KR20090079055A - Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same - Google Patents

Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same Download PDF

Info

Publication number
KR20090079055A
KR20090079055A KR1020080004997A KR20080004997A KR20090079055A KR 20090079055 A KR20090079055 A KR 20090079055A KR 1020080004997 A KR1020080004997 A KR 1020080004997A KR 20080004997 A KR20080004997 A KR 20080004997A KR 20090079055 A KR20090079055 A KR 20090079055A
Authority
KR
South Korea
Prior art keywords
texture
heat treatment
electrical steel
iron
metal plate
Prior art date
Application number
KR1020080004997A
Other languages
Korean (ko)
Other versions
KR100973406B1 (en
Inventor
성진경
Original Assignee
성진경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성진경 filed Critical 성진경
Priority to KR1020080004997A priority Critical patent/KR100973406B1/en
Priority to PCT/KR2009/000246 priority patent/WO2009091213A1/en
Publication of KR20090079055A publication Critical patent/KR20090079055A/en
Application granted granted Critical
Publication of KR100973406B1 publication Critical patent/KR100973406B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Abstract

A formation method of a rotated cube texture and an electric steel plate manufactured using the same are provided to make the texture of the high density, the texture of the high density, simple for the short time by thermal-processing the metal plate at the temperature in which the ferrite phase is stable. A formation method of a rotated cube texture comprises: a texture including a flow though columnar particle. The metal plate cold is rolled at the reduction rate of 10~50% by thermal processing at the temperature in which a ferritic phase(alpha) is stable. A side parallel to the metal plate to the metal plate side and the texture having the direction, parallel to the rolling direction, are formed at the metal plate side.

Description

로테이티드 큐브 집합조직의 형성방법 및 이를 이용하여 제조된 전기강판 {Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same}Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

본 발명은 철 및 철계 합금에서 {100}<011> 집합조직을 금속판재에 형성하는 방법 및 이를 이용하여 제조된 전기강판에 관한 것으로서, 더욱 상세하게는 {100}면이 판재면에 평행하고 <011> 방향이 압연 방향에 평행한 집합조직을 고밀도로 갖는 전기강판을 고효율 및 단순한 공정으로 제조할 수 있는 제조 방법 및 이를 이용하여 제조된 전기강판에 관한 것이다. The present invention relates to a method for forming a {100} <011> texture on a metal sheet and an electrical steel sheet manufactured using the same in iron and iron-based alloys. More specifically, the {100} plane is parallel to the sheet surface and is < The present invention relates to a manufacturing method capable of manufacturing an electrical steel sheet having a high density of texture parallel to the rolling direction in a high efficiency and a simple process, and an electrical steel sheet manufactured using the same.

일반적으로, 변압기 등에 사용되는 전기강판은 특정 방향으로만 우수한 자기 특성을 나타낼 것이 요구된다. 이러한 변압기 등에 사용되는 철 및 철계 합금의 연자성 재료는 판재를 구성하는 입자의 원자 배열이 특정 방향으로 방향성을 가짐으로써 그 자기 특성이 최적화 될 수 있다. In general, electrical steel sheets used in transformers and the like are required to exhibit excellent magnetic properties only in a specific direction. The soft magnetic material of iron and iron-based alloys used in such transformers, etc. can be optimized by the atomic arrangement of the particles constituting the plate directional in a specific direction.

이러한 현상이 발생하는 원인은 철 및 철계 연자성 합금이 자기적으로 이방체이기 때문이다. 즉 <001> 방향은 철 및 철계 합금에서 나타나는 자화용이 방향인데, 판재 내부의 각 입자들이 갖는 원자배열을 조절하여 <001> 방향이 판재의 특정 방향으로 정렬된다면, 이 판재는 상기 특정 방향으로 매우 효율적으로 자화될 수 있다. This phenomenon occurs because iron and iron-based soft magnetic alloys are magnetically anisotropic. In other words, the <001> direction is a magnetization direction that appears in iron and iron-based alloys. If the <001> direction is aligned in a specific direction of the plate by controlling the atomic arrangement of the particles in the plate, the plate is very specific in the specific direction. It can be magnetized efficiently.

철 및 철계 합금에서 나타나는 자기 이방성에 대한 현상은 이미 1930년대부터 알려져 왔던 사실이다. 고스(Goss)는 소위 고스 집합조직이라 불리는 원자배열을 조절하는 방법을 제시하였는데, 상기 집합조직의 특성은 판재를 구성하는 입자들의 {110}면이 판재면에 평행하고, <001> 방향이 압연방향에 평행하다는 것이다. 즉 {110}<001> 방위를 갖는 입자를 압연방향으로 배열시키는 방법을 개발하여, 지난 70여 년 간 이 기술이 발전하여 왔으며 현재는 방향성 전기강판이란 이름으로 판매되고 있다.The phenomenon of magnetic anisotropy in iron and iron-based alloys has been known since the 1930s. Goss proposed a method of controlling an atomic arrangement called a goth texture, which is characterized by the fact that the {110} plane of the particles constituting the plate is parallel to the plate surface and the <001> direction is rolled. Is parallel to the direction. That is, by developing a method of arranging particles having a {110} <001> orientation in a rolling direction, the technology has been developed for the last 70 years and is currently sold under the name of oriented electrical steel sheet.

현재 제철소에서 생산되고 있는 방향성 전기강판의 제조 공정은 MnS, AlN 등의 인히비터(Inhibitor)를 사용하는 공정이다. 상기 인히비터를 사용하는 방향성 전기강판은 그 제조 공정이 매우 복잡하고 어렵다.The manufacturing process of the grain-oriented electrical steel sheet currently produced in steel mills is a process using an inhibitor (MnS, AlN, etc.). The grain-oriented electrical steel sheet using the inhibitor is very complicated and difficult to manufacture.

이러한 어려움의 첫 번째는 열간 압연을 실시하기 전에 슬라브를 재가열하는 온도가 너무 높다는 점이다. 즉, 상기 공정은 재가열 온도가 1300℃ 이상이 되어야 하므로 슬라브에서 산화가 심하게 발생하는 문제가 있으며 또한 고온의 재가열 온도 때문에 에너지 비용이 매우 크다는 문제점이 있다. 이 문제를 극복하기 위해서 저온 재가열 법이 개발되어서 상술한 문제는 상당 부분 해결이 된 상태이다. 그러나 이 보다 더 큰 문제는 소위 고스 입자라 불리우는 입자를 성장시키는 2차 재결정 공정에 있다. 상기 2차 재결정 공정은 약 1200℃의 가열 조건을 포함하는 공정으로서 약 70시간 이상의 열처리 시간이 소요된다. The first of these difficulties is that the temperature for reheating the slab before the hot rolling is too high. That is, the process has a problem that the oxidation is severely generated in the slab because the reheating temperature should be 1300 ℃ or more, and there is a problem that the energy cost is very high because of the high temperature reheating temperature. In order to overcome this problem, a low temperature reheating method has been developed, and the above-mentioned problems have been largely solved. A bigger problem, however, lies in the secondary recrystallization process of growing a so-called goth particle. The secondary recrystallization process includes a heating condition of about 1200 ° C., and requires a heat treatment time of about 70 hours or more.

이와 같이, 방향성 전기강판을 제조하는 공정은 고온에 장시간을 필요로 하기 때문에 방향성 전기강판은 그 가격이 매우 비싸며, 또한 제조 장비도 매우 복잡하다. Thus, since the process of manufacturing a grain-oriented electrical steel sheet requires a long time at a high temperature, the grain-oriented electrical steel sheet is very expensive and the manufacturing equipment is very complicated.

본 발명의 목적은 상술한 바와 같은 종래 기술의 문제점 및 한계점을 극복하기 위한 것으로서, 고밀도의 {100}<001> 집합조직이 압연방향에 대해서 45°회전된 형태인 {100}<011> 집합조직을 갖는 전기강판을 획기적으로 감소된 시간 안에 단순한 방법으로 형성시킬 수 있는 방법을 제공하는 것이다.An object of the present invention is to overcome the problems and limitations of the prior art as described above, the {100} <011> texture in which the high density {100} <001> texture is rotated 45 ° with respect to the rolling direction It is to provide a method for forming an electrical steel sheet having a simple method in a significantly reduced time.

또한 본 발명의 다른 목적은 상기 방법을 이용하여, 압연 방향에 대해 ±45° 방향으로 우수한 자기 특성을 나타내는 방향성을 갖는 전기강판을 제공하는 것이다. Another object of the present invention is to provide an electrical steel sheet having an orientation exhibiting excellent magnetic properties in the direction of ± 45 ° with respect to the rolling direction by using the above method.

본 발명의 일 측면에 따른 {100}<011> 집합조직의 형성방법은 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어고 철 또는 철계 합금으로 구성된 금속판재를 전제로 이루어진다. 상기 금속판재에 {100}<011> 집합조직을 형성하기 위해서는 상기 금속판재를 10 내지 50%의 압하율(壓下率)로 냉간 압연한 후 페라이트 상(α)이 안정한 온도 하에서 제2 열처리를 실시해야 한다. The method for forming the {100} <011> texture according to an aspect of the present invention is based on a metal plate made of {100} texture including the columnar columnar particles and composed of iron or an iron-based alloy. In order to form the {100} texture on the metal sheet, the metal sheet is cold rolled at a rolling reduction of 10 to 50%, and then the second heat treatment is performed under a temperature at which the ferrite phase (a) is stable. It must be done.

상기 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어진 금속판재는, 다양한 방법으로 제조될 수 있으나, 본 발명에 따르면 i) 철 또는 철계 합금으로 이루어진 판재를 오스테나이트(γ) 상이 안정한 온도 하에서 상기 판재 표면의 산화를 방지하면서 열처리하는 제1 열처리 단계; 및 ii) 상기 열처리된 금속판재를 페라이트(α) 상으로 변화시키는 상변태 단계에 의하여 제조될 수 있다. 본 발명은 상기 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어진 금속 판재의 제조 방법에 제한되지 않는다. Metal plate made of {100} texture including the columnar columnar particles can be produced by various methods, according to the present invention i) a plate made of iron or iron-based alloy under a stable temperature of the austenite phase (γ) A first heat treatment step of heat treatment while preventing oxidation of the surface of the plate; And ii) it can be prepared by the phase transformation step of changing the heat-treated metal plate into a ferrite (α) phase. The present invention is not limited to the manufacturing method of the metal plate which consists of the {100} texture containing the said columnar columnar particle | grains.

상기 상변태 단계는 상기 열처리된 금속판재를 오스테나이트 상 안정화 온도로부터 냉각시킴으로써 이루어질 수 있다. The phase transformation step may be performed by cooling the heat treated metal plate from an austenite phase stabilization temperature.

상기 제2 열처리는 불활성 분위기 및 바람직하게는 수소를 포함하는 환원성 분위기 하에서 이루어질 수 있으나, 이에 한정되는 것은 아니다.The second heat treatment may be performed under an inert atmosphere and preferably a reducing atmosphere including hydrogen, but is not limited thereto.

상기 제2 열처리는 650 내지 950℃ 하에서 이루어진다. 또한, 상기 제2 열처리는 3시간 이하의 시간 동안 이루어진다. The second heat treatment is performed under 650 to 950 ° C. In addition, the second heat treatment is performed for a time of 3 hours or less.

본 발명의 다른 측면에 따른 전기강판은 상술한 방법으로 제조되고, 철 또는 철계 합금 판재로 이루어져 있으며 상기 판재 면에 평행한 {100}면 및 압연 방향에 평행한 <011> 방향성을 갖는다. The electrical steel sheet according to another aspect of the present invention is manufactured by the above-described method, made of iron or iron-based alloy plate material and has a {100} plane parallel to the plate surface and a direction parallel to the rolling direction.

상기 전기강판은, 상기 판재 면에 평행한 {100}을 갖는 결정 입자들 중 적어도 일부의 입자가 상기 판재를 관통하도록 수직적으로 형성되어 있고, 적어도 25%의 로테이티드 큐브(rotated cube)({100}<011>) 집합조직을 포함한다. The electrical steel sheet is formed vertically so that at least some of the crystal grains having {100} parallel to the sheet surface penetrate the sheet, and have a rotated cube ({100) of at least 25%. } <011>) includes an organization.

이하, 본 발명을 상세하게 설명하도록 한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 전기강판은 {100}면이 판재면에 평행하고 <011> 방향이 압연 방향과 평행한 집합조직으로 되어 있다. 상기와 같은 {100}<011>의 원자배열을 갖는 집합조직은 압연 방향으로는 <011> 방향을 갖고 있지만, 압연방향의 좌우 45°방향으로는 <001>방향을 갖고 있다. 따라서 이러한 특성을 갖는 전기강판은 압연 방향에 대해서 45°가 되는 방향을 자화 방향으로 사용하는 우수한 방향성을 갖는 전기강판으로 사용될 수 있다.In the electrical steel sheet according to the present invention, the {100} plane is parallel to the plate surface and the <011> direction is parallel to the rolling direction. The above-described aggregate structure having the atomic arrangement of {100} <011> has a <011> direction in the rolling direction, but has a <001> direction in the left and right 45 ° directions of the rolling direction. Therefore, the electrical steel sheet having such characteristics can be used as an electrical steel sheet having excellent directionality using a direction that becomes 45 ° to the rolling direction as the magnetization direction.

본 발명은 상술한 {100}<011> 집합조직을 갖는 전기강판을 획기적인 효율로 제조할 수 있는 방법을 제공한다. The present invention provides a method that can produce an electrical steel sheet having the above-described {100} <011> texture with a breakthrough efficiency.

상기와 같은 {100}<011> 집합조직을 금속판재에 형성하기 위해서는, 선결적으로 상기 금속판재가 소정의 특성을 가져야 한다. 본 발명에 따른 {100}<011> 집합조직의 형성방법이 적용되기 위한 금속판재는 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어져 있어야 한다. In order to form the above-described {100} <011> texture on the metal sheet, the metal sheet should have a predetermined characteristic in advance. The metal plate for applying the method of forming the {100} <011> texture according to the present invention should be composed of the {100} texture including the columnar columnar particles.

상기 특성을 갖는 {100} 집합조직을 금속판재에 형성시키는 방법이 다르더라도, 상기 특성이 갖추어진 금속판재의 경우에는 본 발명에 따른 {100}<011> 집합조직의 형성방법이 유효하게 적용될 수 있다. Even if the method of forming the {100} texture having the above characteristics on the metal sheet is different, the method of forming the {100} texture according to the present invention can be effectively applied to the metal sheet having the above characteristics. have.

이하에서는 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어진 금속판재를 준비하기 위한 본 발명의 일 실시예에 따른 방법을 설명하도록 한다.Hereinafter will be described a method according to an embodiment of the present invention for preparing a metal plate consisting of {100} texture including the columnar columnar particles.

상기 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어진 금속판재를 준비하기 위해서는 우선 철 또는 철계 합금으로 이루어진 금속판재를 본 발명에 따른 제1열처리 및 상변태 단계를 거치도록 함으로써, 고밀도의 {100} 집합조직을 갖는 금속 판재를 생성한다. In order to prepare a metal plate made of {100} texture including the columnar columnar particles, the metal plate made of iron or an iron-based alloy is subjected to the first heat treatment and phase transformation step according to the present invention, thereby providing a high density { 100} to produce a metal sheet having a texture.

상기 제1 열처리 온도는 금속판재의 조성에 따라 다소 차이가 있을 수 있으나, 공통적으로 열처리 대상인 금속판재에서 오스테나이트(austenite, γ) 상이 안정한 온도 범위 하에서 이루어져야 한다.  The first heat treatment temperature may vary slightly depending on the composition of the metal sheet, but in general, the first heat treatment temperature should be made in a stable temperature range of the austenite phase in the metal sheet to be heat treated.

상기 오스테나이트 상(γ)이란 철 또는 철 합금의 원자배열 구조가 면심 입방격자를 이루는 상태를 의미한다. 아울러, 페라이트 상(ferrite,α)이란 철 또는 철 합금의 원자배열 구조가 체심입방 격자를 이루는 상태를 의미한다. 일반적으로, 철 및 철 합금은 상온에서 페라이트 상이 안정하지만 온도가 높아지게 되면 페라이트 상 및 오스테나이트 상이 공존하는 영역을 경유하여 오스테나이트 상만이 안정한 영역으로 변이되는 상변태 과정을 거치게 된다. 즉, 상기 제1 열처리는 상술한 오스테나이트 상 영역에 대응한 온도 구간에서 이루어진다. 상기 오스테나이트 상의 안정 영역에 대응한 온도 범위는 금속판재에 포함된 성분 원소들의 종류 및 함량에 따라 가변적이다.The austenite phase (γ) refers to a state in which an atomic array structure of iron or iron alloy forms a face-centered cubic lattice. In addition, the ferrite phase (ferrite, α) refers to a state in which the atomic arrangement structure of iron or iron alloy forms a body-centered cubic lattice. In general, iron and iron alloys are stable at room temperature, but the ferrite phase is stable, but when the temperature increases, the ferrite phase and the austenite phase undergo a phase transformation process in which only the austenite phase is transformed into a stable region. That is, the first heat treatment is performed in a temperature section corresponding to the austenitic phase region described above. The temperature range corresponding to the stable region of the austenite phase is variable depending on the type and content of the component elements included in the metal sheet.

또한, 상기 제1 열처리 단계는 상기 금속판재의 내부 영역 및 표면 영역 중 적어도 일 영역의 산소를 감소 시키거나 상기 금속판재를 외부의 산소로부터 차단하면서 이루어져야 한다. 본 발명에서 열처리 대상인 금속과 산소의 접촉을 차단하는 것은 매우 중요하다. In addition, the first heat treatment step should be performed while reducing oxygen in at least one region of the inner region and the surface region of the metal sheet or blocking the metal sheet from the external oxygen. In the present invention, it is very important to block the contact between the metal to be heat treated and oxygen.

산소 배제를 위한 방법으로서는, 열처리 로에 티타늄(Ti) 등의 산소 흡착물질을 배치하는 방법, 금속판재 내부에 포함된 산소 원자를 제거하는 방법, 가스 분위기 제어를 통한 산소 배제 방법, 산소 접촉을 방지하기 위해 금속판재의 표면을 처리하는 방법, 열처리 분위기 내부에 존재하는 수분 양을 조절하는 방법 등 다양할 수 있다. 특히, 상기 열처리 공정은 금속 판재의 표면이 산화되지 않도록 환원성 가스 분위기 및 실질적인 진공 분위기 하에서 진행되는 것이 바람직하다. As a method for removing oxygen, a method of disposing an oxygen adsorbent such as titanium (Ti) in a heat treatment furnace, a method of removing oxygen atoms contained in a metal sheet, a method of removing oxygen through gas atmosphere control, and preventing oxygen contact In order to treat the surface of the metal plate material, a method of controlling the amount of water present in the heat treatment atmosphere may be varied. In particular, the heat treatment step is preferably carried out under a reducing gas atmosphere and a substantially vacuum atmosphere so that the surface of the metal sheet is not oxidized.

상기 제1 열처리를 수행하는 시간은 불과 수 분 에서 수십 분 정도면 충분하 다. 보다 구체적으로 상기 열처리는 대략 20 분 이내에서 수행될 수 있다. The time for performing the first heat treatment is sufficient for only a few minutes to several tens of minutes. More specifically, the heat treatment may be performed within about 20 minutes.

제1 열처리된 금속판재는 오스테나이트 상으로부터 페라이트 상으로 상변태 과정을 거침으로써, 최종적으로 {100} 집합조직을 갖는 전기강판으로 제조될 수 있다. The first heat-treated metal sheet may be manufactured into an electrical steel sheet having a {100} texture by undergoing a phase transformation process from an austenite phase to a ferrite phase.

또한, 형성되는 {100}면이 판재면에 평행한 입자들은 금속판재를 수직적으로 관통하는 주상정 입자 조직을 적어도 일부 포함한다.In addition, the particles whose {100} planes are parallel to the plate plane include at least a portion of columnar grain tissue that vertically penetrates through the metal plate.

요약하면, 상기 금속판재는 상기 열처리 및 상변태를 통하여 판재 면에 평행한 {100}면이 판재면에 평행한 입자 구조를 갖게 된다. 특히, 형성되는 {100} 집합조직의 강도는 종래 상용화된 전기강판에 비하여 획기적으로 증가될 수 있다. 즉, {100} 집합조직은 열처리 및 상변태에 의하여 결정되며, 상기 열처리 및 상변태에 의하여 전기강판의 방향성이 결정되는 것은 아니다. In summary, the metal plate has a grain structure in which the {100} plane parallel to the plate plane is parallel to the plate plane through the heat treatment and phase transformation. In particular, the strength of the {100} texture formed can be significantly increased compared to conventional commercially available electrical steel sheet. That is, the {100} texture is determined by heat treatment and phase transformation, and the orientation of the electrical steel sheet is not determined by the heat treatment and phase transformation.

상기 상변태는 열처리된 금속판재를 오스테나트 상 안정화 온도로부터 페라이트 상 안정화 온도로 냉각시킴으로써 이루어질 수 있다. 또는, 상기 상변태는 온도 변화가 없는 상태에서 열처리된 금속판재의 내부 조성에 변화를 가함으로써 이루어질 수도 있다. The phase transformation may be achieved by cooling the heat treated metal sheet from the austenite phase stabilization temperature to the ferrite phase stabilization temperature. Alternatively, the phase transformation may be performed by adding a change to the internal composition of the heat-treated metal sheet in the absence of temperature change.

본 발명에 따르면, 매우 짧은 시간 안에 고밀도의 {100} 집합조직이 형성된다. 구체적으로 최대 30분 이내이면 고밀도의 {100} 집합조직이 형성될 수 있다. According to the present invention, a dense {100} texture is formed in a very short time. Specifically, a dense {100} texture may be formed within a maximum of 30 minutes.

상기 {100} 집합조직의 형성이란, 판재 면에 평행한 {100}면을 갖는 입자가 표면에 형성되고, 상기 표면에 형성된 입자가 내부로 성장되는 것을 의미하며 본 발명에서, 상기 현상은 단일 공정에 의하여 연속적으로 전개된다. Formation of the {100} texture means that particles having a {100} plane parallel to the surface of the plate are formed on the surface, and the particles formed on the surface are grown in the present invention. By successive deployment.

또한 이러한 변화는 실질적으로 매우 짧은 시간 안에 이루어지는 것으로써, 수 시간 ~ 수십 시간이 걸리던 방향성 전기강판을 제조하는 종래 기술에 비하여 본 발명의 공정은 공정 효율 면에서 획기적인 것이다. In addition, this change is substantially made in a very short time, the process of the present invention compared to the prior art of producing a grain-oriented electrical steel sheet, which took several hours to several tens of hours is a breakthrough in process efficiency.

전술한 초기 공정에 의하여, 고밀도의 {100} 집합조직을 갖고 적어도 일부 조직이 판재 면을 관통하는 주상정 입자 조직으로 이루어진 금속판재가 형성될 수 있으며, 본 발명은 이러한 금속판재의 준비를 전제로 완성될 수 있다. By the above-described initial process, a metal plate material having a dense {100} texture and having at least some tissues penetrating the plate surface may be formed, and the present invention is completed on the premise of preparing the metal plate. Can be.

이 단계까지의 금속판재는 특정 방향성을 갖는다고 하기 어려우며, 생성된 {100} 집합조직을 본 발명에서 의도하는 바와 같이 {100}<011> 방위로 배열하기 위해서는 후술하는 공정을 거쳐야 한다. It is difficult to say that the metal sheet material up to this step has a specific orientation, and in order to arrange the generated {100} texture in the {100} <011> orientation as intended in the present invention, the following process must be performed.

{100} 집합조직을 갖는 금속 판재를 {100}<011> 방위를 갖는 판제로 변화시키기 위해서는, 상기 {100} 집합조직을 갖는 금속 판재를 조절된 압하율 하에서 냉간압연 하여야 한다. In order to change the metal plate having the {100} texture into a plate having the {100} <011> orientation, the metal plate having the {100} texture must be cold rolled under a controlled rolling reduction rate.

본 발명에서, 압하율의 조절은 <011> 방향성을 부여하기 위한 매우 중요한 변수이다. 본 발명에서, 상기 냉간압연은 냉간압연 장치 및 방법적 특징 (롤의 크기, 롤의 표면조도, 일회 압하율 등) 및 금속판재 조성이나 두께에 따라 다소의 차이가 있을 수는 있으나, 10 내지 50%의 압하율 하에서 이루어져야 한다.In the present invention, the control of the reduction ratio is a very important variable for imparting directivity. In the present invention, the cold rolling may be slightly different depending on the cold rolling apparatus and the method characteristics (roll size, surface roughness of the roll, one-time rolling rate, etc.) and the metal sheet composition or thickness, but 10 to 50 It should be made under% reduction rate.

상기 압하율이 10% 미만이면, {100}<011> 집합조직의 형성이 미약하고, 반면에 상기 압하율이 50%를 초과하면, {100}<011> 집합조직이 사라지게 된다.If the reduction ratio is less than 10%, the formation of {100} <011> aggregates is weak, whereas if the reduction ratio exceeds 50%, the {100} <011> aggregates disappear.

냉간 압연된 금속 판재는 잔류 응력 제거를 위하여 페라이트(α)가 안정한 온도 하에서 제2 열처리된다. 상기 잔류 응력 제거를 위한 제2 열처리는, 이미 형 성된 {100} 집합조직의 변화를 일으키지 않도록 α→γ 상변태 발생 온도 미만의 온도 하에 이루어져야 한다. The cold rolled metal sheet is subjected to a second heat treatment under a temperature at which the ferrite α is stable for removing residual stress. The second heat treatment for removing the residual stress should be performed at a temperature below the temperature of α → γ phase transformation so as not to cause a change in the already formed {100} texture.

