JP2910508B2 - Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics - Google Patents

Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics

Info

Publication number
JP2910508B2
JP2910508B2 JP5147100A JP14710093A JP2910508B2 JP 2910508 B2 JP2910508 B2 JP 2910508B2 JP 5147100 A JP5147100 A JP 5147100A JP 14710093 A JP14710093 A JP 14710093A JP 2910508 B2 JP2910508 B2 JP 2910508B2
Authority
JP
Japan
Prior art keywords
nitride
containing layer
steel sheet
internal oxide
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5147100A
Other languages
Japanese (ja)
Other versions
JPH06330260A (en
Inventor
善彦 尾田
邦和 冨田
俊治 飯塚
智良 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP5147100A priority Critical patent/JP2910508B2/en
Publication of JPH06330260A publication Critical patent/JPH06330260A/en
Application granted granted Critical
Publication of JP2910508B2 publication Critical patent/JP2910508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、周波数200Hz以
上、5kHz以下で使用される鉄損特性に優れた高周波
用無方向性電磁鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency non-oriented electrical steel sheet having excellent iron loss characteristics used at a frequency of 200 Hz to 5 kHz.

【従来の技術】無方向性電磁鋼板は電動機のローターや
ステーターの材料として用いられている。近年、電動機
の小型化、高効率化に伴い電動機を高周波域で使用する
ことが多くなっているが、高周波域で電動機を使用する
と渦電流損の増大に伴う全鉄損の増大が問題となり、こ
のため渦電流損の低減が大きな課題となる。渦電流損の
低減には、Si+Al量を多くして鋼板の固有抵抗を高
めたり、鋼板の板厚を薄くすることが有効である。
2. Description of the Related Art Non-oriented electrical steel sheets are used as materials for rotors and stators of electric motors. In recent years, motors have been increasingly used in high frequency ranges as motors have become smaller and more efficient.However, when motors are used in high frequency ranges, an increase in total iron loss due to an increase in eddy current loss has become a problem. For this reason, reduction of eddy current loss is a major issue. In order to reduce the eddy current loss, it is effective to increase the Si + Al amount to increase the specific resistance of the steel sheet or to reduce the thickness of the steel sheet.

【0002】[0002]

【発明が解決しようとする課題】固有抵抗を高めた鋼板
としては、例えば特開平2−267246号に6.5%
Si鋼板が開示されているが、Si量が多くなると材料
が脆くなるため冷間加工性が低下し、加えて、飽和磁束
密度の低下に伴い高磁場での磁束密度(一般にB50で代
表される)も低下するという問題がある。また、板厚を
極端に薄くした鋼板としては所謂超急冷凝固法により製
造される薄鋼帯が知られているが、この薄鋼帯は高周波
域における鉄損は非常に低くなるものの、表面性状が悪
く、また、所定の磁束密度を得るために積層枚数が多く
なるため作業能率が低下する等の問題がある。また、幅
広のものは形状が極端に悪くなるため、板幅も20〜3
0cm程度が限界となる。
As a steel sheet having an increased specific resistance, for example, Japanese Patent Application Laid-Open No. 2-267246 discloses that
Although Si steel sheet is disclosed, reduces the cold workability for the material when the Si content is increased becomes brittle, in addition, is represented by magnetic flux density (typically B 50 at high magnetic field with decreasing saturation magnetic flux density ) Also decreases. Further, as a steel sheet having an extremely thin sheet thickness, a thin steel strip manufactured by a so-called ultra-quick solidification method is known. This thin steel strip has extremely low iron loss in a high frequency range, but has a surface property. In addition, there is a problem that the working efficiency is lowered because the number of laminations is increased in order to obtain a predetermined magnetic flux density. In addition, since the shape of a wide one becomes extremely bad, the plate width is also 20 to 3.
The limit is about 0 cm.

【0003】以上のような固有抵抗、板厚以外に高周波
鉄損に影響を及ぼす因子としては、鋼板の結晶粒径があ
る。一般に、高周波用途における最適粒径は商用周波数
の場合よりも小さいと言われており、例えば、特開平3
−223445号には周波数400Hz以上での低鉄損
を狙いとする、結晶粒径が5〜60μmの高周波用無方
向性電磁鋼板が開示されている。しかしながら、本発明
者らによる実験によれば、この無方向性電磁鋼板でも高
周波域での十分な低鉄損化は達成されない。また、この
無方向性電磁鋼板は本発明のような板厚方向での窒化
物、内部酸化物の分布の適正化を行っておらず、本発明
者らが鋼板板厚方向での窒化物、内部酸化物の分布を最
適化して同様の実験を行ったところ、700Hzでの最
適結晶粒径は70μm程度となり、上記提案よりも最適
粒径が粗粒側となることが判明した。また、この場合の
高周波鉄損は上記提案の鋼板よりもさらに低減すること
も判った。
[0003] In addition to the specific resistance and the sheet thickness as described above, another factor that affects high-frequency iron loss is the crystal grain size of the steel sheet. Generally, it is said that the optimum particle size for high frequency applications is smaller than that for commercial frequencies.
No. 223445 discloses a high-frequency non-oriented electrical steel sheet having a crystal grain size of 5 to 60 μm for low iron loss at a frequency of 400 Hz or more. However, according to experiments by the present inventors, even with this non-oriented electrical steel sheet, sufficient reduction of iron loss in a high frequency range is not achieved. Also, this non-oriented electrical steel sheet does not optimize the distribution of nitrides and internal oxides in the sheet thickness direction as in the present invention. A similar experiment was conducted by optimizing the distribution of internal oxides. As a result, it was found that the optimum crystal grain size at 700 Hz was about 70 μm, and the optimum grain size was on the coarser side than the above proposal. It has also been found that the high-frequency iron loss in this case is further reduced as compared with the steel plate proposed above.

【0004】[0004]

【課題を解決するための手段】上述したように、従来の
高級電磁鋼板は板厚を薄くし或いは鋼板全体の固有抵抗
を高めることで高周波磁化領域での低鉄損化を図ってお
り、これらはいずれも鋼板中の渦電流を流れにくくする
ことを狙いとしている。一方、高周波磁化においては表
皮効果のために渦電流密度の分布は鋼板板厚方向で均一
ではなく、渦電流密度は鋼板表層部で高く、鋼板内部で
は急激に減少する。このため鋼板の固有抵抗を板表層部
で高くすれば、従来のように板厚を薄くしたり鋼板全体
の固有抵抗を高めたりすることなく、渦電流を効果的に
低減させることができる。本発明者はこの点に着目し、
高周波磁化領域での低鉄損化を可能とする手段について
検討を行い、その結果、鋼板板厚方向での内部酸化物、
窒化物の生成状態を適切に制御することにより鋼板板厚
方向の固有抵抗を最適化できること、さらに、このよう
に鋼板板厚方向の内部酸化物、窒化物の生成状態を適正
化した場合、高周波磁化領域での低鉄損化に最適な結晶
粒径範囲が粗粒側に存在することを見出した。したがっ
て、鋼板板厚方向での内部酸化物、窒化物の生成状態と
結晶粒径を適切に制御することにより、高磁場での磁束
密度を低下させることなく、高周波鉄損を低減させるこ
とが可能となる。本発明はこのような知見に基づきなさ
れたもので、その特徴とする構成は以下の通りである。
As described above, the conventional high-grade electromagnetic steel sheets are designed to reduce iron loss in the high-frequency magnetization region by reducing the thickness or increasing the specific resistance of the entire steel sheet. Both aim to make it difficult for eddy currents in the steel sheet to flow. On the other hand, in high-frequency magnetization, the distribution of the eddy current density is not uniform in the thickness direction of the steel sheet due to the skin effect, and the eddy current density is high in the surface layer portion of the steel sheet and rapidly decreases inside the steel sheet. Therefore, if the specific resistance of the steel sheet is increased in the surface layer portion of the steel sheet, the eddy current can be effectively reduced without reducing the sheet thickness or increasing the specific resistance of the entire steel sheet as in the related art. The inventor pays attention to this point,
We examined means to reduce iron loss in the high-frequency magnetization region, and as a result, internal oxide in the thickness direction of the steel sheet,
It is possible to optimize the specific resistance in the thickness direction of the steel sheet by appropriately controlling the state of formation of nitride, and furthermore, if the generation state of the internal oxide and nitride in the thickness direction of the steel sheet is optimized, It has been found that the optimum crystal grain size range for reducing iron loss in the magnetized region exists on the coarse grain side. Therefore, by appropriately controlling the state of formation of internal oxides and nitrides and the crystal grain size in the thickness direction of the steel sheet, it is possible to reduce high-frequency iron loss without reducing magnetic flux density in a high magnetic field. Becomes The present invention has been made based on such knowledge, and the characteristic configuration thereof is as follows.

【0005】(1) SiとAlの合計量が1.7〜
4.5wt%、C:0.005wt%以下、Mn:0.
1〜1wt%、S:0.015wt%以下、P:0.2
wt%以下、下記により定義される窒化物含有層または
内部酸化物含有層若しくは窒化物−内部酸化物含有層以
外のN:0.005wt%以下、窒化物含有層または内
部酸化物含有層若しくは窒化物−内部酸化物含有層以外
のO:0.005wt%以下を含有し、残部Feおよび
不可避的不純物からなる鋼板であって、鋼板表層部にお
いて粒径0.1μm以上の窒化物または/および内部酸
化物が鋼板板面内での面積率で0.01%以上存在する
領域を窒化物含有層または内部酸化物含有層若しくは窒
化物−内部酸化物含有層と定義した時、窒化物含有層ま
たは内部酸化物含有層若しくは窒化物−内部酸化物含有
層が鋼板表層から下式を満足する深さx(mm)まで形
成され、 0.05t≦x≦0.15t 但し t:鋼板板厚(mm) 窒化物含有層または内部酸化物含有層若しくは窒化物−
内部酸化物含有層における窒化物または/および内部酸
化物の平均粒径が3μm以下であり、窒化物含有層また
は内部酸化物含有層若しくは窒化物−内部酸化物含有層
における粒径0.1μm以上の窒化物または/および内
部酸化物の板厚断面内での面積率Rが0.05〜0.2
0%であり、窒化物含有層または内部酸化物含有層若し
くは窒化物−内部酸化物含有層以外の領域において存在
する粒径0.1μm以上の窒化物および内部酸化物の板
厚断面内での面積率が0.01%未満であり、鋼板の平
均結晶粒径D(μm)が下式を満足する、周波数200
Hz以上、5kHz以下で使用される鉄損特性に優れた
高周波用無方向性電磁鋼板。
(1) The total amount of Si and Al is 1.7 to
4.5 wt%, C: 0.005 wt% or less, Mn: 0.
1-1 wt%, S: 0.015 wt% or less, P: 0.2
wt% or less, N other than the nitride-containing layer or internal oxide-containing layer or nitride-internal oxide-containing layer defined below: N: 0.005 wt% or less, nitride-containing layer or internal oxide-containing layer or nitride A steel sheet containing 0.005 wt% or less of O: other than the material-internal oxide-containing layer, the balance being Fe and unavoidable impurities, and having a particle diameter of 0.1 μm or more in the surface layer of the steel sheet and / or the inside. When a region where the oxide is present in an area ratio of 0.01% or more in the plane of the steel sheet is defined as a nitride-containing layer or an internal oxide-containing layer or a nitride-internal oxide-containing layer, a nitride-containing layer or An inner oxide-containing layer or a nitride-inner oxide-containing layer is formed from the surface of the steel sheet to a depth x (mm) that satisfies the following equation: 0.05t ≦ x ≦ 0.15t, where t: steel sheet thickness (mm) ) Nitride Yuso or inner oxide containing layer or nitride -
The average particle size of the nitride or / and internal oxide in the internal oxide-containing layer is 3 μm or less, and the particle size in the nitride-containing layer or internal oxide-containing layer or nitride-internal oxide-containing layer is 0.1 μm or more. The area ratio R of the nitride or / and internal oxide in the cross section of the plate thickness is 0.05 to 0.2
0%, and the nitride and internal oxide having a grain size of 0.1 μm or more existing in a region other than the nitride-containing layer, the internal oxide-containing layer, or the nitride-internal oxide-containing layer in the plate thickness cross section. The area ratio is less than 0.01%, and the average crystal grain size D (μm) of the steel sheet satisfies the following expression.
Non-oriented electrical steel sheet for high frequency use with excellent iron loss characteristics used in the frequency range of 5 Hz to 5 kHz.

【数2】 (Equation 2)

【0006】(2) 上記(1)の無方向性電磁鋼板に
おいて、板厚が0.1〜0.2mmである、周波数20
0Hz以上、5kHz以下で使用される鉄損特性に優れ
た高周波用無方向性電磁鋼板。
(2) In the non-oriented electrical steel sheet according to (1), the thickness is 0.1 to 0.2 mm and the frequency is 20
High-frequency non-oriented electrical steel sheet with excellent iron loss characteristics used at 0 Hz or more and 5 kHz or less.

【0007】[0007]

【作用】以下、本発明の詳細をその限定理由とともに説
明する。まず、鋼板の成分組成について説明する。Si
とAlは鋼板の固有抵抗を高めるのに有効な元素であ
り、これら元素の固有抵抗に対する寄与の程度はほぼ同
じである。このためSiとAlに関しては、Si+Al
量でその添加量を限定する。Si+Al量が1.7wt
%未満では鋼板の固有抵抗が小さいため鉄損が増大す
る。一方、Si+Al量が4.5wt%を超えると鋼板
が脆くなるため冷間圧延が困難となり、また、磁束密度
も低下する。このためSi+Al量は、1.7〜4.5
wt%とする。
The details of the present invention will be described below, together with the reasons for its limitation. First, the composition of the steel sheet will be described. Si
And Al are effective elements for increasing the specific resistance of the steel sheet, and the contribution of these elements to the specific resistance is almost the same. Therefore, regarding Si and Al, Si + Al
The amount is limited by the amount. The amount of Si + Al is 1.7wt
%, The iron loss increases because the specific resistance of the steel sheet is small. On the other hand, when the Si + Al content exceeds 4.5 wt%, the steel sheet becomes brittle, so that cold rolling becomes difficult, and the magnetic flux density also decreases. Therefore, the amount of Si + Al is 1.7 to 4.5.
wt%.

【0008】Cは、磁気時効の問題を生じるため極力低
減させることが望ましく、このため0.005wt%以
下とする。Mnは、熱間圧延時の赤熱脆性を防止するた
めに0.1wt%以上必要であるが、1%を超えて添加
すると磁気特性を劣化させるため、0.1〜1wt%と
する。Sは、磁気特性を劣化させるMnS等を形成する
ため、0.015wt%以下とする。Pは、鋼板の打抜
き性を改善するために有効な元素であるが、0.2wt
%を超えて添加すると磁束密度の低下を招くため、0.
2wt%以下とする。
C is desirably reduced as much as possible because it causes a problem of magnetic aging. Therefore, the content of C is set to 0.005 wt% or less. Mn is required to be 0.1 wt% or more in order to prevent red-hot brittleness during hot rolling. However, if added in excess of 1%, the magnetic properties deteriorate, so Mn is set to 0.1 to 1 wt%. S is set to 0.015 wt% or less in order to form MnS or the like that deteriorates magnetic properties. P is an element effective for improving the punching property of a steel sheet.
%, The magnetic flux density decreases.
2 wt% or less.

【0009】Nは、鋼板表層部でAlN等の窒化物を生
成するという観点からは本発明において有用な元素であ
るが、鋼板表層部以外で窒化物を生成すると磁気特性を
劣化させるので、鋼板表層部の窒化物含有層または内部
酸化物含有層若しくは窒化物−内部酸化物含有層以外の
Nは、0.005wt%以下に限定する。Oも、鋼板表
層部で内部酸化物を生成するという観点からは本発明に
おいて有用な元素であるが、鋼板表層部以外で内部酸化
物を生成すると磁気特性を劣化させるので、鋼板表層部
の窒化物含有層または内部酸化物層若しくは窒化物−内
部酸化物含有層以外のOは、0.005wt%以下に限
定する。なお、本発明では上記の成分組成に加えて、磁
気特性向上を目的としてSb,Sn,B,Cu,Zr等
の1種以上を適量添加することは何ら差し支えない。
[0009] N is an element useful in the present invention from the viewpoint of forming nitrides such as AlN in the surface layer of the steel sheet. However, the formation of nitride in a part other than the surface layer of the steel sheet deteriorates the magnetic properties. N in the surface layer other than the nitride-containing layer, the internal oxide-containing layer, or the nitride-internal oxide-containing layer is limited to 0.005 wt% or less. O is also an element useful in the present invention from the viewpoint of generating an internal oxide in the surface layer of the steel sheet, but the generation of the internal oxide in a region other than the surface layer of the steel sheet deteriorates the magnetic properties. O other than the material-containing layer or the internal oxide layer or the nitride-internal oxide-containing layer is limited to 0.005 wt% or less. In the present invention, in addition to the above-described component composition, it is possible to add an appropriate amount of one or more of Sb, Sn, B, Cu, Zr, and the like for the purpose of improving magnetic properties.

【0010】本発明では、上述した鋼板の成分組成の下
で、鋼板板厚方向での内部酸化物、窒化物の生成状態と
鋼板の平均結晶粒径を特定の範囲に限定するものであ
り、以下これらの限定理由について説明する。ここで、
以下に述べる試験ではSEMにより鋼板の断面内および
板面内の内部酸化物、窒化物を観察し、内部酸化物、窒
化物の粒径については、SEM像から得られた内部酸化
物、窒化物の円相当直径をもってそれらの粒径とし、ま
た、この粒径の平均値をもって平均粒径dとした。な
お、粒径が0.1μm未満の内部酸化物、窒化物は同定
不能であったため、内部酸化物、窒化物は0.1μm以
上のものについて測定の対象とした。したがって、以下
の説明において単に窒化物、内部酸化物という場合は、
いずれも粒径0.1μm以上のものを指すものとする。
また、内部酸化物含有層、窒化物含有層、窒化物−内部
酸化物含有層における内部酸化物、窒化物の板厚断面内
での面積率Rは、鋼板断面をSEM倍率:10,000
倍で観察して各層中の内部酸化物、窒化物の総面積を求
め、これを全視野面積で割ることにより求めた。また、
内部酸化物、窒化物の鋼板板面内での面積率は、鋼板を
所定の厚さまで減厚した後、SEM倍率:10,000
倍で鋼板板面をランダムに10視野観察して内部酸化
物、窒化物の総面積を求め、これを全視野面積で割るこ
とにより求めた。
According to the present invention, the formation state of internal oxides and nitrides in the thickness direction of the steel sheet and the average crystal grain size of the steel sheet are limited to specific ranges under the above-described composition of the steel sheet. Hereinafter, the reasons for these limitations will be described. here,
In the tests described below, the internal oxides and nitrides in the cross section and in the plane of the steel sheet were observed by SEM, and the particle diameters of the internal oxides and nitrides were determined using the internal oxides and nitrides obtained from the SEM images. The diameters of the circles are the particle diameters, and the average value of the particle diameters is the average particle diameter d. Since internal oxides and nitrides having a particle size of less than 0.1 μm could not be identified, internal oxides and nitrides having a particle size of 0.1 μm or more were measured. Therefore, in the following description, when simply referring to nitride or internal oxide,
In any case, the particle diameter is 0.1 μm or more.
The area ratio R of the internal oxide and nitride in the internal oxide-containing layer, the nitride-containing layer, and the nitride-internal oxide-containing layer in the cross section of the plate thickness was SEM magnification of the cross section of the steel plate: 10,000.
By observing at a magnification of 2, the total area of the internal oxides and nitrides in each layer was determined, and the total area was divided by the total viewing area. Also,
The area ratio of the internal oxides and nitrides in the plane of the steel sheet was determined by reducing the steel sheet to a predetermined thickness and then increasing the SEM magnification by 10,000.
The total surface area of the internal oxides and nitrides was determined by observing the steel plate surface randomly at 10 times at a magnification of 2 times, and the total area was determined by dividing the total area by the total view area.

【0011】本発明者らは内部酸化物、窒化物が鉄損お
よび磁束密度に及ぼす影響を調べるため、以下のような
実験を行った。3%Si−0.5%Al鋼の0.2mm
材であって、平均粒径が0.3μmのAl23を鋼板断
面内および板面内に均一に分布させた鋼板について、A
23の板厚断面内での面積率と高周波鉄損W122000
との関係を図1に示す。また、Al23の板厚断面内で
の面積率と磁束密度B50との関係を図2に示す。これら
によれば、Al23の板厚断面内での面積率が0.01
〜0.20%では、鋼板の固有抵抗の増大に起因する渦
電流損の低下により全鉄損が低下している。これに対
し、面積率が0.01%未満では固有抵抗の増大が僅か
であるために鉄損に変化はなく、一方、0.20%を超
えると固有抵抗の増大により渦電流損は低下するもの
の、Al23による磁壁のピンニング作用が大きくなる
ためにヒステリシス損の増大が顕著となり、その結果、
全鉄損が急激に増大する。一方、磁束密度B50は面積率
が0.01%までは変化しないが、0.01%を超える
と低下している。このような現象は、上記と同程度の平
均粒径のAlNを鋼板断面内および板面内に均一に分布
させた鋼板においても同様に認められた。以上のことか
ら、鋼板板厚方向にある程度の量の内部酸化物若しくは
窒化物を均一に分布させることは高周波鉄損の低下に有
効であるが、同時に磁束密度の低下も招くことが判る。
The present inventors conducted the following experiments to investigate the effects of internal oxides and nitrides on iron loss and magnetic flux density. 0.2mm of 3% Si-0.5% Al steel
A steel sheet, in which Al 2 O 3 having an average particle size of 0.3 μm is uniformly distributed in the cross section of the steel sheet and in the plane of the steel sheet,
area ratio of plate thickness within the cross-section of l 2 O 3 and the high-frequency iron loss W 12/2000
1 is shown in FIG. FIG. 2 shows the relationship between the area ratio of Al 2 O 3 in the cross section of the plate thickness and the magnetic flux density B 50 . According to these, the area ratio of Al 2 O 3 in the cross section of the plate thickness is 0.01
At ~ 0.20%, the total iron loss decreases due to a decrease in eddy current loss due to an increase in the specific resistance of the steel sheet. On the other hand, when the area ratio is less than 0.01%, there is no change in iron loss because the increase in specific resistance is slight, while when it exceeds 0.20%, eddy current loss is reduced due to increase in specific resistance. However, since the pinning effect of the domain wall by Al 2 O 3 is increased, the hysteresis loss is significantly increased, and as a result,
Total iron loss increases sharply. On the other hand, the magnetic flux density B 50 is the area ratio is not changed to 0.01%, which decreased to more than 0.01%. Such a phenomenon was similarly observed in a steel sheet in which AlN having the same average particle size as described above was uniformly distributed in the cross section of the steel sheet and in the plane of the steel sheet. From the above, it can be seen that evenly distributing a certain amount of internal oxides or nitrides in the thickness direction of the steel sheet is effective in reducing the high-frequency iron loss, but at the same time, lowering the magnetic flux density.

【0012】上述したように高周波磁化においては、表
皮効果のために渦電流密度の分布は鋼板板厚方向で均一
ではなく、鋼板表層部で高く、鋼板内部で急激に減少す
る。このため鋼板の固有抵抗を鋼板の全厚にわたって高
くする必要はなく、板表層部のみで高くすれば渦電流を
効果的に低減でき、また磁束密度の低下を最小限に抑え
ることが可能である。そこで本発明では、鋼板板厚方向
での内部酸化物、窒化物の分布を適正化すること、具体
的には、鋼板表層部に内部酸化物や窒化物を所定量以上
含有する窒化物含有層または内部酸化物含有層若しくは
窒化物−内部酸化物含有層を生成させることで、鋼板板
厚方向の固有抵抗を最適化するものである。
As described above, in the high-frequency magnetization, the distribution of the eddy current density is not uniform in the thickness direction of the steel sheet due to the skin effect, but is high in the surface layer portion of the steel sheet and rapidly decreases inside the steel sheet. For this reason, it is not necessary to increase the specific resistance of the steel sheet over the entire thickness of the steel sheet, and it is possible to effectively reduce the eddy current and to minimize the decrease in the magnetic flux density by increasing the specific resistance only at the surface layer of the steel sheet. . Therefore, in the present invention, the distribution of internal oxides and nitrides in the thickness direction of the steel sheet is optimized, specifically, a nitride-containing layer containing a predetermined amount or more of internal oxides and nitrides in the surface layer of the steel sheet. Alternatively, the specific resistance in the thickness direction of the steel sheet is optimized by generating an internal oxide-containing layer or a nitride-internal oxide-containing layer.

【0013】本発明では板厚方向での内部酸化物や窒化
物の生成状態を規定するため、まず、鋼板表層部におい
て粒径0.1μm以上の窒化物または/および内部酸化
物が鋼板板面内での面積率で0.01%以上存在する領
域を窒化物含有層または内部酸化物含有層若しくは窒化
物−内部酸化物含有層と定義した。このように窒化物ま
たは/および内部酸化物の面積率0.01%を下限とし
て規定したのは、図1に示されるように0.01%未満
の面積率では鉄損の低減に効果がないためである。そし
て、本発明では上記のように定義される窒化物含有層ま
たは内部酸化物含有層若しくは窒化物−内部酸化物含有
層における内部酸化物および窒化物の平均粒径d、板厚
断面内での内部酸化物および窒化物の面積率R、窒化物
含有層または内部酸化物含有層若しくは窒化物−内部酸
化物含有層の鋼板表層からの深さx(層の厚さ)をパラ
メータとし、板厚方向での内部酸化物や窒化物の生成状
態を規定した。
In the present invention, in order to define the state of formation of internal oxides and nitrides in the thickness direction, first, nitrides and / or internal oxides having a grain size of 0.1 μm or more are coated on the surface of the steel sheet at the surface layer of the steel sheet. A region having an area ratio of 0.01% or more in the inside was defined as a nitride-containing layer, an internal oxide-containing layer, or a nitride-internal oxide-containing layer. The reason why the area ratio of the nitride and / or the internal oxide is defined as 0.01% as the lower limit is that the area ratio of less than 0.01% has no effect in reducing the iron loss as shown in FIG. That's why. In the present invention, the average particle diameter d of the internal oxide and nitride in the nitride-containing layer or the internal oxide-containing layer or the nitride-internal oxide-containing layer as defined above, The area ratio R of the internal oxide and nitride, the depth x of the nitride-containing layer or the internal oxide-containing layer or the nitride-internal oxide-containing layer from the surface of the steel sheet (thickness of the layer) are used as parameters. The state of formation of internal oxides and nitrides in the directions was specified.

【0014】表1は、以下に述べる各試験において用い
られた試料の成分組成および鋼板表層部に生成した窒化
物、内部酸化物の種類を示しており、これら試料の板厚
方向での窒化物および内部酸化物の生成状態やそれらの
平均粒径等は焼鈍温度、焼鈍時間および焼鈍雰囲気(N
2濃度、露点等)等の調整によりコントロールした。特
に、内部酸化物、窒化物の粒径は主に焼鈍温度と焼鈍時
間を変化させることで、また、内部酸化物含有層、窒化
物含有層の生成深さは主に焼鈍時間と焼鈍雰囲気を変化
させることで、さらに、板厚断面内での内部酸化物、窒
化物の面積率は主に焼鈍雰囲気と焼鈍温度を変化させる
ことでそれぞれコントロールした。
Table 1 shows the component compositions of the samples used in the tests described below and the types of nitrides and internal oxides formed on the surface layer of the steel sheet. And the state of formation of internal oxides, their average particle size, etc., are determined by the annealing temperature, annealing time and annealing atmosphere (N
(2 concentration, dew point, etc.). In particular, the particle size of the internal oxide and nitride is mainly changed by changing the annealing temperature and the annealing time, and the depth of formation of the internal oxide-containing layer and the nitride-containing layer is mainly controlled by the annealing time and the annealing atmosphere. By changing the thickness, the area ratios of the internal oxides and nitrides in the cross section of the plate thickness were controlled mainly by changing the annealing atmosphere and the annealing temperature.

【0015】図3は、表1に示した本発明材である試料
B、Dの鋼板を用いて、使用周波数と本発明による鉄損
低減効果との関係を調べたものである。ここでは、試料
B、試料Dの高周波鉄損とこれら試料と同一の成分組成
及び板厚を有するが板表層部に窒化物含有層や内部酸化
物含有層がない比較材(試料H、Iの鋼板)の高周波鉄
損との比を求め、50Hz〜5kHzの周波数域におけ
る本発明材の鉄損低減効果を調べた。なお、高周波域で
使用される機器の大半の励磁磁束密度はB=1.2T程
度であるため、ここではB=1.2Tの鉄損で評価を行
った。試料B、Dの鋼板の平均結晶粒径D、窒化物含有
層における窒化物の板厚断面内での面積率R、窒化物含
有層における窒化物の平均粒径d、窒化物含有層の鋼板
表層からの深さxおよび鋼板板厚tは以下の通りであ
る。なお、各鋼板の窒化物含有層以外の領域において存
在する粒径0.1μm以上の窒化物および内部酸化物の
板厚断面内での面積率はいずれも0.01%未満であっ
た。 試料Bの鋼板 D:100μm、R:0.10%、
d:0.50μm x:0.012mm、t:0.10mm 試料Dの鋼板 D:130μm、R:0.13%、
d:0.60μm x:0.024mm、t:0.20mm
FIG. 3 shows the relationship between the operating frequency and the iron loss reducing effect of the present invention using the steel sheets of Samples B and D, which are the materials of the present invention shown in Table 1. Here, the high-frequency iron loss of Samples B and D and the comparative materials having the same component composition and plate thickness as those of the samples but having no nitride-containing layer or internal oxide-containing layer in the surface layer of the samples (Samples H and I) The ratio to the high-frequency iron loss of the steel sheet was determined, and the iron loss reducing effect of the material of the present invention in the frequency range of 50 Hz to 5 kHz was examined. In addition, since the excitation magnetic flux density of most of the devices used in the high-frequency range is about B = 1.2T, here, the evaluation was performed with the iron loss of B = 1.2T. The average crystal grain diameter D of the steel sheets of Samples B and D, the area ratio R of the nitride in the nitride-containing layer in the thickness cross section, the average grain diameter d of the nitride in the nitride-containing layer, and the steel sheet of the nitride-containing layer The depth x from the surface layer and the thickness t of the steel sheet are as follows. The area ratios of the nitrides and internal oxides having a grain size of 0.1 μm or more and existing in the regions other than the nitride-containing layer of each steel plate in the plate thickness cross section were all less than 0.01%. Sample B steel sheet D: 100 μm, R: 0.10%,
d: 0.50 μm x: 0.012 mm, t: 0.10 mm Steel plate of sample D D: 130 μm, R: 0.13%,
d: 0.60 μm x: 0.024 mm, t: 0.20 mm

【0016】図3によれば、本発明材は200Hz未満
の周波数域では鉄損の低減効果はなく、むしろ鉄損が増
大している。これは200Hz未満ではヒステリシス損
の割合が大きいため、窒化物含有層による渦電流損の低
減効果よりも、磁壁の移動を妨げることによるヒステリ
シス損の増大効果の方が大きいためであると考えられ
る。一方、周波数200Hz以上では本発明による鉄損
低減効果が顕著に認められ、この効果は200Hz以上
では周波数に殆ど依存していない。また、5kHzを超
える周波数では鉄損の絶対値が大きくなるため、所望の
低鉄損を得るためにはSi+Al量をさらに増すか或い
は板厚をより薄くする必要がある。このため、本発明の
無方向性電磁鋼板は使用される周波数域を200Hz以
上、5kHz以下と規定した。なお、上記のように本発
明による鉄損低減効果は200Hz以上では周波数に殆
ど依存しないため、以下に述べる試験例、実施例では2
000Hzにおける鉄損により磁気特性を評価した。
According to FIG. 3, the material of the present invention has no effect of reducing iron loss in a frequency range of less than 200 Hz, but rather increases the iron loss. This is considered to be because the rate of hysteresis loss is large below 200 Hz, so that the effect of increasing the hysteresis loss by hindering the movement of the domain wall is larger than the effect of reducing the eddy current loss by the nitride-containing layer. On the other hand, at a frequency of 200 Hz or more, the iron loss reducing effect of the present invention is remarkably recognized, and this effect hardly depends on the frequency at 200 Hz or more. At a frequency exceeding 5 kHz, the absolute value of iron loss becomes large. Therefore, in order to obtain a desired low iron loss, it is necessary to further increase the Si + Al amount or make the plate thickness thinner. Therefore, the frequency range used in the non-oriented electrical steel sheet of the present invention is specified to be 200 Hz or more and 5 kHz or less. As described above, the iron loss reduction effect of the present invention hardly depends on the frequency above 200 Hz.
Magnetic properties were evaluated by iron loss at 000 Hz.

【0017】図4は、表1に示した本発明材である試料
B、C、D、E、Fの鋼板を用いて、鋼板表層部に生成
する内部酸化物、窒化物の種類と鉄損低減効果との関係
を調べたものである。ここでは、試料B、C、D、E、
Fの高周波鉄損W122000とこれら試料と同一の成分組
成及び板厚を有するが板表層部に窒化物含有層や内部酸
化物含有層がない比較材(試料H、I、J)の高周波鉄
損W122000との比を求め、試料B、C、D、E、Fの
鋼板の鉄損特性を評価した。これら試料のうち、試料
B、D、Eは板表層部にAlNによる窒化物含有層が生
成し、試料C、Fは板表層部にAl23、SiO2およ
びFe系酸化物による内部酸化物含有層が生成したもの
である。各鋼板の平均結晶粒径D、窒化物含有層または
内部酸化物含有層における窒化物、内部酸化物の板厚断
面内での面積率R、窒化物含有層または内部酸化物含有
層における窒化物、内部酸化物の平均粒径d、窒化物含
有層または内部酸化物含有層の鋼板表層からの深さx、
および鋼板板厚tは以下の通りである。なお、各鋼板の
窒化物含有層または内部酸化物含有層以外の領域におい
て存在する粒径0.1μm以上の窒化物および内部酸化
物の板厚断面内での面積率はいずれも0.01%未満で
あった。
FIG. 4 shows the types of internal oxides and nitrides formed on the surface layer of the steel sheet and the iron loss using the steel sheets of Samples B, C, D, E and F which are the materials of the present invention shown in Table 1. It is an examination of the relationship with the reduction effect. Here, samples B, C, D, E,
F of the high-frequency iron loss W 12/2000 with the nitride-containing layer and internal oxide containing layer is not compared material is a plate surface portion having the same component composition and thickness and the samples (Sample H, I, J) obtains the ratio of the high-frequency iron loss W 12/2000, were evaluated samples B, C, D, E, the iron loss of the steel sheet F. Of these samples, Samples B, D, and E have a nitride-containing layer formed of AlN on the surface of the plate, and Samples C and F have internal oxidation of Al 2 O 3 , SiO 2 and Fe-based oxide on the surface of the plate. The substance-containing layer is formed. Average grain size D of each steel sheet, nitride in nitride-containing layer or internal oxide-containing layer, area ratio R of internal oxide in cross section of thickness, nitride in nitride-containing layer or internal oxide-containing layer The average particle diameter d of the internal oxide, the depth x of the nitride-containing layer or the internal oxide-containing layer from the surface of the steel sheet,
And the steel plate thickness t is as follows. The area ratio of the nitride and the internal oxide having a particle size of 0.1 μm or more in the region other than the nitride-containing layer or the internal oxide-containing layer of each steel sheet in the plate thickness cross section was 0.01%. Was less than.

【0018】試料Bの鋼板 D:120μm、R:
0.12%、d:1.50μm、x:0.010mm、
t:0.10mm 試料Cの鋼板 D:115μm、R:0.13%、
d:1.00μm、x:0.015mm、t:0.15
mm 試料Dの鋼板 D:120μm、R:0.11%、
d:0.70μm、x:0.010mm、t:0.10
mm 試料Eの鋼板 D:110μm、R:0.15%、
d:0.30μm、x:0.011mm、t:0.10
mm 試料Fの鋼板 D:150μm、R:0.20%、
d:1.30μm、x:0.020mm、t:0.20
mm
Sample B of steel sheet D: 120 μm, R:
0.12%, d: 1.50 μm, x: 0.010 mm,
t: 0.10 mm Steel plate of sample C D: 115 μm, R: 0.13%,
d: 1.00 μm, x: 0.015 mm, t: 0.15
mm Steel plate of sample D D: 120 μm, R: 0.11%,
d: 0.70 μm, x: 0.010 mm, t: 0.10
mm Steel plate of sample E D: 110 μm, R: 0.15%,
d: 0.30 μm, x: 0.011 mm, t: 0.10
mm Steel plate of sample F D: 150 μm, R: 0.20%,
d: 1.30 μm, x: 0.020 mm, t: 0.20
mm

【0019】図4によれば、鋼板表層部に内部酸化物含
有層が生成した鋼板と同じく窒化物含有層が生成した鋼
板では、ほぼ同程度の鉄損低減効果が得られており、内
部酸化物と窒化物は高周波鉄損の低減に対してほぼ同等
の効果を有していること、したがって、本発明の効果が
内部酸化物含有層、窒化物含有層のいずれを生成させた
場合でも得られることが判る。また、鋼板表層部に内部
酸化物と窒化物が混在している窒化物−内部酸化物含有
層が生成した鋼板についても、上記とほぼ同程度の鉄損
低減効果が得られることが確認できた。
According to FIG. 4, in a steel sheet in which a nitride-containing layer was formed in the same manner as a steel sheet in which an internal oxide-containing layer was formed in the surface layer of the steel sheet, almost the same effect of reducing iron loss was obtained, And nitrides have almost the same effect on reducing high-frequency iron loss, and therefore the effect of the present invention can be obtained regardless of whether an internal oxide-containing layer or a nitride-containing layer is formed. It turns out that it is possible. In addition, it was confirmed that a steel sheet in which a nitride-internal oxide containing layer in which an internal oxide and a nitride are mixed in the surface layer portion of the steel sheet was generated also had approximately the same iron loss reduction effect as above. .

【0020】次に、内部酸化物含有層、窒化物含有層ま
たは窒化物−内部酸化物含有層の鋼板表層からの深さx
(層の厚さ)の限定理由について説明する。図5および
図6は、表1に示した試料による鋼板であって、本発明
条件を満足する平均結晶粒径D、窒化物含有層における
窒化物(AlN)の板厚断面内での面積率R、窒化物含
有層における窒化物の平均粒径dを有する下記の鋼板に
ついて、窒化物含有層の鋼板表層からの深さx(窒化物
含有層の厚さ)と鋼板板厚tとの比x/tと高周波鉄損
122000との関係を示したものである。なお、各鋼板
の窒化物含有層以外の領域において存在する粒径0.1
μm以上の窒化物および内部酸化物の板厚断面内での面
積率はいずれも0.01%未満であった。
Next, the depth x of the internal oxide-containing layer, the nitride-containing layer, or the nitride-internal oxide-containing layer from the surface of the steel sheet.
The reason for limiting (layer thickness) will be described. FIGS. 5 and 6 show steel sheets according to the samples shown in Table 1, which have an average crystal grain size D satisfying the conditions of the present invention, and an area ratio of a nitride (AlN) in a nitride-containing layer in a thickness cross section of the steel sheet. R, ratio of depth x (thickness of nitride-containing layer) from the surface of steel plate of nitride-containing layer to thickness t of steel sheet for the following steel sheets having an average grain diameter d of nitride in nitride-containing layer: It illustrates the relationship between the x / t and the high-frequency iron loss W 12/2000. In addition, the particle diameter of 0.1 in the region other than the nitride-containing layer of each steel sheet.
The area ratios of the nitrides and internal oxides of not less than μm in the cross section of the plate thickness were all less than 0.01%.

【0021】 試料Bの鋼板 D:100μm、R:0.10%、d:0.50μm、 (図5) t:0.10mm 試料Dの鋼板 D:120μm、R:0.11%、d:0.70μm、 (図5) t:0.10mm 試料Eの鋼板 D:110μm、R:0.15%、d:0.30μm、 (図5) t:0.10mm 試料Dの鋼板 D:130μm、R:0.13%、d:0.60μm、 (図6) t:0.20mm 試料Eの鋼板 D:160μm、R:0.10%、d:0.50μm、 (図6) t:0.20mmSample B of steel plate D: 100 μm, R: 0.10%, d: 0.50 μm, (FIG. 5) t: 0.10 mm Steel plate of sample D: 120 μm, R: 0.11%, d: 0.70 μm, (FIG. 5) t: 0.10 mm Steel plate of sample E D: 110 μm, R: 0.15%, d: 0.30 μm, (FIG. 5) t: 0.10 mm Steel plate of sample D: 130 μm , R: 0.13%, d: 0.60 μm, (FIG. 6) t: 0.20 mm Steel plate of sample E D: 160 μm, R: 0.10%, d: 0.50 μm, (FIG. 6) t: 0.20mm

【0022】図5および図6によれば、いずれの鋼種お
よび板厚においても0.05≦x/t≦0.15の範囲
において鉄損の低減効果が大きい。このような鉄損低減
効果は、鋼板表層部に内部酸化物含有層或いは窒化物−
内部酸化物含有層を生成させた場合にも同様に認められ
た。このように窒化物含有層や内部酸化物含有層を板表
層部に特定の厚さで生成させた場合にのみ大きな鉄損低
減効果が得られるのは、以下のような理由によるものと
考えられる。すなわち、よく知られているように鉄損は
ヒステリシス損と渦電流損からなっており、高周波磁化
領域においては渦電流損が支配的となる。この渦電流損
の原因となる渦電流は、鋼板板厚方向に均一に流れる訳
ではなく、鋼板板厚中央部に較べて鋼板表層部で多く流
れる。このような状況において、窒化物や内部酸化物と
いった析出物や介在物を板表層から板厚の5〜15%の
深さまで生成させて鋼板表層部の固有抵抗を高めると、
鋼板表層部を流れる渦電流が効果的に減少し、この結果
鉄損が低下するものと考えられる。そして、内部酸化物
や窒化物の生成領域の深さが板厚の5%未満であると、
内部酸化物や窒化物の生成領域が十分でないため、この
生成領域の内側を流れる渦電流が依然として存在し、渦
電流損はある程度は低減されるものの、その低減効果は
十分ではない。一方、鋼板表層から板厚の15%を超え
た深さの領域は渦電流が急激に低下する領域であり、こ
のような領域に内部酸化物や窒化物を生成させて固有抵
抗を高めても鉄損低減に効果はなく、却って内部酸化物
や窒化物による磁壁のピンニング作用によりヒステリシ
ス損が増大し、全鉄損の増大を招くことになる。
According to FIGS. 5 and 6, the effect of reducing iron loss is large in the range of 0.05 ≦ x / t ≦ 0.15 for any steel type and plate thickness. Such an iron loss reduction effect is achieved by forming an internal oxide-containing layer or a nitride on the surface layer of the steel sheet.
The same was observed when an internal oxide-containing layer was formed. The reason why the large iron loss reduction effect is obtained only when the nitride-containing layer or the internal oxide-containing layer is generated at a specific thickness in the surface layer portion of the sheet is considered to be as follows. . That is, as is well known, iron loss is composed of hysteresis loss and eddy current loss, and eddy current loss is dominant in the high-frequency magnetization region. The eddy current causing the eddy current loss does not flow uniformly in the thickness direction of the steel sheet, but flows more in the surface layer of the steel sheet than in the central part of the steel sheet thickness. In such a situation, when precipitates and inclusions such as nitrides and internal oxides are generated from the surface of the sheet to a depth of 5 to 15% of the sheet thickness to increase the specific resistance of the surface layer of the steel sheet,
It is considered that the eddy current flowing in the surface layer of the steel sheet is effectively reduced, and as a result, the iron loss is reduced. And when the depth of the formation region of the internal oxide or nitride is less than 5% of the plate thickness,
Since the formation region of the internal oxide or nitride is not sufficient, eddy currents flowing inside the formation region still exist, and the eddy current loss is reduced to some extent, but the reduction effect is not sufficient. On the other hand, a region having a depth exceeding 15% of the plate thickness from the surface layer of the steel plate is a region where the eddy current sharply decreases, and even if an internal oxide or nitride is generated in such a region to increase the specific resistance, It has no effect on reducing iron loss, but rather increases the hysteresis loss due to the pinning action of the domain wall by the internal oxide or nitride, which leads to an increase in total iron loss.

【0023】以上の理由から本発明では、窒化物含有層
または内部酸化物含有層若しくは窒化物−内部酸化物含
有層を鋼板表層から下式を満足する深さx(mm)まで
生成させることを要件とする。 0.05≦x/t≦0.15 但し t:鋼板板厚(mm)
For the above reasons, the present invention requires that a nitride-containing layer, an internal oxide-containing layer, or a nitride-internal oxide-containing layer be formed from a surface layer of a steel sheet to a depth x (mm) satisfying the following expression. Requirements. 0.05 ≦ x / t ≦ 0.15 where t: steel plate thickness (mm)

【0024】次に、窒化物含有層または内部酸化物含有
層若しくは窒化物−内部酸化物含有層における内部酸化
物、窒化物の平均粒径dの限定理由について述べる。図
7は、表1に示した試料による鋼板であって、本発明条
件を満足する平均結晶粒径D、窒化物含有層における窒
化物(AlN)の板厚断面内での面積率R、窒化物含有
層の板表層からの深さxを有する下記の鋼板について、
窒化物含有層中の窒化物の平均粒径dと高周波鉄損W12
2000との関係を示したものである。なお、各鋼板の窒
化物含有層以外の領域において存在する窒化物の面積率
はいずれも0.01%未満であった。 試料Bの鋼板 D:120μm、R:0.12%、x
/t:0.10、t:0.10mm 試料Eの鋼板 D:125μm、R:0.15%、x
/t:0.09、t:0.10mm
Next, the reasons for limiting the average particle diameter d of the internal oxide and nitride in the nitride-containing layer, internal oxide-containing layer or nitride-internal oxide-containing layer will be described. FIG. 7 shows a steel sheet according to the sample shown in Table 1, which satisfies the conditions of the present invention, the average crystal grain size D, the area ratio R of the nitride (AlN) in the nitride-containing layer in the thickness cross section, For the following steel sheet having a depth x from the sheet surface layer of the material-containing layer,
Average grain size d of nitride in nitride containing layer and high frequency iron loss W 12
/ 2000 is shown. The area ratio of the nitrides existing in the regions other than the nitride-containing layer of each steel plate was less than 0.01%. Sample B steel sheet D: 120 μm, R: 0.12%, x
/ T: 0.10, t: 0.10 mm Steel plate of sample E D: 125 μm, R: 0.15%, x
/ T: 0.09, t: 0.10 mm

【0025】図7によれば、窒化物の平均粒径が3μm
以下のときに鉄損の低減効果が大きいことが判る。一
方、平均粒径が3μmを超えると、窒化物含有層中の窒
化物の板厚断面内での面積率Rおよび窒化物含有層の深
さxが本発明条件を満足しても鉄損は増大している。こ
れは、本来鋼板表層部に微細に分布すべき窒化物が凝集
粗大化したために渦電流損減少効果が小さくなり、ヒス
テリシス損を増大させる方向に働いたためであると考え
られる。上記の平均粒径と鉄損の低減効果との関係は、
鋼板表層部に内部酸化物含有層或いは窒化物−内部酸化
物含有層を生成させた場合においても同様に認められ
た。以上の理由から本発明では、鋼板表層部の内部酸化
物含有層または窒化物含有層若しくは窒化物−内部酸化
物含有層における内部酸化物、窒化物の平均粒径を3μ
m以下と規定する。
According to FIG. 7, the average grain size of the nitride is 3 μm.
It can be seen that the effect of reducing iron loss is large in the following cases. On the other hand, when the average particle size exceeds 3 μm, the iron loss is reduced even if the area ratio R of the nitride in the nitride-containing layer in the plate thickness section and the depth x of the nitride-containing layer satisfy the conditions of the present invention. Is growing. This is presumably because nitride, which should be finely distributed in the surface layer portion of the steel sheet, agglomerated and coarsened, so that the effect of reducing eddy current loss was reduced and the hysteresis loss was increased. The relationship between the above average particle size and the effect of reducing iron loss is as follows:
The same was observed in the case where an internal oxide-containing layer or a nitride-internal oxide-containing layer was formed on the surface layer of a steel sheet. For the above reasons, in the present invention, the average particle diameter of the internal oxide or nitride in the internal oxide-containing layer or nitride-containing layer or nitride-internal oxide-containing layer in the surface layer portion of the steel sheet is 3 μm.
m or less.

【0026】次に、鋼板表層部の内部酸化物含有層また
は窒化物含有層若しくは窒化物−内部酸化物含有層にお
ける内部酸化物、窒化物の板厚断面内での面積率Rの限
定理由について説明する。図8は、表1に示した試料に
よる鋼板であって、本発明条件を満足する平均結晶粒径
D、窒化物含有層の鋼板表層からの深さx、および窒化
物含有層における窒化物の平均粒径dを有する下記の鋼
板について、鋼板表層部の窒化物含有層における窒化物
の板厚断面内での面積率Rと高周波鉄損W122000との
関係を示したものである。なお、各鋼板の窒化物含有層
以外の領域において存在する窒化物および内部酸化物の
面積率はいずれも0.01%未満であった。 試料Dの鋼板 D:120μm、d:0.70μm、x
/t:0.10、t:0.10mm 試料Eの鋼板 D:110μm、d=0.30μm、x
/t=0.11、t:0.10mm
Next, the reason why the area ratio R of the internal oxide or nitride in the internal oxide-containing layer or nitride-containing layer or nitride-internal oxide-containing layer in the surface layer of the steel sheet in the cross section of the plate thickness is limited. explain. FIG. 8 shows a steel sheet according to the sample shown in Table 1, which satisfies the conditions of the present invention, the average grain size D, the depth x of the nitride-containing layer from the steel sheet surface, and the nitride content of the nitride in the nitride-containing layer. the steel sheet below having an average particle diameter d, shows the relationship between the area ratio R and the high-frequency iron loss W 12/2000 in a thickness cross section of the nitride in the nitride-containing layer of the steel sheet surface layer portion. In addition, the area ratio of the nitride and the internal oxide existing in the region other than the nitride-containing layer of each steel plate was less than 0.01%. Sample D steel plate D: 120 μm, d: 0.70 μm, x
/ T: 0.10, t: 0.10 mm Steel plate of sample E D: 110 μm, d = 0.30 μm, x
/T=0.11, t: 0.10 mm

【0027】図8によれば、鉄損は窒化物含有層におけ
る窒化物の板厚断面内での面積率Rが0.05〜0.2
0%の範囲で大きく低下している。これに対し面積率R
が0.05%未満では鉄損の低減効果は十分でなく、
0.20%超では鉄損は急激に増大している。これは、
面積率Rが0.05%未満では鋼板表層部の固有抵抗が
十分に高くならないために、渦電流損の減少効果が十分
ではなく、一方、面積率Rが0.20%を超えると渦電
流の抑制効果は大きくなるものの、それ以上に磁壁移動
のピンニングに起因してヒステリシス損が増大するから
である。なお、このような板厚断面内での面積率Rと鉄
損低減効果との関係は、鋼板表層部に内部酸化物含有層
或いは窒化物−内部酸化物含有層を生成させた鋼板の内
部酸化物および窒化物の面積率Rに関してもそれぞれ同
様に認められた。以上の理由から本発明では、鋼板表層
部の内部酸化物含有層または窒化物含有層若しくは窒化
物−内部酸化物含有層における内部酸化物または/およ
び窒化物の板厚断面内での面積率を0.05〜0.20
%と規定する。
According to FIG. 8, the core loss is such that the area ratio R of the nitride in the nitride-containing layer in the thickness cross section of the nitride is 0.05 to 0.2.
It is greatly reduced in the range of 0%. On the other hand, the area ratio R
Is less than 0.05%, the effect of reducing iron loss is not sufficient,
If it exceeds 0.20%, the iron loss increases sharply. this is,
If the area ratio R is less than 0.05%, the specific resistance of the surface layer of the steel sheet does not become sufficiently high, so that the effect of reducing the eddy current loss is not sufficient. This is because, although the suppression effect of the above becomes large, the hysteresis loss is further increased due to the pinning of the domain wall movement. The relationship between the area ratio R in the sheet thickness section and the iron loss reducing effect is based on the internal oxidation of a steel sheet having an internal oxide-containing layer or a nitride-internal oxide-containing layer formed on the surface layer of the steel sheet. The same applies to the area ratio R of the nitride and the nitride. For the above reasons, in the present invention, the area ratio of the internal oxide or / and nitride in the internal oxide-containing layer or the nitride-containing layer or the nitride-internal oxide-containing layer in the surface layer portion of the steel sheet in the plate thickness cross section is determined. 0.05-0.20
%.

【0028】次に、鋼板表層部の窒化物含有層または内
部酸化物含有層若しくは窒化物−内部酸化物含有層以外
の領域(板厚中央部側の領域)において存在する窒化物
および内部酸化物については、磁束密度を低下させない
観点からその生成量を規制する必要があり、図2に示さ
れた内部酸化物等の板厚断面内での面積率と磁束密度と
の関係に基づき、鋼板表層部の窒化物含有層または内部
酸化物含有層若しくは窒化物−内部酸化物含有層以外の
領域において存在する粒径0.1μm以上の窒化物およ
び内部酸化物の面積率を、磁束密度を低下させない0.
01%未満と規定する。
Next, nitrides and internal oxides existing in a region other than the nitride-containing layer or the internal oxide-containing layer or the nitride-internal oxide-containing layer on the surface of the steel sheet (region on the plate thickness center portion side) It is necessary to regulate the generation amount from the viewpoint of not lowering the magnetic flux density, and based on the relationship between the area ratio and the magnetic flux density in the thickness cross section of the internal oxide or the like shown in FIG. The area ratio of the nitride and internal oxide having a grain size of 0.1 μm or more existing in the region other than the nitride-containing layer or the internal oxide-containing layer or the nitride-internal oxide-containing layer does not lower the magnetic flux density 0.
Defined as less than 01%.

【0029】次に、鋼板の平均結晶粒径の限定理由につ
いて説明する。ここで、平均結晶粒径は鋼板の板厚(全
厚さ)方向の結晶粒径を測定し、その平均をとったもの
である。図9は、表1に示した本発明材である試料Eの
鋼板(R:0.10%、d:0.50μm、x/t:
0.13、板厚t:0.10mm)と、これと同一の成
分組成および板厚を有するが鋼板表層部に内部酸化物含
有層、窒化物含有層がない試料Jの鋼板(比較材)につ
いて、それらの平均結晶粒径と鉄損W122000との関係
を示したものである。これによれば、鋼板表層部に内部
酸化物含有層や窒化物含有層がない比較材では、鉄損に
対する最適粒径が約50μmであるのに対し、鋼板表層
部に窒化物含有層を有する本発明材では最適粒径は約1
10μmであり、鋼板表層部に窒化物含有層を有する鋼
板は内部酸化物含有層や窒化物含有層のない鋼板よりも
最適粒径が粗粒側に移行していることが判る。また、本
発明材では粒径60〜160μmの範囲で比較材よりも
鉄損が低くなっている。
Next, the reason for limiting the average crystal grain size of the steel sheet will be described. Here, the average crystal grain size is obtained by measuring the crystal grain size in the thickness direction (total thickness) of the steel sheet and taking the average. FIG. 9 shows a steel sheet (R: 0.10%, d: 0.50 μm, x / t:
0.13, plate thickness t: 0.10 mm), and a steel plate of sample J having the same component composition and plate thickness but having no internal oxide-containing layer or nitride-containing layer in the surface layer of the steel plate (comparative material). for shows the relationship between their mean crystal grain size and the iron loss W 12/2000. According to this, in the comparative material having no internal oxide-containing layer or nitride-containing layer in the surface layer of the steel sheet, the optimum particle size for iron loss is about 50 μm, whereas the steel sheet has a nitride-containing layer in the surface layer. The optimum particle size of the material of the present invention is about 1
It is found that the optimum grain size of the steel sheet having a nitride-containing layer on the surface layer of the steel sheet is shifted to the coarser side than that of the steel sheet having no internal oxide-containing layer or nitride-containing layer. Further, in the material of the present invention, the iron loss is lower than that of the comparative material in the range of the particle size of 60 to 160 μm.

【0030】そこで、表1に示す試料A、B、D、E、
Fの鋼板であって、本発明条件を満足する窒化物含有層
または内部酸化物含有層における窒化物、内部酸化物の
板厚断面内での面積率R、窒化物含有層または内部酸化
物含有層の鋼板表層からの深さx、および窒化物含有層
または内部酸化物層における窒化物、内部酸化物の平均
粒径dを有する下記の鋼板について、それらの平均結晶
粒径Dと鉄損W122000との関係を調べた。なお、各鋼
板の窒化物含有層または内部酸化物含有層以外の領域に
おいて存在する窒化物および内部酸化物の板厚断面内で
の面積率はいずれも0.01%未満であった。
Therefore, samples A, B, D, E, and
F, the nitride ratio in the nitride-containing layer or the internal oxide-containing layer that satisfies the conditions of the present invention, the area ratio R of the internal oxide in the plate thickness cross section, the content of the nitride-containing layer or the internal oxide The following steel sheets having a depth x from the surface of the steel sheet and the average particle diameter d of the nitride and the internal oxide in the nitride-containing layer or the internal oxide layer have the average crystal grain size D and iron loss W We examined the relationship between the 12/2000. In addition, the area ratio of the nitride and the internal oxide present in a region other than the nitride-containing layer or the internal oxide-containing layer of each steel sheet in the plate thickness cross section was less than 0.01%.

【0031】 試料Aの鋼板 Si+Al:1.75wt%、R:
0.05%、d:0.20μm、x/t:0.09、
t:0.17mm 試料Bの鋼板 Si+Al:2.36wt%、R:
0.17%、d:0.50μm、x/t:0.10、
t:0.10m 試料Dの鋼板 Si+Al:2.93wt%、R:
0.13%、d:0.60μm、x/t:0.12、
t:0.20m 試料Eの鋼板 Si+Al:3.49wt%、R:
0.15%、d:0.30μm、x/t:0.11、
t:0.10m 試料Fの鋼板 Si+Al:3.49wt%、R:
0.20%、d:1.30μm、x/t:0.10、
t:0.20m
Sample A Steel Sheet Si + Al: 1.75 wt%, R:
0.05%, d: 0.20 μm, x / t: 0.09,
t: 0.17 mm Steel plate of sample B Si + Al: 2.36 wt%, R:
0.17%, d: 0.50 μm, x / t: 0.10,
t: 0.10 m Steel sheet of sample D Si + Al: 2.93 wt%, R:
0.13%, d: 0.60 μm, x / t: 0.12,
t: 0.20 m Steel sheet of sample E Si + Al: 3.49 wt%, R:
0.15%, d: 0.30 μm, x / t: 0.11,
t: 0.10 m Steel sheet of sample F Si + Al: 3.49 wt%, R:
0.20%, d: 1.30 μm, x / t: 0.10,
t: 0.20m

【0032】図10は、上記各鋼板の高周波鉄損W12
2000が、同一の成分組成と板厚を有する比較材である試
料G、H、I、Jの鋼板の最低鉄損よりも5W/kg以
上低くなるときの平均結晶粒径Dの下限と上限を、内部
酸化物含有層、窒化物含有層の深さxの鋼板板厚tに対
する割合(x/t)×100(%)と内部酸化物含有
層、窒化物含有層における内部酸化物、窒化物の板厚断
面内での面積率R(%)とSi+Al量(wt%)の積
の平方根との関係で示したものである。これによれば、
内部酸化物、窒化物の板厚方向の分布を適正化した本発
明材においては、低鉄損が得られる平均結晶粒径D(μ
m)の範囲は下式により規定できることが判る。
FIG. 10 shows the high-frequency iron loss W 12 /
The lower and upper limits of the average crystal grain size D when 2000 is 5 W / kg or more lower than the minimum iron loss of the steel sheets of Samples G, H, I, and J, which are comparative materials having the same component composition and thickness. The ratio (x / t) × 100 (%) of the depth x of the internal oxide-containing layer and the nitride-containing layer to the thickness t of the steel sheet, and the internal oxide and nitride in the internal oxide-containing layer and the nitride-containing layer The relationship between the area ratio R (%) and the square root of the product of the amount of Si + Al (wt%) in the cross section of the sheet thickness is shown. According to this,
In the material of the present invention in which the distribution of internal oxides and nitrides in the thickness direction is optimized, the average crystal grain size D (μ
It is understood that the range of m) can be defined by the following equation.

【数3】 このため本発明では、鋼板の平均結晶粒径D(μm)が
上記式を満足することをその要件とする。
(Equation 3) Therefore, in the present invention, it is a requirement that the average crystal grain size D (μm) of the steel sheet satisfies the above expression.

【0033】この式において、平方根の中の項は鋼板表
層部の固有抵抗とその領域を示すものであり、固有抵抗
が大きくなるほど適正粒径は粗粒側となる。このように
適正粒径が粗粒側に移行するのは、以下のような理由に
よるものと考えられる。すなわち、鋼板表層部に内部酸
化物、窒化物による固有抵抗の高い層が形成されること
によって渦電流損が低減されると、高周波鉄損中に占め
るヒステリシス損の割合が従来材よりも高くなる。例え
ば、3%Si−0.4%Al鋼の0.1mm材において
は、2kHzで全鉄損中に占めるヒステリシス損の割合
が約50%にもなる。このような状況においては、高周
波と言えどもヒステリシス損を低減させる必要が生じて
くる。ヒステリシス損を低減させるためには結晶粒は大
きい方がよく、本発明鋼板においてはこのヒステリシス
損と渦電流損の兼ね合いから、最適粒径が粗粒側に移行
したものと考えられる。
In this equation, the term in the square root indicates the specific resistance of the surface layer portion of the steel sheet and its area, and the larger the specific resistance, the closer the appropriate grain size becomes to the coarse grain side. It is considered that the reason why the appropriate particle size shifts to the coarse particle side is as follows. In other words, when eddy current loss is reduced by forming a layer having a high specific resistance due to internal oxides and nitrides on the surface layer of the steel sheet, the ratio of hysteresis loss in high-frequency iron loss becomes higher than that of conventional materials. . For example, in a 0.1 mm material of 3% Si-0.4% Al steel, the ratio of the hysteresis loss to the total iron loss at 2 kHz is about 50%. In such a situation, it is necessary to reduce the hysteresis loss even for a high frequency. In order to reduce the hysteresis loss, it is better that the crystal grains are large. In the steel sheet of the present invention, it is considered that the optimum grain size has shifted to the coarse grain side from the balance between the hysteresis loss and the eddy current loss.

【0034】次に、鋼板の板厚について説明する。鋼板
の板厚を薄くすることは、高周波域での渦電流損の低減
に非常に有効である。しかし、0.1mm未満の板厚で
は冷間圧延が困難となるだけでなく、モーターのロータ
ー、ステーター組立時の鋼板の積層枚数の増大につなが
り、生産効率が低下する。一方、板厚が0.2mmを超
えると渦電流損の増大により鉄損が増大しはじめる。こ
のため鋼板の板厚は0.1〜0.2mmとすることが好
ましい。
Next, the thickness of the steel sheet will be described. Reducing the thickness of a steel sheet is very effective in reducing eddy current loss in a high frequency range. However, a sheet thickness of less than 0.1 mm not only makes cold rolling difficult, but also leads to an increase in the number of stacked steel sheets at the time of assembling the rotor and the stator of the motor, thereby lowering production efficiency. On the other hand, when the plate thickness exceeds 0.2 mm, iron loss starts to increase due to an increase in eddy current loss. Therefore, the thickness of the steel sheet is preferably set to 0.1 to 0.2 mm.

【0035】次に、本発明の無方向性電磁鋼板の製造方
法について説明すると、本発明鋼板の内部酸化物、窒化
物の生成状態の制御および平均結晶粒径の調整は、一般
には最終焼鈍条件をコントロールすることにより行わ
れ、したがって、最終焼鈍前の工程は通常行われている
製造プロセスを採ることができる。すなわち、転炉で吹
練した溶鋼を脱ガス処理して所定の成分に調整後鋳造
し、通常の熱間圧延を行う。この鋼板を酸洗した後熱延
板焼鈍を行ってもよいが、必須ではない。次いで、1回
の冷間圧延若しくは中間焼鈍を挾む2回以上の冷間圧延
により所定の板厚とした後、最終焼鈍を行う。この最終
焼鈍では、焼鈍雰囲気、露点、焼鈍温度、焼鈍時間を制
御することにより、本発明が要件とする鋼板板厚方向の
内部酸化物、窒化物の生成状態、結晶粒径を得ることが
できる。例えば、3%Si−0.5%Al鋼の0.1m
m材においては、最終焼鈍終了直前に10〜20秒程度
の間、焼鈍雰囲気の窒素分率を100%とし、焼鈍温度
を通常よりも30〜60℃程度高めることにより、鋼板
中のAlNの生成状態を所望のものとすることができ
る。また、露点の調整により内部酸化物を所望の状態に
生成させてもよい。また、窒化物−内部酸化物含有層
は、2次焼鈍時に雰囲気を窒化雰囲気とし、露点を上げ
ることにより形成させることができる。また、以上のよ
うな熱処理による内部酸化物、窒化物の生成状態の制御
は熱延板焼鈍時に行ってもよい。
Next, the method for producing a non-oriented electrical steel sheet according to the present invention will be described. The control of the formation state of the internal oxides and nitrides and the adjustment of the average crystal grain size of the steel sheet of the present invention are generally performed by adjusting the final annealing conditions. Therefore, the steps before the final annealing can adopt the usual manufacturing process. That is, molten steel blown in a converter is degassed, adjusted to a predetermined component, cast, and then subjected to normal hot rolling. Hot-rolled sheet annealing may be performed after pickling this steel sheet, but this is not essential. Next, after a predetermined thickness is obtained by one cold rolling or two or more cold rollings sandwiching intermediate annealing, final annealing is performed. In this final annealing, by controlling the annealing atmosphere, the dew point, the annealing temperature, and the annealing time, it is possible to obtain the state of formation of internal oxides and nitrides in the thickness direction of the steel sheet required by the present invention, and the crystal grain size. . For example, 0.1m of 3% Si-0.5% Al steel
In the case of the m material, the nitrogen content of the annealing atmosphere is set to 100% for about 10 to 20 seconds immediately before the end of the final annealing, and the annealing temperature is raised about 30 to 60 ° C. higher than usual, thereby producing AlN in the steel sheet. The state can be as desired. Further, the internal oxide may be generated in a desired state by adjusting the dew point. Further, the nitride-internal oxide-containing layer can be formed by setting the atmosphere to a nitriding atmosphere during the secondary annealing and increasing the dew point. Further, the control of the formation state of the internal oxides and nitrides by the heat treatment as described above may be performed during annealing of the hot-rolled sheet.

【0036】[0036]

【実施例】表2に記載した鋼種a〜鋼種hの鋼を板厚
2.0mmに熱間圧延した後酸洗し、引き続き板厚0.
1mm〜0.2mmまで冷間圧延し、得られた冷延板を
表3および表4に示す焼鈍条件で焼鈍した。なお、本発
明鋼板は1回の焼鈍処理によっても製造可能であるが、
この実施例では、鋼板表層の窒化物、内部酸化物の深
さ、粒径、面積率等のコントロールを容易にするため、
通常の電磁鋼板の仕上焼鈍に対応する1次焼鈍を実施し
た後、鋼板表層に内部酸化物、窒化物を生成させること
を目的とした2次焼鈍を実施した。各鋼板の磁気特性
は、各鋼板から外径45mm、内径33mmのリング試
験片を打ち抜き、これら試験片について周波数2000
Hzでの磁気特性を測定した。各鋼板の板厚方向におけ
る窒化物、内部酸化物の生成状態および平均結晶粒径を
表5および表6に、磁気特性を表7に示す。これらによ
れば、本発明鋼板では磁束密度が低下することなく、比
較例に較べ高周波鉄損が約1割程度減少していることが
判る。
EXAMPLE Steels of the steel types a to h shown in Table 2 were hot-rolled to a thickness of 2.0 mm, pickled and then pickled.
After cold rolling to 1 mm to 0.2 mm, the obtained cold rolled sheet was annealed under the annealing conditions shown in Tables 3 and 4. In addition, the steel sheet of the present invention can be manufactured by a single annealing treatment,
In this embodiment, the nitride of the surface layer of the steel sheet, the depth of the internal oxide, the particle size, in order to easily control the area ratio, etc.
After performing the primary annealing corresponding to the finish annealing of the normal electromagnetic steel sheet, the secondary annealing was performed for the purpose of generating internal oxides and nitrides on the surface layer of the steel sheet. The magnetic properties of each steel sheet were determined by punching a ring test piece having an outer diameter of 45 mm and an inner diameter of 33 mm from each steel sheet,
The magnetic properties at Hz were measured. Tables 5 and 6 show the formation state and average crystal grain size of nitrides and internal oxides in the thickness direction of each steel sheet, and Table 7 shows the magnetic properties. According to these, it is understood that the high-frequency iron loss of the steel sheet of the present invention is reduced by about 10% as compared with the comparative example without lowering the magnetic flux density.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【発明の効果】以上述べたように本発明の無方向性電磁
鋼板は、高周波磁化領域において、磁束密度が低下する
ことなく鉄損が効果的に低減するという優れた特性を有
している。
As described above, the non-oriented electrical steel sheet of the present invention has an excellent property that the iron loss is effectively reduced without lowering the magnetic flux density in the high-frequency magnetization region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Al23を鋼板断面内および板面内に均一に分
布させた3%Si−0.5%Al鋼板のAl23の板厚
断面内での面積率と高周波鉄損との関係を示すグラフ
[1] the area ratio and the high-frequency core loss in thickness in cross section of the Al 2 O 3 of 3% Si-0.5% Al steel sheet was uniformly distributed steel section and in the plate plane Al 2 O 3 Graph showing the relationship with

【図2】Al23を鋼板断面内および板面内に均一に分
布させた3%Si−0.5%Al鋼板のAl23の板厚
断面内での面積率と磁束密度との関係を示すグラフ
[Figure 2] and the area ratio and the magnetic flux density in a thickness cross section of the Al 2 O 3 the steel cross-section and in 3 of% Si-0.5% Al steel sheet Al 2 O 3 were uniformly distributed in the plate plane Graph showing the relationship

【図3】本発明鋼板の使用周波数と鉄損低減効果との関
係を示すグラフ
FIG. 3 is a graph showing the relationship between the working frequency of the steel sheet of the present invention and the iron loss reducing effect.

【図4】鋼板表層部に内部酸化物含有層を有する本発明
鋼板と、同じく窒化物含有層を有する本発明鋼板の鉄損
低減効果を示すグラフ
FIG. 4 is a graph showing the iron loss reducing effect of the steel sheet of the present invention having an internal oxide-containing layer on the surface layer of the steel sheet and the steel sheet of the present invention also having a nitride-containing layer.

【図5】窒化物含有層の鋼板表層からの深さxと鋼板板
厚tとの比x/tと高周波鉄損との関係を示すグラフ
FIG. 5 is a graph showing the relationship between the ratio x / t of the depth x of the nitride-containing layer from the surface of the steel sheet to the steel sheet thickness t and the high-frequency iron loss.

【図6】窒化物含有層の鋼板表層からの深さxと鋼板板
厚tとの比x/tと高周波鉄損との関係を示すグラフ
FIG. 6 is a graph showing a relationship between a ratio x / t of a depth x of a nitride-containing layer from a surface layer of a steel sheet to a steel sheet thickness t and high-frequency iron loss.

【図7】鋼板表層部の窒化物含有層中の窒化物の平均粒
径dと高周波鉄損との関係を示すグラフ
FIG. 7 is a graph showing the relationship between the average particle diameter d of nitride in a nitride-containing layer in the surface layer of a steel sheet and high-frequency iron loss.

【図8】鋼板表層部の窒化物含有層における窒化物の板
厚断面での面積率Rと高周波鉄損との関係を示すグラフ
FIG. 8 is a graph showing the relationship between the area ratio R and the high-frequency iron loss of a nitride-containing layer in the surface layer portion of a steel sheet in a cross section of the thickness of nitride.

【図9】鋼板表層部の窒化物含有層が本発明条件を満足
する鋼板と、鋼板表層部に窒化物含有層がない鋼板の平
均結晶粒径と高周波鉄損との関係を示すグラフ
FIG. 9 is a graph showing the relationship between the average crystal grain size and the high-frequency iron loss of a steel sheet in which the nitride-containing layer in the surface layer portion of the steel sheet satisfies the conditions of the present invention and a steel sheet having no nitride-containing layer in the surface layer portion of the steel sheet.

【図10】鋼板表層部の内部酸化物含有層、窒化物含有
層が本発明条件を満足する鋼板の、鉄損に対する最適平
均結晶粒径範囲を示すグラフ
FIG. 10 is a graph showing an optimum average crystal grain size range with respect to iron loss of a steel sheet in which an internal oxide-containing layer and a nitride-containing layer in the surface layer of the steel sheet satisfy the conditions of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大北 智良 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平3−223445(JP,A) 特開 平5−59441(JP,A) 特開 平4−63252(JP,A) 特開 平3−274247(JP,A) 特開 昭59−74258(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 303 C22C 38/06 H01F 1/16 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoyoshi Ohkita 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (56) References JP-A-3-223445 (JP, A) JP-A Heihei 5-59441 (JP, A) JP-A-4-63252 (JP, A) JP-A-3-274247 (JP, A) JP-A-59-74258 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00 303 C22C 38/06 H01F 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 SiとAlの合計量が1.7〜4.5w
t%、C:0.005wt%以下、Mn:0.1〜1w
t%、S:0.015wt%以下、P:0.2wt%以
下、下記により定義される窒化物含有層または内部酸化
物含有層若しくは窒化物−内部酸化物含有層以外のN:
0.005wt%以下、窒化物含有層または内部酸化物
含有層若しくは窒化物−内部酸化物含有層以外のO:
0.005wt%以下を含有し、残部Feおよび不可避
的不純物からなる鋼板であって、鋼板表層部において粒
径0.1μm以上の窒化物または/および内部酸化物が
鋼板板面内での面積率で0.01%以上存在する領域を
窒化物含有層または内部酸化物含有層若しくは窒化物−
内部酸化物含有層と定義した時、窒化物含有層または内
部酸化物含有層若しくは窒化物−内部酸化物含有層が鋼
板表層から下式を満足する深さx(mm)まで形成さ
れ、 0.05t≦x≦0.15t 但し t:鋼板板厚(mm) 窒化物含有層または内部酸化物含有層若しくは窒化物−
内部酸化物含有層における窒化物または/および内部酸
化物の平均粒径が3μm以下であり、窒化物含有層また
は内部酸化物含有層若しくは窒化物−内部酸化物含有層
における粒径0.1μm以上の窒化物または/および内
部酸化物の板厚断面内での面積率Rが0.05〜0.2
0%であり、窒化物含有層または内部酸化物含有層若し
くは窒化物−内部酸化物含有層以外の領域において存在
する粒径0.1μm以上の窒化物および内部酸化物の板
厚断面内での面積率が0.01%未満であり、鋼板の平
均結晶粒径D(μm)が下式を満足する、周波数200
Hz以上、5kHz以下で使用される鉄損特性に優れた
高周波用無方向性電磁鋼板。 【数1】
1. The total amount of Si and Al is 1.7 to 4.5 w.
t%, C: 0.005 wt% or less, Mn: 0.1 to 1 w
t: S: 0.015 wt% or less, P: 0.2 wt% or less, N other than a nitride-containing layer or an internal oxide-containing layer or a nitride-internal oxide-containing layer defined as follows:
0.005 wt% or less, O other than the nitride-containing layer or the internal oxide-containing layer or the nitride-internal oxide-containing layer:
A steel sheet containing 0.005 wt% or less, the balance being Fe and unavoidable impurities, wherein the nitride or / and internal oxide having a particle size of 0.1 μm or more in the surface layer of the steel sheet has an area ratio in the plane of the steel sheet. In the region containing 0.01% or more of the nitride-containing layer or internal oxide-containing layer or nitride-
When defined as an internal oxide-containing layer, a nitride-containing layer or an internal oxide-containing layer or a nitride-internal oxide-containing layer is formed from a surface layer of a steel sheet to a depth x (mm) satisfying the following expression. 05t ≦ x ≦ 0.15t where t: steel plate thickness (mm) nitride-containing layer or internal oxide-containing layer or nitride
The average particle size of the nitride or / and internal oxide in the internal oxide-containing layer is 3 μm or less, and the particle size in the nitride-containing layer or internal oxide-containing layer or nitride-internal oxide-containing layer is 0.1 μm or more. The area ratio R of the nitride or / and internal oxide in the cross section of the plate thickness is 0.05 to 0.2
0%, and the nitride and internal oxide having a grain size of 0.1 μm or more existing in a region other than the nitride-containing layer, the internal oxide-containing layer, or the nitride-internal oxide-containing layer in the plate thickness cross section. The area ratio is less than 0.01%, and the average crystal grain size D (μm) of the steel sheet satisfies the following expression.
Non-oriented electrical steel sheet for high frequency use with excellent iron loss characteristics used in the frequency range of 5 Hz to 5 kHz. (Equation 1)
【請求項2】 板厚が0.1〜0.2mmである請求項
1に記載の、周波数200Hz以上、5kHz以下で使
用される鉄損特性に優れた高周波用無方向性電磁鋼板。
2. The high-frequency non-oriented electrical steel sheet according to claim 1, which has a thickness of 0.1 to 0.2 mm and has excellent iron loss characteristics used at a frequency of 200 Hz or more and 5 kHz or less.
JP5147100A 1993-05-26 1993-05-26 Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics Expired - Fee Related JP2910508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5147100A JP2910508B2 (en) 1993-05-26 1993-05-26 Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5147100A JP2910508B2 (en) 1993-05-26 1993-05-26 Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics

Publications (2)

Publication Number Publication Date
JPH06330260A JPH06330260A (en) 1994-11-29
JP2910508B2 true JP2910508B2 (en) 1999-06-23

Family

ID=15422504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5147100A Expired - Fee Related JP2910508B2 (en) 1993-05-26 1993-05-26 Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics

Country Status (1)

Country Link
JP (1) JP2910508B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712864B2 (en) * 2011-08-23 2015-05-07 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet and method for evaluating cold rollability
JP5712863B2 (en) * 2011-08-23 2015-05-07 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP5824965B2 (en) * 2011-08-23 2015-12-02 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP5972540B2 (en) * 2011-08-23 2016-08-17 新日鐵住金株式会社 Non-oriented electrical steel sheet
JP5712862B2 (en) * 2011-08-23 2015-05-07 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP6057082B2 (en) * 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP5995002B2 (en) 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
JP6772911B2 (en) * 2017-03-15 2020-10-21 日本製鉄株式会社 Non-oriented electrical steel sheet
JP7159592B2 (en) * 2018-03-30 2022-10-25 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method

Also Published As

Publication number Publication date
JPH06330260A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5733409B2 (en) Non-oriented electrical steel sheet
KR100956530B1 (en) Nonoriented electromagnetic steel sheet
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP2004068084A (en) Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine
JP2020503444A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2023507435A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2910508B2 (en) Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics
JPH0860311A (en) Thin nonoriented silicon steel sheet reduced in iron loss and its production
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JP2004339603A (en) High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP4622162B2 (en) Non-oriented electrical steel sheet
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3395391B2 (en) Manufacturing method of thin non-oriented electrical steel sheet
JPH07228953A (en) Nonoriented silicon steel sheet reduced in iron loss and its production
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
CN113166871A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2004363512A (en) Electrical steel wire excellent in processability and high frequency magnetic characteristic
WO2023282072A1 (en) Non-oriented electrical steel plate and manufacturing method thereof
WO2020149333A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2917776B2 (en) Non-oriented electrical steel sheet for high frequency
JP2004270011A (en) Method for producing high magnetic flux density non-directional magnetic steel sheet for rotary machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees