、L方向の磁気特性は良好であるが、T方向のそれは劣化し、所望の磁気特性のバランスが得られない。好ましくは窒素含有量は3体積%以下とするのがよい。
【0063】
窒素以外の雰囲気ガス組成は水素ガスがよい。100%水素ガス(工業的な意味での純水素雰囲気)を用いても構わない。これは、二次再結晶が生じる750〜950℃の温度域でインヒビターとなる析出物が焼鈍の進行にしたがって徐々に粗大化するとともに、脱窒反応も生じるため、比較的弱いインヒビター効果が生じて、適度なゴス方位への集積度を持つ二次再結晶が生じるからである。なおこの場合でも、経済性の観点から窒化が生じにくい700℃未満の温度域を100%窒素ガスあるいは水素と窒素の混合ガスとしても構わない。
【0064】
二次再結晶焼鈍の前に、鋼板間での焼付を防止するために、公知の焼鈍分離剤を鋼板の両面または片面に塗布してもよい。塗布方法は、スラリー状にして塗布する方法や、粉体を静電塗布する方法などがあるがいずれでも構わない。また、無機系の絶縁コーティングを鋼板の片面あるいは両面に塗布して、焼鈍分離剤の機能を持たせてもよい。
【0065】
二次再結晶焼鈍後の工程としては通常の方向性電磁鋼板と同様に、焼鈍分離剤を除去し、必要により公知の方法で平坦化焼鈍をおこなった後、少なくとも一方の面に上述の無機成分と樹脂を含有する絶縁皮膜組成物を乾燥膜厚が0.1〜0.5μmとなるようにスプレー法、浸漬法など公知の方法で塗布し、公知の方法で乾燥させるのがよい。
【0066】
本発明の電磁鋼板は優れた磁気特性と打ち抜き性を兼ね備えているので、分割鉄心を備えたモータのみならず、EI鉄心などトランス用素材としても好適である。
【0067】
【実施例】
(実施例1)
表1に示す種々の化学組成を有する鋼を転炉で溶製し、真空脱ガス処理して成分調整した後、連続鋳造してスラブとした。
【0068】
【表1】

Figure 0003799878
【0069】
これらのスラブを熱間圧延して厚さ:2.3mmの熱延板とし、酸洗して脱スケールした後、厚さ:0.50mmに冷間圧延した。次いで、加熱速度15℃/秒で900℃に加熱して30秒間保持した後冷却する一次再結晶焼鈍を施した後、アルミナを主成分とする焼鈍分離剤を塗布し、水素100体積%の雰囲気で加熱速度:40℃/時で850℃に加熱し24時間保持して炉冷する二次再結晶焼鈍を施した。
【0070】
その後焼鈍分離剤を除去し、820℃で30秒間保持する平坦化のための連続焼鈍をおこなった。連続焼鈍後の鋼板表面には酸化皮膜は観察されなかった。平坦化焼鈍後、重クロム酸マグネシウムとホウ酸を乾燥後の皮膜に対して80重量%、アクリルエマルジョン樹脂を20重量%含む絶縁皮膜組成物を乾燥膜厚が0.4μmになるように両面に塗布して乾燥し、種々の磁気特性を有する電磁鋼板を得た。
【0071】
これらの電磁鋼板の硬度を測定すると共に、L方向とT方向のB50をJIS−C2550の規定に従って測定した。エプスタイン試験片には一般のフルプロセス無方向性電磁鋼板と同様に応力除去焼きなましを施さなかった。
【0072】
鋼板の打ち抜き性を、打ち抜き片の寸法が15mmの正方形であり、ポンチとダイのクリアランスを鋼板厚さの5%としたSKD11製の打ち抜き工具と市販の打ち抜き油を使用し、打ち抜き速度が350ストローク/分である連続打ち抜きをおこない、打ち抜き片のカエリ高さが50μmに達するまでの打ち抜き回数を求めて以下の基準で評価し、打ち抜き回数が100万回以上である場合を良好と判断した。
【0073】
◎:200万回以上、
○:100万回以上、200万回未満、
×:100万回未満。
【0074】
得られた電磁鋼板の性能を表1に示す。
表1に示された結果からわかるように、化学組成が本発明の規定する条件を満足する鋼は良好な磁気特性と優れた打ち抜き性を備えていた。
【0075】
(実施例2)
表1に記載の鋼の内で、Si:1.8%、Mn:0.6%前後を含有する鋼a、gおよびiのスラブを実施例1に記載したのと同様の条件で、熱間圧延し、酸洗し、冷間圧延し、一次再結晶焼鈍を施し、アルミナを主成分とする焼鈍分離剤を塗布し、二次再結晶焼鈍を施した。一部のコイルは酸洗前に熱延板焼鈍を施した。その後焼鈍分離剤を除去し、実施例1に記載したのと同様の条件で平坦化焼鈍をおこない、同様の絶縁皮膜組成物を種々の乾燥膜厚になるように塗布し、乾燥して種々の電磁鋼板を得た。得られた電磁鋼板の硬さ(HV)はいずれも145程度であった。これらの電磁鋼板の磁束密度を実施例1に記載したのと同様の条件で測定した。
【0076】
占積率をJIS−C2550に規定される方法に従って測定し、98.5%以上を◎、98.5未満、98.0%以上を○、98%未満を×として評価した。
【0077】
得られた種々の電磁鋼板から図3に示す形状のI型分割鉄心片を打ち抜いた。ティースは、その磁化方向が電磁鋼板のL方向に平行になるようにして打ち抜いた。ティースに巻線を施し、リング状のヨークと組み合わせてI型分割鉄心を作製し、これを用いて出力が750wである3相4極の、回転子表面に永久磁石を配置したモータである表面磁石型モータを作製した。これらのモータのモータ効率として、3600rpmにおける入力エネルギーに対する出力エネルギーの比を調査し、この比が84%以上であった場合を極めて良好(◎)、84%未満、83%以上を良好(○)、83%未満を不良(×)として評価した。入力エネルギーをモータに加えられる電圧と電流から、出力エネルギーをトルクと回転数から計算した。
得られた結果を表2に示す。
【0078】
【表2】
Figure 0003799878
【0079】
表2に示された結果からわかるように、L方向のB50と占積率が優れた電磁鋼板を使用したモータは優れたモータ効率を有していた。また、試験番号1と6のモータについて、半径10mmのプーリーに糸を巻き付けて摩擦ブレーキとする方法で駆動トルクを測定した結果、本発明の規定する条件を満たす電磁鋼板を使用した試験番号1は試験番号6と比較して3%のトルク増加が認められた。
【0080】
(実施例3)
表1に記載のSiを1.4%、Mnを0.17%含有する鋼hのスラブを熱間圧延して厚さが2.5mmの熱延コイルを得た。これを酸洗し、冷間圧延して0.5mm厚とし、水素75体積%、窒素25体積%、露点50℃の雰囲気で90秒保持する一次再結晶焼鈍をし、MgOを乾燥固形分換算で80重量%含有するスラリーを乾燥固形分換算で5g/m2 となるように両面に塗布、乾燥させて焼鈍分離剤とした後、水素雰囲気中で880℃で48時間保持する二次再結晶焼鈍をおこなった。その後50℃、10%塩酸で酸洗して、表面に浮いていた焼鈍分離剤を除去した。この時点で鋼板表面には、フォルステライトを主成分とする酸化膜が約3.2μm残存していた。この後、40℃、10%のフッ化水素酸に鋼板を浸漬し、浸漬時間を種々変更して酸化皮膜を溶解し、種々の厚さの酸化皮膜を有する電磁鋼板を得た。その後平坦化を目的とした焼鈍をおこない、実施例1に記載したのと同様の組成で乾燥膜厚が0.2μmである絶縁皮膜を施した。
【0081】
また、従来例として、Si:3.2%、Mn:0.10%含有し、両面に厚さ:3.0μmの燐酸とコロイダルシリカからなる無機皮膜を有する厚さ0.35mmの市販の一方向性電磁鋼板と、Si:2.0%、Mn:0.20%含有し、両面に厚さ:0.35μmの重クロム酸マグネシウム−ほう酸−アクリル樹脂からなる絶縁皮膜を有する厚さ:0.50mmの市販の無方向性電磁鋼板も供試材として使用した。
【0082】
これらの電磁鋼板を用いて実施例2に記載したのと同様のI型分割鉄心を有する3相4極の表面磁石型モータを作製し、実施例2に記載したのと同様の条件でモータ効率を調査した。また、打ち抜き性を実施例1に記載したのと同様の方法で調査した。
得られた結果を表3に示した。
【0083】
【表3】
Figure 0003799878
【0084】
表3に示された結果からわかるように、酸化皮膜の厚さが1.0μm以下の場合に打ち抜き性とモータ効率が良好であった。市販の一方向性電磁鋼板は打ち抜き性が良くなく、市販の無方向性電磁鋼板はモータ効率が良くなかった。
【0085】
(実施例4)
実施例1に記載の鋼gのスラブを1180℃に加熱して仕上温度860℃で熱間圧延し、厚さが2.3mmの熱延鋼板を得た。また鋼hのスラブを1150℃に加熱して仕上温度840℃、巻取温度530℃で熱間圧延し、厚さ:2.3mmの熱延板を得た。Ac1変態点は、鋼g、鋼hとも1000℃程度であった。これらの熱延鋼板を酸洗し、厚さ:0.50mmに冷間圧延し、種々の温度で連続焼鈍する一次再結晶焼鈍を施した。焼鈍温度への加熱速度は、鋼gは加熱速度10℃/秒、鋼hは加熱速度15℃/秒とした。その後、アルミナを主体とする焼鈍分離剤を塗布した後、水素雰囲気または水素−窒素混合雰囲気中で種々の温度に加熱し、箱焼鈍法による二次再結晶焼鈍を施した。その後焼鈍分離剤を除去し、820℃で30秒間保持する平坦化のための連続焼鈍をおこない、絶縁コーティングを施した。これらの鋼板の硬さ(HV)は、鋼gでは145前後、鋼hでは124前後であった。これらの鋼板のL方向とT方向の磁気特性を実施例1に記載したのと同様の方法で測定した。表4に焼鈍条件と得られた鋼板の磁気特性を示した。
【0086】
【表4】
Figure 0003799878
【0087】
表4に示されているように、焼鈍条件が好ましい範囲内であった試験番号32、35、36、37および39では良好な磁気特性のものが得られた。これに対し一次再結晶焼鈍または二次再結晶焼鈍の条件が好ましい範囲でなかったものは、安定した二次再結晶が生じなかったためにL方向の特性が良くなかった。二次再結晶焼鈍雰囲気のN濃度が高かった試験番号40では、L方向のB50は優れていたがT方向のB50が良くなかった。
【0088】
【発明の効果】
本発明の電磁鋼板は、従来の無方向性電磁鋼板に比べてL方向の磁気特性が大幅に良好であるので、モータやトランスのエネルギー変換効率の改善に有効な鋼板である。本発明の電磁鋼板は打ち抜き性も優れているので、特に分割型鉄心を備えた小型モータの効率改善を生産性良く実現できる。
【図面の簡単な説明】
【図1】モータのステータ鉄心であって、電磁鋼板から一体として打ち抜かれた鉄心片の例を示す概念図である。
【図2】ヨーク部とティース部がT型に配置された鉄心片を組み合わせて構成される分割型鉄心片の例を示す概念図である。
【図3】リング状のヨーク部とI形状のティース部で構成される分割型鉄心片の例を示す概念図である。
【図4】(a)は複数のT型鉄心片のヨーク部を直線状に連ねて打ち抜き加工した鉄心片の例を示す概念図である。
(b)は前記展開型分割鉄心片のティース部に巻線を施し、全体を円環状に折り曲げて得た鉄心の概念図である。
【符号の説明】
1:ロータ、2:巻線、3:ヨーク部、4:ティース部、5:磁束、6:T型鉄心片、7:リング状のヨーク部品、8:I型のティース部品、9:T型鉄心片、10:T型鉄心片のヨーク部、11:T型鉄心片のティース部。
【符号の説明】[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrical steel sheet excellent in the balance of the magnetic properties in the rolling direction and the direction perpendicular to the rolling, and a method for producing the same. In particular, the present invention relates to a magnetic steel sheet suitable for a small motor using a split stator iron core.
[0002]
[Prior art]
In recent years, global environmental problems and energy problems have been highlighted, and there is a demand for improving the efficiency of motors that are energy conversion devices. For example, electric vehicles that do not consume fossil fuels and hybrid vehicles that have two or more types of power sources to improve fuel consumption efficiency have attracted attention. It is rare.
[0003]
The performance of the stator core greatly affects the motor efficiency. FIG. 1 shows an example of a shape of an iron core piece (hereinafter, also simply referred to as “integrated type”) punched as a unit from an electromagnetic steel sheet, which is an iron core piece constituting a stator iron core (hereinafter simply referred to as “iron core”) of a motor. FIG. In FIG. 1, reference numeral 3 denotes a yoke part, and reference numeral 4 denotes a tooth part (tooth part). Reference numeral 1 denotes a rotor, reference numeral 2 denotes a winding wound around the tooth portion, reference numeral 5 denotes a flow of magnetic flux inside the iron core, and the magnetic flux reaches the rotor 1 through the tooth portion 4 and the yoke portion 3. .