구체적으로 상기 제2 열처리의 온도는 금속 판재의 성분에 따라 다소 차이가 있기는 하나, 대체로 650 내지 950℃ 하에서 이루어지며, 대략 3시간 이하의 시간 동안 이루어지면 충분하다. Specifically, the temperature of the second heat treatment is slightly different depending on the components of the metal sheet, but is generally made under 650 to 950 ° C, and is sufficient for approximately 3 hours or less.

<011> 방향성 형성을 위한 냉간 압연 및 잔류 응력 제거를 위한 제2 열처리가 완료되면, 본 발명에 따른 {100}<011> 집합조직을 갖는 전기강판이 제조될 수 있다. 본 발명에 따르면 {100}<011> 집합조직을 갖는 전기강판을 획기적으로 감소된 시간 내에 우수한 공정 효율로 제조할 수 있다. When the cold rolling for directional formation and the second heat treatment for removing residual stress are completed, an electrical steel sheet having an aggregate structure according to the present invention may be manufactured. According to the present invention, an electrical steel sheet having a {100} <011> texture can be manufactured with excellent process efficiency within a significantly reduced time.

상술한 바에 의하여 제조된 상기 전기강판은 철 또는 철계 합금을 포함하며, 바람직하게는 규소(Si)를 함유한 철을 포함한다. 이외에도 상기 전기 강판은 전기강판의 물성 향상 및 공정 효율을 위하여 다양한 금속 원소를 포함할 수 있다. The electrical steel sheet manufactured as described above includes iron or an iron-based alloy, and preferably includes iron containing silicon (Si). In addition, the electrical steel sheet may include various metal elements for improving physical properties and processing efficiency of the electrical steel sheet.

본 발명에 따른 전기강판은 상기 판재 면에 평행한 {100}면 및 압연 방향에 평행한 <011> 방향성을 갖는 집합조직(로테이티드 큐브 조직, Rotated cube texture)으로 이루어져 있다. The electrical steel sheet according to the present invention is composed of an aggregated structure (rotated cube texture) having a {100} plane parallel to the plate surface and a direction parallel to the rolling direction.

또한, 제조된 전기강판은 그 입자 구조가 판재를 수직적으로 관통하는 {100} 주상정 입자를 적어도 일부 포함하고 있으며 또한 형성된 대부분의 입자들은 그 입자의 크기가 0.2 내지 3mm의 거대한 입자를 갖는 구조를 갖는다. In addition, the manufactured electrical steel sheet contains at least a portion of {100} columnar particles whose grain structure vertically penetrates the sheet, and most of the formed particles have a structure having large particles having a particle size of 0.2 to 3 mm. Have

상기 전기강판은 적어도 25% 이상의 입자가 {100}<011> 집합조직을 갖고 있다.At least 25% or more of the electrical steel sheet has a {100} <011> texture.

이하, 구체적인 실시예를 들어 본 발명을 더욱 상세하게 설명하도록 한다. [실시예]Hereinafter, the present invention will be described in more detail with reference to specific examples. EXAMPLE

표 1에는 본 발명에서 사용된 시편의 화학적 조성을 나타내었다. 상기 시편은 판재 형태를 갖고 상기 판재는 진공유도 용해 공정을 통해서 잉곳(ingot)으로 주조되었고 상기 잉곳을 열간 압연하여 2mm 두께의 열간 압연 판재로 제조된 후, 냉간 압연을 통해서 다양한 두께의 냉연 판재로 제조되었다. 하기 표 1에 기재된 성분들 중 극 미량인 원소들은 의도적으로 첨가된 원소가 아니며, 그 함량은 원래 합금 내부에 존재하는 불순물 수준의 함량으로서 본 발명의 기술 사상에 미치는 영향은 거의 없다 할 것이다.Table 1 shows the chemical composition of the specimen used in the present invention. The specimen has a plate shape and the plate is cast into an ingot through a vacuum induction melting process, and the ingot is hot rolled to prepare a hot rolled sheet having a thickness of 2 mm, and then cold rolled into a cold rolled sheet having various thicknesses. Was prepared. The trace amounts of the components listed in Table 1 are not the elements added intentionally, and the content thereof is the content of the impurity level existing in the original alloy, which will have little effect on the technical spirit of the present invention.

합금alloy FeFe SiSi MnMn AlAl CC NiNi SS Fe-1.0%SiFe-1.0% Si BalBal 0.970.97 -- 0.00160.0016 0.00240.0024 0.00410.0041 0.00130.0013

냉간 압연을 실시한 판재는 본 발명에 따른 {100} 집합조직 형성 열처리(제1 열처리)를 적용하면, 그 미세조직의 특징은 대부분의 입자가 주상정 구조를 가지며 그 집합조직의 특징은 {100}면을 갖는 입자의 부피 분율이 50% 이상 집적시킨 판재가 된다. Cold rolled plate is applied to the {100} texture structure forming heat treatment (first heat treatment) according to the present invention, the microstructure is characterized in that most of the particles have a columnar structure and the texture of the texture is {100} It becomes the board | plate material which the volume fraction of the particle | grains which have a face integrated 50% or more.

상기 {100} 집합조직 형성 열처리는 전술한 바와 같으나, 다시 설명하면 우선, 철 및 철계 합금의 금속 판재는 오스테나이트(γ) 상이 안정한 온도 하에서 열처리 하여야 한다. 상기 공정을 통하여 열처리된 철 또는 철계 합금을 페라이트(α) 상으로 상 변태 시킴으로써, 판재에 소정의 집합조직을 형성할 수 있다. 이 때, 철 또는 철계 합금으로 이루어진 금속 판재 면에 평행한 {100}면을 상기 금속 판재에 형성시키기 위해서는 우선, i) 상기 금속 판재의 내부 영역 및 표면 영역 중 적어도 일 영역의 산소를 감소 시키거나 상기 금속 판재를 외부의 산소로부터 차단시키면서, ii) 오스테나이트 상이 안정한 온도 하에서 상기 금속 판재를 열처리한다. 상기 열처리된 금속 판재를 페라이트 상으로 상 변태 시킴으로써, 상기 금속 판재에 {100}<0vw>이 판재면에 평행한 입자를 고밀도로 형성할 수 있다. 또한 {100}<001> 집합조직이 형성될 수도 있다.The {100} texture formation heat treatment is as described above, but to explain again, first, the metal plate of the iron and iron-based alloy should be heat treated under a stable temperature of the austenite phase. By the phase transformation of the heat-treated iron or iron-based alloy to the ferrite (α) phase, it is possible to form a predetermined texture on the plate. At this time, in order to form a {100} plane parallel to the metal sheet surface made of iron or iron-based alloy on the metal sheet, i) reduce oxygen in at least one of the inner region and the surface region of the metal sheet; The metal plate is heat-treated under a temperature at which the austenite phase is stable, while blocking the metal plate from external oxygen. By phase-transforming the heat treated metal sheet into a ferrite phase, particles having {100} <0vw> parallel to the sheet surface of the metal sheet can be formed at a high density. In addition, {100} <001> aggregates may be formed.

집합조직의 분석은 방위분포함수(ODF) 분석을 이용하였다. 직경 3cm의 원형 판재 시편에서 {110}, {200}, {211}면에 대해서 극점도(Pole Figure)를 측정한 후 이를 이용하여 방위분포함수 분석을 실시하였다. 방위분포함수 분석은 오일러 공간에서 주어진 방위 밀도(Orientation Density: f(g))를 이용하여 표시하였다. Analysis of the aggregates was done using the orientation distribution function (ODF) analysis. The pole figure was measured on {110}, {200}, and {211} planes in a circular plate specimen with a diameter of 3 cm, and then azimuth distribution analysis was performed. Orientation distribution analysis was expressed using the Orientation Density (f (g)) given in Euler space.

[실시예 1]Example 1

본 실시예는 {100}면 형성을 위한 열처리(제 1열처리)를 실시한 후 냉간 압연을 실시할 때, 압연방향으로 {100}<011> 집합조직을 형성시키는 냉간 압하율을 제시하기 위한 것이다. 본 실험에 사용된 시편은 최초의 두께가 0.5 mm인 Fe-1.0%Si 조성의 판재였다. 상기 판재에 주상정의 입자를 가지면서 고밀도의 {100}면을 형성시키기 위해서 다음과 같은 조건에서 열처리를 실시하였다. This embodiment is to present a cold reduction rate for forming the {100} texture in the rolling direction when cold rolling is performed after the heat treatment (first heat treatment) for forming the {100} plane. The specimen used in this experiment was a sheet of Fe-1.0% Si composition with an initial thickness of 0.5 mm. In order to form a dense {100} plane having the columnar crystals on the sheet, heat treatment was performed under the following conditions.

{100}면 형성을 위한 열처리는 4.1x10-1torr의 수소 분위기 하에서 실시하였다. 열처리 로가 900℃에 도달하면, 상온의 시편을 로의 중심부에 밀어 넣었다. Fe-1.0%Si 조성의 합금에서 900℃는 페라이트가 안정한 온도구역으로, 시편을 페라이트 상에서 10분간 유지시켜 완전히 재결정을 시킨 후 1050℃까지 400℃/hr 의 가열 속도로 시편을 가열하였다. Fe-1.0%Si 합금은 약 1000℃ 이상에서 완전한 오스테나이트 상을 유지한다. 따라서 1050℃는 오스테나이트 상이 안정한 구역이다. 1050℃에서 15분간을 유지한 후 다시 900℃까지 400℃/hr 의 냉각 속도로 시편을 냉각시켰다. 시편의 온도가 900℃에 도달하면 상온의 챔버로 상기 시편을 빼내어 시편의 온도가 상온에 도달하도록 냉각시켰다. 이러한 열처리가 실시된 시편에는 대부분의 입자가 주상정이며 {100} 섬유 집합조직의 부피 분율이 약 80% 정도였다. 고밀도의 {100} 섬유 집합조직이 형성된 상기 시편에 다양한 압하율로 압연을 실시하였다. 이렇게 압연이 실시된 상기 판재는 잔류 응력을 제거하기 위해 아르곤 + 30%수소 혼합가스분위기 및 800℃의 온도 하에서 1시간의 열처리를 실시하였다.Heat treatment to form the {100} plane was carried out under a hydrogen atmosphere of 4.1x10 -1 torr. When the heat treatment furnace reached 900 ° C, the specimen at room temperature was pushed into the center of the furnace. In the Fe-1.0% Si alloy 900 ℃ is a ferrite stable temperature zone, the specimen was maintained for 10 minutes on the ferrite completely recrystallized and then heated the specimen at a heating rate of 400 ℃ / hr to 1050 ℃. The Fe-1.0% Si alloy maintains a complete austenite phase above about 1000 ° C. Thus, 1050 ° C is the zone where the austenite phase is stable. After maintaining 15 minutes at 1050 ℃ again the specimen was cooled to a cooling rate of 400 ℃ / hr up to 900 ℃. When the temperature of the specimen reached 900 ℃ the specimen was removed to the room temperature chamber and cooled to reach the temperature of the specimen. In the specimen subjected to this heat treatment, most of the particles were columnar tablets and the volume fraction of the {100} fiber texture was about 80%. Rolling was carried out at various reduction ratios on the specimens on which high density {100} fiber aggregates were formed. The rolled plate was subjected to heat treatment for 1 hour under an argon + 30% hydrogen mixed gas atmosphere and a temperature of 800 ° C. to remove residual stress.

도 1은 제1 열처리를 실시한 시편을 냉간 압연 한 후 잔류응력 제거 열처리를 실시했을 때 압하율에 따른 {100} 섬유 집합조직의 부피 분율 변화를 보여주는 그래프이다. 1 is a graph showing the volume fraction change of {100} fiber texture according to the reduction ratio when the residual stress removal heat treatment is performed after cold rolling the specimen subjected to the first heat treatment.

도 1을 참조하면, 냉간 압연을 실시할 때, 그 압하율을 20% 이하로 하여 냉간 압연을 실시하면 잔류응력 제거 열처리를 실시한 후에도 제1 열처리에서 형성된 강한 {100}면이 그대로 유지되거나 약간 상승하는 경향을 보였다(판재 면의 약 80%). 그리고 그 압하율을 30%까지 높이고 잔류 응력 제거 열처리를 실시하면 {100}면이 감소하여 판재면의 50% 이상이 {100}면을 갖는 입자임을 알 수 있었다. 35% 이상의 압하율로 압연을 실시하고 잔류 응력 제거 열처리를 실시하면 {321}, {111}, {310}면 등이 증가하면서 {100}면은 전체 표면에서 30% 미만으로 감소하게 된다. 이러한 결과로부터 도출할 수 있는 결론은 잔류응력 열처리를 실시한 후에도 우수한 집합조직을 얻기 위해서는 제 1 열처리를 실시한 후 냉간 압연의 압하율이 50% 이하여야 한다는 것이다.Referring to FIG. 1, when cold rolling is carried out and cold rolling is performed with the reduction ratio of 20% or less, the strong {100} plane formed in the first heat treatment is maintained or slightly raised even after the residual stress removing heat treatment is performed. (Approximately 80% of the plate surface). In addition, when the reduction ratio was increased to 30% and residual stress relief heat treatment was performed, it was found that the {100} plane was reduced, so that at least 50% of the sheet surface had particles having the {100} plane. When rolling is performed at a rolling reduction of 35% or more and residual stress relief heat treatment is performed, {321}, {111}, and {310} planes are increased, and the {100} plane is reduced to less than 30% of the entire surface. The conclusion that can be derived from these results is that in order to obtain excellent texture even after the residual stress heat treatment, the reduction ratio of cold rolling should be 50% or less after the first heat treatment.

이상의 분석은 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어진 철 및 철계 합금 판재는 50% 미만의 냉간압연 및 잔류응력 열처리를 실시해도 상기 판재에 {100}면이 많이 형성되고 있음을 보여주는 자료이지만 상기 판재가 방향성을 갖고 있는지에 대해서는 알 수 없다. 본 발명은 방향성을 갖는 전기강판으로 사용되는 재료에 대한 기술이기 때문에 가장 바람직한 집합조직은 <001>방향을 특정 방향으로 배열시키는 것이다. 따라서 방위분포함수 분석을 통해서 압하율에 따른 방향성 형성 여부를 분석하였다. 방위분포함수 분석을 실시한 시편은 상기 압하율에 따른 면강도 분석에 사용된 시편과 동일한 시편이다.In the above analysis, the iron and iron-based alloy sheet composed of {100} texture including penetrating columnar particles showed that {100} plane was formed on the sheet even when cold rolling and residual stress heat treatment of less than 50% were performed. Although the data are shown, it is not known whether the sheet has a directivity. Since the present invention is a technique for a material used for oriented electrical steel sheet, the most preferable texture is to arrange the <001> direction in a specific direction. Therefore, the analysis of the orientation distribution function analyzed the formation of direction according to the reduction ratio. Specimens subjected to azimuth distribution analysis are the same specimens used for surface strength analysis according to the reduction ratio.

도 2는 압하율이 25%일 때 800℃ 하에서 1시간 동안 열처리를 실시한 시편에서 나타나는 방위밀도 그래프이다(φ2 = 45°단면).FIG. 2 is a graph showing azimuth density of a specimen subjected to heat treatment at 800 ° C. for 1 hour when the reduction ratio is 25% (φ 2 = 45 ° section).

도 2를 참조하면, 상기 판재에서는 {100}<011> 집합조직이 매우 잘 발달해 있음을 알 수 있었다.Referring to FIG. 2, it can be seen that the {100} <011> texture is very well developed in the plate.

도 3은 압하율에 따른 {100} 집합조직의 변화를 보여주는 방위밀도 그래프이다(Φ = 0°, φ2 = 45°).Figure 3 is a graph showing the change in the orientation density of the {100} texture in accordance with the reduction ratio (Φ = 0 °, φ 2 = 45 °).

도 3을 참조하면, 제1 열처리를 실시하면 상기 판재에 고밀도 {100} 섬유 집합조직을 형성할 수 있음을 알 수 있었다. 한편 냉간 압연을 실시할 때, 그 압하율을 15% 이하로 하고, 상기 판재에 잔류응력 제거 열처리를 실시하여도, <001>방향은 모든 방향으로 균등하게 존재함을 잘 보여주고 있었다. 그러나 압하율이 20% 이상인 경우에는 잔류응력 제거 열처리를 실시하면 {100}<011> 입자가 압연방향으로 강하게 형성되는 것을 보여주었다(Rotated Cube Texture). 압하율이 50%를 초과한 경우에 잔류응력 제거 열처리를 실시하면 {100}면 이외의 면들이 형성되면서 전체적인 {100}<011> 집합조직의 강도가 약해진다. 따라서 최종 잔류응력 제거 열처리 후에 강한 {100}<011> 집합조직을 형성하기 위해서는 그 압하율이 50% 이하이어야 한다.Referring to FIG. 3, it can be seen that when the first heat treatment is performed, a high density {100} fiber aggregate can be formed on the plate. On the other hand, when cold rolling was performed, the reduction ratio was 15% or less, and even when the residual stress removal heat treatment was performed on the sheet, the <001> direction was well present in all directions. However, when the reduction ratio was 20% or more, it was shown that when the residual stress removal heat treatment was performed, {100} <011> particles were strongly formed in the rolling direction (Rotated Cube Texture). When the reduction ratio exceeds 50%, residual stress removal heat treatment causes the formation of planes other than the {100} planes, which weakens the overall strength of the {100} texture. Therefore, in order to form a strong {100} texture after the final residual stress removal heat treatment, the reduction ratio must be 50% or less.

[실시예 2]Example 2

본 실시예는 잔류응력 제거 열처리를 실시한 후에 형성되는 {100}<011> 집합조직에 있어서, 미세조직의 특성이 {100}<011> 집합조직 형성에 미치는 영향을 살펴 본 것이다.In this embodiment, the {100} <011> texture formed after the residual stress removal heat treatment is performed, and looks at the effect of the characteristics of the microstructure on the formation of the {100} <011> texture.

도 4는 Fe-1.0%Si 합금 시편에서 제1 열처리를 실시할 때 시편의 두께에 따른 관통형 입자의 부피분율을 보여주는 그래프이다.Figure 4 is a graph showing the volume fraction of the through-type particles according to the thickness of the specimen when the first heat treatment in the Fe-1.0% Si alloy specimen.

{100}면 형성을 위한 열처리(제1 열처리)는 실시예 1의 경우와 동일하게 수행하였다. 도 4를 참조하면, 상기 금속 판재의 두께 변화는 관통형 입자와 밀접한 관계가 있음을 보여주고 있었다. 즉 상기 판재의 두께가 얇아질수록 거의 대부분의 입자가 관통형 입자를 갖게 되고, 그 두께가 두꺼워질수록 반 관통형 입자가 증가하는 것을 알 수 있었다.Heat treatment for forming the {100} plane (first heat treatment) was performed in the same manner as in Example 1. Referring to Figure 4, it was shown that the thickness change of the metal plate has a close relationship with the through-type particles. In other words, as the thickness of the plate becomes thinner, most of the particles have through-type particles, and as the thickness increases, the semi-penetrating particles increase.

도 5는 제1 열처리를 실시한 시편에서 두께 변화에 따른 {100} 섬유 집합조직의 부피 분율 변화를 보여주는 그래프이다(허용 오차: 15°).5 is a graph showing a change in the volume fraction of the {100} fiber texture according to the thickness change in the specimen subjected to the first heat treatment (tolerance error: 15 °).

도 5를 참조하면, 두께가 얇아질수록 {100} 섬유 집합조직의 부피분율이 높아지는 것을 보여주는 것을 알 수 있다. 즉, 관통형 입자가 증가할수록 {100} 섬유 집합조직이 증가하는 것을 알 수 있다. 이러한 결과는 관통형 입자가 {100} 섬유 집합조직 형성에 중요한 역할을 한다는 것으로 해석될 수 있다.Referring to FIG. 5, it can be seen that the thinner the thickness, the higher the volume fraction of the {100} fiber texture. That is, it can be seen that as the through-type particles increase, the {100} fiber texture increases. These results can be interpreted that the penetration particles play an important role in the formation of {100} fiber texture.

관통형 입자가 {100}<011> 집합조직에 미치는 영향을 살펴보기 위해서 관통형 입자의 부피분율이 서로 다른 시편을 이용하여 {100}<011> 집합조직 형성 처리를 실시하였다. 즉 서로 두께가 다른 Fe-1.0%Si 합금 판재에 제1 열처리를 실시하면 관통형 입자의 부피분율은 두께가 감소함에 따라 증가하게 된다. 이 시편에 냉간 압연을 실시하고, 800℃ 질소 분위기에서 1시간 동안 잔류 응력 제거 열처리를 실시하여, 이때 나타나는 {100}<011> 집합조직의 부피분율을 측정하였다.In order to examine the effect of the penetrating particles on the {100} <011> texture, the {100} <011> texture was formed using specimens having different volume fractions. That is, when the first heat treatment is performed on Fe-1.0% Si alloy plates having different thicknesses, the volume fraction of the through particles increases as the thickness decreases. The specimen was subjected to cold rolling, and subjected to residual stress relief heat treatment for 1 hour in an atmosphere of nitrogen at 800 ° C., thereby measuring the volume fraction of the {100} texture shown therein.

도 6은 Fe-1.0%Si 합금 시편에서 제1 열처리를 실시하고 일정 압하율로 냉간 압연을 실시한 후, 800℃의 온도 및 질소 분위기에서 1시간 동안 제2 열처리를 실시한 시편에서 나타나는 로테이티드 큐브({100}<011>) 집합조직의 부피분율을 보여주는 그래프 이다(허용 오차: 15°).6 is a rotated cube that appears in a specimen subjected to the first heat treatment on a Fe-1.0% Si alloy specimen and subjected to cold rolling at a constant reduction ratio, followed by a second heat treatment for 1 hour at a temperature of 800 ° C. and a nitrogen atmosphere ( {100} <011>) A graph showing the volume fraction of the aggregates (tolerance: 15 °).

도 6을 참조하면, 거의 대부분의 입자가 관통형 입자 형태를 갖고 있는 두께가 얇은 시편에서는(두께 100, 200㎛), 10~20% 정도의 작은 압하율에서도 {100}<011> 집합조직이 강화되는 현상이 발견된다. 그러나 관통형 입자가 약 60% 정도 되는 두께가 상대적으로 두꺼운 시편(500㎛)에서는 15% 이하의 압하율에서는 {100}<011> 집합조직의 강화는 나타나지 않으며, 그 압하율이 20~50%인 구간에서 {100}<011> 집합조직의 강화가 발생하였다. 따라서 상대적으로 관통형 입자를 많이 가지고 있는 얇은 시편에서 {100}<011> 집합조직의 강도가 매우 강함을 알 수 있었다.Referring to FIG. 6, in a thin specimen (100 and 200 μm in thickness) in which almost all particles have a through particle shape, {100} <011> texture is formed even at a small reduction ratio of about 10 to 20%. Strengthening phenomenon is found. However, in the relatively thick specimens (500 µm) with about 60% of the through-particles, the {100} <011> texture was not strengthened at the reduction rate of 15% or less, and the reduction ratio was 20-50%. In the phosphorus interval, {100} <011> aggregation was strengthened. Therefore, it was found that the strength of the {100} <011> texture was very strong in the thin specimens having a large number of relatively penetrating particles.

상기 결과들을 종합하면, 규소강에서 관통형 입자를 가지면서, 그 입자의 <001> 방향이 판재면에 수직({100}<0vw>)한 경우, 상기 판재를 적절하게 압연 및 열처리하면 {100}<011>이 매우 쉽게 잘 형성된다는 것이다. 이러한 현상이 발생하는 이유는, <001> 방향이 판재면에 수직한 관통형 입자를 특징으로 하는 판재를 압연할 때, <001> 방향이 판재면에 수직한 관통형 입자는 그 방위가 {100}<011>로 회전하게 되기 때문이다.Taken together, the result is that if the silicon steel has penetrating particles and the <001> direction of the particles is perpendicular to the sheet surface ({100} <0vw>), the sheet is appropriately rolled and heat treated to achieve {100 } <011> is very easy to form. The reason for this phenomenon is that, when rolling the plate material characterized by the through-type particles in which the <001> direction is perpendicular to the plate surface, the through-type particles in which the <001> direction is perpendicular to the plate surface have a direction of {100. } Because it rotates to <011>.

도 7은 두께가 550㎛인 Fe-1.0%Si 강판에서 {100} 집합조직 형성 열처리를 실시한 후, 25%의 압하율로 냉간압연을 실시한 시편에서 측정한 {110} 극점도이다. 도 7을 참조하면 {100} 집합조직 형성 열처리를 실시할 때 형성된 {100} 섬유 집합조직을 갖는 입자들은, 추가적인 냉간 압연을 실시하면 {100}<011> 방위를 갖는 입자로 회전한다는 사실을 잘 보여주고 있다. 상기 시편에 잔류응력 제거 열처리하게 되면, 냉간압연을 실시할 때 형성된 {100}<011> 집합조직을 그대로 유지한 채 잔류응력 제거가 이루어진다고 판단된다. 즉 상기 시편을 압연하면 판재 내부의 {100}<0vw> 을 갖는 입자들이 {100}<011>로 회전을 하게 되며, 이 상태에서 잔류응력 제거 열처리를 실시하면 {100}<011>을 갖는 입자들은 그대로 방위를 유지한 채 다각형화(polygonization)만 발생하기 때문에 이러한 현상이 발생한 것이다. 이러한 {100}<011> 집합조직이 형성되는 현상은 통상적인 잔류응력 제거 열처리 조건을 만족시키면 나타나는 현상이다. 즉 열처리는 650~950℃ 온도 구간에서 실시하고 열처리 시간은 3시간 이내에 완료하면 바람직하다. 열처리 온도를 선택함에 있어서 주의할 사항은 페라이트(α)가 안정한 온도구역에서 열처리를 실시하여야 한다는 점이다. 만약 오스테나이트 단상구역이나 오스테나이트 페라이트 이상구역에서 열처리를 실시하게 되면 {100}<011> 집합조직은 사라지게 된다. 한편 열처리 시간은 잔류응력이 제거되기에 충분한 시간이면 되기 때문에 3시간 이내의 열처리 조건이면 충분하다. 더욱 바람직하게는 약 15분 이내로 열처리를 실시하는 것이 경제적으로 더 유리하다. 그러나 관통형 입자의 비율이 낮아지고 {100}면이 판재면에 평행하지 않은 입자들이 많이 형성되어있다면, 이 입자들은 냉간 압연 후 응력제거 열처리를 실시할 때, 이 입자들에서 선택적으로 쉽게 재결정이 발생하면서 주변에 형성된 {100}<011> 방위를 갖는 입자들을 희생시키면서 성장을 하게 된다. 도 8은 상기 도 7의 실험에 사용된 시편을 800℃ 질소분위기에서 10분동안 응력제거 열처리를 실시한 시편의 단면 미세조직을 보여주는 사진이다. 도 8을 참조하면 <001> 방향이 판재면에 수직한 관통형 입자를 특징으로하는 판재를 압하율 25%로 냉간 압연을 실시한 후, 800℃에서 열처리를 실시하여도 많은 관통형 입자들이 그대로 그 형상을 유지하는 것을 보여준다. 그러나 반관통형 입자들이나 <001> 방향이 판재면에 수직하지 않은 입자에서는 새로운 입자가 핵생성하고 이 입자가 성장하는 일반적인 재결정 현상이 발생한다. 이 새로운 입자들은 냉간압연에서 형성된 {100}<011> 집합조직을 갖는 입자를 희생시키면서 성장을 하게 된다. 이러한 현상이 발생하게 되면 {100}<011> 집합조직이 약화되게 된다.7 is a {110} pole figure measured on a specimen subjected to cold rolling at a reduction ratio of 25% after a heat treatment of {100} texture formation on a Fe-1.0% Si steel sheet having a thickness of 550 µm. Referring to FIG. 7, it is well understood that particles having a {100} fiber texture formed during the {100} texture formation heat treatment rotated to particles having a {100} <011> orientation upon further cold rolling. Is showing. When the residual stress removal heat treatment is performed on the specimen, it is determined that the residual stress is removed while maintaining the {100} <011> texture formed during cold rolling. That is, when the specimen is rolled, particles having {100} <0vw> inside the plate are rotated to {100} <011>, and when the residual stress removing heat treatment is performed in this state, particles having {100} <011> This phenomenon occurs because only polygonization occurs while the orientation is maintained. The phenomenon in which the {100} <011> texture is formed is a phenomenon that appears when the usual residual stress removal heat treatment conditions are satisfied. In other words, the heat treatment is preferably performed in the temperature range of 650 ~ 950 ℃ and the heat treatment time is completed within 3 hours. In selecting the heat treatment temperature, care should be taken in the temperature zone where the ferrite α is stable. If the heat treatment is performed in an austenite single phase zone or an austenite ferrite abnormal zone, the {100} <011> texture disappears. On the other hand, since the heat treatment time is sufficient to remove the residual stress, heat treatment conditions within 3 hours are sufficient. More preferably it is economically more advantageous to carry out the heat treatment within about 15 minutes. However, if the ratio of through-hole particles is low and there are many particles whose {100} planes are not parallel to the plate plane, these particles are selectively recrystallized easily from these particles when subjected to stress relief heat treatment after cold rolling. As it occurs, it grows at the expense of particles with a {100} <011> orientation formed around it. 8 is a photograph showing the cross-sectional microstructure of the specimen subjected to the stress relief heat treatment for 10 minutes in the specimen used in the experiment of Figure 7 at 800 ℃ nitrogen atmosphere. Referring to FIG. 8, after cold rolling a plate having a rolling-type particle having a <001> direction perpendicular to the sheet surface with a rolling reduction rate of 25%, even though the heat-treating is performed at 800 ° C., many of the through-particles remain as it is. Demonstrates maintaining shape. However, in semi-penetrating particles or particles in which the <001> direction is not perpendicular to the plate surface, a general recrystallization phenomenon occurs in which new particles nucleate and grow. These new particles grow at the expense of particles with the {100} <011> texture formed during cold rolling. When this phenomenon occurs, the {100} <011> aggregate is weakened.

본 발명에 따른 방향성을 갖는 전기강판의 제조방법에 따르면, 압연 방향에 평행한 고밀도의 {100}<011> 집합조직을 짧은 시간 안에 단순하게 형성시킬 수 있으며 따라서 압연 방향에 대해 ±45° 방향으로 우수한 자기 특성을 갖는 전기강판을 손쉽게 얻을 수 있다. According to the method for producing a grain-oriented electrical steel sheet according to the present invention, it is possible to simply form a high density {100} <011> texture parallel to the rolling direction in a short time, and thus in a direction of ± 45 ° to the rolling direction. It is easy to obtain an electrical steel sheet having excellent magnetic properties.

나아가 본 발명에서 제시한 {100}<011> 집합조직의 형성방법은 완벽하게 재현 가능하여 대량생산에 매우 용이하다.Furthermore, the method for forming the {100} <011> aggregated tissue presented in the present invention is perfectly reproducible and is very easy for mass production.

상기 방법은 특정 조성을 이루는 판재에만 국소적으로 적용되는 것이 아니고, 범용적으로 적용될 수 있어 그 활용도가 대단히 높다.The method is not only applied locally to a plate of a specific composition, but can be applied universally, and its utilization is very high.

이상과 같이 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 상술한 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구 범위와 균등한 것들에 의해 정해져야 한다. As described above, the present invention has been described by way of a limited embodiment, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains may make various modifications and variations from this description. Do. Therefore, the scope of the present invention should not be limited to the above-described embodiments, but should be defined by the claims below and equivalents thereof.

도 1은 제1 열처리를 실시한 시편을 냉간 압연한 후 응력 제거 열처리를 실시할 때 압하율에 따른 {100} 섬유 집합조직의 부피 분율 변화를 보여주는 그래프이다(허용 오차: 15°).1 is a graph showing the change in volume fraction of {100} fiber texture according to the reduction ratio when cold-rolled specimens subjected to the first heat treatment after stress relief heat treatment (tolerance error: 15 °).

도 2는 압하율이 25%일 때 800℃ 하에서 1시간 동안 열처리를 실시한 시편에서 나타나는 방위밀도 그래프이다(φ2 = 45°단면).FIG. 2 is a graph showing azimuth density of a specimen subjected to heat treatment at 800 ° C. for 1 hour when the reduction ratio is 25% (φ 2 = 45 ° section).

도 3은 압하율에 따른 {100} 집합조직의 변화를 보여주는 방위밀도 그래프이다(Φ = 0°, φ2 = 45°).Figure 3 is a graph showing the change in the orientation density of the {100} texture in accordance with the reduction ratio (Φ = 0 °, φ 2 = 45 °).

도 4는 Fe-1.0%Si 합금 시편에서 제1 열처리를 실시할 때 시편의 두께에 따른 관통형 입자의 부피분율을 보여주는 그래프 이다.Figure 4 is a graph showing the volume fraction of the through-type particles according to the thickness of the specimen when the first heat treatment in the Fe-1.0% Si alloy specimen.

도 5는 제1 열처리를 실시한 시편에서 두께에 따른 {100} 섬유 집합조직의 부피 분율 변화를 보여주는 그래프이다(허용 오차: 15°).5 is a graph showing the change in volume fraction of {100} fiber texture according to the thickness in the specimen subjected to the first heat treatment (tolerance error: 15 °).

도 6은 Fe-1.0%Si 합금 시편에서 제1 열처리를 실시하고 일정 압하율로 냉간 압연을 실시한 후, 800℃의 온도 및 질소 분위기에서 1시간 동안 제2 열처리를 실시한 시편에서 나타나는 큐브({100}<011>) 집합조직의 부피분율을 보여주는 그래프 이다(허용 오차: 15°). FIG. 6 shows a cube ({100) exhibited in a specimen subjected to a first heat treatment on a Fe-1.0% Si alloy specimen and subjected to cold rolling at a constant reduction ratio, followed by a second heat treatment for one hour at a temperature of 800 ° C. and a nitrogen atmosphere. } <011>) A graph showing the volume fraction of the aggregates (tolerance: 15 °).

도 7은 두께가 550㎛인 Fe-1.0%Si 강판에서 {100} 집합조직 형성 열처리를 실시한 후, 25%의 압하율로 냉간압연을 실시한 시편에서 측정한 {110} 극점도이다.7 is a {110} pole figure measured on a specimen subjected to cold rolling at a reduction ratio of 25% after a heat treatment of {100} texture formation on a Fe-1.0% Si steel sheet having a thickness of 550 µm.

도 8은 두께가 550㎛인 Fe-1.0%Si 강판에서 {100} 집합조직 형성 열처리를 실시한 후, 25%의 압하율로 냉간압연을 실시한 후, 800℃ 질소분위기에서 10분동안 응력제거 열처리를 실시한 시편의 단면 미세조직을 보여주는 사진이다. FIG. 8 is a {100} texture forming heat treatment on a Fe-1.0% Si steel plate having a thickness of 550 µm, followed by cold rolling at a reduction ratio of 25%, and then a stress relief heat treatment for 10 minutes at 800 ° C. in a nitrogen atmosphere. It is a photograph showing the cross-sectional microstructure of the specimen.

Claims (7)

관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어지고 철 또는 철계 합금으로 구성된 금속판재를 처리함에 있어서, In treating the metal plate composed of the {100} texture including the columnar columnar particles and composed of iron or iron-based alloy, 상기 금속판재를 10 내지 50%의 압하율(壓下率)로 냉간 압연한 후 페라이트 상(α)이 안정한 온도 하에서 제2 열처리함으로써 상기 금속판재에 상기 금속판재 면에 평행한 {100}면 및 상기 압연 방향에 평행한 <011> 방향을 갖는 {100}<011> 집합조직을 형성하는 방법. {100} plane parallel to the metal plate surface on the metal plate member by cold rolling the metal plate member at a rolling reduction rate of 10 to 50%, followed by a second heat treatment under a stable temperature of the ferrite phase α and A method for forming a {100} <011> texture having a <011> direction parallel to the rolling direction. 제1항에 있어서,The method of claim 1, 상기 관통형 주상정 입자를 포함하는 {100} 집합조직으로 이루어진 금속판재는,Metal plate material consisting of a {100} texture including the columnar columnar particles, i) 철 또는 철계 합금으로 이루어진 판재를 오스테나이트(γ) 상이 안정한 온도 하에서 상기 판재 표면의 산화를 방지하면서 열처리하는 제1 열처리 단계; 및 ii) 상기 열처리된 금속판재를 페라이트(α) 상으로 변화시키는 상변태 단계에 의하여 제조되는 것을 특징으로 하는 {100}<011> 집합조직의 형성방법.i) a first heat treatment step of heat treating a plate made of iron or an iron-based alloy while preventing the oxidation of the surface of the plate under a stable temperature of the austenite phase; And ii) a phase transformation step of changing the heat-treated metal sheet into a ferrite (α) phase. 제2항에 있어서,The method of claim 2, 상기 상변태 단계는 상기 열처리된 금속판재를 오스테나이트 상 안정화 온도로부터 냉각시킴으로써 이루어지는 것을 특징으로 하는 {100}<011> 집합조직의 형 성방법.The phase transformation step is formed by cooling the heat-treated metal sheet material from the austenite phase stabilization temperature of {100}. 제1항에 있어서, The method of claim 1, 상기 제2 열처리는 650 내지 950℃ 하에서 이루어지는 것을 특징으로 하는 전기강판의 제조방법. The second heat treatment is a manufacturing method of an electrical steel sheet, characterized in that made under 650 to 950 ℃. 제1항에 있어서,The method of claim 1, 상기 제2 열처리는 3시간 이하의 시간 동안 이루어지는 것을 특징으로 하는 전기강판의 제조방법. The second heat treatment is a method of manufacturing an electrical steel sheet, characterized in that made for 3 hours or less. 제1항의 방법으로 제조되고, 철 또는 철계 합금 판재로 이루어져 있으며 상기 판재 면에 평행한 {100}면 및 압연 방향에 평행한 <011> 방향성을 갖는 집합조직을 포함하는 전기강판. An electrical steel sheet prepared by the method of claim 1, comprising an aggregate structure made of iron or an iron-based alloy sheet and having a {100} plane parallel to the sheet surface and a direction parallel to the rolling direction. 제6항에 있어서,The method of claim 6, 상기 전기강판은, The electrical steel sheet, 상기 판재 면에 평행한 {100}면을 갖는 결정 입자들 중 적어도 일부의 입자가 상기 판재를 관통하도록 수직적으로 형성되어 있고, 적어도 25%의 로테이티드 큐브(rotated cube)({100}<011>) 집합조직을 포함하는 것을 특징으로 하는 전기강판.At least some of the crystal grains having a {100} plane parallel to the plate surface are vertically formed to penetrate the plate, and have at least 25% rotated cubes ({100} <011>). An electrical steel sheet comprising an assembly).
KR1020080004997A 2008-01-16 2008-01-16 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same KR100973406B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080004997A KR100973406B1 (en) 2008-01-16 2008-01-16 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same
PCT/KR2009/000246 WO2009091213A1 (en) 2008-01-16 2009-01-16 Formation method for rotated cube texture, and electrical steel sheet produced using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080004997A KR100973406B1 (en) 2008-01-16 2008-01-16 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

Publications (2)

Publication Number Publication Date
KR20090079055A true KR20090079055A (en) 2009-07-21
KR100973406B1 KR100973406B1 (en) 2010-07-30

Family

ID=40885493

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080004997A KR100973406B1 (en) 2008-01-16 2008-01-16 Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same

Country Status (2)

Country Link
KR (1) KR100973406B1 (en)
WO (1) WO2009091213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222911A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102283217B1 (en) 2020-12-16 2021-07-29 주식회사 썸백 100 textured electrical steels and method for manufacturing the same
KR102283225B1 (en) 2021-05-03 2021-07-29 주식회사 썸백 (001) textured electrical steels and method for manufacturing the same
KR102283222B1 (en) 2021-05-03 2021-07-29 주식회사 썸백 (001) textured electrical steels and method for manufacturing the same
KR102376026B1 (en) 2021-07-21 2022-03-23 주식회사 썸백 (001) textured electrical steels and method for manufacturing the same
KR102417226B1 (en) 2022-02-14 2022-07-06 주식회사 썸백 (001) textured electrical steels and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535963B2 (en) * 1987-10-19 1996-09-18 住友金属工業株式会社 Silicon steel sheet having excellent magnetic properties and method for producing the same
JPH05279740A (en) * 1992-03-31 1993-10-26 Nippon Steel Corp Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JP3387962B2 (en) * 1993-04-22 2003-03-17 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties
KR100321054B1 (en) * 1996-12-13 2002-06-26 이구택 Method for post-treating silicon thin strip manufactured by direct casting
KR100622725B1 (en) * 2004-11-18 2006-09-19 현대자동차주식회사 Method for reducing anisotropy of hemming of Al-Mg-Si alloy sheet
KR100797895B1 (en) 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222911A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Iron core, cold re-rolled steel sheet, cold re-rolled steel sheet manufacturing method, and iron core manufacturing method

Also Published As

Publication number Publication date
KR100973406B1 (en) 2010-07-30
WO2009091213A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
KR100797895B1 (en) Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same
US8591669B2 (en) Method of texturing polycrystalline iron/gallium alloys and compositions thereof
KR100973406B1 (en) Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same
WO1999063120A1 (en) Method for producing high silicon steel, and silicon steel
JP2015507695A (en) High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
TW201134953A (en) Low carbon steel sheet and fabricating method thereof
WO2016098917A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
EP3225703A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
WO2018117643A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP2008156737A (en) Non-oriented electrical steel sheet and its production method
KR101376507B1 (en) METHOD OF MANUFACTURING Fe-Co BASED ALLOY SHEET WITH TEXTURE STRUCTURE AND SOFT MAGNETIC STEEL SHEET MANUFACTURED BY THE SAME
US6123783A (en) Magnetic data-storage targets and methods for preparation
KR20090079056A (en) Method of manufacturing non-oriented electrical steel sheets and non-oriented electrical steel sheets manufactured by using the same
KR102044319B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO1998020179A1 (en) Bidirectional electromagnetic steel plate and method of manufacturing the same
CN115151674B (en) Bi-oriented electrical steel sheet and method for manufacturing same
KR20090082006A (en) Method of manufacturing doubly oriented electrical steel sheets and doubly oriented electrical steel sheets manufactured by using the same
WO2018117749A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
CN102264922B (en) Non-oriented electrical steel sheets having high workability for client companies and manufacturing method thereof
JP2012237051A (en) Method for producing fe-based metal plate having high gathering degree of {200} plane
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
KR101594393B1 (en) Manufacturing process of electrical steel sheet having the goss texture by asymmetric rolling
JP2004115858A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2004057830A (en) Pole shoe for magnetic resonance imaging system
KR20090079057A (en) Method of manufacturing non-oriented electrical steel sheets

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130527

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170607

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180509

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190509

Year of fee payment: 10