JP6844127B2 - Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method - Google Patents

Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method Download PDF

Info

Publication number
JP6844127B2
JP6844127B2 JP2016119956A JP2016119956A JP6844127B2 JP 6844127 B2 JP6844127 B2 JP 6844127B2 JP 2016119956 A JP2016119956 A JP 2016119956A JP 2016119956 A JP2016119956 A JP 2016119956A JP 6844127 B2 JP6844127 B2 JP 6844127B2
Authority
JP
Japan
Prior art keywords
steel sheet
iron core
less
crystal grains
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016119956A
Other languages
Japanese (ja)
Other versions
JP2017222911A (en
Inventor
鉄州 村川
鉄州 村川
信次 山本
信次 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016119956A priority Critical patent/JP6844127B2/en
Publication of JP2017222911A publication Critical patent/JP2017222911A/en
Application granted granted Critical
Publication of JP6844127B2 publication Critical patent/JP6844127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、鉄心、再冷延鋼板、再冷延鋼板の製造方法、及び鉄心の製造方法に関するものである。 The present invention relates to a method for manufacturing an iron core, a re-cold-rolled steel sheet, a re-cold-rolled steel sheet, and a method for manufacturing an iron core.

近年、地球温暖化防止、省エネルギー化への要求の高まりに伴い、鉄心の材料である一方向性電磁鋼板に対しても、商用周波数での低鉄損及び低励磁場での高磁束密度といった高い磁気特性が求められている。
このような磁気特性を実現するためには、鉄の磁化容易軸である<001>軸を使用磁界方向に集積させることが有効とされている。
In recent years, with the increasing demand for prevention of global warming and energy saving, even for grain-oriented electrical steel sheets, which are materials for iron cores, high iron loss at commercial frequencies and high magnetic flux density at low exciting magnetic fields are high. Magnetic characteristics are required.
In order to realize such magnetic characteristics, it is effective to integrate the <001> axis, which is an easy axis for magnetizing iron, in the direction of the magnetic field used.

一般的な方向性電磁鋼板は、{110}<001>方位(ゴス方位)、すなわち{110}面が鋼板に平行で、かつ<001>軸が圧延方向に収束した集合組織を有している。
これにより、一方向性電磁鋼板は、圧延方向に対して極めて高い磁気特性を示すことができる。このため、一方向性電磁鋼板は、巻き鉄心のような圧延方向にのみ磁束が流れる用途に適しており、有用な磁性材料として使用されている。
A general directional electromagnetic steel sheet has a {110} <001> direction (Goth direction), that is, a texture in which the {110} plane is parallel to the steel sheet and the <001> axis converges in the rolling direction. ..
As a result, the grain-oriented electrical steel sheet can exhibit extremely high magnetic properties in the rolling direction. Therefore, the unidirectional electromagnetic steel sheet is suitable for applications in which magnetic flux flows only in the rolling direction, such as a wound steel core, and is used as a useful magnetic material.

一方で、近年、一方向だけでなく、それと直交する方向の磁気特性にも優れた用途に適する二方向性電磁鋼板が要求されている。二方向性電磁鋼板は、{100}<001>(いわゆるキューブ方位)集合組織を有する。そして、二方向性電磁鋼板は、<001>軸が鋼板面内の圧延方向と圧延直角方向(圧延方向に対して直交する方向)の両方に向いており、鋼板面内に直交する2つの方向で優れた磁気特性を示す電磁鋼板である。 On the other hand, in recent years, there has been a demand for bidirectional magnetic steel sheets suitable for applications having excellent magnetic properties not only in one direction but also in the direction orthogonal to the one direction. The grain-oriented electrical steel sheet has a {100} <001> (so-called cube orientation) texture. The bidirectional electromagnetic steel sheet has two directions in which the <001> axis is oriented in both the rolling direction in the steel sheet surface and the rolling perpendicular direction (direction orthogonal to the rolling direction), and is orthogonal to the steel sheet surface. It is an electromagnetic steel sheet that exhibits excellent magnetic properties.

二方向性電磁鋼板は、例えば、特許文献1〜3に開示された製造方法によって得られることが知られている。
例えば、二方向性電磁鋼板は、クロス圧延による方法によって得られることが知られている(特許文献1)。この方法は、珪素鋼素材を一方向に冷間圧延した後、さらに、この冷間圧延方向と交差方向に冷間圧延を加え、その後、仕上げ焼鈍として、短時間焼鈍と900℃〜1300℃程度の高温焼鈍とを行う方法である。
しかし、仕上げ焼鈍前に交差圧延を行うことは、商業生産上、コイルの状態で幅方向に圧延しなければならず、特殊な装置が必要となる。
Bidirectional electromagnetic steel sheets are known to be obtained, for example, by the manufacturing methods disclosed in Patent Documents 1 to 3.
For example, it is known that a grain-oriented electrical steel sheet can be obtained by a method of cross-rolling (Patent Document 1). In this method, a silicon steel material is cold-rolled in one direction, then cold-rolled in a direction intersecting with the cold-rolling direction, and then annealed for a short time and about 900 ° C. to 1300 ° C. as finish annealing. It is a method of performing high temperature annealing.
However, cross-rolling before finish annealing requires rolling in the width direction in the coil state for commercial production, and a special device is required.

また、二方向性電磁鋼板を得るための他の製造方法としては、脱C、又は脱Cと脱Mnとを生じさせる高温焼鈍を利用した製造方法(特許文献2)も提案されている。
しかし、この手法では真空中で焼鈍しなければならず、やはり、特殊な装置が必要となる。
Further, as another manufacturing method for obtaining a bidirectional electromagnetic steel sheet, a manufacturing method using high-temperature annealing that causes de-C or de-C and de-Mn is also proposed (Patent Document 2).
However, this method requires annealing in vacuum, which also requires special equipment.

さらに、結晶粒径が小さい二方向性電磁鋼板を得るための製造方法として、二次再結晶後の方向性電磁鋼板を浸炭させ、100℃〜400℃で焼鈍し、圧延方向に50%以上の圧下率で圧延した後、再結晶焼鈍をする方法(特許文献3)が知られている。
しかし、この手法では、浸炭によりセメンタイトが析出し、鉄損が劣位である。
Further, as a manufacturing method for obtaining a bidirectional electromagnetic steel sheet having a small crystal grain size, the directional electromagnetic steel sheet after secondary recrystallization is carburized, annealed at 100 ° C. to 400 ° C., and 50% or more in the rolling direction. A method of recrystallization annealing after rolling at a rolling reduction is known (Patent Document 3).
However, in this method, cementite is precipitated by carburizing, and the iron loss is inferior.

特公昭35−002657号公報Special Publication No. 35-002657 特開平07−173542号公報Japanese Unexamined Patent Publication No. 07-173542 特許第4826312号公報Japanese Patent No. 4826312

ところで、二方向性電磁鋼板は、鋼板面内に直交する二方向に優れた磁気特性を示す電磁鋼板であることから、直交する両方向に優れた磁気特性が要求される用途に適用することが検討されている。このような用途としては、例えば、ティース部とヨーク部とで磁束が流れる方向が直交している鉄心の材料として適用することが提案されている。 By the way, since a bidirectional electromagnetic steel sheet is an electromagnetic steel sheet that exhibits excellent magnetic properties in two directions orthogonal to the plane of the steel sheet, it is considered to be applied to applications that require excellent magnetic properties in both orthogonal directions. Has been done. As such an application, for example, it has been proposed to apply it as a material for an iron core in which the directions in which magnetic flux flows are orthogonal to each other in the tooth portion and the yoke portion.

しかしながら、特許文献1〜3に開示されている二方向性電磁鋼板は、生成される{100}<001>方位の集積度が高すぎる。このため、これら従来の二方向性電磁鋼板をモータの鉄心として適用する場合に、打ち抜き加工時の寸法精度が低いという課題、及び曲げ加工時に板厚が減少し、占積率が低下するという課題があった。二方向性電磁鋼板をモータの鉄心として使用する際、主に打ち抜き加工が行われる。打ち抜き加工時の寸法精度が低いとモータ効率が低下する。また、モータの鉄心が、螺旋巻き鉄心であるとき、曲げ加工を行う場合がある。二方向性電磁鋼板の{100}<001>方位が多いと、曲げ加工時に板厚が減少し、占積率が低下しやすい。占積率の低下はモータ効率の低下につながる。 However, in the bidirectional electromagnetic steel sheets disclosed in Patent Documents 1 to 3, the degree of integration of the produced {100} <001> orientation is too high. Therefore, when these conventional grain-oriented electrical steel sheets are applied as the iron core of a motor, there is a problem that the dimensional accuracy at the time of punching is low, and a problem that the plate thickness is reduced at the time of bending and the space factor is lowered. was there. When a bidirectional electromagnetic steel sheet is used as an iron core of a motor, punching is mainly performed. If the dimensional accuracy during punching is low, the motor efficiency will decrease. Further, when the iron core of the motor is a spirally wound iron core, bending may be performed. If the bidirectional electromagnetic steel sheet has many {100} <001> orientations, the sheet thickness decreases during bending, and the space factor tends to decrease. A decrease in the space factor leads to a decrease in motor efficiency.

このように、従来の二方向性電磁鋼板を用いて鉄心とする場合、直交する二方向に優れた磁気特性を有するだけでなく、さらに、寸法精度に優れ、占積率の低下が抑制された鉄心を得る技術は確立されていなかったのが実情である。 As described above, when the conventional bidirectional electromagnetic steel sheet is used as the iron core, not only the iron core has excellent magnetic characteristics in two orthogonal directions, but also the dimensional accuracy is excellent and the decrease in space factor is suppressed. The reality is that the technology for obtaining iron cores has not been established.

本発明は、上記に鑑みてなされたものであり、優れた磁気特性を有し、さらに、寸法精度に優れ、占積率の低下が抑制された鉄心を提供するものである。また、これら特性を有する鉄心を製造するのに好適な再冷延鋼板とその製造方法を提供するものである。さらに上記特性を有する鉄心の製造方法を提供するものである。 The present invention has been made in view of the above, and provides an iron core having excellent magnetic properties, excellent dimensional accuracy, and suppressed decrease in space factor. Further, the present invention provides a recooled rolled steel sheet suitable for producing an iron core having these characteristics and a method for producing the same. Further, the present invention provides a method for producing an iron core having the above characteristics.

本発明者らは、上記課題を解決するために、直交する二方向に優れた磁気特性を有する鉄心において、寸法精度に優れ、占積率の低下が抑制された鉄心とする観点から、鋭意研究を重ねた。
その結果、本発明者らは、主方位となる{100}<001>から±30度以内の結晶方位の結晶粒の占める面積比率が50%以上であり、副方位となる結晶の滑り面が板厚と平行な{110}<110>から±30度以内の結晶方位の結晶粒の面積比率が20%以上である集合組織を有する鋼板からなる鉄心とすることで、優れた磁気特性を有するとともに、寸法精度に優れ、占積率の低下が抑制されることを知見した。
In order to solve the above problems, the present inventors have made diligent research from the viewpoint of making an iron core having excellent magnetic properties in two orthogonal directions with excellent dimensional accuracy and suppressed decrease in space factor. Was piled up.
As a result, the present inventors have an area ratio occupied by crystal grains in the crystal orientation within ± 30 degrees from the main orientation {100} <001> of 50% or more, and the sliding surface of the crystal in the secondary orientation is 50% or more. It has excellent magnetic properties by forming an iron core made of a steel plate having a texture in which the area ratio of crystal grains in a crystal orientation within ± 30 degrees from {110} <110> parallel to the plate thickness is 20% or more. At the same time, it was found that the dimensional accuracy is excellent and the decrease in the space factor is suppressed.

本発明は上記の知見に基づきなされたものであり、その要旨は、以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

<1> {100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上である鋼板からなる鉄心。
<2> 前記鋼板の平均結晶粒径が350μm以下である<1>に記載の鉄心。
<3> 前記鋼板が、質量%で、
C:0.0100%以下、
Si:2.00%以上4.00%以下、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する請求項<1>又は<2>に記載の鉄心。
<1> The area ratio occupied by the crystal grains in the crystal orientation of {100} <001> (± 30 °) is 50% or more, and the area occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °). An iron core made of steel plates with a ratio of 20% or more.
<2> The iron core according to <1>, wherein the average crystal grain size of the steel sheet is 350 μm or less.
<3> The steel sheet is based on mass%.
C: 0.0100% or less,
Si: 2.00% or more and 4.00% or less,
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
The iron core according to claim <1> or <2>, which contains 0.5% or less of Al, and also contains Fe and an impurity element as a balance.

<4> {110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板。
<5> 質量%で、
C:0.0100%以下、
Si:2.00%以上4.00%以下、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する<4>に記載の再冷延鋼板。
<4> A re-cold-rolled steel sheet in which the area ratio of the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is 30 / mm or more.
<5> By mass%,
C: 0.0100% or less,
Si: 2.00% or more and 4.00% or less,
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
The recooled steel sheet according to <4>, which contains 0.5% or less of Al, and also contains Fe and an impurity element as a balance.