[0004]
Conventionally, a small motor core has been used as an integral type, but recently, for the purpose of improving the motor manufacturing efficiency and performance, an iron core composed of various types of divided core pieces (hereinafter simply referred to as the cores) is described below. (Also referred to as “split iron core”) has been proposed and is being put to practical use.
[0005]
FIG. 2 is a conceptual diagram showing an example of an iron core piece 6 (T-type split iron core piece) in which a yoke part and a tooth part are arranged in a T shape. FIG. 3 is a conceptual diagram showing an example of a split-type core piece (I-type split core piece) composed of a ring-shaped yoke portion 7 and an I-shaped tooth portion 8. FIG. 4A is a conceptual diagram showing an example of an iron core piece (developable divided core piece) in which yoke portions 9 of a plurality of T-type iron core pieces 6 are linearly connected and punched. FIG. 4B is a conceptual diagram of an iron core obtained by applying a winding 2 to the tooth portion 10 of the developed split-type core piece and bending the whole into an annular shape.
[0006]
In conventional integrated iron cores, the spacing between adjacent teeth is small, and there are spatial restrictions during winding construction, so the density of the winding is reduced, limiting the efficiency of the motor and at the time of winding construction. Productivity was also low.
[0007]
On the other hand, with a split iron core, there are few spatial restrictions at the time of winding construction as described above, and winding can be done without interference of adjacent teeth, so the winding density can be increased compared to an integral iron core. This is possible, and is effective in improving the motor efficiency, and has the advantage that the productivity can be improved because the winding construction is easy.
[0008]
Conventionally, non-oriented electrical steel sheets, which are cheaper than unidirectional electrical steel sheets and easy to punch, have been used as the core material for motors, especially small motors. A method for improving the magnetic properties of a steel sheet is disclosed.
[0009]
Japanese Patent Laid-Open No. 5-70833 discloses steel containing, by weight, C: 0.010 to 0.10%, Si: 4.0% or less, Se and / or S: 0.005 to 0.030%. A method for producing an electrical steel sheet having better magnetic properties than a non-oriented silicon steel sheet, which is hot-rolled and cold-rolled and then decarburized and annealed at 900 to 1200 ° C. is disclosed.
[0010]
In JP-A-7-18334, C: 0.010% or less by weight%, Si: 1.5-4.0%, Mn: 1.0-4.0%, S: 0.010% or less. , Sol. A steel slab containing Al: 0.003-0.030% and N: 0.001-0.010% is hot-rolled and cold-rolled as it is, or cold-rolled after annealing after hot-rolling. Then, a method for producing an electrical steel sheet having an excellent balance of anisotropy in magnetic properties is disclosed, in which continuous annealing for primary recrystallization and secondary recrystallization annealing in a 100% hydrogen atmosphere are performed.
[0011]
[Problems to be solved by the invention]
Magnetic flux concentrates in the longitudinal direction at the teeth portion of the iron core. In a split iron core, the magnetization direction of all teeth can be aligned with the rolling direction of a steel plate having excellent magnetic properties (hereinafter also simply referred to as “L direction”), so that the motor efficiency of a motor having a split iron core can be improved. It is important that the magnetic properties in the L direction are excellent. In addition, when the magnetization direction of the yoke portion of the iron core is aligned with the rolling perpendicular direction (hereinafter, also simply referred to as “T direction”) where the magnetic characteristics are not good, it is also important that the magnetic characteristics in the T direction are not bad.
[0012]
Further, in a small motor, the influence of the iron core space factor on the motor efficiency is large, and it is important to increase the iron core space factor. Furthermore, when processing core pieces, the number of punches in the core is higher than in the case of generators and large motors, and the shape of the core that is punched out is more complex than that for transformer cores. Excellent workability is also required.
[0013]
Unidirectional electrical steel sheets have excellent magnetic properties in the L direction. However, the magnetic flux density (B 50 ) Is extremely inferior at around 1.55T, and the steel is hard with a high Si content, and a hard oxide film mainly having forsterite between the steel sheet substrate and the insulating film has a thickness of 3 μm to 10 μm. Therefore, there is a problem that punchability is not good and the space factor is low. In addition, decarburization annealing and secondary recrystallization annealing at a high temperature exceeding 1000 ° C. are required at the time of production, and the production cost is high. Accordingly, the unidirectional electrical steel sheet is not preferable as a material for a small motor having a split iron core.
[0014]
A product obtained by the method disclosed in Japanese Patent Application Laid-Open No. 5-70833 has a high Si content and is not good as a core material for a small motor. In addition, since the secondary recrystallization is performed by continuous annealing for a short time during the production, the magnetic characteristic fluctuation is likely to be large, and the decarburization annealing is included as an essential process, so that the cost is not necessarily reduced. In addition, in the case of continuous annealing for a short time, fine MnS and / or MnSe precipitates used as inhibitors may remain in the product and impair magnetic properties.
[0015]
The product obtained by the method disclosed in Japanese Patent Application Laid-Open No. 7-18334 has a high Si and Mn content, and is not sufficiently punchable as a core material for a small motor, and contains a large amount of an expensive Mn source. Therefore, there is also a problem that the manufacturing cost is high.
[0016]
As described above, the desired magnetic property balance in the L direction and the T direction, which is suitable for improving the motor efficiency, particularly for the small motor having a split iron core, and the production efficiency at the time of punching of the iron core piece are not hindered. An electrical steel sheet that satisfies such moderate hardness at the same time has not yet been disclosed.
[0017]
The object of the present invention is to solve these problems. The magnetic properties in the L direction are significantly better than those of conventional non-oriented electrical steel plates, and the magnetic properties in the T direction are better than those of unidirectional electrical steel plates. In addition, it is an object of the present invention to provide an electromagnetic steel sheet excellent in punchability, particularly suitable for improving the efficiency of a small motor having a split iron core, and a method for manufacturing the same.
[0018]
[Means for Solving the Problems]
The present inventors earnestly researched the relationship between the magnetic properties of the electromagnetic steel sheet and the other desirable steel sheet properties with respect to the energy conversion efficiency of a small motor using a split core punched with the magnetization direction of the teeth aligned with the L direction of the electromagnetic steel sheet. Advanced. Furthermore, research on the manufacturing method of such a steel plate was repeated. As a result, the following new findings were obtained. The energy conversion efficiency referred to in the present invention means the ratio of the output energy of the motor to the input energy ([output energy] / [input energy]), and is also simply referred to as “motor efficiency”.
[0019]
a. When the motor is operated, a magnetic field with a high magnetic field acts on the teeth portion of the iron core. Therefore, the magnetic characteristics of the electromagnetic steel sheet as the iron core material at a high magnetic field greatly affect the motor efficiency. In the case of a motor using a split iron core as described above, B in the L direction of the electromagnetic steel sheet 50 The motor efficiency is remarkably improved when the value is 1.85 T or more. Also, B in the T direction of the iron core material 50 In the case of less than 1.58T, the effect of improving the motor efficiency was not obtained.
[0020]
Furthermore, in order to increase the production efficiency at the time of punching in a complicated shape, it is important to set the hardness of the steel material to an appropriate range, and it is possible to suppress the hard oxide film that is easily generated during the manufacture of electrical steel sheets. Insulating film optimization was also effective.
[0021]
b. The magnetic properties of the electrical steel sheet are Goss expressed by Miller index {110} <001> while the growth of grains in many directions is suppressed by precipitates called inhibitors during secondary recrystallization annealing. It is greatly influenced by the texture formed by the selective growth of orientational crystal grains.
[0022]
In conventional unidirectional electrical steel sheets, the effect of inhibiting the growth of crystal grains by an inhibitor is extremely strong, and secondary recrystallization occurs with a very high degree of integration in the Goss orientation. The magnetic properties of the battery deteriorate extremely.
[0023]
On the other hand, after cold rolling a hot-rolled steel sheet having a chemical composition in which the content of Si, Al, N, etc. is limited to a specific range with ultra-low carbon, it is annealed under specific conditions, thereby causing the conventional direction. Secondary recrystallization annealing with a weaker inhibitor effect than in the case of a magnetic steel sheet is possible, thereby improving the balance of magnetic properties in the L direction and the T direction by optimizing the degree of integration of the Goss direction, as described above. Electrical steel sheets can be easily manufactured. According to this method, an electromagnetic steel sheet having a preferable hardness can be produced with a low content of alloys such as Si and Mn.
[0024]
The present invention has been completed on the basis of these findings, and the gist of the invention resides in the electrical steel sheet described in (1) and (2) below and the manufacturing method described in (3).
[0025]
(1) Chemical composition is% by weight, C: 0.010% or less, Si: 1.0% or more, less than 3.0%, Mn : 0 . 80% Less than , P : 0 . 10% Less than , S: 0.030% or less, sol. Insulating film containing a resin containing Al: 0.020% or less, N: 0.010% or less, the balance being Fe and inevitable impurities, and having a thickness of 0.1 μm to 0.5 μm Both Magnetic steel sheet provided on the surface, and magnetic flux density B in the rolling direction 50 The electrical steel sheet is characterized by having a Vickers hardness of 100 or more and less than 180.
[0026]
(2) The electrical steel sheet according to (1) above, wherein the thickness of the oxide film between the steel sheet substrate and the insulating film is 1 μm or less.
[0027]
(3) Chemical composition in weight%, C: 0.010% or less, Si: 1.0 or more, less than 3.0%, Mn : 0 . 80% Less than , P : 0 . 10% Less than , S: 0.030% or less, sol. A steel slab containing Al: 0.003-0.020%, N: 0.001-0.010%, the balance being Fe and unavoidable impurities is hot-rolled, cold-rolled, 860-600 Heating to 980 ° C. to perform primary recrystallization annealing, heating to 750 ° C. or more and Ac1 transformation point or less in an atmosphere containing nitrogen content of 5% by volume or less and the balance being inert gas except hydrogen gas and / or nitrogen Then, after the secondary recrystallization annealing, an insulating film containing a resin is applied, and the method for producing an electrical steel sheet according to the above (1) or (2).
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. In addition, the% display of the chemical composition described below means weight%.
[0029]
Chemical composition of steel:
C: Since it will have a bad influence on iron loss if it remains in a product, it is so preferable that it is few. If the C content is 0.010% or less, the adverse effect on the magnetic properties is small, so the C content has an upper limit of 0.010%. Preferably it is 0.005% or less.
[0030]
Si: It has the effect of increasing the electrical resistance of steel, reducing eddy current loss and reducing iron loss. When the Si content is less than 1.0%, the low iron loss intended by the present invention cannot be obtained, so Si is contained at 1.0% or more. Preferably it is 1.1% or more.
[0031]
On the other hand, when Si is excessively contained, the saturation magnetic flux density is remarkably lowered, and it is difficult to downsize the iron core. Moreover, a steel plate becomes excessively hard and punchability is impaired. Therefore, the Si content is less than 3.0%. Preferably it is 2.8% or less, More preferably, it is 2.0% or less, More preferably, it is 1.8% or less.
[0032]
Mn: The secondary recrystallization behavior of the steel of the present invention is not affected so much and the magnetic property has little influence on the anisotropy. Therefore, Mn is not an essential element, but Mn has the actions of increasing the electrical resistance of the steel, reducing the iron loss, hardening the steel and improving the punchability, and is included to obtain these effects. Also good. In order to obtain these effects, Mn should be contained in an amount of 0.05% or more, more preferably more than 0.10%. If the Mn content exceeds 0.8%, the saturation magnetic flux density is decreased, the hardness of the steel material is increased, the punchability is deteriorated, and the production cost is increased. Therefore, even when Mn is contained, the upper limit is preferably 0.80%. More preferably, it is 0.70% or less.
[0033]
P: Although it is not an essential element because it has little influence on magnetic properties, it has an effect of improving the punchability by hardening steel, so it may be contained in a range of 0.10% or less. If the P content exceeds 0.10%, the steel becomes brittle and breaks easily during cold rolling. Therefore, even when P is contained, the upper limit is preferably 0.10%.
[0034]
S: Since it combines with Mn to become MnS and impairs the magnetic properties of the steel, the smaller the S, the better, 0.030% or less, more preferably 0.015% or less, and still more preferably less than 0.005%. Good.
[0035]
sol. Al: Since it is not an essential element in the electrical steel sheet as a product, it may not be contained in the electrical steel sheet as a product. However, sol. Since Al is an element that forms AlN, which is an important inhibitor for causing good secondary recrystallization in the production process, and (Al, Si) N, it is sol. It is preferable to contain 0.003% or more of Al. Preferably it is 0.005% or more.
[0036]
sol. When the Al content exceeds 0.020%, the inhibitor becomes excessive and the dispersion state becomes inappropriate, and the secondary recrystallization becomes unstable. Therefore, the sol. The Al content is preferably 0.020% or less. Preferably it is 0.018% or less. The sol. Contained in the steel before rolling. Al may decrease during annealing, but may remain in the steel as it is. Therefore, the sol. Al content is 0.020% or less.
[0037]
N: Since it is not an essential element in the electrical steel sheet as a product, it does not need to be contained in the electrical steel sheet as a product. However, since N is an element necessary for forming a nitride as an inhibitor, it is preferable to contain 0.001% or more of N in the steel before rolling. Preferably it is 0.002% or more. Further, if the N content exceeds 0.010%, the inhibitor effect is saturated, so the N content in the steel before rolling is preferably 0.010% or less. Preferably it is 0.008% or less. N contained in the steel before rolling may decrease during annealing, but may remain in the steel as it is. Therefore, the N content of the electrical steel sheet as a product is 0.010% or less.
The balance is Fe and inevitable impurities.
[0038]
Magnetic properties:
In order to improve motor efficiency, the magnetic steel sheet of the present invention has a magnetic flux density in the L direction measured in accordance with JIS-C-2550 defined by B. 50 And 1.85T or more. Preferably it is 1.88T or more. B in T direction 50 Is preferably 1.59 T or more. More preferably B in the T direction 50 Is preferably 1.60 T or more.
[0039]
The motor efficiency here means the ratio of the output energy of the motor to the input energy ([output energy] / [input energy]). Input energy is calculated from voltage and current applied to the motor, and output energy is calculated from torque and rotation speed.
[0040]
Insulation film:
The electrical steel sheet of the present invention is generally used for non-oriented electrical steel sheets on at least one side of the electrical steel sheets in order to maintain the punchability of the electrical steel sheets and to ensure insulation between the laminated core pieces. An insulating film containing a known resin and an inorganic component is provided. Examples of the insulating film include a film made of dichromate-boric acid-resin, a film made of phosphate-resin, and a film made of silica-resin.
[0041]
As the resin, acrylic resin, acrylic styrene resin, acrylic silicon resin, silicon resin, polyester resin, epoxy resin, fluorine resin, and the like can be used. In order to improve coatability (roll coat property), an emulsion type resin is preferred.
[0042]
The composition content of the insulating film may be a ratio with respect to the film weight after drying, and it may be inorganic component: 50 to 99%, resin: 1 to 50%. You may contain pigments, such as an alumina, a zirconia, and a titania, as structural substances other than the above of an insulating film.
[0043]
If the insulating film is too thin, the insulation is insufficient and the iron loss increases, so the thickness is 0.1 μm or more. When the thickness of the insulating film exceeds 0.5 μm, the space factor decreases, the magnetic flux density per effective cross-sectional area decreases, and the motor efficiency decreases. In order to prevent this, the thickness of the insulating film is 0.5 μm or less. Preferably it is 0.4 micrometer or less. The insulating film is preferably provided on both sides of the steel plate, but it may be provided on only one side.
[0044]
Oxide film:
In order to improve the magnetic flux density in the L direction of the electrical steel sheet of the present invention, sufficient secondary recrystallization is performed using a nucleus (Goss nucleus) having a <001> axis in the L direction of the steel sheet before annealing. Therefore, secondary recrystallization annealing is performed not by continuous annealing, which is generally used for the production of non-oriented electrical steel sheets, but by a box annealing method that can anneal steel sheets at high temperatures for a long time. It is good. An annealing separator for preventing seizure is applied to the steel plate before the box annealing and is removed after the annealing, but an oxide film that is difficult to remove may remain on the steel plate surface.
[0045]
If the oxide film becomes excessively thick, the continuous punchability is impaired, and the space factor is lowered, and particularly the efficiency of a small motor is greatly impaired. Therefore, the thickness of the oxide film is preferably 1 μm or less, more preferably 0.4 μm or less.
[0046]
Hardness:
When the steel plate is too hard, the die wear is remarkably deteriorated when the iron core is punched, and the product's fracture surface property and flat shape are deteriorated. Further, when the expandable iron core is formed into an annular shape, tensile deformation is applied to the outer periphery of the yoke portion, and therefore the magnetic steel sheet needs to have ductility enough to withstand this. For this reason, the electrical steel sheet of the present invention needs to be less than 180 in terms of Vickers hardness (hereinafter simply referred to as “HV”) at a test load of 1 kg. Preferably, HV is 175 or less.
[0047]
If the steel plate is too soft, the punched surface properties deteriorate and the sagging increases. In order to avoid this, the hardness (HV) of the steel sheet needs to be 100 or more. Preferably it is 110 or more.
[0048]
There is a certain relationship between the hardness and chemical composition of the electrical steel sheet in the annealed state. For example, a general non-oriented electrical steel sheet containing Si: 3.3%, Al: 0.6%, Mn: 0.15% is HV: about 200, general unidirectional containing 3% Si. The HV of the electrical steel sheet is about 190.
[0049]
Magnetic steel sheet thickness:
The thickness of the electrical steel sheet is not particularly limited, but is preferably 0.20 mm or more in order to ensure the productivity at the time of punching or assembling. More preferably, it is 0.35 mm or more. If the thickness is excessively increased, the iron loss increases and the motor efficiency decreases, so the thickness is preferably 1.0 mm or less, more preferably 0.65 mm or less.
[0050]
Production method:
The steel plate of the present invention is preferably produced by the following method.
Steel having the above chemical composition (however, steel containing 0.003% or more of sol.Al and 0.001% or more of N) is melted in a converter, electric furnace or the like, and vacuum if necessary. The molten steel that has been subjected to treatment such as degassing is continuously cast, or it is made into a steel ingot and then rolled into a slab, which is then hot-rolled.
[0051]
The conditions for hot rolling are not particularly limited, but when slab heating is performed prior to hot rolling, the temperature is preferably 1050 to 1270 ° C. If the temperature of the slab after continuous casting or after the partial rolling is sufficiently high, it may be directly hot-rolled without performing slab heating. The finishing temperature in the hot rolling is preferably 700 to 950 ° C, and the winding temperature is preferably 450 to 800 ° C.
[0052]
After hot rolling, pickling according to a conventional method, and cold rolling as it is is preferable because it is economical, but hot rolling annealing may be performed before or after pickling. In the case of hot-rolled sheet annealing, the annealing temperature is preferably 600 ° C. or more and less than 800 ° C. for the box annealing method, and 800 ° C. or more and less than 950 ° C. for the continuous annealing method.
[0053]
For cold rolling, a method of cold rolling to the thickness of the product by one cold rolling (one cold rolling method) is preferable because it is economical, but it is performed by two cold rollings with intermediate annealing interposed therebetween. The method (twice cold rolling method) may be used.
[0054]
The rolling reduction of cold rolling is not particularly limited, but when it is less than 65%, secondary recrystallization may become unstable, so it is preferably set to 65% or more. This is because if it is less than 65%, a primary recrystallized texture having a strong {111} orientation suitable for growing goth-oriented crystal grains during secondary recrystallization cannot be formed. More preferably, it is 70% or more.
[0055]
When the cold rolling reduction ratio exceeds 85%, the Goth orientation of the primary recrystallization texture decreases and secondary recrystallization may become unstable. Therefore, the reduction ratio is preferably 85% or less. More preferably, it is 83% or less. In the case of the two cold rolling method, the total rolling reduction from the hot rolled sheet to the thickness of the final product should be in the above range.
[0056]
The primary recrystallization annealing temperature is in the range of 860 to 980 ° C. When the annealing temperature is less than 860 ° C., the primary recrystallization grain size is small, and secondary recrystallization accumulated in the Goth orientation does not occur. Preferably it is 880 degreeC or more. When the annealing temperature exceeds 980 ° C., the primary recrystallization grain size becomes too large, and secondary recrystallization hardly occurs during the secondary recrystallization annealing in the next step. Preferably it is 960 degrees C or less.
[0057]
The annealing time (soaking time) is preferably 5 seconds or more and 10 minutes or less. When the annealing time is less than 5 seconds, the primary recrystallization grain size varies in the steel sheet, and stable secondary recrystallization hardly occurs. On the other hand, if it exceeds 10 minutes, the effect of suppressing variation in the primary recrystallized grain size is saturated, which is economically meaningless.
[0058]
The heating rate to the primary recrystallization annealing temperature is preferably a rapid heating of 1 ° C./second or more in order to cause stable secondary recrystallization by secondary recrystallization annealing described later. For this purpose, it is preferable to perform annealing by a continuous annealing method.
[0059]
The secondary recrystallization annealing temperature is set to 750 ° C. or higher and Ac1 transformation point or lower. The purpose of the secondary recrystallization annealing is to obtain a crystal structure having an appropriate degree of Goss orientation accumulation. Therefore, it is important to appropriately control the inhibitor strength in the temperature range where secondary recrystallization occurs.
[0060]
When the secondary recrystallization annealing temperature is less than 750 ° C., the inhibitor effect is too strong and secondary recrystallization does not occur. Preferably it is 800 degreeC or more. If the secondary recrystallization annealing temperature exceeds the Ac1 transformation point, an austenite transformation occurs, and the inhibitor effect also weakens, so that secondary recrystallization accumulated in the Goth orientation does not occur. Preferably it is 950 degrees C or less, More preferably, 900 degrees C or less is good.
[0061]
The annealing time for secondary recrystallization annealing is preferably 4 to 100 hours. If the annealing time is less than 4 hours, the secondary recrystallization may not develop uniformly and sufficiently over the entire length of the coil. More preferably 8 hours or more. Secondary recrystallization is sufficiently completed within 100 hours. More preferably, it is 80 hours or less.
[0062]
The atmosphere of the secondary recrystallization annealing is an atmosphere in which the nitrogen content is 5% by volume or less and the balance is composed of an inert gas excluding hydrogen gas and / or nitrogen. When the nitrogen content exceeds 5% by volume, nitriding from the atmospheric gas to the steel sheet occurs, the inhibitor effect becomes strong, and secondary recrystallization with an excessively high degree of accumulation in the Goth orientation occurs. In this case, the magnetic characteristics in the L direction are good, but those in the T direction are deteriorated, and a desired balance of magnetic characteristics cannot be obtained. Preferably, the nitrogen content is 3% by volume or less.
[0063]
The atmosphere gas composition other than nitrogen is preferably hydrogen gas. You may use 100% hydrogen gas (pure hydrogen atmosphere in an industrial sense). This is because a precipitate that becomes an inhibitor gradually coarsens with the progress of annealing and a denitrification reaction occurs in the temperature range of 750 to 950 ° C. in which secondary recrystallization occurs, resulting in a relatively weak inhibitor effect. This is because secondary recrystallization with a degree of accumulation in an appropriate Goss orientation occurs. Even in this case, a temperature range of less than 700 ° C. at which nitridation is unlikely to occur from the economical point of view may be 100% nitrogen gas or a mixed gas of hydrogen and nitrogen.
[0064]
Prior to the secondary recrystallization annealing, a known annealing separator may be applied to both or one side of the steel sheet in order to prevent seizure between the steel sheets. Examples of the coating method include a slurry coating method and a powder electrostatic coating method. In addition, an inorganic insulating coating may be applied to one or both sides of the steel plate to have the function of an annealing separator.
[0065]
As a process after secondary recrystallization annealing, as in the case of ordinary grain-oriented electrical steel sheets, after removing the annealing separator and performing planarization annealing by a known method if necessary, at least one of the above-mentioned inorganic components And an insulating film composition containing a resin are preferably applied by a known method such as spraying or dipping so that the dry film thickness is 0.1 to 0.5 μm, and dried by a known method.
[0066]
Since the magnetic steel sheet of the present invention has excellent magnetic properties and punchability, it is suitable not only for a motor having a split core but also for a transformer material such as an EI core.
[0067]
【Example】
Example 1
Steels having various chemical compositions shown in Table 1 were melted in a converter, vacuum degassed to adjust the components, and then continuously cast into slabs.
[0068]
[Table 1]
Figure 0003799878
[0069]
These slabs were hot-rolled to form a hot-rolled sheet having a thickness of 2.3 mm, pickled and descaled, and then cold-rolled to a thickness of 0.50 mm. Next, after heating to 900 ° C. at a heating rate of 15 ° C./second and holding for 30 seconds and then cooling, a primary recrystallization annealing is applied, and then an annealing separator mainly composed of alumina is applied, and an atmosphere of 100% by volume of hydrogen is applied. Heating rate: Secondary recrystallization annealing was performed by heating to 850 ° C. at 40 ° C./hour, holding for 24 hours, and cooling in the furnace.
[0070]
Thereafter, the annealing separator was removed, and continuous annealing for flattening was performed at 820 ° C. for 30 seconds. No oxide film was observed on the steel sheet surface after the continuous annealing. After flattening annealing, an insulating film composition containing 80% by weight of magnesium dichromate and boric acid and 20% by weight of acrylic emulsion resin is dried on both sides so that the dry film thickness is 0.4 μm. It was applied and dried to obtain electrical steel sheets having various magnetic properties.
[0071]
While measuring the hardness of these electrical steel sheets, B in the L and T directions 50 Was measured according to JIS-C2550. The Epstein specimen was not subjected to stress relief annealing, as was the case with general full process non-oriented electrical steel sheets.
[0072]
The punching performance of the steel plate is a square with a punched piece size of 15 mm, and a punching tool made of SKD11 with a punch and die clearance of 5% of the steel plate thickness and a commercially available punching oil is used, and the punching speed is 350 strokes. The number of punches until the punch height of the punched piece reaches 50 μm was evaluated by the following criteria, and the case where the number of punches was 1 million times or more was judged to be good.
[0073]
A: More than 2 million times,
○: 1 million times or more, less than 2 million times,
X: Less than 1 million times.
[0074]
Table 1 shows the performance of the obtained electrical steel sheet.
As can be seen from the results shown in Table 1, the steel whose chemical composition satisfies the conditions defined by the present invention had good magnetic properties and excellent punchability.
[0075]
(Example 2)
Among the steels listed in Table 1, slabs of steels a, g and i containing Si: 1.8% and Mn: around 0.6% were heated under the same conditions as described in Example 1. It was hot-rolled, pickled, cold-rolled, subjected to primary recrystallization annealing, applied with an annealing separator mainly composed of alumina, and subjected to secondary recrystallization annealing. Some coils were hot-rolled sheet annealed before pickling. Thereafter, the annealing separator is removed, flattening annealing is performed under the same conditions as described in Example 1, and the same insulating film composition is applied so as to have various dry film thicknesses, dried, and dried. An electromagnetic steel sheet was obtained. The hardness (HV) of the obtained electrical steel sheet was about 145. The magnetic flux density of these electromagnetic steel sheets was measured under the same conditions as described in Example 1.
[0076]
The space factor was measured in accordance with the method defined in JIS-C2550, and the evaluation was 98.5% or more as ◎, less than 98.5, 98.0% or more as ○, and less than 98% as ×.
[0077]
I-shaped segmented core pieces having the shape shown in FIG. 3 were punched from the obtained various electrical steel sheets. The teeth were punched so that the magnetization direction was parallel to the L direction of the electromagnetic steel sheet. Winding teeth, combining with ring-shaped yoke to make an I-type split iron core, using this 3-phase 4-pole motor with a permanent magnet on the rotor surface A magnet type motor was produced. As the motor efficiency of these motors, the ratio of the output energy to the input energy at 3600 rpm was investigated, and when this ratio was 84% or more, it was extremely good ()), less than 84%, and 83% or more was good (◯). , Less than 83% was evaluated as defective (x). Input energy was calculated from voltage and current applied to the motor, and output energy was calculated from torque and rotation speed.
The obtained results are shown in Table 2.
[0078]
[Table 2]
Figure 0003799878
[0079]
As can be seen from the results shown in Table 2, B in the L direction 50 The motor using the electromagnetic steel sheet with excellent space factor had excellent motor efficiency. In addition, as a result of measuring the driving torque by using a friction brake by winding a thread around a pulley with a radius of 10 mm for the motors of test numbers 1 and 6, test number 1 using an electromagnetic steel sheet that satisfies the conditions specified by the present invention is A torque increase of 3% was observed compared to test number 6.
[0080]
Example 3
A steel h slab containing 1.4% Si and 0.17% Mn shown in Table 1 was hot-rolled to obtain a hot-rolled coil having a thickness of 2.5 mm. This is pickled, cold-rolled to a thickness of 0.5 mm, and subjected to primary recrystallization annealing for 90 seconds in an atmosphere of 75 vol% hydrogen, 25 vol% nitrogen, and 50 ° C. dew point, and MgO is converted to dry solids A slurry containing 80% by weight in terms of dry solid content is 5 g / m. 2 After being coated on both sides and dried to obtain an annealing separator, secondary recrystallization annealing was performed in a hydrogen atmosphere at 880 ° C. for 48 hours. Thereafter, pickling with 50% 10% hydrochloric acid was performed to remove the annealing separator floating on the surface. At this time, about 3.2 μm of an oxide film mainly composed of forsterite remained on the surface of the steel plate. Thereafter, the steel sheet was immersed in 10% hydrofluoric acid at 40 ° C., the immersion time was changed variously to dissolve the oxide film, and the electrical steel sheet having oxide films with various thicknesses was obtained. Thereafter, annealing for the purpose of planarization was performed, and an insulating film having the same composition as described in Example 1 and a dry film thickness of 0.2 μm was applied.
[0081]
In addition, as a conventional example, Si: 3.2%, Mn: 0.10%, a commercially available one with a thickness of 0.35 mm having an inorganic film made of phosphoric acid and colloidal silica with a thickness of 3.0 μm on both sides. Oriented electrical steel sheet, Si: 2.0%, Mn: 0.20%, thickness on both sides: 0.35 μm of magnesium dichromate-boric acid-acrylic resin thickness: 0 A commercially available non-oriented electrical steel sheet of 50 mm was also used as a test material.
[0082]
Using these electromagnetic steel sheets, a three-phase four-pole surface magnet type motor having the same I-type split iron core as described in Example 2 was produced, and the motor efficiency was obtained under the same conditions as described in Example 2. investigated. Further, the punchability was investigated by the same method as described in Example 1.
The obtained results are shown in Table 3.
[0083]
[Table 3]
Figure 0003799878
[0084]
As can be seen from the results shown in Table 3, the punchability and motor efficiency were good when the thickness of the oxide film was 1.0 μm or less. Commercially available unidirectional electrical steel sheets have poor punchability, and commercially available non-oriented electrical steel sheets have poor motor efficiency.
[0085]
(Example 4)
The steel g slab described in Example 1 was heated to 1180 ° C. and hot-rolled at a finishing temperature of 860 ° C. to obtain a hot-rolled steel sheet having a thickness of 2.3 mm. The slab of steel h was heated to 1150 ° C. and hot-rolled at a finishing temperature of 840 ° C. and a winding temperature of 530 ° C. to obtain a hot rolled sheet having a thickness of 2.3 mm. The Ac1 transformation point was about 1000 ° C. for both steel g and steel h. These hot-rolled steel sheets were pickled, cold-rolled to a thickness of 0.50 mm, and subjected to primary recrystallization annealing that was continuously annealed at various temperatures. As for the heating rate to the annealing temperature, the heating rate of steel g was 10 ° C./second, and the heating rate of steel h was 15 ° C./second. Thereafter, after applying an annealing separator mainly composed of alumina, it was heated to various temperatures in a hydrogen atmosphere or a hydrogen-nitrogen mixed atmosphere, and subjected to secondary recrystallization annealing by a box annealing method. Thereafter, the annealing separator was removed, and continuous annealing for flattening was performed at 820 ° C. for 30 seconds, and an insulating coating was applied. The hardness (HV) of these steel plates was around 145 for steel g and around 124 for steel h. The magnetic properties in the L direction and T direction of these steel plates were measured in the same manner as described in Example 1. Table 4 shows the annealing conditions and the magnetic properties of the obtained steel sheet.
[0086]
[Table 4]
Figure 0003799878
[0087]
As shown in Table 4, test numbers 32, 35, 36, 37 and 39 in which the annealing conditions were within the preferred range gave good magnetic properties. On the other hand, in the case where the conditions of primary recrystallization annealing or secondary recrystallization annealing were not in the preferred range, the characteristics in the L direction were not good because stable secondary recrystallization did not occur. In test number 40 where the N concentration in the secondary recrystallization annealing atmosphere was high, B in the L direction 50 Was excellent but B in the T direction 50 Was not good.
[0088]
【The invention's effect】
The magnetic steel sheet of the present invention is an effective steel sheet for improving the energy conversion efficiency of a motor or a transformer because the magnetic properties in the L direction are significantly better than conventional non-oriented electrical steel sheets. Since the electromagnetic steel sheet of the present invention has excellent punchability, it is possible to improve the efficiency of a small motor equipped with a split iron core with high productivity.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of an iron core piece that is a stator iron core of a motor and is stamped as a unit from an electromagnetic steel sheet.
FIG. 2 is a conceptual diagram illustrating an example of a split core piece configured by combining iron pieces in which a yoke part and a tooth part are arranged in a T shape.
FIG. 3 is a conceptual diagram showing an example of a split-type core piece composed of a ring-shaped yoke portion and an I-shaped tooth portion.
FIG. 4A is a conceptual diagram showing an example of a core piece obtained by punching a yoke portion of a plurality of T-type core pieces in a straight line.
(B) is a conceptual diagram of the iron core obtained by winding the teeth of the developed split core piece and bending the whole into an annular shape.
[Explanation of symbols]
1: Rotor, 2: Winding, 3: Yoke part, 4: Teeth part, 5: Magnetic flux, 6: T-type iron core piece, 7: Ring-shaped yoke part, 8: I-type tooth part, 9: T-type Iron core piece, 10: York portion of T-type core piece, 11: Teeth portion of T-type core piece.
[Explanation of symbols]

Claims (3)

化学組成が重量%で、C:0.010%以下、Si:1.0%以上、3.0%未満、Mn:0.80%以下、P:0.10%以下、S:0.030%以下、sol.Al:0.020%以下、N:0.010%以下を含有し、残部がFeおよび不可避的不純物からなり、厚さが0.1μm以上0.5μm以下である樹脂を含有した絶縁皮膜を面に備えた電磁鋼板であって、圧延方向の磁束密度B50が1.85T以上、ビッカース硬さが100以上、180未満であることを特徴とする電磁鋼板。The chemical composition is% by weight, C: 0.010% or less, Si: 1.0% or more, less than 3.0%, Mn : 0 . 80% or less , P : 0 . 10% or less , S: 0.030% or less, sol. Al: 0.020% or less, N: containing 0.010% or less, the balance being Fe and unavoidable impurities, the thickness was contained resin is 0.1μm or more 0.5μm or less insulation coating both A magnetic steel sheet provided on a surface, wherein a magnetic flux density B 50 in a rolling direction is 1.85 T or more, and a Vickers hardness is 100 or more and less than 180. 鋼板素地と絶縁皮膜との間の酸化皮膜の厚さが1μm以下であることを特徴とする請求項1に記載の電磁鋼板。The electrical steel sheet according to claim 1, wherein the thickness of the oxide film between the steel sheet substrate and the insulating film is 1 µm or less. 化学組成が重量%で、C:0.010%以下、Si:1.0以上、3.0%未満、Mn:0.80%以下、P:0.10%以下、S:0.030%以下、sol.Al:0.003〜0.020%、N:0.001〜0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼のスラブを熱間圧延し、冷間圧延し、860〜980℃に加熱して一次再結晶焼鈍を施し、窒素含有量が5体積%以下、残部が水素ガスおよび/または窒素を除く不活性ガスからなる雰囲気中で750℃以上、Ac1変態点以下に加熱して二次再結晶焼鈍した後、樹脂を含有する絶縁皮膜を施すことを特徴とする請求項1または2に記載の電磁鋼板の製造方法。The chemical composition is% by weight, C: 0.010% or less, Si: 1.0 or more, less than 3.0%, Mn : 0 . 80% or less , P : 0 . 10% or less , S: 0.030% or less, sol. A steel slab containing Al: 0.003-0.020%, N: 0.001-0.010%, the balance being Fe and unavoidable impurities is hot-rolled, cold-rolled, 860-600 Heating to 980 ° C. to perform primary recrystallization annealing, heating to 750 ° C. or more and Ac1 transformation point or less in an atmosphere containing nitrogen content of 5% by volume or less and the balance being inert gas except hydrogen gas and / or nitrogen Then, after the secondary recrystallization annealing, an insulating film containing a resin is applied, and the method for producing an electrical steel sheet according to claim 1 or 2.
JP18939999A 1998-07-16 1999-07-02 Electrical steel sheet and method for manufacturing the same Expired - Fee Related JP3799878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18939999A JP3799878B2 (en) 1998-07-16 1999-07-02 Electrical steel sheet and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20200298 1998-07-16
JP10-202002 1998-07-16
JP18939999A JP3799878B2 (en) 1998-07-16 1999-07-02 Electrical steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000087139A JP2000087139A (en) 2000-03-28
JP3799878B2 true JP3799878B2 (en) 2006-07-19

Family

ID=26505452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18939999A Expired - Fee Related JP3799878B2 (en) 1998-07-16 1999-07-02 Electrical steel sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3799878B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60231581D1 (en) 2001-01-19 2009-04-30 Jfe Steel Corp CORRUGATED ELECTOMAGNETIC STEEL PLATE WITH OUTSTANDING MAGNETIC PROPERTIES WITHOUT UNDERGROUND FILM WITH FORSTERIT AS A PRIMARY COMPONENT AND METHOD OF MANUFACTURING THEREOF.
JP4284882B2 (en) * 2001-04-06 2009-06-24 Jfeスチール株式会社 Split iron core
JP4268344B2 (en) * 2001-04-12 2009-05-27 Jfeスチール株式会社 Electrical steel sheet with insulating coating that is excellent in workability
JP5092352B2 (en) * 2006-03-28 2012-12-05 Jfeスチール株式会社 Non-oriented electrical steel sheet
JP2014198874A (en) 2013-03-29 2014-10-23 株式会社神戸製鋼所 Steel material excellent in corrosion resistance and magnetic properties and method of producing the same
JP5979129B2 (en) * 2013-12-24 2016-08-24 Jfeスチール株式会社 Manufacturing method of motor core
JP5979128B2 (en) * 2013-12-24 2016-08-24 Jfeスチール株式会社 Motor core and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000087139A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
JP5437476B2 (en) Method for producing non-oriented electrical steel sheet
WO2019017426A1 (en) Non-oriented electromagnetic steel plate
US11802319B2 (en) Double oriented electrical steel sheet and method for manufacturing same
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JPWO2015199211A1 (en) Electrical steel sheet
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP5447167B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4265166B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JP4277432B2 (en) Low magnetostrictive bi-directional electrical steel sheet
JP2012036455A (en) Non-oriented magnetic steel sheet and production method therefor
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2004183002A (en) Non-oriented silicon steel sheet for automobile, and its production method
JP5671871B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4613414B2 (en) Electrical steel sheet for motor core and method for manufacturing the same
JP2910508B2 (en) Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics
JP6623795B2 (en) Electrical steel sheet and method for manufacturing electrical steel sheet
JP2005060811A (en) High-tensile non-oriented magnetic steel sheet and its production method
JP3835216B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
US20220106657A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH0860311A (en) Thin nonoriented silicon steel sheet reduced in iron loss and its production
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JP7159592B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Ref document number: 3799878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees