JP6772911B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP6772911B2
JP6772911B2 JP2017050085A JP2017050085A JP6772911B2 JP 6772911 B2 JP6772911 B2 JP 6772911B2 JP 2017050085 A JP2017050085 A JP 2017050085A JP 2017050085 A JP2017050085 A JP 2017050085A JP 6772911 B2 JP6772911 B2 JP 6772911B2
Authority
JP
Japan
Prior art keywords
oxide layer
internal oxide
less
steel sheet
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017050085A
Other languages
Japanese (ja)
Other versions
JP2018154853A (en
Inventor
鉄州 村川
鉄州 村川
山崎 修一
修一 山崎
藤倉 昌浩
昌浩 藤倉
毅郎 荒牧
毅郎 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017050085A priority Critical patent/JP6772911B2/en
Publication of JP2018154853A publication Critical patent/JP2018154853A/en
Application granted granted Critical
Publication of JP6772911B2 publication Critical patent/JP6772911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、電気機器鉄心材料として使用される、磁気特性の優れた無方向性電磁鋼板に関する。 The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core material for electrical equipment.

近年、電気機器、特に、無方向性電磁鋼板がその鉄心材料として使用される回転機、中小型変圧器、電装品等の分野においては、世界的な電力・エネルギー節減、CO削減等に代表される地球環境保全の動きの中で、高効率化、小型化の要請はますます強まりつつある。このような社会環境下において、当然、無方向性電磁鋼板に対しても、その性能向上は、喫緊の課題である。 In recent years, in the fields of electrical equipment, especially rotating machines, small and medium-sized transformers, and electrical components in which non-oriented electrical steel sheets are used as the core material, they are representative of global power and energy savings, CO 2 reduction, etc. With the movement to protect the global environment, the demand for higher efficiency and smaller size is increasing. Under such a social environment, it is an urgent issue to improve the performance of non-oriented electrical steel sheets as a matter of course.

モータの特性向上に関して無方向性電磁鋼板に求められる特性のひとつに打ち抜き精度がある。ステータ(固定子)とロータ(回転子)の隙間を狭くするほどモータ特性を向上出来る場合が多い。しかし稼働中にステータとロータが触れた場合は、モータが破損するため、ステータ及びロータの寸法形状の精度を高める必要があり、打ち抜き精度の良い無方向性電磁鋼板が求められる。 Punching accuracy is one of the characteristics required for non-oriented electrical steel sheets for improving the characteristics of motors. In many cases, the motor characteristics can be improved by narrowing the gap between the stator (stator) and the rotor (rotor). However, if the stator and the rotor come into contact with each other during operation, the motor will be damaged. Therefore, it is necessary to improve the accuracy of the dimensions and shape of the stator and the rotor, and a non-oriented electrical steel sheet having good punching accuracy is required.

打ち抜き精度を向上させる手段の一つに無方向性電磁鋼板の硬度を上げる手段がある。特許文献1に記載されているような、Pを鋼板に0.1%以上含有させる手法は、Si量の多い材料では生産性が悪くなる問題がある。また、無方向性電磁鋼板の表層を酸化させることで硬度を上げることが出来るが、特許文献2〜4に記載されているように、内部酸化層が0.5μm超になると鉄損に悪影響を与えることが知られている。すなわち、無方向性電磁鋼板の打ち抜き精度の向上と鉄損の低下を両立する無方向性電磁鋼板はこれまで得ることが出来なかった。 One of the means for improving the punching accuracy is a means for increasing the hardness of the non-oriented electrical steel sheet. The method of adding 0.1% or more of P to a steel sheet as described in Patent Document 1 has a problem that productivity is deteriorated in a material having a large amount of Si. Further, the hardness can be increased by oxidizing the surface layer of the non-oriented electrical steel sheet, but as described in Patent Documents 2 to 4, if the internal oxide layer exceeds 0.5 μm, the iron loss is adversely affected. It is known to give. That is, it has not been possible to obtain a non-oriented electrical steel sheet that achieves both improvement in punching accuracy and reduction in iron loss of the non-oriented electrical steel sheet.

特許第4329538号公報Japanese Patent No. 4329538 特許第3307897号公報Japanese Patent No. 3307897 特許第4116748号公報Japanese Patent No. 4116748 特許第4116749号公報Japanese Patent No. 41167479

本発明は上記事情に鑑みてなされたもので、打ち抜き精度の向上と低鉄損を両立する無方向性電磁鋼板を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-oriented electrical steel sheet having both improved punching accuracy and low iron loss.

本発明者らは、無方向性電磁鋼板において、内部酸化層が存在しても鉄損を低下させる手法について鋭意研究を重ねた。その結果、内部酸化層を発生させるタイミングとその厚みを制御することで、内部酸化層を部分的に形成し、著しく打ち抜き精度が向上し、かつ低鉄損な材料が実現できることを究明した。すなわち、熱間圧延後の鋼板に対して表面スケールを付着させたまま焼鈍することで、表面スケールに含まれる酸素を活用して内部酸化層を鋼板全面に形成し、更に酸洗、冷間圧延することで、内部酸化層を分断させて地鉄を部分的に露出させることで打ち抜き精度を高め、更には、冷間圧延後に仕上げ焼鈍を行うことで低鉄損な鋼板を得ることを知見した。また、冷間圧延後の仕上げ焼鈍の雰囲気を制御することで、仕上げ焼鈍時の内部酸化層の増大による磁気特性の低下を防止することを知見した。 The present inventors have conducted extensive research on a method for reducing iron loss even in the presence of an internal oxide layer in non-oriented electrical steel sheets. As a result, it was clarified that the internal oxide layer can be partially formed by controlling the timing of generating the internal oxide layer and its thickness, the punching accuracy can be remarkably improved, and a material having low iron loss can be realized. That is, by annealing the steel sheet after hot rolling with the surface scale attached, an internal oxide layer is formed on the entire surface of the steel sheet by utilizing the oxygen contained in the surface scale, and then pickling and cold rolling. By doing so, it was found that the internal oxide layer is divided to partially expose the base iron to improve punching accuracy, and further, finish annealing is performed after cold rolling to obtain a steel sheet with low iron loss. .. It was also found that by controlling the atmosphere of finish annealing after cold rolling, it is possible to prevent deterioration of magnetic properties due to an increase in the internal oxide layer during finish annealing.

本発明は上記の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]質量%で、C:0.0030%以下、Si:2.0%以上4.0%以下、Al:0.1%以上3.0%以下、Mn:0.10%以上2.00%以下、P:0.09%以下、S:0.0050%以下、N:0.0050%以下を含有し、残部Feおよび不純物元素よりなり、表面の内部酸化層が覆う表面積が全表面積の10〜70%であり、内部酸化層のある領域の平均内部酸化層厚が0.5μm〜10μmであることを特徴とする無方向性電磁鋼板。
[2]前記の鋼成分に加え、質量%で、Sn:0.02%以上0.40%以下、Cu:0.10%以上1.00%以下、Sb:0.02%以上0.40%以下の1種または2種以上を含有する無方向性電磁鋼板。
[3]前記の鋼成分に加え、質量%で、REM:0.0005%以上0.0400%以下、Ca:0.0005%以上0.0400%以下、Mg:0.0005%以上0.0400%以下を含有する無方向性電磁鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In terms of mass%, C: 0.0030% or less, Si: 2.0% or more and 4.0% or less, Al: 0.1% or more and 3.0% or less, Mn: 0.10% or more 2. It contains 00% or less, P: 0.09% or less, S: 0.0050% or less, N: 0.0050% or less, consists of the balance Fe and impurity elements, and the total surface area covered by the internal oxide layer on the surface is the total surface area. A non-directional electromagnetic steel sheet having an average internal oxide layer thickness of 0.5 μm to 10 μm in a region having an internal oxide layer, which is 10 to 70% of the above.
[2] In addition to the above steel components, in terms of mass%, Sn: 0.02% or more and 0.40% or less, Cu: 0.10% or more and 1.00% or less, Sb: 0.02% or more and 0.40 Non-oriented electrical steel sheet containing 1 type or 2 or more types of% or less.
[3] In addition to the above steel components, in mass%, REM: 0.0005% or more and 0.0400% or less, Ca: 0.0005% or more and 0.0400% or less, Mg: 0.0005% or more and 0.0400. Non-oriented electrical steel sheet containing% or less.

以上のように、本発明の無方向性電磁鋼板によれば、打ち抜き精度の向上と低鉄損を両立する無方向性電磁鋼板を提供できる。本発明は、電気機器鉄心材料、特に、回転機、中小型変圧器、電装品等の鉄心材料として望ましい、打ち抜き精度に優れてかつ低鉄損である無方向性電磁鋼板を提供できるので、無方向性電磁鋼板がその鉄心材料として使用されるこれら電気機器の分野における喫緊の高効率化、小型化要請に十分に応えることができ、その工業的価値は極めて高いものである。 As described above, according to the non-oriented electrical steel sheet of the present invention, it is possible to provide a non-oriented electrical steel sheet that achieves both improved punching accuracy and low iron loss. The present invention can provide non-oriented electrical steel sheets having excellent punching accuracy and low iron loss, which are desirable as iron core materials for electrical equipment, particularly iron core materials for rotating machines, small and medium-sized transformers, electrical components, and the like. It is possible to sufficiently meet the urgent demand for high efficiency and miniaturization in the field of these electric devices in which grain-oriented electrical steel sheets are used as the core material, and its industrial value is extremely high.

本実施形態の無方向性電磁鋼板の製造方法を説明する模式図。The schematic diagram explaining the manufacturing method of the non-oriented electrical steel sheet of this embodiment. 試験番号No.1の無方向性電磁鋼板の内部酸化層を示す圧延方向断面の光学顕微鏡写真。Test number No. An optical micrograph of a cross section in the rolling direction showing an internal oxide layer of the non-oriented electrical steel sheet of 1.

以下、本発明を詳細に説明する。
本実施形態の無方向性電磁鋼板は、質量%で、C:0.0030%以下、Si:2.0%以上4.0%以下、Al:0.1%以上3.0%以下、Mn:0.10%以上2.00%以下、P:0.09%以下、S:0.0050%以下、N:0.0050%以下を含有し、残部Feおよび不純物元素よりなり、表面の内部酸化層が覆う表面積が全表面積の10〜70%であり、内部酸化層のある領域の平均内部酸化層厚が0.5μm〜10μmである無方向性電磁鋼板である。
Hereinafter, the present invention will be described in detail.
The non-directional electromagnetic steel plate of the present embodiment has C: 0.0030% or less, Si: 2.0% or more and 4.0% or less, Al: 0.1% or more and 3.0% or less, Mn in mass%. : 0.10% or more and 2.00% or less, P: 0.09% or less, S: 0.0050% or less, N: 0.0050% or less, consisting of the balance Fe and impurity elements, inside the surface It is a non-directional electromagnetic steel plate in which the surface area covered by the oxide layer is 10 to 70% of the total surface area, and the average internal oxide layer thickness in a region having an internal oxide layer is 0.5 μm to 10 μm.

まず、本発明の鋼成分の限定理由について述べる。
Cは、鉄損を高める有害な成分で、磁気時効の原因ともなるので、0.0030%以下とする。
First, the reason for limiting the steel component of the present invention will be described.
C is a harmful component that increases iron loss and causes magnetic aging, so it should be 0.0030% or less.

Siは、前記のように、電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であり、また、降伏比を増大させることにより、鉄心への打ち抜き加工性を向上させる作用も有する。これらの作用を奏するためには、2.0%以上含有させる必要がある。一方、その含有量が増えると、磁束密度が低下し、かつ、無方向性電磁鋼板の製造工程そのものにおいても、冷延等の作業性の低下、コスト高ともなるので、4.0%以下とする。 As described above, Si is a component having an effect of reducing iron loss by increasing electrical resistance and reducing eddy current loss, and punching into an iron core by increasing the yield ratio. It also has the effect of improving sex. In order to exert these effects, it is necessary to contain 2.0% or more. On the other hand, when the content is increased, the magnetic flux density is lowered, and the workability such as cold rolling is lowered and the cost is high even in the manufacturing process of the non-oriented electrical steel sheet, so the content is 4.0% or less. To do.

Alも、前記のように、Siと同様に電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であるが、Siに比較し硬度の上昇が少ない。また、飽和磁束密度Bsに対する磁束密度B50の比率:B50/Bsを高め、磁束密度を向上させる作用も奏する。このためには、0.1%以上含有させる必要がある。一方、その含有量が増えると、飽和磁束密度そのものが低下し、磁束密度の低下を招き、さらには、降伏比の減少を招いて、打ち抜き精度をも劣化させるので、3.0%以下とする。 As described above, Al is also a component having an effect of reducing iron loss by increasing electric resistance and reducing eddy current loss like Si, but the increase in hardness is smaller than that of Si. In addition, the ratio of the magnetic flux density B50 to the saturated magnetic flux density Bs: B50 / Bs is increased, and the magnetic flux density is also improved. For this purpose, it is necessary to contain 0.1% or more. On the other hand, when the content increases, the saturation magnetic flux density itself decreases, which causes a decrease in the magnetic flux density, and further causes a decrease in the yield ratio, which also deteriorates the punching accuracy. Therefore, the punching accuracy is set to 3.0% or less. ..

Mnは、電気抵抗を増大させて渦電流損を減少させるとともに、一次再結晶集合組織を改善して圧延方向磁気特性の向上に望ましい{110}<001>結晶方位を発達させる効果を有する。さらに、結晶粒成長に有害なMnS等の微細硫化物の析出を抑制する。これらの目的のためには、0.10%以上含有させる必要がある。しかし、その含有量が増えると、焼鈍時の結晶粒成長性そのものが低下し、鉄損が増大するので、2.00%以下とする。 Mn has the effect of increasing the electrical resistance to reduce the eddy current loss and improving the primary recrystallization texture to develop the {110} <001> crystal orientation which is desirable for improving the magnetic characteristics in the rolling direction. Furthermore, it suppresses the precipitation of fine sulfides such as MnS, which are harmful to crystal grain growth. For these purposes, it should be contained in an amount of 0.10% or more. However, when the content increases, the crystal grain growth property itself at the time of annealing decreases and the iron loss increases, so the content is set to 2.00% or less.

Pは、打ち抜き精度を上げる効果があり、添加しても良いが、その含有量が増えるとSi≧2%含有する鋼板では非常に脆くなるため、0.09%以下とする。 P has the effect of improving the punching accuracy and may be added, but as the content of P increases, the steel sheet containing Si ≧ 2% becomes very brittle, so the content is set to 0.09% or less.

Sは、MnS等の硫化物の微細析出により、仕上焼鈍時等における再結晶および結晶粒成長を阻害するので、0.0050%以下とする。 S is 0.0050% or less because it inhibits recrystallization and grain growth during finish annealing and the like due to fine precipitation of sulfides such as MnS.

Nは、AlN等の硫化物の微細析出により、仕上焼鈍時等における再結晶および結晶粒成長を阻害するので、0.0050%以下とする。 N is 0.0050% or less because it inhibits recrystallization and grain growth during finish annealing and the like due to fine precipitation of sulfides such as AlN.

Sn、Cu、Sbは、鋼板の一次再結晶集合組織を改善して圧延方向磁気特性の向上に望ましい{110}<001>集合組織に発達させ、かつ、磁気特性に望ましくない{111}<112>集合組織等を抑制する効果を有する。さらに、鋼板表面酸化を制御し、かつ、結晶粒成長を整粒化させる効果を有する。また、内部酸化層の厚みを低減する効果もあり、必要に応じて添加しても良い。これらの目的のためには、SnとSbは0.02%以上、Cuは0.10%以上含有させる必要がある。一方、その含有量が増えても作用は飽和し、むしろ、仕上焼鈍時等の結晶粒成長性そのものが抑制されるので、SnとSbは0.40%以下、Cuは1.00%以下とする。 Sn, Cu, and Sb develop into a {110} <001> texture that is desirable for improving the primary recrystallization texture of the steel sheet and improving the magnetic properties in the rolling direction, and {111} <112 that is not desirable for the magnetic properties. > It has the effect of suppressing the texture and the like. Further, it has the effect of controlling the surface oxidation of the steel sheet and sizing the crystal grain growth. It also has the effect of reducing the thickness of the internal oxide layer, and may be added as needed. For these purposes, Sn and Sb should be contained in an amount of 0.02% or more, and Cu should be contained in an amount of 0.10% or more. On the other hand, even if the content is increased, the action is saturated, and rather, the crystal grain growth itself at the time of finish annealing is suppressed, so Sn and Sb are 0.40% or less, and Cu is 1.00% or less. To do.

REM、Ca、Mgは、硫化物もしくは酸硫化物としてSを固定し、MnS等の微細析出を回避し、仕上焼鈍時等における再結晶および結晶粒成長を促進する。この目的のためには、0.0005%以上含有させる必要がある。一方、その含有量が増えると、硫化物もしくは酸硫化物自体が過剰となり、仕上焼鈍時等における再結晶および結晶粒成長を阻害するので0.0400%以下とする。 REM, Ca, and Mg fix S as a sulfide or acid sulfide, avoid fine precipitation of MnS and the like, and promote recrystallization and grain growth during finish annealing and the like. For this purpose, it is necessary to contain 0.0005% or more. On the other hand, when the content is increased, the sulfide or acid sulfide itself becomes excessive, which inhibits recrystallization and grain growth during finish annealing and the like, so the content is 0.0400% or less.

上述の成分以外は、Feおよび不純物元素である。 Other than the above-mentioned components, Fe and impurity elements.

次に、本実施形態の無方向性電磁鋼板は、表面に内部酸化層が存在しており、鋼板の表面のうち、内部酸化層が覆う表面積が、全表面積の10〜70%となることが望ましい。内部酸化層は地鉄に比べて硬度が高く、打ち抜き精度が向上する。この効果を得るためには全表面積の10%以上を内部酸化層で覆う必要がある。しかし、内部酸化層が覆う表面積が多いと鉄損が悪化する。そのため、内部酸化層が覆う表面積は全表面積の70%以下にする必要がある。 Next, the non-oriented electrical steel sheet of the present embodiment has an internal oxide layer on the surface, and the surface area covered by the internal oxide layer on the surface of the steel sheet may be 10 to 70% of the total surface area. desirable. The internal oxide layer has a higher hardness than the base iron, and the punching accuracy is improved. In order to obtain this effect, it is necessary to cover 10% or more of the total surface area with an internal oxide layer. However, if the surface area covered by the internal oxide layer is large, the iron loss is exacerbated. Therefore, the surface area covered by the internal oxide layer needs to be 70% or less of the total surface area.

また、内部酸化層が存在している箇所において、内部酸化層厚が薄いと打ち抜き精度を向上する効果が得られない。そのため、内部酸化層厚を平均で0.5μm以上にする必要がある。一方、内部酸化層の厚みが厚すぎると鉄損の劣化を招くため、10μm以下にする必要がある。 Further, in the place where the internal oxide layer exists, if the internal oxide layer is thin, the effect of improving the punching accuracy cannot be obtained. Therefore, it is necessary to make the internal oxide layer thickness 0.5 μm or more on average. On the other hand, if the thickness of the internal oxide layer is too thick, iron loss deteriorates, so the thickness must be 10 μm or less.

本発明に係る内部酸化層とは、Si,Al,Mnなどが粒子状の酸化物を形成し、それが鉄内部に分散された領域を含む層を指し、この層は、例えば、図1(E)に示すように、鋼板の表面に島状に形成されている。このような内部酸化層は、例えば以下に説明する手順で形成される。すなわち、図1(A)に示すように、表面に酸化層(表面スケール(外部酸化層))が形成された熱間圧延後の鋼板に対し、図1(B)に示すように熱延板焼鈍を施すことにより、表面の酸化層から酸素を地鉄中に拡散させて層状の内部酸化層を形成させる。次いで、図1(C)に示すように、酸洗によって外部酸化層を除去し、更に、図1(D)及び図1(E)に示すように冷間圧延工程を経ることにより、内部酸化層を島状に分断させる。図1(A)に示すように、熱延後の鋼板表面を覆っている層状の酸化物層は外部酸化層と呼び、本発明に係る内部酸化層と区別する。本実施形態の内部酸化層は、地鉄表面の全面に形成されているのではなく、地鉄上に島状に形成される。従って、内部酸化層が形成されている領域では、図1(E)に示すように、最表層側から、内部酸化層、地鉄の二層構造が形成されているが、内部酸化層が形成されていない領域では、地鉄のみで形成されることになる。 The internal oxide layer according to the present invention refers to a layer containing a region in which Si, Al, Mn and the like form particulate oxide and are dispersed inside iron, and this layer is, for example, FIG. 1 ( As shown in E), it is formed in an island shape on the surface of the steel plate. Such an internal oxide layer is formed, for example, by the procedure described below. That is, as shown in FIG. 1 (A), the hot-rolled steel sheet having an oxide layer (surface scale (external oxide layer)) formed on the surface thereof is hot-rolled as shown in FIG. 1 (B). By annealing, oxygen is diffused into the ground iron from the surface oxide layer to form a layered internal oxide layer. Then, as shown in FIG. 1 (C), the external oxide layer is removed by pickling, and further, as shown in FIGS. 1 (D) and 1 (E), a cold rolling step is performed to perform internal oxidation. Divide the layer into islands. As shown in FIG. 1A, the layered oxide layer covering the surface of the steel sheet after hot spreading is called an external oxide layer, and is distinguished from the internal oxide layer according to the present invention. The internal oxide layer of the present embodiment is not formed on the entire surface of the ground iron, but is formed in an island shape on the ground iron. Therefore, in the region where the internal oxide layer is formed, as shown in FIG. 1 (E), a two-layer structure of the internal oxide layer and the ground iron is formed from the outermost layer side, but the internal oxide layer is formed. In the area where it is not, it will be formed only by the ground iron.

内部酸化層の下層は地鉄である。内部酸化層は地鉄との境界面の凹凸が大きいので、磁束の流れを阻害して高周波鉄損を著しく劣化させるので、特に注意しなければならない。 The lower layer of the internal oxide layer is ground iron. Since the internal oxide layer has large irregularities on the interface with the ground iron, it obstructs the flow of magnetic flux and significantly deteriorates the high frequency iron loss, so special care must be taken.

なお、内部酸化層は、鋼板断面の研磨面を1000倍以上の倍率でSEM−EDX測定することで観察することができるが、SEM像は通常の二次電子ではなく、反射電子像の方が内部酸化層の厚みを明瞭に見ることができる。内部酸化層の厚みは、上下それぞれの界面の凹凸中心線(凹凸曲線の平均線に平行な直線を引いたとき、この直線と凹凸曲線で囲まれる面積が、この直線の両側で等しくなる直線を中心線とする)同士の差として定義される。また、簡易的な内部酸化層の観察手段として、鏡面研磨した鋼板断面を1000倍程度の倍率により光学顕微鏡で観察ことが挙げられる。 The internal oxide layer can be observed by measuring the polished surface of the steel plate cross section at a magnification of 1000 times or more by SEM-EDX, but the SEM image is not a normal secondary electron but a backscattered electron image. The thickness of the internal oxide layer can be clearly seen. The thickness of the internal oxide layer is the center line of the unevenness at the upper and lower interfaces (when a straight line parallel to the average line of the unevenness curve is drawn, the area surrounded by this straight line and the unevenness curve is equal on both sides of this straight line. It is defined as the difference between (the center line). Further, as a simple means for observing the internal oxide layer, observation of a mirror-polished steel sheet cross section with an optical microscope at a magnification of about 1000 times can be mentioned.

なお、内部酸化層の存在割合は、以下のように測定すればよい。SEMの二次電子像で100μm以上の表層の領域を観察する。そして、表層に内部酸化層が有る距離を求めて、その値を観察した距離で割り、百分率で表す。この値を内部酸化層の存在割合とする。 The abundance ratio of the internal oxide layer may be measured as follows. Observe the surface area of 100 μm or more with the secondary electron image of SEM. Then, the distance that the internal oxide layer is on the surface layer is obtained, and the value is divided by the observed distance and expressed as a percentage. This value is taken as the abundance ratio of the internal oxide layer.

更に、内部酸化層の厚みの測定方法および平均厚さの決定方法は、以下のようにして測定し、決定すればよい。SEMの二次電子像で100μm以上の表層の領域を観察する。そして、内部酸化層のある領域に縦線を10本以上引き、その縦線上の内部酸化層厚を求める。その内部酸化層厚の平均値を、内部酸化層の平均厚さとする。 Further, the method for measuring the thickness of the internal oxide layer and the method for determining the average thickness may be measured and determined as follows. Observe the surface area of 100 μm or more with the secondary electron image of SEM. Then, 10 or more vertical lines are drawn in the region where the internal oxide layer is present, and the thickness of the internal oxide layer on the vertical lines is obtained. The average value of the internal oxide layer thickness is defined as the average thickness of the internal oxide layer.

次に、本実施形態の無方向性電磁鋼板を製造するには、前記成分からなる溶鋼を、連続鋳造、熱間圧延、酸洗、冷間圧延し、次いで仕上焼鈍を施す必要がある。 Next, in order to produce the non-oriented electrical steel sheet of the present embodiment, it is necessary to continuously cast, hot-roll, pickle, and cold-roll the molten steel composed of the above-mentioned components, and then perform finish annealing.

仕上焼鈍時に磁気特性の悪い{111}方位粒の発達を抑制するため、冷間圧延前の結晶粒径を粗大にさせても良い。具体的な方法として、熱間圧延と酸洗の間に熱延板焼鈍を実施することや、熱間圧延で高温仕上げを実施することや、巻き取り後保熱カバーをかぶせること等が挙げられる。 In order to suppress the development of {111} directional grains having poor magnetic properties during finish annealing, the crystal grain size before cold rolling may be coarsened. Specific methods include performing hot-rolled sheet annealing between hot rolling and pickling, performing high-temperature finishing by hot rolling, and covering with a heat-retaining cover after winding. ..

本発明の最大の特徴は、仕上げ焼鈍後に内部酸化層の存在率を10〜70%することにある。内部酸化層は地鉄に比べて硬度が高く、打ち抜き精度が向上する。この効果に得るためには全表面積の10%以上を内部酸化層で覆う必要がある。しかし、内部酸化層が覆う表面積が多いと鉄損が悪化するというデメリットがある。そのため、内部酸化層が覆う表面積は全表面積の70%以下にする必要がある。 The greatest feature of the present invention is that the abundance of the internal oxide layer is reduced to 10 to 70% after finish annealing. The internal oxide layer has a higher hardness than the base iron, and the punching accuracy is improved. In order to obtain this effect, it is necessary to cover 10% or more of the total surface area with an internal oxide layer. However, if the surface area covered by the internal oxide layer is large, there is a demerit that iron loss is deteriorated. Therefore, the surface area covered by the internal oxide layer needs to be 70% or less of the total surface area.

また、内部酸化層が存在している箇所において、内部酸化層の厚みが薄いと打ち抜き精度を上げる効果が得られない。そのため、内部酸化層の厚みを平均で0.5μm以上にする必要がある。一方、内部酸化層の厚みが厚すぎると鉄損の劣化を招くため、10μm以下にする必要がある。 Further, in the place where the internal oxide layer exists, if the thickness of the internal oxide layer is thin, the effect of improving the punching accuracy cannot be obtained. Therefore, it is necessary to make the thickness of the internal oxide layer 0.5 μm or more on average. On the other hand, if the thickness of the internal oxide layer is too thick, iron loss deteriorates, so the thickness must be 10 μm or less.

上記条件を満たす鋼板を製造する手段の一つに、冷延前の鋼板に内部酸化層を10μm以下程度の厚みで残存させる方法がある。冷延前に内部酸化層を残存させ、50%以上の冷間圧延後、ドライ雰囲気で焼鈍することで本発明の特徴を持つ鋼板が得られる。 One of the means for producing a steel sheet satisfying the above conditions is a method in which an internal oxide layer is left on the steel sheet before cold rolling with a thickness of about 10 μm or less. A steel sheet having the characteristics of the present invention can be obtained by leaving an internal oxide layer before cold rolling, cold rolling at 50% or more, and then annealing in a dry atmosphere.

上記方法で、表面の内部酸化層が覆う面積を全面積の10〜70%になる理由を図1に示す。 FIG. 1 shows the reason why the area covered by the internal oxide layer on the surface is 10 to 70% of the total area by the above method.

図1(A)に示すように、熱延板は通常、外部酸化層と地鉄で構成される。外部酸化層がある状態で、750℃以上で焼鈍すると、外部酸化層の酸素の一部が地鉄側に移動し、図1(B)に示すように内部酸化層を形成する。その後、内部酸化層を残したまま外部酸化層のみ除去するよう酸洗量を調整する(図1(C))。酸洗後の鋼板を冷間圧延すると、地鉄は延ばされるが、内部酸化層は地鉄と異なり、硬くて脆いため、図1(D)に示すように島状に分断され、更に図1(E)に示すように地鉄中に圧し込まれる。冷間圧延時は図1(D)及び図1(E)に示す工程が同時に起きる。 As shown in FIG. 1 (A), the hot-rolled plate is usually composed of an external oxide layer and ground iron. When annealed at 750 ° C. or higher with an external oxide layer present, a part of oxygen in the external oxide layer moves to the ground iron side to form an internal oxide layer as shown in FIG. 1 (B). Then, the amount of pickling is adjusted so that only the external oxide layer is removed while leaving the internal oxide layer (FIG. 1 (C)). When the pickled steel sheet is cold-rolled, the base iron is stretched, but unlike the base iron, the internal oxide layer is hard and brittle, so it is divided into islands as shown in FIG. 1 (D), and further, FIG. As shown in (E), it is pressed into the ground iron. During cold rolling, the steps shown in FIGS. 1 (D) and 1 (E) occur at the same time.

従来、熱延板焼鈍する場合は、内部酸化層による磁気特性劣化を防ぐため、酸洗後(外部酸化層除去後)に焼鈍するか、焼鈍後の酸洗液に酸洗促進剤(チオ硫酸ナトリウム等)を添加し、完全に内部酸化層を除去していた。しかし、本発明は外部酸化層を残したまま焼鈍して意図的に内部酸化層を形成し、さらに酸洗において内部酸化層のみを適量残すことで、磁性と打ち抜き性を両立できる条件を示すものである。 Conventionally, when hot-rolled plate is annealed, in order to prevent deterioration of magnetic properties due to the internal oxide layer, it is annealed after pickling (after removing the external oxide layer), or a pickling accelerator (thiosulfate) is added to the pickling solution after annealing. Sodium, etc.) was added to completely remove the internal oxide layer. However, the present invention exhibits a condition in which both magnetism and punching property can be achieved by annealing while leaving the external oxide layer to intentionally form an internal oxide layer, and further leaving only an appropriate amount of the internal oxide layer in pickling. Is.

酸洗量を調整する方法としては、酸洗時間を短くしたり、酸洗液の温度を下げたり、市販の酸洗抑制剤(ポリアミン+蟻酸等)を添加したりすることが有効である。本発明では、内部酸化層を0.5〜10μmの厚みで残せるのであれば酸洗量を調整する方法は限定しない。 As a method for adjusting the amount of pickling, it is effective to shorten the pickling time, lower the temperature of the pickling solution, or add a commercially available pickling inhibitor (polyamine + formic acid or the like). In the present invention, the method of adjusting the pickling amount is not limited as long as the internal oxide layer can be left with a thickness of 0.5 to 10 μm.

酸洗抑制剤の効果について説明する。酸洗抑制剤の主成分はポリアミンであり、この高分子が鉄原子に付着しやすい性質を持つ。地鉄表面に高分子が付着することで酸と接する面積が減り、酸洗速度が抑制される。この効果を高める添加剤として、たとえば蟻酸等が知られている。 The effect of the pickling inhibitor will be described. The main component of the pickling inhibitor is polyamine, and this polymer has the property of easily adhering to iron atoms. The adhesion of the polymer to the surface of the base iron reduces the area in contact with the acid and suppresses the pickling rate. Formic acid and the like are known as additives that enhance this effect.

酸洗促進剤の効果について説明する。酸洗促進剤は鉄原子のキレート剤、すなわち鉄イオンを吸収しやすい性質を持つ。酸洗液は、鉄を溶かす性質があるが、酸洗液中の鉄イオン濃度が高まると鉄を溶かす速度が遅くなる。特に鋼板と接している液は局所的に鉄の溶解速度が低下する。酸洗促進剤が添加されていると、酸洗液に溶解している鉄イオン濃度を下げるため、酸洗が進行する。酸洗促進剤としては、例えばチオ硫酸ナトリウム等が知られている。 The effect of the pickling accelerator will be described. The pickling accelerator has a property of easily absorbing an iron atom chelating agent, that is, an iron ion. The pickling solution has the property of dissolving iron, but when the iron ion concentration in the pickling solution increases, the rate of dissolving iron slows down. In particular, the liquid in contact with the steel sheet locally reduces the dissolution rate of iron. When the pickling accelerator is added, the pickling proceeds because the concentration of iron ions dissolved in the pickling solution is lowered. As the pickling accelerator, for example, sodium thiosulfate and the like are known.

また、焼鈍温度が800℃以上の時、上記手段で酸洗すると内部酸化層厚が10μmを超える場合がある。従って、焼鈍温度は800℃未満とすることが好ましい。
一方、熱延板粒径を粗大化させると最終製品の結晶方位が改善し磁束密度が向上することが知られている。これを目的として焼鈍温度を800℃以上とする場合は、Sn、Cu、Sbを添加することで内部酸化層の発達を抑制してもよい。この時、SnとSbは0.02%以上、Cuは0.1%以上含有させる必要がある。一方、その含有量が増えても作用は飽和し、むしろ、仕上焼鈍時等の結晶粒成長性そのものが抑制されるので、SnとSbは0.40%以下、Cuは1.0%以下とする。
もちろん、Sn,Cu,Sbを添加せず内部酸化層が厚くなりすぎた場合は、その後の酸洗で酸洗量を制御して適切な厚さに調整することも可能である。
Further, when the annealing temperature is 800 ° C. or higher, the internal oxide layer thickness may exceed 10 μm when pickling by the above means. Therefore, the annealing temperature is preferably less than 800 ° C.
On the other hand, it is known that coarsening the particle size of the hot-rolled plate improves the crystal orientation of the final product and improves the magnetic flux density. When the annealing temperature is set to 800 ° C. or higher for this purpose, the development of the internal oxide layer may be suppressed by adding Sn, Cu, and Sb. At this time, it is necessary to contain Sn and Sb in an amount of 0.02% or more and Cu in an amount of 0.1% or more. On the other hand, even if the content is increased, the action is saturated, and rather, the crystal grain growth itself at the time of finish annealing is suppressed, so Sn and Sb are 0.40% or less, and Cu is 1.0% or less. To do.
Of course, when the internal oxide layer becomes too thick without adding Sn, Cu, and Sb, it is possible to control the pickling amount in the subsequent pickling to adjust the thickness to an appropriate level.

Sn、Cu、Sb添加で内部酸化層の発達を抑制するメカニズムはまだよくわかっていないが、これらの元素がスケールと地鉄の間に集まり、酸素のやり取りを阻害したためと考えている。 The mechanism by which the addition of Sn, Cu, and Sb suppresses the development of the internal oxide layer is not yet well understood, but it is believed that these elements gathered between the scale and the ground iron and inhibited the exchange of oxygen.

熱延板焼鈍の温度で700℃未満で焼鈍した場合は内部酸化層が必要量生成しない場合がある。そこで、本発明では熱延板焼鈍温度は700℃以上を推奨する。より好ましくは750℃以上である。
また、焼鈍時間は、内部酸化層の厚みが0.5〜10μmの範囲になるように適宜調整すればよい。
When annealed at a temperature of hot-rolled plate annealing below 700 ° C., the required amount of internal oxide layer may not be formed. Therefore, in the present invention, it is recommended that the hot-rolled plate annealing temperature be 700 ° C. or higher. More preferably, it is 750 ° C. or higher.
Further, the annealing time may be appropriately adjusted so that the thickness of the internal oxide layer is in the range of 0.5 to 10 μm.

冷延後の仕上げ焼鈍雰囲気も本発明では重要である。仕上げ焼鈍時の雰囲気の露点を下げた方がよく、−25℃以下にすることが望ましい。その理由は、仕上げ焼鈍での内部酸化層を生成させないためである。仕上げ焼鈍時に生成する内部酸化層は鋼板面全てを酸化させるため、磁性が著しく悪化する。磁性と打ち抜き性を両立させるためには、仕上げ焼鈍時の内部酸化層の生成を抑制するとよい。 The finish annealing atmosphere after cold rolling is also important in the present invention. It is better to lower the dew point of the atmosphere at the time of finish annealing, and it is desirable to keep it below -25 ° C. The reason is that the internal oxide layer is not formed by finish annealing. Since the internal oxide layer formed during finish annealing oxidizes the entire steel sheet surface, the magnetism is significantly deteriorated. In order to achieve both magnetism and punching property, it is preferable to suppress the formation of an internal oxide layer during finish annealing.

次に本発明の実施例を示す。 Next, an example of the present invention will be shown.

(実施例1)
質量%で表1に示す成分で鋼を鋳造し、熱延し、板厚2.0mmの熱延板を作製する。その後、表1に記載の熱延板焼鈍温度で1分間の熱処理(雰囲気:窒素100%)を行い、表面に内部酸化層を生成させる。ついで、表1に記載の添加剤(0.07wt%)を添加した85℃の塩酸(7.5wt%)に30秒浸けて酸洗する。その後、圧下率:75%で0.5mm厚まで冷間圧延し、1050℃で30秒間、表1記載の露点の雰囲気で仕上焼鈍を施し、以下に記載の打ち抜き精度と磁気特性(鉄損)を測定する。その測定結果を併せて表1に示す。
(Example 1)
Steel is cast with the components shown in Table 1 in mass% and hot-rolled to prepare a hot-rolled plate having a plate thickness of 2.0 mm. Then, heat treatment (atmosphere: 100% nitrogen) is performed for 1 minute at the hot-rolled plate annealing temperature shown in Table 1 to form an internal oxide layer on the surface. Then, it is pickled by immersing it in hydrochloric acid (7.5 wt%) at 85 ° C. to which the additive (0.07 wt%) shown in Table 1 is added for 30 seconds. After that, it was cold-rolled to a thickness of 0.5 mm at a rolling reduction of 75%, and finish-annealed at 1050 ° C. for 30 seconds in the atmosphere of the dew point shown in Table 1, and the punching accuracy and magnetic characteristics (iron loss) described below were performed. To measure. The measurement results are also shown in Table 1.

・打ち抜き精度
内径100mm、外径120mmのリング状試料を打ち抜く。この時のクリアランスは板厚の8%とする。次に圧延方向に対して0°、45°、90°、135°の角度で内径を測定する。各角度の内径の最大値と最小値の差が2μm以下であれば打ち抜き精度は良いと考える。
-Punching accuracy A ring-shaped sample with an inner diameter of 100 mm and an outer diameter of 120 mm is punched. The clearance at this time is 8% of the plate thickness. Next, the inner diameter is measured at angles of 0 °, 45 °, 90 °, and 135 ° with respect to the rolling direction. If the difference between the maximum value and the minimum value of the inner diameter of each angle is 2 μm or less, the punching accuracy is considered to be good.

・鉄損
55mm角の試料を採取し、Single Sheet Tester(SST)によりW15/50(鋼板を50Hzで磁束密度1.5Tに磁化した時の鉄損)を測定する。2.9W/kg以下は良いと考える。
-Iron loss A 55 mm square sample is taken, and W15 / 50 (iron loss when the steel sheet is magnetized to a magnetic flux density of 1.5 T at 50 Hz) is measured by Single Sheet Tester (SST). I think that 2.9 W / kg or less is good.

No.3はPの含有量が多いため、脆くなり破断する。No.8は酸洗時の添加剤にチオ硫酸Naを用いたため、内部酸化層が残存せず、打ち抜き性が悪化する。No.9、10は仕上げ焼鈍時の露点が高いため、仕上焼鈍時に内部酸化層が生成し、表面の存在率が高くなり、鉄損が悪化する。No.11は熱延板焼鈍温度が高く、内部酸化層が厚くなり、鉄損が悪化する。しかし、No.11と同じ熱延板焼鈍温度でも、Sn、Cu、Sbを適切に添加することで本発明効果を得られることをNo.12〜23で示している。No.12、16、20のように添加量が少ないと、内部酸化層の抑制効果が十分得られない。一方、No.15、19、23のように添加量が多いと鉄損がやや悪化する傾向にあり、特にNo.23では内部酸化層も減らしすぎるため、打ち抜き精度が悪化する。 No. Since No. 3 has a large content of P, it becomes brittle and breaks. No. In No. 8, since Na thiosulfate was used as an additive during pickling, the internal oxide layer did not remain and the punching property was deteriorated. In Nos. 9 and 10, since the dew point at the time of finish annealing is high, an internal oxide layer is formed at the time of finish annealing, the abundance of the surface becomes high, and the iron loss worsens. No. In No. 11, the hot-rolled plate annealing temperature is high, the internal oxide layer becomes thick, and the iron loss worsens. However, No. No. 11 states that the effect of the present invention can be obtained by appropriately adding Sn, Cu, and Sb even at the same hot-rolled plate annealing temperature. It is shown by 12 to 23. No. If the amount added is small as in 12, 16 and 20, the effect of suppressing the internal oxide layer cannot be sufficiently obtained. On the other hand, No. When the amount of addition is large as in 15, 19 and 23, the iron loss tends to be a little worse, and in particular, No. In No. 23, the internal oxide layer is also reduced too much, so that the punching accuracy deteriorates.

No.1の内部酸化層観察写真を図2に示す。下部の白色部は地鉄であり、上部の黒色部は空気、その中間にある灰色部が内部酸化層である。図2は鏡面研磨したサンプルの表層を光学顕微鏡で観察すると得られる。 No. The internal oxide layer observation photograph of No. 1 is shown in FIG. The white part at the bottom is the ground iron, the black part at the top is air, and the gray part in the middle is the internal oxide layer. FIG. 2 is obtained by observing the surface layer of the mirror-polished sample with an optical microscope.

(実施例2)
質量%で表2に示す成分で鋼を鋳造し、鋳造以降は熱延し、板厚2.0mmの熱延板を作製する。その後、750℃で1分間の熱処理(雰囲気:窒素100%)を行い、表面に内部酸化層を生成させる。ついで、表2に記載の添加剤(0.07wt%)を添加した85℃の塩酸(7.5wt%)に30秒浸けて酸洗する。その後、圧下率:75%で0.5mm厚まで冷間圧延し、1050℃で30秒間、表2記載の露点の雰囲気で仕上焼鈍を施し、以下に記載の打ち抜き精度と磁気特性(鉄損)を測定する。その測定結果を併せて表2に示す。
(Example 2)
Steel is cast with the components shown in Table 2 in mass%, and after casting, it is hot-rolled to produce a hot-rolled plate having a plate thickness of 2.0 mm. Then, heat treatment (atmosphere: 100% nitrogen) is performed at 750 ° C. for 1 minute to form an internal oxide layer on the surface. Then, it is soaked in hydrochloric acid (7.5 wt%) at 85 ° C. to which the additive (0.07 wt%) shown in Table 2 is added for 30 seconds and pickled. After that, it was cold-rolled to a thickness of 0.5 mm at a rolling reduction of 75%, and finish-annealed at 1050 ° C. for 30 seconds in the atmosphere of the dew point shown in Table 2, and the punching accuracy and magnetic characteristics (iron loss) described below were performed. To measure. The measurement results are also shown in Table 2.

鉄損値と打ち抜き精度の方法は実施例1に記載の通りである。しかし、鉄損や打ち抜き精度は、SiやAlを変えても変動するため、基準値は同一Si、Al量の発明例とする。 The method of iron loss value and punching accuracy is as described in Example 1. However, since iron loss and punching accuracy fluctuate even if Si and Al are changed, the reference values are the invention examples of the same Si and Al amounts.

SiやAlを規定範囲内で変更しても、従来例と比べ、鉄損と打ち抜き精度の両立を、達成している。No.32、35、38、41は酸洗促進剤(チオ硫酸ナトリウム)を用いたため、内部酸化層が無くなり、打ち抜き精度が劣化する。No.33、36、39、42は仕上げ焼鈍時の露点が高いため、仕上焼鈍時に内部酸化層が生成し、表面の存在率が高くなり、鉄損が悪化する。 Even if Si and Al are changed within the specified range, both iron loss and punching accuracy are achieved as compared with the conventional example. Since No. 32, 35, 38, and 41 used a pickling accelerator (sodium thiosulfate), the internal oxide layer disappeared and the punching accuracy deteriorated. No. Since the dew points of 33, 36, 39, and 42 are high during finish annealing, an internal oxide layer is formed during finish annealing, the abundance of the surface is high, and iron loss is exacerbated.

Claims (3)

質量%で、
C:0.0030%以下、
Si:2.0%以上4.0%以下、
Al:0.1%以上3.0%以下、
Mn:0.10%以上2.00%以下、
P:0.09%以下、
S:0.0050%以下、
N:0.0050%以下
を含有し、残部Feおよび不純物元素よりなり、
表面の内部酸化層が覆う表面積が全表面積の10〜70%であり、内部酸化層のある領域の平均内部酸化層厚が0.5μm〜10μmであることを特徴とする無方向性電磁鋼板。
By mass%
C: 0.0030% or less,
Si: 2.0% or more and 4.0% or less,
Al: 0.1% or more and 3.0% or less,
Mn: 0.10% or more and 2.00% or less,
P: 0.09% or less,
S: 0.0050% or less,
N: Contains 0.0050% or less, and consists of the balance Fe and impurity elements.
A non-oriented electrical steel sheet characterized in that the surface area covered by the internal oxide layer on the surface is 10 to 70% of the total surface area, and the average internal oxide layer thickness in a region having an internal oxide layer is 0.5 μm to 10 μm.
質量%で更に、
Sn:0.02%以上0.40%以下、
Cu:0.10%以上1.00%以下、
Sb:0.02%以上0.40%以下
の1種または2種以上を含有する請求項1に記載の無方向性電磁鋼板。
In addition by mass%
Sn: 0.02% or more and 0.40% or less,
Cu: 0.10% or more and 1.00% or less,
Sb: The non-oriented electrical steel sheet according to claim 1, which contains one or more of 0.02% or more and 0.40% or less.
質量%で更に、
REM:0.0005%以上0.0400%以下、
Ca:0.0005%以上0.0400%以下、
Mg:0.0005%以上0.0400%以下
の1種または2種以上を含有する請求項1または2に記載の無方向性電磁鋼板。
In addition by mass%
REM: 0.0005% or more and 0.0400% or less,
Ca: 0.0005% or more and 0.0400% or less,
Mg: The non-oriented electrical steel sheet according to claim 1 or 2, which contains one or more of 0.0005% or more and 0.0400% or less.
JP2017050085A 2017-03-15 2017-03-15 Non-oriented electrical steel sheet Active JP6772911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017050085A JP6772911B2 (en) 2017-03-15 2017-03-15 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050085A JP6772911B2 (en) 2017-03-15 2017-03-15 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2018154853A JP2018154853A (en) 2018-10-04
JP6772911B2 true JP6772911B2 (en) 2020-10-21

Family

ID=63717021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050085A Active JP6772911B2 (en) 2017-03-15 2017-03-15 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6772911B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241985B1 (en) * 2018-12-19 2021-04-19 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
RS64914B1 (en) * 2019-01-17 2023-12-29 Nippon Steel Corp Non-oriented electrical steel sheet, segmented stator, and rotating electrical machine
US11952641B2 (en) 2019-03-20 2024-04-09 Nippon Steel Corporation Non oriented electrical steel sheet
CN112430775A (en) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 High-strength non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof
JP7477748B2 (en) * 2020-02-20 2024-05-02 日本製鉄株式会社 Non-oriented electrical steel sheets and hot-rolled steel sheets
US20230063410A1 (en) * 2020-02-20 2023-03-02 Nippon Steel Corporation Hot-rolled steel sheet for non-oriented electrical steel sheet, non-oriented electrical steel sheet, and method for manufacturing same
BR112023012742A2 (en) * 2021-03-31 2024-01-02 Nippon Steel Corp NON-ORIENTED ELECTRIC STEEL SHEET, AND, METHOD FOR MANUFACTURING NON-ORIENTED ELECTRIC STEEL SHEET
JP7473862B1 (en) 2022-10-31 2024-04-24 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet
WO2024095666A1 (en) * 2022-10-31 2024-05-10 Jfeスチール株式会社 Method for manufacturing non-oriented magnetic steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573819A (en) * 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
JP2910508B2 (en) * 1993-05-26 1999-06-23 日本鋼管株式会社 Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics
JP4276391B2 (en) * 2001-07-02 2009-06-10 新日本製鐵株式会社 High grade non-oriented electrical steel sheet
JP5092352B2 (en) * 2006-03-28 2012-12-05 Jfeスチール株式会社 Non-oriented electrical steel sheet
JP5423440B2 (en) * 2010-02-02 2014-02-19 新日鐵住金株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP6256693B2 (en) * 2014-03-20 2018-01-10 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018154853A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6772911B2 (en) Non-oriented electrical steel sheet
TWI504762B (en) Non - directional electromagnetic steel plate
JP6738047B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6057082B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
CA2884851C (en) Hot-rolled steel sheet for production of non-oriented electrical steel sheet and method of manufacturing same
WO2019182022A1 (en) Non-oriented electromagnetic steel sheet
JP5429411B1 (en) Non-oriented electrical steel sheet
RU2712795C1 (en) Electrotechnical steel with non-oriented structure and method of its production
JP2022545027A (en) 600MPa class non-oriented electrical steel sheet and manufacturing method thereof
TW201443248A (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP2020076138A (en) Non-oriented electromagnetic steel sheet
WO2019188940A1 (en) Nonoriented electromagnetic steel sheet
JP7173286B2 (en) Non-oriented electrical steel sheet
TWI550104B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
TWI688658B (en) Non-oriented electrical steel sheet
JP2022545025A (en) Cu-containing non-oriented electrical steel sheet and manufacturing method thereof
JP6969219B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7222444B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007302999A (en) Grain oriented electromagnetic steel sheet for ei core
JP2003013190A (en) High-grade non-oriented magnetic steel sheet
JP2002115034A (en) Nonoriented silicon steel sheet, stock for cold rolling therefor and its production method
JP2019143214A (en) Non-oriented electromagnetic steel sheet
JP5768327B2 (en) Method for producing non-oriented electrical steel sheet with excellent high magnetic field iron loss
JP2009046729A (en) Electromagnetic steel sheet for etching work
JP2021130847A (en) Non-oriented magnetic steel sheet and hot rolled steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6772911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151