<6> {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延して、<4>又は<5>に記載の再冷延鋼板を得る工程を有する再冷延鋼板の製造方法。 <6> Cold rolling is performed so that the rolling reduction is 20% to 50% in the direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> orientation. , <4> or <5>, the method for producing a recooled rolled steel sheet, comprising the step of obtaining the recooled rolled steel sheet.

<7> <4>又は<5>に記載の再冷延鋼板を積層した鉄心。 <7> An iron core in which the recooled and rolled steel sheets according to <4> or <5> are laminated.

<8> {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、<4>又は<5>に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化して、700℃以上の温度域で焼鈍する工程と、
を有する<1>〜<3>のいずれか1項に記載の鉄心の製造方法。
<9> 前記温度域が、700℃〜1000℃である<8>に記載の鉄心の製造方法。
<8> Cold rolling is performed so that the rolling reduction is 20% to 50% in the direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> orientation. The step of obtaining the recooled rolled steel sheet according to <4> or <5>, and
The process of punching the re-cooled steel sheet to obtain a punched member, and
A process of laminating and integrating the punched members and annealing in a temperature range of 700 ° C. or higher.
The method for producing an iron core according to any one of <1> to <3>.
<9> The method for producing an iron core according to <8>, wherein the temperature range is 700 ° C. to 1000 ° C.

<10> {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、<4>又は<5>に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と
を有する<7>に記載の鉄心の製造方法。
<11> <10>に記載の鉄心の製造方法であって、前記積層一体化する工程の後、700℃〜1000℃の温度域で焼鈍する工程をさらに有する鉄心の製造方法。
<10> Cold rolling is performed so that the rolling reduction is 20% to 50% in the direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> orientation. The step of obtaining the recooled rolled steel sheet according to <4> or <5>, and
The process of punching the re-cooled steel sheet to obtain a punched member, and
The method for manufacturing an iron core according to <7>, which comprises a step of laminating and integrating the punched members.
<11> The method for producing an iron core according to <10>, further comprising a step of annealing in a temperature range of 700 ° C. to 1000 ° C. after the step of laminating and integrating.

<12> {100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と、
を有する<1>〜<3>のいずれか1項に記載の鉄心の製造方法。
<12> The area ratio occupied by the crystal grains in the crystal orientation of {100} <001> (± 30 °) is 50% or more, and the crystal grains in the crystal orientation of {110} <110> (± 30 °) occupy. A process of punching a bidirectional electromagnetic steel plate having an area ratio of 20% or more to obtain a punched member,
The process of laminating and integrating the punched members and
The method for producing an iron core according to any one of <1> to <3>.

本発明によれば、優れた磁気特性を有し、さらに、寸法精度に優れ、占積率の低下が抑制された鉄心を提供できる。また、これら特性を有する鉄心を製造するのに好適な再冷延鋼板とその製造方法が提供できる。さらに上記特性を有する鉄心の製造方法が提供できる。 According to the present invention, it is possible to provide an iron core having excellent magnetic properties, excellent dimensional accuracy, and suppressed decrease in space factor. Further, it is possible to provide a recooled rolled steel sheet suitable for manufacturing an iron core having these characteristics and a method for manufacturing the same. Further, a method for producing an iron core having the above characteristics can be provided.

本発明の鉄心に用いられる鋼板の(001)極点図を示す模式図である。It is a schematic diagram which shows the (001) pole figure of the steel plate used for the iron core of this invention. 従来の二方向性電磁鋼板の(001)極点図を示す模式図である。It is a schematic diagram which shows the (001) pole figure of the conventional two-way electrical steel sheet. 本発明例における鉄心に用いられる鋼板の(001)極点図である。It is a (001) pole figure of the steel plate used for the iron core in the example of this invention. 本発明の鉄心の一例を表す模式図である。It is a schematic diagram which shows an example of the iron core of this invention. 本発明の鉄心の他の一例を表す模式図である。It is a schematic diagram which shows another example of the iron core of this invention.

以下、本発明について詳細に説明する。
なお、本明細書中において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

本発明の鉄心は、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上の鋼板からなる。つまり、鉄心を構成する鋼板(鉄心となった状態の鉄心を構成している鋼板)は、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上である結晶粒を有する。 In the iron core of the present invention, the area ratio occupied by the crystal grains having a crystal orientation of {100} <001> (± 30 °) is 50% or more, and the crystal grains having a crystal orientation of {110} <110> (± 30 °). It is made of steel plates with an area ratio of 20% or more. That is, the steel plate constituting the iron core (the steel plate constituting the iron core in the state of being an iron core) has an area ratio occupied by crystal grains in the crystal orientation of {100} <001> (± 30 °) of 50% or more. Yes, it has {110} <110> (± 30 °) crystal grains in which the area ratio occupied by the crystal grains in the crystal orientation is 20% or more.

本発明の鉄心を構成する鋼板は、200Hz以上の高周波鉄損を低減する点で、鉄心を構成する鋼板の平均結晶粒径を350μm以下とすることがよく、300μm以下とすることが好ましく、150μm以下とすることがより好ましい。
一方、平均結晶粒径の下限は特に限定されないが、平均結晶粒径が小さすぎると磁気特性が低くなるため、20μm以上にすることがよい。
The steel sheet constituting the iron core of the present invention preferably has an average crystal grain size of 350 μm or less, preferably 300 μm or less, preferably 150 μm, in terms of reducing high-frequency iron loss of 200 Hz or higher. The following is more preferable.
On the other hand, the lower limit of the average crystal grain size is not particularly limited, but if the average crystal grain size is too small, the magnetic characteristics will be low, so it is preferable to set the average crystal grain size to 20 μm or more.

鉄心を構成する鋼板の平均結晶粒径の測定方法は、以下のとおりである。
試験片を板厚断面が観察できるように切断し、ナイタールエッチングにより粒界を腐食させて発現させる。その後、100個以上の結晶粒の結晶粒径を線分法により測定し、平均結晶粒径を求める。
The method for measuring the average crystal grain size of the steel sheets constituting the iron core is as follows.
The test piece is cut so that the cross section of the plate thickness can be observed, and the grain boundaries are corroded and expressed by nightal etching. Then, the crystal grain size of 100 or more crystal grains is measured by a line segment method, and the average crystal grain size is determined.

鉄心を構成する鋼板は、以下のような化学組成であることがよい。例えば、質量%で、C:0.0100%以下、Si:2.00%以上4.00%以下、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素を含有する。
なお、本明細書中において、不純物とは、原材料に含まれる成分、または、製造の過程で混入する成分であって、意図的に鋼板に含有させたものではない成分を指す。
The steel sheet constituting the iron core may have the following chemical composition. For example, in terms of mass%, C: 0.0100% or less, Si: 2.00% or more and 4.00% or less, Mn: 0.5% or less, Sb: 0.2% or less, Sn: 0.2% or less. , Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5% or less, P: 0.3% or less, and Al: 0.5% or less, and Fe as the balance. And contains impurity elements.
In the present specification, the impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel sheet.

次に、本発明の鉄心に用いられる鋼板について説明する。
本発明の鉄心に用いられる好適な鋼板としては、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である集合組織を有する二方向性電磁鋼板が挙げられる。
なお、{100}<001>(±30°)は、{100}<001>から±30度以内を表し、{110}<110>(±30°)は、{110}<110>から±30度以内を表す。
まず、本発明の鉄心に用いられる鋼板の有する{100}<001>から±30度以内の結晶方位の結晶粒、及び{110}<110>から±30度以内の結晶方位の結晶粒について、図面を用いて説明する。
Next, the steel plate used for the iron core of the present invention will be described.
As a suitable steel plate used for the iron core of the present invention, the area ratio occupied by the crystal grains in the crystal orientation of {100} <001> (± 30 °) is 50% or more, and {110} <110> (± 30 °). A bidirectional electromagnetic steel plate having an texture in which the area ratio of the crystal grains in the crystal orientation of °) is 20% or more can be mentioned.
Note that {100} <001> (± 30 °) represents within ± 30 degrees from {100} <001>, and {110} <110> (± 30 °) represents ± from {110} <110>. Represents within 30 degrees.
First, regarding the crystal grains having a crystal orientation within ± 30 degrees from {100} <001> and the crystal grains having a crystal orientation within ± 30 degrees from {110} <110> of the steel sheet used for the iron core of the present invention. This will be described with reference to the drawings.

図1は、本発明の鉄心に用いられる鋼板の(001)極点図の一例を示す模式図である。本発明の鉄心に用いられる鋼板は、例えば、図1に示す(001)極点図のように、主方位である{100}<001>(±30°)の結晶方位1(以下、「{100}<001>近傍方位1」と称する)に結晶粒を有し、かつ、副方位である{110}<110>(±30°)の結晶方位2(以下、「{110}<110>近傍方位2」と称する)に結晶粒を有している。 FIG. 1 is a schematic view showing an example of a (001) pole figure of a steel plate used for the iron core of the present invention. The steel plate used for the iron core of the present invention has, for example, a crystal orientation 1 (hereinafter, “{100”) having a main orientation of {100} <001> (± 30 °) as shown in the (001) pole diagram shown in FIG. } <001> Nearly oriented direction 1 ”) and has crystal grains in the secondary direction {110} <110> (± 30 °) Crystal orientation 2 (hereinafter, near“ {110} <110> It has crystal grains in (referred to as azimuth 2).

そして、本発明の鉄心に用いられる鋼板は、{100}<001>近傍方位1の結晶粒が、全結晶粒に対する面積比率で50%以上であり、{110}<110>近傍方位2の結晶粒が、全結晶粒に対する面積比率で20%以上である結晶方位を有している。本発明の鉄心に用いられる鋼板は、板厚中心層を観察したときに、このような結晶方位を有している視野が一つ以上存在している。 In the steel plate used for the iron core of the present invention, the crystal grains in the {100} <001> near direction 1 have an area ratio of 50% or more with respect to the total crystal grains, and the crystals in the {110} <110> near direction 2 The grains have a crystal orientation of 20% or more in area ratio with respect to all crystal grains. The steel plate used for the iron core of the present invention has one or more visual fields having such a crystal orientation when the central layer of the plate thickness is observed.

一方、図2は、従来の二方向性電磁鋼板の(001)極点図を示す模式図である。従来の二方向性電磁鋼板は、図2に示す(001)極点図のように、{100}<001>近傍方位1に結晶粒を有しているが、{110}<110>近傍方位には結晶粒を有していない。
なお、図2に示す従来の二方向性電磁鋼板は、歪取り焼鈍を行っていない。
On the other hand, FIG. 2 is a schematic view showing a (001) pole figure of a conventional two-way electrical steel sheet. The conventional grain-oriented electrical steel sheet has crystal grains in the {100} <001> neighborhood direction 1 as shown in the (001) pole figure shown in FIG. 2, but is in the {110} <110> neighborhood direction. Has no crystal grains.
The conventional grain-oriented electrical steel sheet shown in FIG. 2 is not strain-removed and annealed.

このように、本発明の鉄心に用いられる鋼板は、主方位である{100}<001>近傍方位1と、副方位である{110}<110>近傍方位2との両者に結晶方位を有している点で、従来の二方向性電磁鋼板とは、異なるものである。 As described above, the steel sheet used for the iron core of the present invention has a crystal orientation in both the primary orientation {100} <001> neighborhood orientation 1 and the sub orientation {110} <110> neighborhood orientation 2. In that respect, it is different from the conventional bidirectional electromagnetic steel sheet.

ここで、本発明の鉄心に用いられる鋼板が有する{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率、及び{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率を測定する方法について説明する。
なお、以下の説明において、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率、及び{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率は、それぞれ、「{100}<001>(±30°)の結晶粒の面積比率」、及び「{110}<110>(±30°)の結晶粒の面積比率」と称する場合がある。
Here, the area ratio occupied by the crystal grains having the crystal orientation of {100} <001> (± 30 °) and the crystal orientation of {110} <110> (± 30 °) of the steel plate used for the iron core of the present invention. A method of measuring the area ratio occupied by the crystal grains of the above will be described.
In the following description, the area ratio occupied by the crystal grains in the crystal orientation of {100} <001> (± 30 °) and the area occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °). The ratios may be referred to as "{100} <001> (± 30 °) crystal grain area ratio" and "{110} <110> (± 30 °) crystal grain area ratio", respectively. ..

これらの面積比率は、以下の方法によって求められる。
本発明の鉄心に用いられる鋼板の結晶方位は、電子線後方散乱回折法(EBSD)を用いて観察する。結晶方位の{}内は圧延面の法線方向のミラー指数を示し、<>内は2次再結晶前の冷延における圧延方向と平行な方向をミラー指数で示している。
These area ratios are obtained by the following methods.
The crystal orientation of the steel sheet used for the iron core of the present invention is observed by using electron backscatter diffraction (EBSD). The inside of {} of the crystal orientation shows the Miller index in the normal direction of the rolled surface, and the inside of <> shows the direction parallel to the rolling direction in the cold rolling before the secondary recrystallization by the Miller index.

EBSDの測定条件の詳細は次の通りである。
・測定装置:電子線後方散乱回折装置付き走査型電子顕微鏡(SEM−EBSD)
(SEMの型番「JSM−6400」(JEOL社製))
・ステップ間隔:10μm
・倍率:100倍
・測定対象:鋼板の圧延面の中心層
・測定領域:7500μm×7500μm
・測定結晶粒数:1000個
The details of the EBSD measurement conditions are as follows.
-Measuring device: Scanning electron microscope (SEM-EBSD) with electron backscatter diffraction device
(SEM model number "JSM-6400" (manufactured by JEOL Ltd.))
・ Step interval: 10 μm
-Magnification: 100 times-Measurement target: Central layer of rolled surface of steel sheet-Measurement area: 7500 μm x 7500 μm
-Measured number of crystal grains: 1000

以上の測定条件により測定された全結晶粒に対して、{100}<001>(±30°)の結晶粒、及び{110}<110>(±30°)の結晶粒について、全結晶粒に対する面積比率を求める。なお、面積比率は平均値で表される。 With respect to the total crystal grains measured under the above measurement conditions, the crystal grains of {100} <001> (± 30 °) and the crystal grains of {110} <110> (± 30 °) are all crystal grains. Find the area ratio to. The area ratio is represented by an average value.

鉄心の磁気特性が特に優れる点で、{100}<001>(±30°)の結晶粒の面積比率は、50%以上であることが好ましく、70%以上であることがより好ましい。上限は特に限定されないが、鉄心の寸法精度、占積率の低下抑制の点で、80%以下であることがよい。
また、鉄心の磁気特性、及び寸法精度、並びに占積率の低下抑制の点で、鉄心に用いられる鋼板は、{110}<110>(±30°)の結晶粒の面積比率が、20%以上であることが好ましく、30%以上であることがより好ましい。上限は磁気特性の点で、49%以下であることがよい。
The area ratio of the crystal grains of {100} <001> (± 30 °) is preferably 50% or more, and more preferably 70% or more, in that the magnetic characteristics of the iron core are particularly excellent. The upper limit is not particularly limited, but it is preferably 80% or less in terms of the dimensional accuracy of the iron core and the suppression of the decrease in the space factor.
Further, in terms of the magnetic characteristics of the iron core, the dimensional accuracy, and the suppression of the decrease in the space factor, the steel plate used for the iron core has a crystal grain area ratio of {110} <110> (± 30 °) of 20%. It is preferably more than that, and more preferably 30% or more. The upper limit is preferably 49% or less in terms of magnetic properties.

本発明の鉄心は、鉄心に用いられる鋼板が上記構成を有することで、特に、寸法精度に優れ、占積率の低下が抑制される。この理由は定かではないが、以下のように推測される。 In the iron core of the present invention, since the steel plate used for the iron core has the above-mentioned structure, the dimensional accuracy is particularly excellent and the decrease in the space factor is suppressed. The reason for this is not clear, but it is presumed as follows.

鉄心に用いられる鋼板が、{110}<110>結晶粒を有することで、寸法精度が向上すると本発明者らは考えている。鉄心を得るための鋼板を打ち抜いたとき(例えば、円形)、鋼板が{100}<001>結晶粒のみ有する場合は、鋼板の加工異方性が強いため、鉄心の寸法精度が出にくい。しかしながら、鉄心を得るための鋼板が{110}<110>を有することで寸法精度が向上すると考えられる。
また、本発明の鉄心は、占積率の低下が抑制される点については、鉄心を得るための鋼板のr値(引張加工時における(幅減少量)/(板厚減少量))が高いことに起因していると本発明者らは考えている。{100}<001>のr値は{110}<110>のr値よりも低いことが知られている。鉄心を得るための鋼板は、{110}<110>結晶粒を有することで、従来の二方向性電磁鋼板よりもr値が高い。つまり、{110}<110>結晶粒を有する鋼板は、曲げ加工時の板厚が減少しにくくなっていると考えられる。それによって、鉄心の占積率の低下が抑制される。
なお、{110}<110>方位粒が、例えば、螺旋巻き鉄心のような螺旋状等の曲げ加工に適していることは、特許3631523号公報で述べられている。
The present inventors believe that the steel sheet used for the iron core has {110} <110> crystal grains to improve the dimensional accuracy. When a steel sheet for obtaining an iron core is punched (for example, circular), if the steel sheet has only {100} <001> crystal grains, the processing anisotropy of the steel sheet is strong, so that the dimensional accuracy of the iron core is difficult to obtain. However, it is considered that the dimensional accuracy is improved when the steel plate for obtaining the iron core has {110} <110>.
Further, the iron core of the present invention has a high r value ((width reduction amount) / (plate thickness reduction amount) at the time of tensile processing) of the steel sheet for obtaining the iron core in that the decrease in the space factor is suppressed. The present inventors believe that this is the cause. It is known that the r-value of {100} <001> is lower than the r-value of {110} <110>. Since the steel sheet for obtaining the iron core has {110} <110> crystal grains, the r value is higher than that of the conventional bidirectional electromagnetic steel sheet. That is, it is considered that the steel sheet having {110} <110> crystal grains is less likely to reduce the plate thickness at the time of bending. As a result, the decrease in the space factor of the iron core is suppressed.
It is stated in Japanese Patent No. 3631523 that the {110} <110> azimuth grain is suitable for bending a spiral shape such as a spiral wound iron core.

本発明の鉄心に用いられる鋼板は、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上であればよく、その化学組成は特に限定されない。鋼板の化学組成は、例えば、質量%で、C:0.0030%以下、Si:2.00%以上4.00%以下、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素からなる鋼板であることが挙げられる。 The steel plate used for the iron core of the present invention has an area ratio of crystal grains in the crystal orientation of {100} <001> (± 30 °) of 50% or more, and is {110} <110> (± 30 °). The area ratio of the crystal grains in the crystal orientation may be 20% or more, and the chemical composition thereof is not particularly limited. The chemical composition of the steel sheet is, for example, in mass%, C: 0.0030% or less, Si: 2.00% or more and 4.00% or less, Mn: 0.5% or less, Sb: 0.2% or less, Sn. : 0.2% or less, Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5% or less, P: 0.3% or less, and Al: 0.5% or less , And a steel sheet composed of Fe and an impurity element as the balance.

これらの元素のうち、Cは、鉄損を低下させる成分であり、磁気時効の原因ともなる元素であるため、0.0100%以下(0.0000%〜0.0100%)とすることがよい。 Of these elements, C is a component that reduces iron loss and is an element that causes magnetic aging, so it is preferable to set it to 0.0100% or less (0.0000% to 0.0100%). ..

また、Siは、電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であり、さらに、降伏比を増大させることにより、打ち抜き精度を向上させる作用も有する。これらの作用を奏するためには、2.00%以上含有させることがよい。
一方、Siは、含有量が増え過ぎると、磁束密度が低下し、かつ、硬度の上昇を招いて、打ち抜き精度が低下しやすくなる。また、鋼板(二方向性電磁鋼板)の製造工程において、冷延等の作業性の低下、コスト高ともなり得るので、4.00%以下とすることがよい。
Further, Si is a component having an effect of reducing iron loss by increasing electrical resistance and reducing eddy current loss, and further has an effect of improving punching accuracy by increasing the yield ratio. .. In order to exert these effects, it is preferable to contain 2.00% or more.
On the other hand, if the content of Si increases too much, the magnetic flux density decreases and the hardness increases, so that the punching accuracy tends to decrease. Further, in the manufacturing process of the steel sheet (bidirectional electromagnetic steel sheet), the workability such as cold spreading may be lowered and the cost may be high, so the content is preferably 4.00% or less.

なお、鋼板中には、上記したC、Siの他、Mn、Sb、Sn、Ni、Cu、Cr、P、及びAl等の元素を含んでいてもよい。これらの成分については、上述のような一般的な量で含有していてもよい。具体的には、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有する。そして、残部としてFeおよび不純物元素を含有する。ただし、Mn、Sb、Sn、Ni、Cu、Cr、P、及びAlの下限としては、0.0%である。 In addition to the above-mentioned C and Si, the steel sheet may contain elements such as Mn, Sb, Sn, Ni, Cu, Cr, P, and Al. These components may be contained in a general amount as described above. Specifically, Mn: 0.5% or less, Sb: 0.2% or less, Sn: 0.2% or less, Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5 % Or less, P: 0.3% or less, and Al: 0.5% or less. Then, Fe and an impurity element are contained as a balance. However, the lower limit of Mn, Sb, Sn, Ni, Cu, Cr, P, and Al is 0.0%.

ここで、本発明の好適な鉄心としては、例えば、図4および図5に示す鉄心が挙げられる。
図4に示す鉄心100は、本発明の鉄心の一例を表す模式図である。図4に示す鉄心100は、分割鉄心を表す。鉄心100は、図4に示すように、円弧上のヨーク部17と、ヨーク部17の内周面から径方向内側に向かって突出しているティース部15とを備えた分割鉄心用の打ち抜き部材11を有する。そして、鉄心100は、分割鉄心用の打ち抜き部材11を円環状に連結し、複数枚積層して一体化した積層体13として形成されている。なお、分割鉄心用の打ち抜き部材11は、図4に示す形状、個数、積層数等に限らず、目的に応じて設計すればよい。
Here, examples of suitable iron cores of the present invention include the iron cores shown in FIGS. 4 and 5.
The iron core 100 shown in FIG. 4 is a schematic view showing an example of the iron core of the present invention. The iron core 100 shown in FIG. 4 represents a divided iron core. As shown in FIG. 4, the iron core 100 is a punched member 11 for a divided iron core including a yoke portion 17 on an arc and a teeth portion 15 projecting radially inward from the inner peripheral surface of the yoke portion 17. Has. The iron core 100 is formed as a laminated body 13 in which a punched member 11 for a divided iron core is connected in an annular shape and a plurality of the punched members 11 are laminated and integrated. The punching member 11 for the split iron core is not limited to the shape, number, number of layers, etc. shown in FIG. 4, and may be designed according to the purpose.

図5に示す鉄心300は、本発明の鉄心の他の一例を表す模式図である。図5に示す鉄心300は、螺旋巻き鉄心を表す。鉄心300は、図5に示すように、外周側にヨーク部37、ヨーク部37の内周面から径方向内側に向かって突出しているティース部35を備えた螺旋巻き鉄心用の打ち抜き部材31を有する。螺旋巻き鉄心用の打ち抜き部材31は、ヨーク部37を外周側、ティース部35を内周側となるように、螺旋状の曲げ加工が行われている。そして、鉄心300は、打ち抜き部材31を複数枚積層して一体化した積層体33として形成されている。なお、螺旋巻き鉄心用の打ち抜き部材31は、図4に示す形状、積層数等に限らず、目的に応じて設計すればよい。 The iron core 300 shown in FIG. 5 is a schematic view showing another example of the iron core of the present invention. The iron core 300 shown in FIG. 5 represents a spirally wound iron core. As shown in FIG. 5, the iron core 300 includes a punching member 31 for a spirally wound iron core having a yoke portion 37 on the outer peripheral side and a teeth portion 35 protruding inward in the radial direction from the inner peripheral surface of the yoke portion 37. Have. The punching member 31 for the spirally wound iron core is spirally bent so that the yoke portion 37 is on the outer peripheral side and the tooth portion 35 is on the inner peripheral side. The iron core 300 is formed as a laminated body 33 in which a plurality of punching members 31 are laminated and integrated. The punching member 31 for the spirally wound iron core is not limited to the shape shown in FIG. 4, the number of layers, and the like, and may be designed according to the purpose.

以上、図4および図5に示す鉄心について説明したが、本発明の鉄心はこれらに限定されるものではない。 Although the iron cores shown in FIGS. 4 and 5 have been described above, the iron cores of the present invention are not limited thereto.

次に、本発明の鉄心の好適な製造方法について説明する。本発明の鉄心の好適な製造方法としては、例えば、下記のような製造方法が挙げられる。 Next, a suitable manufacturing method of the iron core of the present invention will be described. As a preferable manufacturing method of the iron core of the present invention, for example, the following manufacturing method can be mentioned.

{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%である二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る工程と、打ち抜き部材を積層一体化して鉄心を得る工程と、を有していてもよい。なお、積層一体化した鉄心は、加工歪みを除くための焼鈍を行ってもよい。 The area ratio of the crystal grains in the crystal orientation of {100} <001> (± 30 °) is 50% or more, and the area ratio of the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 50% or more. It may have a step of punching a bidirectional electromagnetic steel plate of 20% to obtain a punched member and a step of laminating and integrating the punched members to obtain an iron core. The laminated and integrated iron core may be annealed to remove processing strain.

具体的には、まず、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板を準備する。準備した一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延する。冷間圧延の後、700℃以上(好ましくは700℃以上1100℃未満)の温度域で焼鈍して、{100}<001>(±30°)の結晶粒を50%以上有し、{110}<110>(±30°)の結晶粒を20%以上有する二方向性電磁鋼板を得る。 Specifically, first, a unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> orientation is prepared. Cold rolling is performed so that the rolling reduction ratio is 20% to 50% in the direction orthogonal to the rolling direction of the prepared unidirectional electromagnetic steel sheet. After cold rolling, it is annealed in a temperature range of 700 ° C. or higher (preferably 700 ° C. or higher and lower than 1100 ° C.) to have 50% or more of {100} <001> (± 30 °) crystal grains and {110. } A bidirectional electromagnetic steel sheet having 20% or more of <110> (± 30 °) crystal grains is obtained.

この二方向性電磁鋼板から、打ち抜き部材を得て、打ち抜き部材を積層一体化する。打ち抜き部材を得る方法、及び打ち抜き部材を積層一体化する方法は、通常工業的に採用されている方法によって鉄心を製造すればよい。 A punching member is obtained from this bidirectional electromagnetic steel sheet, and the punching member is laminated and integrated. As a method of obtaining the punched member and a method of laminating and integrating the punched member, the iron core may be manufactured by a method usually industrially adopted.

例えば、鉄心が分割鉄心である場合、この二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る。そして、打ち抜き部材を組み合わせて積層し、積層一体化して鉄心を得る。
打ち抜き部材は、例えば、ティース部とヨーク部とを有する所定形状の打ち抜き部材でもよい。また、所定形状の打ち抜き部材は、所定の枚数を打ち抜く。所定形状の打ち抜き部材は、例えば、所定の形状に打ち抜かれるときに、積層して一体化するための凹凸部が形成されてもよい。次に、所定形状の打ち抜き部材を所定の枚数を組み合わせて積層し、積層一体化させて鉄心を得る。積層一体化は、例えば、かしめ加工により、各々の打ち抜き板に形成された凹凸部が機械的に相互に嵌め合わされて固定され、打ち抜き部材が積層一体化される。
For example, when the iron core is a split iron core, the bidirectional electromagnetic steel sheet is punched to obtain a punched member. Then, the punching members are combined and laminated, and the layers are integrated to obtain an iron core.
The punching member may be, for example, a punching member having a predetermined shape having a tooth portion and a yoke portion. Further, the punching member having a predetermined shape punches a predetermined number of sheets. For example, when the punched member having a predetermined shape is punched into a predetermined shape, a concavo-convex portion for laminating and integrating may be formed. Next, a predetermined number of punched members having a predetermined shape are combined and laminated, and the layers are integrated to obtain an iron core. In the laminated integration, for example, by caulking, the uneven portions formed on the respective punched plates are mechanically fitted to each other and fixed, and the punched members are laminated and integrated.

また、例えば、鉄心が螺旋巻き鉄心である場合、この二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る。そして、打ち抜き部材に螺旋状の曲げ加工を施し、曲げ加工部材を得る。その後、曲げ加工部材を積層一体化して鉄心を得る。
螺旋巻き鉄心用の打ち抜き部材は、例えば、帯状の打ち抜き部材の長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。螺旋巻き鉄心用の打ち抜き部材は、例えば、一周分の螺旋状の曲げ加工を行うことが可能な長さでもよく、螺旋状に曲げ加工を行い巻き回しながら積層することが可能な長さでもよい。この打ち抜き部材は、例えば、所定の形状に打ち抜かれるときに、積層して一体化するための凹凸部が形成されてもよい。
螺旋巻き鉄心用の打ち抜き部材は、螺旋状の曲げ加工により、曲げ加工部材とした後、この曲げ加工部材を積層し、積層一体化させて鉄心を得る。例えば、打ち抜き部材を板面方向に、ティース部を内側、ヨーク部を外側にして、螺旋状に曲げ加工を行ってもよい。曲げ加工部材の積層は、複数枚の曲げ加工部材を積層してもよい。この場合、回し積みによって積層してもよい。また、曲げ加工部材を巻き回して積層してもよい。積層一体化は、例えば、かしめ加工により、各々の打ち抜き板に形成された凹凸部が機械的に相互に嵌め合わされて固定され、打ち抜き部材が積層一体化される。
以上の工程を経て、二方向性電磁鋼板を用いた鉄心が得られる。すなわち、二方向性電磁鋼板を用いて得た鉄心は、直交する二方向に優れた磁気特性を有する。
Further, for example, when the iron core is a spirally wound iron core, the bidirectional electromagnetic steel sheet is punched to obtain a punched member. Then, the punched member is subjected to a spiral bending process to obtain a bending member. After that, the bending members are laminated and integrated to obtain an iron core.
A plurality of punching members for the spirally wound iron core are provided, for example, a yoke portion extending continuously in the longitudinal direction of the strip-shaped punching member and a plurality of punching members projecting toward one end in the lateral direction of the yoke portion. It has a teeth part. The punching member for the spirally wound iron core may have, for example, a length capable of performing a spiral bending process for one round, or a length capable of performing a spiral bending process and laminating while winding. .. When the punched member is punched into a predetermined shape, for example, a concavo-convex portion for laminating and integrating may be formed.
The punching member for the spirally wound iron core is made into a bending member by spiral bending, and then the bending member is laminated and integrated to obtain an iron core. For example, the punching member may be bent in a spiral shape with the punching member in the plate surface direction, the tooth portion on the inside, and the yoke portion on the outside. The bending member may be laminated by laminating a plurality of bending members. In this case, they may be laminated by rotating. Further, the bending member may be wound and laminated. In the laminated integration, for example, by caulking, the uneven portions formed on the respective punched plates are mechanically fitted to each other and fixed, and the punched members are laminated and integrated.
Through the above steps, an iron core using a bidirectional electromagnetic steel sheet can be obtained. That is, the iron core obtained by using the bidirectional electromagnetic steel sheet has excellent magnetic properties in two orthogonal directions.

なお、鉄心を得るために用いる上記一方向性電磁鋼板の化学組成は、例えば、質量%で、C:0.0030%以下、Si:2.00%以上4.00%以下、Mn:0.5%以下、Sb:0.2%以下、Sn:0.2%以下、Ni:0.5%以下、Cu:0.5%以下、Cr:0.5%以下、P:0.3%以下、及びAl:0.5%以下を含有し、並びに、残部としてFeおよび不純物元素からなる鋼板であることがよい。 The chemical composition of the unidirectional electromagnetic steel sheet used to obtain the iron core is, for example, C: 0.0030% or less, Si: 2.00% or more and 4.00% or less, Mn: 0. 5% or less, Sb: 0.2% or less, Sn: 0.2% or less, Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5% or less, P: 0.3% It is preferable that the steel sheet contains the following and Al: 0.5% or less, and is composed of Fe and an impurity element as the balance.

次に、本発明の鉄心に用いられる好適な他の鋼板について説明する。
本発明の鉄心に用いられる好適な他の鋼板としては、得られる鉄心が寸法精度に優れる点および占積率の低下を抑制する点で、例えば、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上(好ましくは90%〜100%、さらに好ましくは95%〜100%)であり、せん断帯の数が30個/mm以上(好ましくは40個/mm以上、さらに好ましくは50個/mm以上)である再冷延鋼板が挙げられる。
Next, other suitable steel sheets used for the iron core of the present invention will be described.
Other suitable steel sheets used for the iron core of the present invention include, for example, {110} <110> (± 30 °) in that the obtained iron core is excellent in dimensional accuracy and suppresses a decrease in space factor. The area ratio occupied by the crystal grains in the crystal orientation is 85% or more (preferably 90% to 100%, more preferably 95% to 100%), and the number of shear bands is 30 pieces / mm or more (preferably 40 pieces /). Examples thereof include recooled and rolled steel sheets having a thickness of mm or more, more preferably 50 pieces / mm or more).

再冷延鋼板が、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であることに加えて、せん断帯の数が30個/mm以上であることで、打ち抜き加工を行うときの打ち抜き寸法精度、及び曲げ加工を行うときの曲げ加工性に優れる。そのため、これら特性を有する再冷延鋼板を用いることで、得られる鉄心は寸法精度に優れ、占積率の低下が抑制される。 In addition to the area ratio of the crystal grains in the crystal orientation of {110} <110> (± 30 °) of the recooled steel sheet being 85% or more, the number of shear bands is 30 pieces / mm or more. As a result, the punching dimensional accuracy when performing the punching process and the bending workability when performing the bending process are excellent. Therefore, by using the re-cold-rolled steel sheet having these characteristics, the obtained iron core has excellent dimensional accuracy and the decrease in the space factor is suppressed.

ここで、再冷延鋼板及び再冷延鋼板を焼鈍した鋼板についての結晶方位は、{}内の面が鋼板に平行で、かつ<>内の軸が再圧延方向に平行であることを示す。なお、結晶方位の観察は、EBSDを用いて既述の条件で行う。 Here, the crystal orientation of the re-cold-rolled steel sheet and the annealed steel sheet of the re-cold-rolled steel sheet indicates that the surface in {} is parallel to the steel sheet and the axis in <> is parallel to the rerolling direction. .. The crystal orientation is observed using EBSD under the conditions described above.

上記の再冷延鋼板を得る方法としては、例えば、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の切板の幅方向(一方向性電磁鋼板の圧延方向に対して直交する方向)に冷間圧延(以下、「冷延」と称する場合がある)を行う。この冷延により、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上(例えば、95%以上)であり、せん断帯の数が30個/mm以上(例えば、40個/mm以上)である再冷延鋼板を得る。この冷延において、圧下率は20%〜50%の範囲とすることがよい。 As a method for obtaining the above-mentioned cold-rolled steel sheet, for example, the width direction of the cut plate of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> direction (relative to the rolling direction of the unidirectional electromagnetic steel sheet) Cold rolling (hereinafter, may be referred to as "cold rolling") is performed in the direction orthogonal to each other. Due to this cold spreading, the area ratio occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more (for example, 95% or more), and the number of shear bands is 30 pieces / mm or more. (For example, 40 pieces / mm or more) is obtained. In this cold spreading, the reduction rate is preferably in the range of 20% to 50%.

ここで、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板を板厚方向を軸として90度回転させると{110}<110>方位となる。この{110}<110>方位を冷間圧延すると、剪断変形により圧下率に応じて{110}<110>が一部{100}<001>に方位変化する。
このとき、圧下率が20%未満のときは{100}<001>方位の発生量が少な過ぎる。そのため、この{100}<001>方位の発生量が少な過ぎる再冷延鋼板を用いて鉄心を得た場合、得られた鉄心は磁気特性が低下する。また、再冷延鋼板のせん断帯の数が30個/mm未満となるため、鉄心の寸法精度が劣位となる。
一方、圧下率が50%超のときは{110}<110>方位粒が磁気特性の低い{111}<110>に変化するため、得られる鉄心の磁気特性が低下する。また、鉄心の寸法精度および占積率が低下する。しかも、再冷延鋼板の焼鈍後の方位が、磁気特性の悪い{111}<211>に変化しやすくなるため、得られる鉄心の磁気特性がより低下する。
このように、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板を、圧延方向に対して直交する方向に圧下率が20%〜50%となるように冷延した再冷延鋼板を用いると、上記特性を有する再冷延鋼板が得られる。そして、この再冷延鋼板を用いて得られた鉄心は、磁気特性、及び寸法精度に優れ、占積率の低下が抑制される。
Here, when the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> orientation is rotated 90 degrees about the plate thickness direction, the {110} <110> orientation is obtained. When the {110} <110> orientation is cold-rolled, the orientation of {110} <110> is partially changed to {100} <001> according to the rolling reduction due to shear deformation.
At this time, when the reduction rate is less than 20%, the amount of {100} <001> orientation generated is too small. Therefore, when an iron core is obtained by using a recooled steel sheet in which the amount of the {100} <001> orientation generated is too small, the magnetic characteristics of the obtained iron core deteriorate. Further, since the number of shear bands of the recooled steel sheet is less than 30 pieces / mm, the dimensional accuracy of the iron core is inferior.
On the other hand, when the reduction rate exceeds 50%, the {110} <110> orientation grains change to {111} <110> having low magnetic characteristics, so that the magnetic characteristics of the obtained iron core deteriorate. In addition, the dimensional accuracy and space factor of the iron core are reduced. Moreover, the orientation of the recooled steel sheet after annealing tends to change to {111} <211>, which has poor magnetic characteristics, so that the magnetic characteristics of the obtained iron core are further lowered.
In this way, the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> direction is cold-rolled so that the rolling reduction is 20% to 50% in the direction orthogonal to the rolling direction. When a cold-rolled steel sheet is used, a re-cold-rolled steel sheet having the above characteristics can be obtained. The iron core obtained by using this recooled steel sheet is excellent in magnetic properties and dimensional accuracy, and a decrease in space factor is suppressed.

なお、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率は、既述の方法により測定する。
また、再冷延鋼板のせん断帯の数は、次のようにして測定する。
試験片を板厚断面が観察できるように圧延方向に平行に切断し、ナイタールエッチングによりせん断帯を腐食させて発現させる。結晶粒径観察に用いた写真の板厚中心部に1mmの線分を描く。その線分とせん断帯との交点を数え、その交点数を個/mmの単位で表す。この時、せん断帯とは結晶粒内に圧延方向から10°から70°傾いた斜め線状のエッチング痕のことを指す。
The area ratio occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °) is measured by the method described above.
The number of shear bands in the recooled steel sheet is measured as follows.
The test piece is cut parallel to the rolling direction so that the cross section of the plate thickness can be observed, and the shear band is corroded by nightal etching to develop it. A line segment of 1 mm is drawn at the center of the plate thickness of the photograph used for observing the crystal grain size. The intersections of the line segment and the shear band are counted, and the number of intersections is expressed in units of pieces / mm. At this time, the shear band refers to an oblique linear etching mark inclined by 10 ° to 70 ° from the rolling direction in the crystal grain.

再冷延鋼板としては、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上であれば、再冷延鋼板の化学組成は特に限定されない。再冷延鋼板は、例えば、以下の化学組成を有する再冷延鋼板が挙げられる。
質量比で、C:0.0000%〜0.0030%、Si:2.00%〜4.00%、Mn:0.0%〜0.5%、Sb:0.0%〜0.2%、Sn:0.0%〜0.2%、Ni:0.0%〜0.5%、Cu:0.0%〜0.5%、Cr:0.0%〜0.5%、P:0.0%〜0.3%、及びAl:0.0%〜0.5%を含有する。そして、残部は、Feおよび不純物元素からなる鋼板である。
再冷延鋼板の化学組成は、前述の鉄心に用いる好適な鋼板(二方向性電磁鋼板)で例示した化学組成と同様の点で、上記範囲の化学組成とすることがよい。
As a recooled steel sheet, if the area ratio occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more and the number of shear bands is 30 / mm or more, the re-cooled steel sheet is re-cooled. The chemical composition of the cold-rolled steel sheet is not particularly limited. Examples of the re-cold-rolled steel sheet include a re-cooled-rolled steel sheet having the following chemical composition.
By mass ratio, C: 0.0000% to 0.0030%, Si: 2.00% to 4.00%, Mn: 0.0% to 0.5%, Sb: 0.0% to 0.2 %, Sn: 0.0% to 0.2%, Ni: 0.0% to 0.5%, Cu: 0.0% to 0.5%, Cr: 0.0% to 0.5%, It contains P: 0.0% to 0.3% and Al: 0.0% to 0.5%. The balance is a steel sheet made of Fe and impurity elements.
The chemical composition of the recooled steel sheet may be in the above range in that it is the same as the chemical composition exemplified for the above-mentioned suitable steel sheet (bidirectional electromagnetic steel sheet) used for the iron core.

なお、再冷延鋼板を用いて得られる好適な鉄心としては、例えば、前述の図4および図5に示す鉄心が挙げられる。 In addition, as a suitable iron core obtained by using the re-cold-rolled steel sheet, for example, the iron core shown in FIGS. 4 and 5 described above can be mentioned.

次に、本発明の鉄心の好適な他の製造方法について説明する。
本発明の鉄心の好適な他の製造方法は、例えば、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板を得る工程と、再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、打ち抜き部材を積層一体化して、700℃以上の温度域で焼鈍する工程と、を有する。
Next, another suitable manufacturing method of the iron core of the present invention will be described.
Another preferred method for producing an iron core of the present invention is, for example, a rolling reduction of 20% in a direction orthogonal to the rolling direction of a unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> orientation. Cold-rolled to ~ 50%, the area ratio occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more, and the number of shear zones is 30 / mm or more. It has a step of obtaining a re-cold-rolled steel sheet, a step of punching a re-cold-rolled steel sheet to obtain a punched member, and a step of laminating and integrating the punched member and annealing in a temperature range of 700 ° C. or higher.

まず、一方向性電磁鋼板から特定の再冷延鋼板を得る。
具体的には、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板のコイルの幅方向に切断された鋼板(以下、「切板」と称する)を準備する。一方向性電磁鋼板としては、絶縁コーティング、及びフォルステライト皮膜を有しない鋼板を準備してもよい。又は、絶縁コーティング、及びフォルステライト皮膜を有している鋼板を準備し、絶縁コーティング、及びフォルステライト皮膜を切削等で機械的に除去した鋼板としてもよい。
First, a specific recooled steel sheet is obtained from a unidirectional electromagnetic steel sheet.
Specifically, a steel plate cut in the width direction of the coil of the unidirectional electromagnetic steel plate having crystal grains accumulated in the {110} <001> direction (hereinafter, referred to as “cut plate”) is prepared. As the unidirectional electromagnetic steel sheet, a steel sheet having no insulating coating and a forsterite film may be prepared. Alternatively, a steel sheet having an insulating coating and a forsterite film may be prepared, and the insulating coating and the forsterite film may be mechanically removed by cutting or the like.

また、一方向性電磁鋼板としては、{110}<001>方位に集積した結晶粒を有するのであれば、一方向性電磁鋼板の化学組成は特に限定されない。{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板としては、例えば、以下の化学組成を有する一方向性電磁鋼板であることがよい。
このような一方向性電磁鋼板としては、質量比で、C:0.0000%〜0.0030%、Si:2.00%〜4.00%、Mn:0.0%〜0.5%、Sb:0.0%〜0.2%、Sn:0.0%〜0.2%、Ni:0.0%〜0.5%、Cu:0.0%〜0.5%、Cr:0.0%〜0.5%、P:0.0%〜0.3%、及びAl:0.0%〜0.5%を含有する。そして、残部は、Feおよび不純物元素からなる鋼板である。
Further, the chemical composition of the unidirectional electrical steel sheet is not particularly limited as long as it has crystal grains accumulated in the {110} <001> orientation. The unidirectional electrical steel sheet having crystal grains accumulated in the {110} <001> orientation is, for example, a unidirectional electrical steel sheet having the following chemical composition.
For such a unidirectional electromagnetic steel plate, C: 0.0000% to 0.0030%, Si: 2.00% to 4.00%, Mn: 0.0% to 0.5% in terms of mass ratio. , Sb: 0.0% to 0.2%, Sn: 0.0% to 0.2%, Ni: 0.0% to 0.5%, Cu: 0.0% to 0.5%, Cr : 0.0% to 0.5%, P: 0.0% to 0.3%, and Al: 0.0% to 0.5%. The balance is a steel sheet made of Fe and impurity elements.

次に、準備した切板の幅方向(一方向性電磁鋼板の圧延方向に対して直交する方向)に、圧下率が20%〜50%となるように、冷間圧延を行い、前述の再冷延鋼板と同様の再冷延鋼板を得る。すなわち、再冷延鋼板は、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である。 Next, cold rolling is performed so that the rolling reduction ratio is 20% to 50% in the width direction of the prepared cut plate (the direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet), and the above-mentioned re-rolling is performed. A re-cold-rolled steel sheet similar to the cold-rolled steel sheet is obtained. That is, in the recooled steel sheet, the area ratio occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is 30 pieces / mm or more.

次に、再冷延鋼板を打ち抜き、打ち抜き部材(打ち抜き板)を得る。打ち抜き部材は、目的に合わせた鉄心に応じて、所定の形状に打ち抜く。打ち抜き部材を得る方法は特に限定されず、通常工業的に採用されている方法によって行えばよい。
なお、打ち抜き部材を得る工程は、例えば、所定形状の打ち抜き部材よりも大きい予備打ち抜き部材を得る工程と、予備打ち抜き部材から目的とする所定形状の打ち抜き部材を得る工程とを有する2段階の工程としてもよい。
Next, the re-cold-rolled steel sheet is punched to obtain a punched member (punched plate). The punching member is punched into a predetermined shape according to the iron core suitable for the purpose. The method for obtaining the punched member is not particularly limited, and it may be performed by a method usually industrially adopted.
The step of obtaining the punched member is, for example, a two-step step including a step of obtaining a preliminary punched member larger than a punched member having a predetermined shape and a step of obtaining a punched member having a desired predetermined shape from the preliminary punched member. May be good.

鉄心が分割鉄心である場合、分割鉄心用の打ち抜き部材は、例えば、ティース部とヨーク部とを有する分割された形状の打ち抜き部材が挙げられる。
また、鉄心が螺旋巻き鉄心である場合、螺旋巻き鉄心用の打ち抜き部材は、例えば、帯状の打ち抜き部材であり、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一方の端部側に突出して複数個設けられたティース部とを有する形状の打ち抜き部材が挙げられる。螺旋巻き鉄心用の打ち抜き部材は、例えば、一周分の螺旋状の曲げ加工を行うことが可能な長さでもよく、螺旋状に曲げ加工を行い巻き回しながら積層することが可能な長さでもよい。
これらの打ち抜き部材は、積層一体化する場合に、ティース部とヨーク部とを有する所定の形状に打ち抜かれるときに、例えば、積層して一体化するための凹凸部が形成されてもよい。
When the iron core is a divided iron core, the punching member for the divided iron core includes, for example, a divided-shaped punching member having a tooth portion and a yoke portion.
When the iron core is a spirally wound iron core, the punching member for the spirally wound iron core is, for example, a strip-shaped punching member, and a yoke portion extending continuously in the longitudinal direction and a short side of the yoke portion. An example is a punched member having a shape having a plurality of teeth portions protruding toward one end in the direction. The punching member for the spirally wound iron core may have, for example, a length capable of performing a spiral bending process for one round, or a length capable of performing a spiral bending process and laminating while winding. ..
When these punched members are punched into a predetermined shape having a tooth portion and a yoke portion in the case of laminating and integrating, for example, a concavo-convex portion for laminating and integrating may be formed.

次に、打ち抜き部材を積層一体化する。
例えば、鉄心が分割鉄心である場合、分割鉄心用の打ち抜き部材の所定枚数を組み合わせて環状に連結させ、これを積層する。そして、例えば、かしめ加工により、各々の打ち抜き板に形成された凹凸部が機械的に相互に嵌め合わされて固定され、打ち抜き部材が積層一体化される。
Next, the punching members are laminated and integrated.
For example, when the iron core is a divided iron core, a predetermined number of punching members for the divided iron core are combined and connected in an annular shape, and these are laminated. Then, for example, by caulking, the uneven portions formed on the respective punched plates are mechanically fitted to each other and fixed, and the punched members are laminated and integrated.

鉄心が螺旋巻き鉄心である場合、螺旋巻き鉄心用の打ち抜き部材に曲げ加工を行い、曲げ加工された打ち抜き部材(以下、「曲げ加工部材」とも称する)を得る。曲げ加工は、打ち抜き部材の板面方向に対して、例えば、ヨーク部を外周側、ティース部を内周側となるように螺旋状の曲げ加工を行い、曲げ加工部材を得る。そして、曲げ加工部材を積層する。曲げ加工部材の積層は、一周分の曲げ加工を行った曲げ加工部材を所定枚数積層してもよい。この場合、回し積みによって積層してもよい。また、曲げ加工部材を巻き回して積層してもよい。その後、例えば、かしめ加工により、積層された曲げ加工部材が機械的に相互に嵌め合わされて固定され、曲げ加工部材が積層一体化される。
なお、かしめ加工により積層一体化する方法を例に挙げて説明したが、積層一体化する方法は特に限定されず、通常工業的に採用されている方法で行えばよい。
When the iron core is a spirally wound iron core, the punched member for the spirally wound iron core is bent to obtain a bent punched member (hereinafter, also referred to as “bending processed member”). In the bending process, a spiral bending process is performed so that, for example, the yoke portion is on the outer peripheral side and the tooth portion is on the inner peripheral side with respect to the plate surface direction of the punched member to obtain a bending member. Then, the bending members are laminated. The bending member may be laminated by laminating a predetermined number of bending members that have been bent for one round. In this case, they may be laminated by rotating. Further, the bending member may be wound and laminated. After that, for example, by caulking, the laminated bending members are mechanically fitted to each other and fixed, and the bending members are laminated and integrated.
Although the method of laminating and integrating by caulking has been described as an example, the method of laminating and integrating is not particularly limited, and a method usually industrially adopted may be used.

次に、積層一体化された積層体に対して焼鈍を行う。焼鈍温度は、得られる鉄心の磁気特性が優位となる点で、700度以上で焼鈍をすることがよく、800度以上であることが好ましい。なお、焼鈍の温度域の上限は特に限定されないが、焼鈍温度が高すぎると、得られる鉄心の磁気特性が劣位となる場合があるので、焼鈍の温度域の上限は、1100℃未満(好ましくは1000℃以下)とすることがよい。
以上の工程を経て、再冷延鋼板を用いた鉄心が得られる。
Next, annealing is performed on the laminated body that has been laminated and integrated. The annealing temperature is preferably 700 ° C. or higher, preferably 800 ° C. or higher, in that the magnetic characteristics of the obtained iron core are superior. The upper limit of the annealing temperature range is not particularly limited, but if the annealing temperature is too high, the magnetic characteristics of the obtained iron core may be inferior. Therefore, the upper limit of the annealing temperature range is less than 1100 ° C. (preferably). It is preferable to set the temperature to 1000 ° C. or lower).
Through the above steps, an iron core using a recooled steel sheet can be obtained.

ここで、再冷延鋼板は、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である。この再冷延鋼板では、{100}<001>方位から±30度以内の結晶粒の面積比率は15%未満である。この再冷延鋼板を再結晶させた後の鋼板は、{100}<001>方位から±30度以内の結晶粒の面積比率を50%以上に増加し得る。このとき、再結晶比率を100%にすることが望ましい。再冷延鋼板を再結晶させるためには、700度以上(好ましくは700℃〜1000℃)の温度域で焼鈍をすることがよい。この焼鈍により、再結晶させた後の鋼板は、{100}<001>(±30°)の結晶粒を50%以上有し、{110}<110>(±30°)の結晶粒を20%以上有する。すなわち、再冷延鋼板を用いて得た鉄心は、上記の焼鈍により、直交する二方向に優れた磁気特性を有する。 Here, in the recooled steel sheet, the area ratio occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is 30 pieces / mm or more. In this recooled steel sheet, the area ratio of crystal grains within ± 30 degrees from the {100} <001> orientation is less than 15%. The steel sheet after recrystallizing this recooled steel sheet can increase the area ratio of crystal grains within ± 30 degrees from the {100} <001> orientation to 50% or more. At this time, it is desirable to set the recrystallization ratio to 100%. In order to recrystallize the recooled steel sheet, it is preferable to anneal it in a temperature range of 700 ° C. or higher (preferably 700 ° C. to 1000 ° C.). The steel sheet after being recrystallized by this annealing has 50% or more of {100} <001> (± 30 °) crystal grains and 20 {110} <110> (± 30 °) crystal grains. Have more than%. That is, the iron core obtained by using the recooled steel sheet has excellent magnetic properties in two orthogonal directions by the above annealing.

なお、本発明の鉄心は、再冷延鋼板を積層したものとしてもよい。再冷延鋼板を積層した鉄心とする場合、この鉄心の製造方法としては、{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板を得る工程と、再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、打ち抜き部材を積層一体化する工程とを有することが挙げられる。
また、この再冷延鋼板を積層した鉄心は、例えば、700℃〜1000℃の温度域で焼鈍を施してもよい。この温度域で焼鈍することで、鉄心を構成する鋼板は、{100}<001>(±30°)の結晶粒を50%以上有し、{110}<110>(±30°)の結晶粒を20%以上有するものとなる。つまり、鉄心は、前述の直交する二方向に優れた磁気特性を有するものとなる。
The iron core of the present invention may be made by laminating recooled steel sheets. When the iron core is made by laminating re-cold-rolled steel sheets, the method for manufacturing the iron core is as follows: in a direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> direction. Cold rolling is performed so that the rolling reduction is 20% to 50%, and the area ratio occupied by the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more, and the number of shear zones is large. It includes a step of obtaining a re-cold-rolled steel sheet having a thickness of 30 pieces / mm or more, a step of punching a re-cold-rolled steel sheet to obtain a punched member, and a step of laminating and integrating the punched members.
Further, the iron core on which the recooled and rolled steel sheets are laminated may be annealed in a temperature range of, for example, 700 ° C. to 1000 ° C. By annealing in this temperature range, the steel sheet constituting the iron core has 50% or more of {100} <001> (± 30 °) crystal grains and {110} <110> (± 30 °) crystals. It will have 20% or more grains. That is, the iron core has excellent magnetic characteristics in the two orthogonal directions described above.

以上、本発明の鉄心を得るための好適な鋼板として、二方向性電磁鋼板および再冷延鋼板を例に挙げて説明したが、{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)結晶方位の結晶粒の占める面積比率が20%以上の鋼板からなる鉄心が得られるのであれば、上記の鋼板に限定されるものではない。 As described above, bidirectional electromagnetic steel sheets and recooled steel sheets have been described as examples of suitable steel sheets for obtaining the iron core of the present invention, but crystals having a crystal orientation of {100} <001> (± 30 °) If an iron core made of a steel sheet having an area ratio of 50% or more of grains and a crystal grain of {110} <110> (± 30 °) crystal orientation of 20% or more can be obtained, the above It is not limited to steel sheets.

なお、従来の二方向性電磁鋼板を用いて鉄心を得る方法では、二方向性電磁鋼板を得るための特殊な装置を必要としていた。これに対して、本発明の鉄心は、二方向性電磁鋼板を得るための特殊な装置を必要とせず、二方向に優れた磁気特性を有する鉄心が簡便に製造し得る。 In the conventional method of obtaining an iron core using a bidirectional electromagnetic steel sheet, a special device for obtaining the bidirectional electromagnetic steel sheet was required. On the other hand, the iron core of the present invention does not require a special device for obtaining a bidirectional electromagnetic steel sheet, and an iron core having excellent magnetic characteristics in two directions can be easily manufactured.

以上のように、本発明によれば、鉄心は、優れた磁気特性を有し、寸法精度に優れおよび占積率の低下が抑制されているため、電気機器鉄心(特に、モータの螺旋巻き鉄心)として適用することが望ましい。本発明によれば、電気機器の分野における喫緊の高効率化、小型化要請に十分に応えることができ、その工業的価値は極めて高いものである。 As described above, according to the present invention, the iron core has excellent magnetic characteristics, is excellent in dimensional accuracy, and the decrease in space factor is suppressed. Therefore, the iron core of an electric device (particularly, the spirally wound iron core of a motor). ) Is desirable. According to the present invention, it is possible to sufficiently meet the urgent demand for higher efficiency and miniaturization in the field of electrical equipment, and its industrial value is extremely high.

なお、本発明は、上記に限定されるものではない。上記は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above. The above is an example, and any material having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the technique of the present invention. It is included in the target range.

以下、実施例を例示して、本発明を具体的に説明するが、本発明はこれに限定されるものではない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Hereinafter, the present invention will be specifically described by exemplifying examples, but the present invention is not limited thereto. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the ideas described in the claims, which naturally belong to the technical scope of the present invention. It is understood as a thing.

(実施例1)
−主方位および副方位の確認−
本発明の鉄心を構成する鋼板が、主方位および副方位を有することについて確認試験を行う。
まず、質量%で、C:0.0030%、Si:3.10%、Mn:0.1%、を含有する厚さ0.30mmの一方向性電磁鋼板の切板を準備する。次に、絶縁コーティングを水酸化ナトリウム水溶液で、フォルステライト皮膜を硫酸で除去する。しかる後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に対して40%の圧下率で冷延を行い、再冷延鋼板を得る。この再冷延鋼板は、{110}<110>から30°以内の結晶粒が91%、せん断帯の数が72個/mmである。
この再冷延鋼板を窒素雰囲気中にて850℃で1秒焼鈍する。焼鈍終了後、鋼板を空冷する。
(Example 1)
-Confirmation of main direction and sub-direction-
A confirmation test is conducted to confirm that the steel sheet constituting the iron core of the present invention has a main direction and a sub-direction.
First, a cut plate of a unidirectional electromagnetic steel sheet having a thickness of 0.30 mm containing C: 0.0030%, Si: 3.10%, and Mn: 0.1% in mass% is prepared. Next, the insulating coating is removed with an aqueous solution of sodium hydroxide, and the forsterite film is removed with sulfuric acid. After that, cold rolling is performed at a reduction rate of 40% with respect to the width direction of the cut plate from which the insulating coating and the forsterite film have been removed to obtain a re-cold-rolled steel sheet. This recooled steel sheet has 91% of crystal grains within 30 ° from {110} <110> and 72 shear bands / mm.
This recooled steel sheet is annealed at 850 ° C. for 1 second in a nitrogen atmosphere. After annealing, the steel sheet is air-cooled.

上記焼鈍後の鋼板の中心層を既述の測定条件により、EBSDにより観察を行う。
上記焼鈍後の鋼板の(001)極点図を図3に示す。図3に示すとおり、焼鈍後の鋼板は、主方位である{100}<001>近傍方位1Aと、副方位である{110}<110>近傍方位2Aとの2方位で結晶粒が観察される。この鉄心に用いられる鋼板における各結晶粒の面積比率は、{100}<001>から30°以内の結晶粒は61%であり、{110}<110>から30°以内の結晶粒は37%である。
The central layer of the annealed steel sheet is observed by EBSD under the above-mentioned measurement conditions.
The (001) pole figure of the steel sheet after annealing is shown in FIG. As shown in FIG. 3, in the annealed steel sheet, crystal grains are observed in two directions, the primary direction {100} <001> neighborhood direction 1A and the sub-direction {110} <110> neighborhood direction 2A. To. The area ratio of each crystal grain in the steel sheet used for this iron core is 61% for crystal grains within 30 ° from {100} <001> and 37% for crystal grains within 30 ° from {110} <110>. Is.

また、上記の再冷延鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化した積層体を得る。その後、この積層体を窒素雰囲気中にて、850℃の各温度条件で1秒間焼鈍して鉄心を得る。焼鈍終了後、鉄心を空冷する。 Further, a strip-shaped punching member is punched from the re-cold-rolled steel sheet so that a plurality of tooth portions are formed in a direction along the cold-rolling direction. This band-shaped punching member has a yoke portion that continuously extends in the longitudinal direction, and a plurality of teeth portions that project toward one end of the yoke portion in the lateral direction. Next, the strip-shaped punched member is bent to obtain a bent member. The bending process is performed in a spiral shape so that the strip-shaped punching member goes around and the yoke portion is on the outer peripheral side and the tooth portion is on the inner peripheral side. After that, the bending members are laminated and caulked to obtain a laminated body integrated. Then, this laminate is annealed in a nitrogen atmosphere at each temperature condition of 850 ° C. for 1 second to obtain an iron core. After annealing, air cool the iron core.

得られる鉄心において、ティース部とヨーク部から鋼板を採取し、その板厚中心層を既述の測定条件により、EBSDにより観察を行う。この採取した鋼板における結晶粒の面積比率は、{100}<001>から30°以内の結晶粒が61%であり、{110}<110>から30°以内の結晶粒が37%である。 In the obtained iron core, a steel plate is sampled from the teeth portion and the yoke portion, and the thickness center layer thereof is observed by EBSD under the measurement conditions described above. The area ratio of the crystal grains in the collected steel sheet is 61% for the crystal grains within 30 ° from {100} <001> and 37% for the crystal grains within 30 ° from {110} <110>.

このように、上記の再冷延鋼板を用いて得る鉄心は、再冷延鋼板を焼鈍して得られる鋼板の主方位と副方位とに対応する結晶方位の結晶粒を有することが分かる。 As described above, it can be seen that the iron core obtained by using the above-mentioned cold-rolled steel sheet has crystal grains having crystal orientations corresponding to the main direction and the sub-direction of the steel sheet obtained by annealing the re-cold-rolled steel sheet.

(実施例2)
−圧下率および焼鈍条件の影響−
まず、質量%で、C:0.0002%、Si:3.09%を含有する0.30mmの一方向性電磁鋼板の切板を準備する。次に、水酸化ナトリウム水溶液で絶縁コーティングを除去し、硫酸でフォルステライト皮膜を除去する。その後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に対して圧下率10%〜60%で冷延を行い、再冷延鋼板を得る。
(Example 2)
-Effects of reduction rate and annealing conditions-
First, a cut plate of a 0.30 mm unidirectional electrical steel sheet containing C: 0.0002% and Si: 3.09% in mass% is prepared. Next, the insulating coating is removed with an aqueous solution of sodium hydroxide, and the forsterite film is removed with sulfuric acid. After that, cold rolling is performed at a reduction ratio of 10% to 60% in the width direction of the cut plate from which the insulating coating and the forsterite film have been removed to obtain a re-cold-rolled steel sheet.

この再冷延鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化した積層体を得る。その後、この積層体を窒素雰囲気中にて、600℃〜1100℃の各温度条件で1秒間焼鈍して鉄心を得る。焼鈍終了後、鉄心を空冷する。 A strip-shaped punching member is punched from this re-cold-rolled steel sheet so that a plurality of tooth portions are formed in a direction along the cold-rolling direction. This band-shaped punching member has a yoke portion that continuously extends in the longitudinal direction, and a plurality of teeth portions that project toward one end of the yoke portion in the lateral direction. Next, the strip-shaped punched member is bent to obtain a bent member. The bending process is performed in a spiral shape so that the strip-shaped punching member goes around and the yoke portion is on the outer peripheral side and the tooth portion is on the inner peripheral side. After that, the bending members are laminated and caulked to obtain a laminated body integrated. Then, this laminate is annealed in a nitrogen atmosphere at each temperature condition of 600 ° C. to 1100 ° C. for 1 second to obtain an iron core. After annealing, air cool the iron core.

上記方法で得られる鉄心について、磁気特性の各評価を行う。上記方法で得られる鉄心において、ティース部とヨーク部とから鋼板を採取し、その板厚中心層を既述の測定条件により、EBSDにより観察を行う。さらに、上記方法で得られる鉄心において、鋼板を採取し、平均結晶粒径の測定を行う。また、再冷延鋼板について、打ち抜き精度、及び曲げ加工性の各評価を行う。
EBSD観察および平均結晶粒径の測定は、既述の方法により測定を行う。
磁気特性はB50(T)(磁化力5000A/mにおける磁束密度)およびW10/400(W/kg)(磁束密度1.0T、周波数400Hzの時の鉄損)の測定を行う。
50(T)と、W10/400(W/kg)は、鉄心における径方向に沿う方向と、周の接線方向との平均値である。
寸法精度と曲げ加工性は下記操作方法により評価を行う。
なお、再冷延鋼板の寸法精度、及び曲げ加工性を評価することにより、鉄心の寸法精度、及び占積率が評価される。
Each evaluation of the magnetic characteristics of the iron core obtained by the above method is performed. In the iron core obtained by the above method, a steel plate is sampled from the teeth portion and the yoke portion, and the thickness center layer thereof is observed by EBSD under the measurement conditions described above. Further, in the iron core obtained by the above method, a steel plate is collected and the average crystal grain size is measured. In addition, the punching accuracy and bending workability of the re-cold-rolled steel sheet are evaluated.
The EBSD observation and the measurement of the average crystal grain size are carried out by the methods described above.
As for the magnetic characteristics, B 50 (T) (magnetic flux density at a magnetization force of 5000 A / m) and W 10/400 (W / kg) (magnetic flux density 1.0 T, iron loss at a frequency of 400 Hz) are measured.
B 50 (T) and W 10/400 (W / kg) are average values of the radial direction of the iron core and the tangential direction of the circumference.
The dimensional accuracy and bending workability are evaluated by the following operation method.
By evaluating the dimensional accuracy and bending workability of the recooled steel sheet, the dimensional accuracy of the iron core and the space factor are evaluated.

・打ち抜き精度
内径100mm、外径120mmのリング状試料を打ち抜き、真円からの平均差(真円からのズレ)を求める。平均差が2μm以下であれば、得られる鉄心の寸法精度は良いと考える。
-Punching accuracy A ring-shaped sample with an inner diameter of 100 mm and an outer diameter of 120 mm is punched, and the average difference from the perfect circle (deviation from the perfect circle) is obtained. If the average difference is 2 μm or less, the dimensional accuracy of the obtained iron core is considered to be good.

・曲げ加工性
20mm幅×800mm長さの鋼板を作製し、内径200mm、外径240mmの曲げ加工を行う。その際の板厚変化量(%)を測定する。板厚変化量が6%以下であれば、得られる鉄心の占積率の低下が抑制されていると考える。ただし、曲げ加工時に割れが発生しやすい場合は、300℃以下での温間加工をしても良い。
-Bending workability A steel plate having a width of 20 mm and a length of 800 mm is produced, and bending is performed with an inner diameter of 200 mm and an outer diameter of 240 mm. The amount of change in plate thickness (%) at that time is measured. If the amount of change in plate thickness is 6% or less, it is considered that the decrease in the space factor of the obtained iron core is suppressed. However, if cracks are likely to occur during bending, warm processing at 300 ° C. or lower may be performed.


表1に示すように、符号2−2〜符号2−6は本発明の範囲内であり、これらの鉄心は、磁束密度B50が高く、打ち抜き精度及び、曲げ加工性が良好である。符号2−1の鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率が少ない。そのため、符号2−1の鉄心は磁束密度B50が低い。また、符号2−1は、再冷延鋼板のせん断帯の数が少ないため、寸法精度が劣位である。さらに、せん断帯が少ないため、再結晶後の{100}<001>(±30°)の結晶粒の面積比率も少なくなり、鉄心の磁気特性も劣位である。
符号2−7及び符号2−8の鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率と{110}<110>(±30°)の結晶粒の面積比率が少ない。そのため、符号2−7及び符号2−8の鉄心は磁束密度B50が低い。また、符号2−7の再冷延鋼板は、{110}<110>(±30°)の結晶粒の面積比率が少ない。そのため、曲げ加工性が劣位である。さらに、符号2−8の鉄心の鋼板は、未再結晶部が残存しているため、鉄心のW10/400が著しく劣位である。
また、表1に示すように、圧下率が低すぎると、鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率が少ない。圧下率が高すぎる、又は焼鈍温度が低すぎると、鉄心の鋼板は{100}<001>(±30°)の結晶粒の面積比率、及び{110}<110>(±30°)の結晶粒の面積比率が少ない。さらに、同じ圧下率であって、焼鈍温度が高い場合は、鉄心の鋼板は平均結晶粒径が大きくなる傾向がある。
なお、符号2−6の鉄心の鋼板は本発明の範囲内であるが、結晶粒径が320μmと粗大である。そのため、同一再冷延条件の符号2−3の鉄心よりも鉄損が高く、磁気特性的に不利である。
As shown in Table 1, reference numerals 2 to 2 to 2 to 6 are within the scope of the present invention, and these iron cores have a high magnetic flux density B 50 , and have good punching accuracy and bending workability. The steel plate of the iron core of reference numeral 2-1 has a small area ratio of crystal grains of {100} <001> (± 30 °). Therefore, the iron core of reference numeral 2-1 has a low magnetic flux density B 50. Further, reference numeral 2-1 is inferior in dimensional accuracy because the number of shear bands of the recooled steel sheet is small. Further, since the shear band is small, the area ratio of the crystal grains of {100} <001> (± 30 °) after recrystallization is also small, and the magnetic characteristics of the iron core are also inferior.
The steel sheets of the iron cores of reference numerals 2-7 and 2-8 have a crystal grain area ratio of {100} <001> (± 30 °) and a crystal grain area ratio of {110} <110> (± 30 °). Few. Therefore, the iron cores of reference numerals 2-7 and 2-8 have a low magnetic flux density B 50. Further, the recooled steel sheet of reference numeral 2-7 has a small area ratio of crystal grains of {110} <110> (± 30 °). Therefore, the bending workability is inferior. Further, since the unrecrystallized portion remains in the steel plate of the iron core of reference numeral 2-8, W 10/400 of the iron core is remarkably inferior.
Further, as shown in Table 1, if the reduction rate is too low, the steel plate of the iron core has a small area ratio of crystal grains of {100} <001> (± 30 °). If the reduction rate is too high or the annealing temperature is too low, the steel sheet of the iron core will have a grain area ratio of {100} <001> (± 30 °) and crystals of {110} <110> (± 30 °). The area ratio of grains is small. Further, when the reduction rate is the same and the annealing temperature is high, the average crystal grain size of the steel sheet of the iron core tends to be large.
The steel sheet of the iron core of reference numeral 2-6 is within the scope of the present invention, but has a coarse crystal grain size of 320 μm. Therefore, the iron loss is higher than that of the iron core of reference numeral 2-3 under the same recooling condition, which is disadvantageous in terms of magnetic characteristics.

(実施例3)
−化学組成による影響−
まず、質量%で、表2に示す化学組成を有し、厚さ0.30mmの一方向性電磁鋼板(鋼板と表記)の切板を準備する。次に、水酸化ナトリウム水溶液で絶縁コーティングを除去し、硫酸でフォルステライト皮膜を除去する。その後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に圧下率40%で冷延を行い、再冷延鋼板を得る。
(Example 3)
-Effect of chemical composition-
First, a cut plate of a unidirectional electromagnetic steel plate (denoted as a steel plate) having a chemical composition shown in Table 2 in mass% and a thickness of 0.30 mm is prepared. Next, the insulating coating is removed with an aqueous solution of sodium hydroxide, and the forsterite film is removed with sulfuric acid. After that, cold rolling is performed in the width direction of the cut plate from which the insulating coating and the forsterite film have been removed at a reduction ratio of 40% to obtain a re-cold-rolled steel sheet.

この再冷延鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化した積層体を得る。この積層体を窒素雰囲気中にて850℃で1秒焼鈍して鉄心を得る。焼鈍終了後、鉄心を空冷する。 A strip-shaped punching member is punched from this re-cold-rolled steel sheet so that a plurality of tooth portions are formed in a direction along the cold-rolling direction. This band-shaped punching member has a yoke portion that continuously extends in the longitudinal direction, and a plurality of teeth portions that project toward one end of the yoke portion in the lateral direction. Next, the strip-shaped punched member is bent to obtain a bent member. The bending process is performed in a spiral shape so that the strip-shaped punching member goes around and the yoke portion is on the outer peripheral side and the tooth portion is on the inner peripheral side. After that, the bending members are laminated and caulked to obtain a laminated body integrated. This laminate is annealed at 850 ° C. for 1 second in a nitrogen atmosphere to obtain an iron core. After annealing, air cool the iron core.

上記方法で得られる再冷延鋼板および鉄心について、実施例2と同様の評価方法により、各評価を行う。 Each evaluation is performed on the recooled steel sheet and the iron core obtained by the above method by the same evaluation method as in Example 2.

表3に示すように、鉄心を構成する鋼板は、再冷延鋼板を得るために用いる一方向性電磁鋼板の化学組成によらずに、{100}<001>(±30°)の結晶粒の面積比率、及び{110}<110>(±30°)の結晶粒の面積比率が本発明の範囲内であることが分かる。そして、{100}<001>(±30°)の結晶粒の面積比率、及び{110}<110>(±30°)の結晶粒の面積比率が本発明の範囲内である鋼板からなる鉄心は、磁束密度B50が高いことが分かる。また、{110}<110>(±30°)の結晶粒の面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板は、打ち抜き精度及び曲げ加工性が良好であることが分かる。これにより、この再冷延鋼板を用いて得られる鉄心は、寸法精度及び占積率の低下が抑制されることが分かる。
しかし、化学成分の推奨範囲を外れると別の課題が発生する。符号3−9の鋼板はCが多く、磁気時効を起こすためモータ鉄心への適用は不向きである。また、符号3−10の鋼板はSiが多く、冷延時の作業性が低下するため、商業生産には向いていない。符号3−11の鋼板はSi量が少なく、相変態をするため、一方向性電磁鋼板を商業的に生産するには不向きである。したがって、これらの鋼板を用いて、鉄心を商業的に製造することは困難であり、鉄心を生産できても、鉄心としての安定した十分な性能が得られ難い。
As shown in Table 3, the steel sheet constituting the iron core has crystal grains of {100} <001> (± 30 °) regardless of the chemical composition of the unidirectional electromagnetic steel sheet used to obtain the recooled steel sheet. It can be seen that the area ratio of {110} <110> (± 30 °) and the area ratio of the crystal grains of {110} <110> (± 30 °) are within the scope of the present invention. Then, an iron core made of a steel plate in which the area ratio of the crystal grains of {100} <001> (± 30 °) and the area ratio of the crystal grains of {110} <110> (± 30 °) are within the range of the present invention. It can be seen that the magnetic flux density B 50 is high. Further, a recooled steel sheet having a crystal grain area ratio of {110} <110> (± 30 °) of 85% or more and a number of shear bands of 30 / mm or more has punching accuracy and bending workability. Is good. As a result, it can be seen that the iron core obtained by using this recooled steel sheet suppresses a decrease in dimensional accuracy and space factor.
However, if the chemical composition is out of the recommended range, another problem arises. The steel sheet of reference numeral 3-9 has a large amount of C and causes magnetic aging, so that it is not suitable for application to a motor iron core. Further, the steel sheet of reference numeral 3-10 contains a large amount of Si, which reduces workability during cold spreading, and is therefore not suitable for commercial production. Since the steel sheet of reference numeral 3-11 has a small amount of Si and undergoes phase transformation, it is not suitable for commercial production of unidirectional electromagnetic steel sheet. Therefore, it is difficult to commercially manufacture an iron core using these steel plates, and even if the iron core can be produced, it is difficult to obtain stable and sufficient performance as the iron core.

(実施例4)
−他の例による主方位および副方位の確認−
本発明の鉄心が、主方位および副方位を有する二方向性電磁鋼板から製造しても、鉄心を構成する鋼板が、主方位と副方位とを有することについて確認試験を行う。
質量%で、C:0.0030%、Si:3.10%、Mn:0.1%、を含有する厚さ0.30mmの一方向性電磁鋼板の切板を準備する。次に、絶縁コーティングを水酸化ナトリウム水溶液で、フォルステライト皮膜を硫酸で除去する。しかる後に、絶縁コーティング、及びフォルステライト皮膜を除去した切板の幅方向に対して40%の圧下率で冷延を行う。その後、冷延板を窒素雰囲気中にて850℃で1秒焼鈍する。焼鈍終了後、鋼板を空冷し、二方向性電磁鋼板を得る。
(Example 4)
-Confirmation of main direction and sub-direction by other examples-
Even if the iron core of the present invention is manufactured from a bidirectional electromagnetic steel sheet having a main direction and a sub-direction, a confirmation test is performed to confirm that the steel sheet constituting the iron core has a main direction and a sub-direction.
A cut plate of a grain-oriented electrical steel sheet having a thickness of 0.30 mm containing C: 0.0030%, Si: 3.10%, and Mn: 0.1% in mass% is prepared. Next, the insulating coating is removed with an aqueous solution of sodium hydroxide, and the forsterite film is removed with sulfuric acid. After that, cold rolling is performed at a reduction rate of 40% with respect to the width direction of the cut plate from which the insulating coating and the forsterite film have been removed. Then, the cold-rolled plate is annealed at 850 ° C. for 1 second in a nitrogen atmosphere. After the annealing is completed, the steel sheet is air-cooled to obtain a bidirectional electromagnetic steel sheet.

この鋼板の中心層を既述の測定条件により、EBSDにより観察を行う。その結果、この二方向性電磁鋼板における結晶粒の面積比率は、{100}<001>から30°以内の結晶粒は61%であり、{110}<110>から30°以内の結晶粒は37%である。 The central layer of this steel sheet is observed by EBSD under the measurement conditions described above. As a result, the area ratio of the crystal grains in this bidirectional electromagnetic steel sheet is 61% for the crystal grains within 30 ° from {100} <001>, and 61% for the crystal grains within 30 ° from {110} <110>. It is 37%.

この二方向性電磁鋼板から、冷延方向に沿う方向に対して複数のティース部が形成されるように、帯状の打ち抜き部材を打ち抜く。この帯状の打ち抜き部材は、長手方向に沿う方向に連続的に延びているヨーク部と、ヨーク部の短手方向の一端部側に突出して複数個設けられたティース部とを有する。次に、この帯状の打ち抜き部材に対し曲げ加工を行い、曲げ加工部材を得る。曲げ加工は、帯状の打ち抜き部材が一周するように、かつ、ヨーク部が外周側、ティース部が内周側となるように、螺旋状の曲げ加工を行う。その後、曲げ加工部材を積層して、かしめ加工を行い、積層一体化して鉄心を得る。 A strip-shaped punching member is punched from this bidirectional electromagnetic steel sheet so that a plurality of tooth portions are formed in a direction along the cold spreading direction. This band-shaped punching member has a yoke portion that continuously extends in the longitudinal direction, and a plurality of teeth portions that project toward one end of the yoke portion in the lateral direction. Next, the strip-shaped punched member is bent to obtain a bent member. The bending process is performed in a spiral shape so that the strip-shaped punching member goes around and the yoke portion is on the outer peripheral side and the tooth portion is on the inner peripheral side. After that, the bending members are laminated and caulked, and the layers are integrated to obtain an iron core.

上記方法で得られる鉄心において、鉄心のティース部とヨーク部から鋼板を採取し、その板厚中心層を既述の測定条件により、EBSDにより観察を行う。その結果、採取した鋼板における結晶粒の面積比率は、{100}<001>から30°以内の結晶粒は61%であり、{110}<110>から30°以内の結晶粒は37%である。 In the iron core obtained by the above method, a steel plate is sampled from the teeth portion and the yoke portion of the iron core, and the thickness center layer thereof is observed by EBSD under the measurement conditions described above. As a result, the area ratio of the crystal grains in the collected steel sheet was 61% for the crystal grains within 30 ° from {100} <001> and 37% for the crystal grains within 30 ° from {110} <110>. is there.

このように、上記の主方位と副方位とを有する二方向性電磁鋼板を用いて得る鉄心は、曲げ加工による方位変化をほとんどせず、二方向性電磁鋼板に対応する主方位と副方位とを有することが分かる。 As described above, the iron core obtained by using the above-mentioned bidirectional electromagnetic steel sheet having the main direction and the sub-direction hardly changes the direction due to the bending process, and the main direction and the sub-direction corresponding to the bidirectional electromagnetic steel sheet are used. It can be seen that it has.

Claims (11)

質量%で、
C:0.0100%以下、
Si:1.05%以上4.23%以下、並びに、
残部:Feおよび不純物元素、からなり、
{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である鋼板からなる鉄心。
By mass%
C: 0.0100% or less,
Si: 1.05% or more and 4.23% or less, and
Remaining: Fe and impurity elements,
The area ratio of the crystal grains in the crystal orientation of {100} <001> (± 30 °) is 50% or more, and the area ratio of the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 50% or more. An iron core made of steel plates of 20% or more.
前記鋼板の平均結晶粒径が350μm以下である請求項1に記載の鉄心。 The iron core according to claim 1, wherein the average crystal grain size of the steel sheet is 350 μm or less. 前記鋼板が、前記Feの一部に代えて、質量%で、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下からなる群より選ばれる少なくとも1種を含有する請求項1又は2に記載の鉄心。
The steel sheet replaces a part of the Fe in mass%.
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
The iron core according to claim 1 or 2, which contains at least one selected from the group consisting of Al: 0.5% or less.
鉄心の製造に用いる再冷延鋼板であって、
質量%で、
C:0.0100%以下、
Si:1.05%以上4.23%以下、並びに、
残部:Feおよび不純物元素、からなり、
{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が85%以上であり、せん断帯の数が30個/mm以上である再冷延鋼板。
A re-cooled steel sheet used for manufacturing iron cores.
By mass%
C: 0.0100% or less,
Si: 1.05% or more and 4.23% or less, and
Remaining: Fe and impurity elements,
A re-cold-rolled steel sheet in which the area ratio of crystal grains in the crystal orientation of {110} <110> (± 30 °) is 85% or more, and the number of shear bands is 30 / mm or more.
前記Feの一部に代えて、質量%で、
Mn:0.5%以下、
Sb:0.2%以下、
Sn:0.2%以下、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
P:0.3%以下、
及びAl:0.5%以下からなる群より選ばれる少なくとも1種を含有する請求項4に記載の再冷延鋼板。
Instead of a part of the Fe, by mass%,
Mn: 0.5% or less,
Sb: 0.2% or less,
Sn: 0.2% or less,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
P: 0.3% or less,
The recooled steel sheet according to claim 4, which contains at least one selected from the group consisting of Al: 0.5% or less.
{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延して、請求項4又は5に記載の再冷延鋼板を得る工程を有する再冷延鋼板の製造方法。 The claim is made by cold rolling so that the rolling reduction is 20% to 50% in a direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> direction. A method for producing a recooled rolled steel sheet, which comprises the step of obtaining the recooled rolled steel sheet according to 4 or 5. 鉄心の製造に用いる鉄心用積層体であって、
請求項4又は5に記載の再冷延鋼板を積層した鉄心用積層体
A laminate for iron cores used in the manufacture of iron cores.
A laminate for an iron core in which the recooled and rolled steel sheets according to claim 4 or 5 are laminated .
{110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、請求項4又は5に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化して、700℃以上の温度域で焼鈍する工程と、
を有する請求項1〜3のいずれか1項に記載の鉄心の製造方法。
Cold rolling is performed so that the rolling reduction is 20% to 50% in the direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> direction, and claim 4 Or the step of obtaining the recooled rolled steel sheet according to 5.
The process of punching the re-cooled steel sheet to obtain a punched member, and
A process of laminating and integrating the punched members and annealing in a temperature range of 700 ° C. or higher.
The method for manufacturing an iron core according to any one of claims 1 to 3.
前記温度域が、700℃〜1000℃である請求項8に記載の鉄心の製造方法。 The method for manufacturing an iron core according to claim 8, wherein the temperature range is 700 ° C. to 1000 ° C. {110}<001>方位に集積した結晶粒を有する一方向性電磁鋼板の圧延方向に対して直交する方向に、圧下率が20%〜50%となるように冷間圧延し、請求項4又は5に記載の再冷延鋼板を得る工程と、
前記再冷延鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と
を有する請求項7に記載の鉄心用積層体の製造方法。
Cold rolling is performed so that the rolling reduction is 20% to 50% in the direction orthogonal to the rolling direction of the unidirectional electromagnetic steel sheet having crystal grains accumulated in the {110} <001> direction, and claim 4 Or the step of obtaining the recooled rolled steel sheet according to 5.
The process of punching the re-cooled steel sheet to obtain a punched member, and
The method for manufacturing an iron core laminate according to claim 7, further comprising a step of laminating and integrating the punched members.
{100}<001>(±30°)の結晶方位の結晶粒の占める面積比率が50%以上であり、{110}<110>(±30°)の結晶方位の結晶粒の占める面積比率が20%以上である二方向性電磁鋼板を打ち抜き、打ち抜き部材を得る工程と、
前記打ち抜き部材を積層一体化する工程と、
を有する請求項1〜3のいずれか1項に記載の鉄心の製造方法。
The area ratio of the crystal grains in the crystal orientation of {100} <001> (± 30 °) is 50% or more, and the area ratio of the crystal grains in the crystal orientation of {110} <110> (± 30 °) is 50% or more. A process of punching a bidirectional electromagnetic steel plate of 20% or more to obtain a punched member,
The process of laminating and integrating the punched members and
The method for manufacturing an iron core according to any one of claims 1 to 3.
JP2016119956A 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method Active JP6844127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016119956A JP6844127B2 (en) 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016119956A JP6844127B2 (en) 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method

Publications (2)

Publication Number Publication Date
JP2017222911A JP2017222911A (en) 2017-12-21
JP6844127B2 true JP6844127B2 (en) 2021-03-17

Family

ID=60688082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016119956A Active JP6844127B2 (en) 2016-06-16 2016-06-16 Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method

Country Status (1)

Country Link
JP (1) JP6844127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571587B1 (en) * 2021-03-31 2023-08-29 닛폰세이테츠 가부시키가이샤 Rotating electric machine, stator iron core and rotor iron core set, rotary electric machine manufacturing method, non-oriented electrical steel sheet manufacturing method, rotating electric machine rotor and stator manufacturing method, and non-oriented electrical steel sheet set

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733547B2 (en) * 1990-04-20 1995-04-12 新日本製鐵株式会社 Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPH0733546B2 (en) * 1990-04-16 1995-04-12 新日本製鐵株式会社 High magnetic flux density bi-directional electrical steel sheet manufacturing method
JP2000104144A (en) * 1998-07-29 2000-04-11 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property in l orientation and c orientation and its production
JP2000309858A (en) * 1999-04-22 2000-11-07 Sumitomo Metal Ind Ltd Silicon steel sheet and its manufacture
JP4123629B2 (en) * 1999-04-23 2008-07-23 Jfeスチール株式会社 Electrical steel sheet and manufacturing method thereof
JP4123662B2 (en) * 1999-12-03 2008-07-23 Jfeスチール株式会社 Electrical steel sheet for small electrical equipment and manufacturing method thereof
JP2002069532A (en) * 2000-09-05 2002-03-08 Nippon Steel Corp Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
KR100973406B1 (en) * 2008-01-16 2010-07-30 성진경 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

Also Published As

Publication number Publication date
JP2017222911A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP5375559B2 (en) Non-oriented electrical steel sheet shearing method and electromagnetic component manufactured using the method
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
KR102239708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP5437476B2 (en) Method for producing non-oriented electrical steel sheet
JP6842546B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2018141206A (en) Electromagnetic steel sheet, and method for producing the same
JP6658114B2 (en) Wound core and method of manufacturing the wound core
CN111566245A (en) Dual-orientation electrical steel sheet and method for manufacturing the same
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP6604120B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6844127B2 (en) Iron core, re-cold-rolled steel sheet, steel core laminate, re-cold-rolled steel sheet manufacturing method, iron core laminate manufacturing method, and iron core manufacturing method
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
WO2020149405A1 (en) Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6786900B2 (en) Bidirectional electromagnetic steel sheet and its manufacturing method
JP5979129B2 (en) Manufacturing method of motor core
JP6690244B2 (en) Bidirectional electrical steel sheet and method for manufacturing bidirectional electrical steel sheet
TWI413697B (en) Non - directional electromagnetic steel plate
JP5979128B2 (en) Motor core and manufacturing method thereof
KR102561512B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3252700B2 (en) Electrical steel sheet with excellent magnetic properties and punchability
JP6679958B2 (en) Non-oriented electrical steel sheet manufacturing method
JP4551110B2 (en) Method for producing non-oriented electrical steel sheet
JP2014122405A (en) Nonoriented silicon steel sheet for spiral core and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200923

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201223

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R151 Written notification of patent or utility model registration

Ref document number: 6844127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151