JP5332134B2 - Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet - Google Patents

Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5332134B2
JP5332134B2 JP2007129385A JP2007129385A JP5332134B2 JP 5332134 B2 JP5332134 B2 JP 5332134B2 JP 2007129385 A JP2007129385 A JP 2007129385A JP 2007129385 A JP2007129385 A JP 2007129385A JP 5332134 B2 JP5332134 B2 JP 5332134B2
Authority
JP
Japan
Prior art keywords
annealing
temperature
steel sheet
grain
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007129385A
Other languages
Japanese (ja)
Other versions
JP2008001981A (en
Inventor
義行 牛神
宣憲 藤井
知二 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007129385A priority Critical patent/JP5332134B2/en
Publication of JP2008001981A publication Critical patent/JP2008001981A/en
Application granted granted Critical
Publication of JP5332134B2 publication Critical patent/JP5332134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the rapid heating region in the heating step in decarburization/annealing to the temperature at which induction heating can be used in the production of a grain-oriented magnetic steel sheet. <P>SOLUTION: When a silicon steel stock is heated at a temperature of 1,350&deg;C or lower and is thereafter hot-rolled, the hot-rolled sheet is annealed and is then cold-rolled, so as to be a steel sheet with a final sheet thickness, and the steel sheet is subjected to decarburization/annealing, is thereafter nitrided, is coated with a separation agent for annealing and is subjected to finish annealing, so as to produce a grain-oriented magnetic steel sheet, the hot rolled sheet annealing is conducted in a process where the steel sheet is heated to a prescribed temperature of 1,000 to 1,150&deg;C, is recrystallized and is thereafter annealed at 850 to 1,100&deg;C lower than that temperature, and the heating in the heating step in the decarburization/annealing for the steel sheet is conducted under such conditions that the heating rate during the period when the temperature of the steel sheet is in the range of 550 to 720&deg;C is 40&deg;C/sec or higher, preferably 50 to 250&deg;C/sec. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、軟磁性材料として変圧器等の電気機器の鉄芯として用いられる方向性電磁鋼板を、低温スラブ加熱により製造する方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet, which is used as an iron core of an electrical device such as a transformer, as a soft magnetic material by low-temperature slab heating.

方向性電磁鋼板は、{110}<001>方位に集積した結晶粒により構成されたSiを7%以下含有した鋼板である。そのような方向性電磁鋼板の製造における結晶方位の制御は、二次再結晶とよばれるカタストロフィックな粒成長現象を利用して達成される。   The grain-oriented electrical steel sheet is a steel sheet containing 7% or less of Si composed of crystal grains accumulated in the {110} <001> orientation. Control of crystal orientation in the production of such grain-oriented electrical steel sheets is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

この二次再結晶を制御するための一つの方法として、インヒビターとよばれる微細析出物を熱間圧延前のスラブ加熱時に完全固溶させた後に、熱間圧延及びその後の焼鈍工程で微細析出させる方法が工業的に実施されている。この方法では、析出物を完全固溶させるために、1350℃ないし1400℃以上の高温で加熱する必要があり、この温度は普通鋼のスラブ加熱温度に比べて約200℃高く、そのための専用の加熱炉が必要であり、また、溶融スケール量が多い等の問題がある。   As one method for controlling this secondary recrystallization, fine precipitates called inhibitors are completely dissolved during slab heating before hot rolling, and then finely precipitated in hot rolling and subsequent annealing processes. The method is practiced industrially. In this method, in order to completely dissolve the precipitate, it is necessary to heat at a high temperature of 1350 ° C. to 1400 ° C. or higher, which is about 200 ° C. higher than the slab heating temperature of ordinary steel. There are problems such as requiring a heating furnace and a large amount of melt scale.

そこで、上述の問題を回避するために1350℃以下の低温スラブ加熱による方向性電磁鋼板の製造について研究開発が進められた。
低温スラブ加熱による製造方法として、例えば小松らは、窒化処理により形成した(Al、Si)Nをインヒビターとして用いる方法を特許文献1で開示している。また、小林らは、その際の窒化処理の方法として、脱炭焼鈍後にストリップ状で窒化する方法を特許文献2で開示しており、本発明者らも、非特許文献1で、ストリップ状で窒化する場合の窒化物の挙動を報告している。
Therefore, in order to avoid the above-mentioned problems, research and development have been conducted on the production of grain-oriented electrical steel sheets by low-temperature slab heating at 1350 ° C. or lower.
As a manufacturing method by low-temperature slab heating, for example, Komatsu et al. Discloses a method using (Al, Si) N formed by nitriding as an inhibitor. Moreover, Kobayashi et al. Disclosed a method of nitriding in strip form after decarburization annealing as a method of nitriding treatment in that case, and the present inventors also disclosed in non-patent document 1 in strip form. The behavior of nitride when nitriding is reported.

また、本発明者らは特許文献3で1200〜1350℃の温度でインヒビターを完全溶体化した後に窒化処理を施す製造方法を報告している。   In addition, the present inventors have reported a production method in which nitriding treatment is carried out after completely dissolving an inhibitor at a temperature of 1200 to 1350 ° C. in Patent Document 3.

そして、本発明者らは、そのような低温スラブ加熱による方向性電磁鋼板の製造方法においては、脱炭焼鈍時にインヒビターが形成されていないので、脱炭焼鈍における一次再結晶組織の調整が二次再結晶を制御する上で重要であり、一次再結晶粒組織の粒径分布の変動係数が0.6より大きくなり粒組織が不均一になると二次再結晶が不安定になるということを特許文献4で示した。   And in the manufacturing method of the grain-oriented electrical steel sheet by such low-temperature slab heating, the present inventors have not formed an inhibitor during decarburization annealing, and therefore, the adjustment of the primary recrystallized structure in the decarburization annealing is secondary. It is important to control recrystallization, and it is patented that the secondary recrystallization becomes unstable when the variation coefficient of the particle size distribution of the primary recrystallized grain structure is larger than 0.6 and the grain structure becomes non-uniform. Shown in Reference 4.

更に、本発明者らは、二次再結晶の制御因子である一次再結晶組織とインヒビターに関する研究を進めた結果、一次再結晶組織中の{411}方位粒が{110}<001>二次再結晶粒の優先成長に影響を及ぼすことを見い出し、特許文献5において、脱炭焼鈍後の一次再結晶集合組織の{111}/{411}の比を3.0以下に調整し、その後窒化処理を行いインヒビターを強化することにより磁束密度の高い方向性電磁鋼板が工業的に安定的に製造できること、および、その際の一次再結晶後の粒組織を制御する方法として、例えば脱炭焼鈍工程の昇温過程における加熱速度を12℃/秒以上に制御する方法があることを示した。   Furthermore, as a result of advancing research on a primary recrystallization structure and an inhibitor which are control factors of secondary recrystallization, the present inventors have found that {411} oriented grains in the primary recrystallization structure are {110} <001> secondary. It has been found that it affects the preferential growth of recrystallized grains. In Patent Document 5, the ratio of {111} / {411} of the primary recrystallization texture after decarburization annealing is adjusted to 3.0 or less, and then nitriding As a method for controlling the grain structure after primary recrystallization, a grain-oriented electrical steel sheet having a high magnetic flux density can be produced industrially stably by strengthening the inhibitor by performing the treatment, for example, a decarburization annealing step It has been shown that there is a method of controlling the heating rate in the temperature rising process to 12 ° C./second or more.

その後、上記加熱速度を制御する方法は、一次再結晶後の粒組織を制御する方法として大きな効果があることが分かり、本発明者らは、特許文献6において、脱炭焼鈍工程の昇温過程において、鋼板温度が600℃以下の領域から750〜900℃の範囲内の所定の温度まで40℃/秒以上の加熱速度で加熱することにより脱炭焼鈍後の粒組織においてI{111 }/I{411 }の比率を3以下に制御し、その後の焼鈍で鋼板の酸化層の酸素量を2.3g/ m2 以下に調整して二次再結晶を安定化する方法を提案した。
ここで、I{111 }及びI{411 }はそれぞれ{111}及び{411}面が板面に平行である粒の割合であり、X線回折測定により板厚1/10層において測定された回折強度値を表している。
Then, it turns out that the method of controlling the heating rate has a great effect as a method of controlling the grain structure after the primary recrystallization. In the grain structure after decarburization annealing by heating at a heating rate of 40 ° C./second or more from a region where the steel plate temperature is 600 ° C. or less to a predetermined temperature in the range of 750 to 900 ° C. The method of stabilizing secondary recrystallization by controlling the ratio of {411} to 3 or less and adjusting the oxygen content of the oxide layer of the steel sheet to 2.3 g / m 2 or less by subsequent annealing was proposed.
Here, I {111} and I {411} are ratios of grains having {111} and {411} planes parallel to the plate surface, respectively, and were measured in the plate thickness 1/10 layer by X-ray diffraction measurement. Represents the diffraction intensity value.

上記方法においては、750〜900℃の範囲内の所定の温度まで40℃/秒以上の加熱速度で加熱する必要がある。そのための加熱手段について、特許文献6には、従来の通常輻射熱を利用したラジアントチューブ等による脱炭焼鈍設備を改造した設備、レーザ等の高エネルギー熱源を利用する方法、誘導加熱、通電加熱装置等が例示されているが、これらの加熱方法の中で、とりわけ、誘導加熱が、加熱速度の自由度が高く、鋼板と非接触に加熱でき、脱炭焼鈍炉内への設置が比較的容易である等の点から有利である。   In the said method, it is necessary to heat to the predetermined temperature in the range of 750-900 degreeC with the heating rate of 40 degreeC / second or more. As for the heating means for that purpose, Patent Document 6 discloses a facility in which a conventional decarburization annealing facility such as a radiant tube using normal radiant heat is modified, a method using a high-energy heat source such as a laser, induction heating, an electric heating device, etc. Among these heating methods, in particular, induction heating has a high degree of freedom in heating rate, can be heated in a non-contact manner with a steel plate, and is relatively easy to install in a decarburization annealing furnace. It is advantageous from a certain point.

ところで、誘導加熱によって電磁鋼板を加熱する場合、板厚が薄いためにキューリ点付近の温度になると渦電流の電流浸透深さが深くなり、帯板巾方向断面の表層部を一周している渦電流の表裏相殺が発生し、渦電流が流れなくなるため、電磁鋼板をキューリ点以上の温度に加熱するのは困難である。
方向性電磁鋼板のキューリ点は、750℃程度であるから、それまでの温度の加熱に誘導加熱を使用したとしても、それ以上の温度への加熱には、誘導加熱に代わる、例えば通電加熱などの他の手段を用いる必要がある。
しかし、他の加熱手段を併用することは、誘導加熱を用いる設備上の利点が失われるとともに、例えば、通電加熱では鋼板と接触する必要があり、鋼板に傷がついたりする問題もあった。
このため、急速加熱領域の終端が特許文献3に示されるような750〜900℃である場合では、誘導加熱の利点を十分に享受できないという問題があった。
By the way, when an electromagnetic steel sheet is heated by induction heating, the current penetration depth of the eddy current becomes deep when the temperature near the Curie point is reached due to the thin plate thickness, and the vortex circulating around the surface layer of the cross section in the strip width direction. Since the currents are reversed and eddy currents do not flow, it is difficult to heat the electrical steel sheet to a temperature above the Curie point.
Since the Curie point of the grain-oriented electrical steel sheet is about 750 ° C., even if induction heating is used for heating up to that temperature, the heating to a temperature higher than that can be replaced with induction heating, for example, electric heating. It is necessary to use other means.
However, the combined use of other heating means loses the advantage of the equipment using induction heating, and for example, there is a problem that the steel plate needs to come into contact with the current heating and the steel plate is damaged.
For this reason, when the end of the rapid heating region is 750 to 900 ° C. as shown in Patent Document 3, there is a problem that the advantage of induction heating cannot be fully enjoyed.

特公昭62−45285号公報Japanese Examined Patent Publication No. 62-45285 特開平2−77525号公報Japanese Patent Laid-Open No. 2-77525 特開2001−152250号公報JP 2001-152250 A 特公平8−32929号公報Japanese Patent Publication No. 8-32929 特開平9−256051号公報Japanese Patent Laid-Open No. 9-256051 特開2002−60842号公報JP 2002-60842 A 特開2005−226111号公報JP 2005-226111 A 「Materials Science Forum」 204-206 (1996) 、pp593-598"Materials Science Forum" 204-206 (1996), pp593-598

そこで、本発明は、特許文献3に開示した1350℃以下の低温スラブ加熱により方向性電磁鋼板を製造する際、脱炭焼鈍後の一次再結晶後の粒組織を改善するために、脱炭焼鈍の昇温過程で加熱速度を制御する温度領域を、誘導加熱のみによって加熱できる範囲にして、上記欠点を解消することを課題とする。   Therefore, when producing a grain-oriented electrical steel sheet by low-temperature slab heating of 1350 ° C. or less disclosed in Patent Document 3, the present invention provides a decarburization annealing in order to improve the grain structure after the primary recrystallization after the decarburization annealing. It is an object of the present invention to eliminate the above-mentioned drawbacks by setting the temperature range in which the heating rate is controlled in the temperature raising process to a range that can be heated only by induction heating.

上記の課題を解決するために、本発明は次のようにしたことを特徴とする。
請求項1に係る方向性電磁鋼板の製造方法の発明は、質量%で、Si:0.8〜7%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.0075%以下、Mn:0.02〜0.20%、Seq.=S+0.406×Se:0.003〜0.05%を含有し、残部Feおよび不可避的不純物からなる珪素鋼素材を、下記式で表される温度T1、T2、およびT3(℃)のいずれの温度以上、1350℃以下の温度で加熱した後に熱間圧延し、得られた熱延板を焼鈍し、次いで一回の冷間圧延または焼鈍を介して複数の冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、焼鈍分離剤を塗布し、仕上げ焼鈍を施すとともに、脱炭焼鈍から仕上げ焼鈍の二次再結晶開始までの間に鋼板の窒素量を増加させる処理を施すことよりなる方向性電磁鋼板の製造方法において、前記熱延板の焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより低い850〜1100℃の温度で焼鈍する工程で行うことにより、焼鈍後の粒組織においてラメラ間隔を20μm以上に制御するとともに、前記最終板厚の鋼板を脱炭焼鈍する際の昇温過程において、鋼板温度が550℃から720℃にある間を40℃/秒以上の加熱速度で加熱することを特徴とする。
T1=10062/(2.72−log([Al]×[N]))−273
T2=14855/(6.82−log([Mn]×[S]))−273
T3=10733/(4.08−log([Mn]×[Se]))−273
ここで、[Al]、[N]、[Mn]、[S]、[Se]は、それぞれ酸可溶性Al、N、Mn、S、Seの含有量(質量%)である。
なお、ラメラ組織とは圧延面に平行な層状組織を称し、ラメラ間隔とはこの層状組織の平均間隔である。
In order to solve the above problems, the present invention is characterized as follows.
Invention of the grain-oriented electrical steel sheet according to claim 1 is mass%, Si: 0.8-7%, C: 0.085% or less, acid-soluble Al: 0.01-0.065%, N: 0.0075% or less, Mn: 0.02~0.20%, Seq = S + 0.406 × Se:. containing from 0.003 to 0.05%, silicon ing the balance Fe and unavoidable impurities The steel material is hot-rolled after heating at a temperature not lower than 1350 ° C. and any of temperatures T1, T2 and T3 (° C.) represented by the following formula, and the obtained hot-rolled sheet is annealed. Next, a plurality of cold rollings are performed through one cold rolling or annealing to obtain a steel plate having a final thickness, and after decarburizing and annealing the steel plate, an annealing separator is applied, finish annealing is performed, and the steel is removed. Processing to increase the amount of nitrogen in the steel plate from the start of secondary recrystallization of carbon annealing to finish annealing In the manufacturing method of the grain-oriented electrical steel sheet, the annealing of the hot-rolled sheet is heated to a predetermined temperature of 1000 to 1150 ° C. and recrystallized, and then annealed at a lower temperature of 850 to 1100 ° C. By performing in the process, the lamellar spacing is controlled to 20 μm or more in the grain structure after annealing, and the temperature of the steel sheet is increased from 550 ° C. to 720 ° C. in the temperature rising process when decarburizing and annealing the steel plate having the final thickness. Heating is performed at a heating rate of 40 ° C./second or more for a certain period.
T1 = 10062 / (2.72−log ([Al] × [N])) − 273
T2 = 14855 / (6.82-log ([Mn] × [S]))-273
T3 = 10733 / (4.08-log ([Mn] × [Se]))-273
Here, [Al], [N], [Mn], [S], and [Se] are contents (mass%) of acid-soluble Al, N, Mn, S, and Se, respectively.
The lamellar structure refers to a layered structure parallel to the rolling surface, and the lamellar interval is an average interval of the layered structure.

請求項2に係る方向性電磁鋼板の製造方法の発明は、前記請求項1に係る発明において、前記珪素鋼素材が、さらに、質量%で、Cu:0.01〜0.30%含有し,下記のT4(℃)以上の温度で加熱した後に熱間圧延することを特徴とする。
T4=43091/(25.09−log([Cu]×[Cu]×[S]))−273
ここで、[Cu]はCuの含有量(質量%)である。
Invention of the grain-oriented electrical steel sheet according to claim 2 is the invention according to claim 1, wherein the silicon steel material further contains Cu: 0.01 to 0.30% by mass%. It is characterized by performing hot rolling after heating at a temperature equal to or higher than T4 (° C.) below.
T4 = 43091 / (25.09-log ([Cu] * [Cu] * [S]))-273
Here, [Cu] is the Cu content (% by mass).

請求項3に係る方向性電磁鋼板の製造方法の発明は、前記請求項1または2に係る発明において、前記鋼板を脱炭焼鈍する際の昇温過程において、鋼板温度が550℃から720℃にある間を50〜250℃/秒の加熱速度で加熱することを特徴とする。   An invention of a method for producing a grain-oriented electrical steel sheet according to claim 3 is the invention according to claim 1 or 2, wherein the steel sheet temperature is changed from 550 ° C. to 720 ° C. in the temperature rising process when the steel plate is decarburized and annealed. Heating is performed at a heating rate of 50 to 250 ° C./second for a certain period.

請求項4に係る方向性電磁鋼板の製造方法の発明は、前記請求項1〜3のいずれかに係る発明において、鋼板を脱炭焼鈍する際の、前記鋼板温度が550℃から720℃にある間の加熱を、誘導加熱で行うことを特徴とする。   Invention of the grain-oriented electrical steel sheet which concerns on Claim 4 WHEREIN: In the invention which concerns on any one of the said Claims 1-3, the said steel plate temperature at the time of decarburizing annealing of a steel plate exists in 550 to 720 degreeC. Heating in between is performed by induction heating.

請求項5に係る方向性電磁鋼板の製造方法の発明は、請求項1〜4のいずれかに係る発明において、前記鋼板を脱炭焼鈍する際、その昇温過程において前記加熱速度で加熱する温度範囲をTs(℃)から720℃としたときに、室温から500℃までの加熱速度H(℃/秒)に応じて以下のTs(℃)から720℃までの範囲とすることを特徴とする。
H≦15: Ts≦550
15<H: Ts≦600
The invention of the method for producing a grain-oriented electrical steel sheet according to claim 5 is the invention according to any one of claims 1 to 4, wherein when the steel sheet is decarburized and annealed, it is heated at the heating rate in the temperature rising process. When the range is Ts (° C.) to 720 ° C., the following Ts (° C.) to 720 ° C. range is set according to the heating rate H (° C./second) from room temperature to 500 ° C. .
H ≦ 15: Ts ≦ 550
15 <H: Ts ≦ 600

請求項6に係る方向性電磁鋼板の製造方法の発明は、請求項1〜5のいずれかに係る発明において、前記脱炭焼鈍を、脱炭焼鈍後の一次再結晶粒径が7μm以上18μm未満となるような温度と時間幅で行うことを特徴とする。   Invention of the grain-oriented electrical steel sheet according to claim 6 is the invention according to any one of claims 1 to 5, wherein the decarburization annealing has a primary recrystallized grain size of 7 μm or more and less than 18 μm after decarburization annealing. It is characterized by being carried out at such a temperature and time width as follows.

請求項7に係る方向性電磁鋼板の製造方法の発明は、請求項1〜6のいずれかに係る発明において、窒素量を増加させる処理を、鋼板の窒素量[N]が、鋼板の酸可溶性Alの量[Al]に応じて、式:[N]≧14/27[Al]を満足するように行うことを特徴とする。   Invention of the grain-oriented electrical steel sheet which concerns on Claim 7 WHEREIN: In invention which concerns on any one of Claims 1-6, the nitrogen amount [N] of a steel plate is the acid-soluble property of a steel plate in the process which increases the amount of nitrogen. According to the amount of Al [Al], it is performed to satisfy the formula: [N] ≧ 14/27 [Al].

請求項8に係る方向性電磁鋼板の製造方法の発明は、請求項1〜7のいずれかに記載の発明において、前記珪素鋼素材が、さらに、質量%で、Sn:0.3%以下を含有することを特徴とする。 An invention of a method for producing a grain-oriented electrical steel sheet according to an eighth aspect is the invention according to any one of the first to seventh aspects, wherein the silicon steel material is further in mass%, and Sn: 0.3% or less. It contains the following:

請求項1または2に係る発明では、低温スラブ加熱による方向性電磁鋼板の製造において、熱延板焼鈍を該請求項に記載されているような二段階の温度範囲で行うことにより、脱炭焼鈍後の一次再結晶後の粒組織を改善するために行われる、脱炭焼鈍の昇温過程での加熱速度の制御温度範囲の上限を、誘導加熱のみによって加熱できるより低い温度範囲にすることができるから、加熱をより容易に行うことができ、磁気特性の優れた方向性電磁鋼板をより容易に得ることができる。   In the invention which concerns on Claim 1 or 2, in manufacture of the grain-oriented electrical steel sheet by low-temperature slab heating, hot-rolled sheet annealing is performed in a two-step temperature range as described in the said claim, thereby decarburizing annealing. In order to improve the grain structure after the subsequent primary recrystallization, the upper limit of the control temperature range of the heating rate in the temperature raising process of decarburization annealing should be set to a lower temperature range that can be heated only by induction heating. Therefore, heating can be performed more easily, and a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained more easily.

請求項3に係る発明では、脱炭焼鈍の昇温過程での加熱速度の制御をさらに厳格におこなうことにより、一層の磁束密度向上効果を得ることができる。   In the invention which concerns on Claim 3, the further magnetic flux density improvement effect can be acquired by performing control of the heating rate in the temperature rising process of decarburization annealing more strictly.

このため、請求項4に係る発明のように、前記加熱を誘導加熱で行うことにより、加熱速度の自由度が高く、鋼板と非接触に加熱でき、さらに、脱炭焼鈍炉内への設置が比較的容易であるなどの効果が得られる。   For this reason, like the invention which concerns on Claim 4, by performing the said heating by induction heating, the freedom degree of a heating rate is high, it can heat in a non-contact with a steel plate, and also installation in a decarburization annealing furnace is possible. Effects such as being relatively easy can be obtained.

請求項5に係る発明では、脱炭焼鈍の昇温過程において、加熱速度を制御する開始温度を、該開始温度までの低温域の加熱速度を調整することによって高め、それによって加熱速度を制御する必要がある温度範囲を縮小することができる。
請求項6、7に係る発明のようにすることにより、脱炭焼鈍の加熱速度を高めた場合に二次再結晶をより安定的に行わせ、磁束密度の高い製品を安定して製造することができる。
また、請求項8に係る発明のようにすることにより、添加元素に応じてさらに磁気特性などが改良された方向性電磁鋼板を製造することができる。
In the invention according to claim 5, in the temperature raising process of decarburization annealing, the starting temperature for controlling the heating rate is increased by adjusting the heating rate in the low temperature region up to the starting temperature, thereby controlling the heating rate. The required temperature range can be reduced.
By making it like the invention which concerns on Claim 6, 7, when raising the heating rate of decarburization annealing, secondary recrystallization is performed more stably and the product with high magnetic flux density is manufactured stably. Can do.
In addition, according to the eighth aspect of the present invention, a grain-oriented electrical steel sheet having further improved magnetic properties and the like according to the additive element can be produced.

本発明者らは、特許文献3に開示した1350℃以下の低温スラブ加熱により方向性電磁鋼板を製造する際に、焼鈍後の熱延板の粒組織におけるラメラ間隔が、一次再結晶後の粒組織に影響し、脱炭焼鈍時の急速加熱を中断する温度を低下させても(一次再結晶が起こる温度以前で中断しても)、一次再結晶集合組織中の{411}粒の存在比率を高められるのではないかと考え、熱延板焼鈍条件を種々変更して、二次再結晶後の鋼板の磁束密度B8に対する熱延板の焼鈍後の粒組織におけるラメラ間隔の関係及び磁束密度B8に対する脱炭焼鈍の昇温過程における各温度での加熱速度の影響について調べた。   When manufacturing the grain-oriented electrical steel sheet by the low-temperature slab heating of 1350 degrees C or less disclosed in patent document 3, the present inventors have the lamella space | interval in the grain structure of the hot-rolled sheet after annealing to the grain after primary recrystallization. Even if the temperature at which rapid heating during decarburization annealing is interrupted is lowered (even before the temperature at which primary recrystallization occurs), the abundance ratio of {411} grains in the primary recrystallization texture The relationship between the lamellar spacing in the grain structure after annealing of the hot-rolled sheet to the magnetic flux density B8 of the steel sheet after secondary recrystallization and the magnetic flux density B8 The effect of heating rate at each temperature in the temperature raising process of decarburization annealing was investigated.

その結果、熱延板を焼鈍する工程において、所定の温度で加熱して再結晶させた後、それより温度の低い温度でさらに焼鈍して、焼鈍後の粒組織においてラメラ間隔を20μm以上に制御した場合、脱炭焼鈍工程の昇温過程における組織変化の大きな温度域は、700〜720℃であり、その温度域を含む550℃から720℃の温度域の加熱速度を40℃/秒以上、さらに好ましくは50〜250℃/秒とすることにより、脱炭焼鈍後の集合組織のI{111}/I{411}の比率が所定値以下になるよう一次再結晶を制御でき、二次再結晶組織を安定に発達することができるという知見を得て、本発明を完成させた。   As a result, in the step of annealing the hot-rolled sheet, after recrystallization by heating at a predetermined temperature, further annealing is performed at a lower temperature, and the lamellar spacing is controlled to 20 μm or more in the grain structure after annealing. In this case, the large temperature range of the structure change in the temperature rising process of the decarburization annealing process is 700 to 720 ° C, and the heating rate in the temperature range of 550 ° C to 720 ° C including the temperature range is 40 ° C / second or more, More preferably, by setting the temperature to 50 to 250 ° C./second, the primary recrystallization can be controlled so that the ratio of I {111} / I {411} of the texture after decarburization annealing is not more than a predetermined value. The present invention was completed by obtaining the knowledge that the crystal structure can be stably developed.

以下に、その知見が得られた実験について説明する。
まず、熱延板焼鈍条件と仕上げ焼鈍後の試料の磁束密度B8の関係を調べた。
図1に、冷間圧延前の試料における粒組織のラメラ間隔と仕上げ焼鈍後の試料の磁束密度B8の関係を示す。
ここで用いた試料は、質量%で、Si:3.2%、C:0.045〜0.065%、酸可溶性Al:0.025%、N:0.005%、Mn:0.04%、S:0.015%を含有し、残部Feおよび不可避的不純物からなるスラブを1300℃の温度で加熱した後、2.3mm厚に熱間圧延し(この成分系の場合、T1=1246℃、T2=1206℃である。)、その後、1120℃に加熱して再結晶させた後、800〜1120℃の温度で焼鈍する2段階の熱延板焼鈍を施し、その熱延試料を0.3mm厚まで冷間圧延した後、15℃/秒の加熱速度で550℃まで加熱し、40℃/秒の加熱速度で550〜720℃の温度域を加熱し、その後15℃/秒の加熱速度でさらに加熱して830℃の温度で脱炭焼鈍し、続いて、アンモニア含有雰囲気で焼鈍して鋼板中の窒素を増加させる窒化処理を行い、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を行ったものである。
ラメラ間隔の調整は、C量と2段階の熱延板焼鈍における2段目の温度を変更することによって行った。
Below, the experiment for which the knowledge was obtained will be described.
First, the relationship between hot-rolled sheet annealing conditions and the magnetic flux density B8 of the sample after finish annealing was investigated.
FIG. 1 shows the relationship between the lamellar spacing of the grain structure in the sample before cold rolling and the magnetic flux density B8 of the sample after finish annealing.
The sample used here is mass%, Si: 3.2%, C: 0.045 to 0.065%, acid-soluble Al: 0.025%, N: 0.005%, Mn: 0.04. %, S: 0.015%, and a slab composed of Fe and unavoidable impurities is heated at a temperature of 1300 ° C. and then hot-rolled to a thickness of 2.3 mm (in the case of this component system, T1 = 1246) , T2 = 1206 ° C.) After that, after recrystallization by heating to 1120 ° C., two-stage hot-rolled sheet annealing is performed at a temperature of 800 to 1120 ° C. After cold rolling to a thickness of 3 mm, heat to 550 ° C. at a heating rate of 15 ° C./second, heat a temperature range of 550 to 720 ° C. at a heating rate of 40 ° C./second, and then heat at 15 ° C./second Further heating at a rate and decarburization annealing at a temperature of 830 ° C., followed by ammonia And annealed in closed atmosphere performs nitrogen nitriding treatment increases the in steel sheet, then, after applying an annealing separator mainly comprised of MgO, in which were finish annealing.
The adjustment of the lamella spacing was performed by changing the amount of C and the temperature of the second stage in the two-stage hot-rolled sheet annealing.

図1から明らかなように、ラメラ間隔が20μm以上に制御した場合に、脱炭焼鈍の550〜720℃の温度域において40℃/秒の加熱速度で昇温することによってB8で1.92T以上の高磁束密度が得られることがわかる。
また、B8で1.92T以上が得られた試料の脱炭焼鈍板の一次再結晶集合組織を解析した結果、全ての試料においてI{111}/I{411}の値が3以下となっているのが確認された。
As is apparent from FIG. 1, when the lamella spacing is controlled to 20 μm or more, the temperature is increased at a heating rate of 40 ° C./second in the temperature range of 550 to 720 ° C. for decarburization annealing, so that B8 is 1.92 T or more. It can be seen that a high magnetic flux density can be obtained.
Moreover, as a result of analyzing the primary recrystallization texture of the decarburized and annealed plate of the sample obtained with B8 of 1.92T or more, the value of I {111} / I {411} is 3 or less in all samples. It was confirmed that

次に、冷間圧延前の試料における粒組織のラメラ間隔を20μm以上とした条件下における、高磁束密度(B8)の鋼板が得られる脱炭焼鈍時の加熱条件について調べた。
ここで用いた試料は、C:0.055%とし、熱延板焼鈍温度について、一段目の温度を1120℃、2段目の温度を920℃としてラメラ間隔を26μmとした以外は、図1の場合と同様に作成した冷間圧延試料を、脱炭焼鈍時の550〜720℃の温度域の加熱速度を昇温途中で種々変更して、仕上げ焼鈍後の試料の磁束密度B8を測定した。
図2より、脱炭焼鈍の昇温過程における550℃から720℃の温度範囲において、この範囲内の各温度における加熱速度を、40℃/秒以上に制御すると、1.92T以上の磁束密度(B8)を有する電磁鋼板が、好ましくは50〜250℃/、さらに好ましくは75〜125℃/秒の範囲に制御すると、さらに磁束密度(B8)の高い電磁鋼板を得られることがわかる。
Next, the heating conditions at the time of decarburization annealing in which a steel sheet with a high magnetic flux density (B8) was obtained under the condition that the lamella spacing of the grain structure in the sample before cold rolling was 20 μm or more were examined.
The sample used here was C: 0.055%, and the hot-rolled sheet annealing temperature was 1120 ° C. for the first stage, 920 ° C. for the second stage, and the lamellar spacing was 26 μm. For the cold-rolled sample prepared in the same manner as in the above, the heating rate in the temperature range of 550 to 720 ° C. during decarburization annealing was variously changed during the temperature increase, and the magnetic flux density B8 of the sample after finish annealing was measured. .
From FIG. 2, in the temperature range of 550 ° C. to 720 ° C. in the temperature raising process of decarburization annealing, when the heating rate at each temperature within this range is controlled to 40 ° C./second or more, a magnetic flux density of 1.92 T or more ( It can be seen that when the electrical steel sheet having B8) is controlled in the range of preferably 50 to 250 ° C./more preferably 75 to 125 ° C./second, an electrical steel sheet having a higher magnetic flux density (B8) can be obtained.

以上のことから、熱延板を焼鈍する工程において、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍して、焼鈍後の粒組織においてラメラ間隔を20μm以上に制御することにより、脱炭焼鈍工程の昇温過程における急速加熱する温度範囲を、鋼板温度が550℃から720℃の範囲としても、{411}方位の粒の存在する比率を高め、特許文献3に示されているようにI{111 }/I{411 }の比率を3以下にすることができ、磁束密度が高い方向性電磁鋼板を安定して製造することができることがわかる。   From the above, in the step of annealing a hot-rolled sheet, after recrystallization by heating to a predetermined temperature of 1000 to 1150 ° C., annealing is performed at a lower temperature of 850 to 1100 ° C., and the grains after annealing By controlling the lamellar spacing to 20 μm or more in the structure, even if the temperature range for rapid heating in the temperature raising process of the decarburization annealing process is a range where the steel plate temperature is 550 ° C. to 720 ° C., the presence of grains in {411} orientation The ratio of I {111} / I {411} can be reduced to 3 or less as shown in Patent Document 3, and a grain-oriented electrical steel sheet having a high magnetic flux density can be manufactured stably. You can see that

熱延板焼鈍後の粒組織においてラメラ間隔を制御することにより{411}、{111}の集合組織が変化する理由についてはまだ明らかになっていないが、現在のところ次のように考えている。一般的に再結晶する方位によって再結晶粒の発生する優先サイトが存在することが知られており、冷延工程において{411}はラメラ組織の内部で、{111}はラメラ近傍部で再結晶核が形成されると考えると、冷延前の結晶組織のラメラ間隔を制御することによって、一次再結晶後の{411}、および{111}結晶方位の存在比率が変化する現象を説明することができる。   The reason why the texture of {411} and {111} changes by controlling the lamellar spacing in the grain structure after hot-rolled sheet annealing has not yet been clarified, but currently considers as follows. . In general, it is known that there are preferential sites where recrystallized grains are generated depending on the recrystallization orientation. In the cold rolling process, {411} is recrystallized inside the lamellar structure and {111} is recrystallized in the vicinity of the lamellar. To explain the phenomenon that the abundance ratio of {411} and {111} crystal orientations after primary recrystallization changes by controlling the lamellar spacing of the crystal structure before cold rolling, assuming that nuclei are formed Can do.

以上の知見に基づきなされた本発明につき、以下で順次説明する。
まず、本発明で用いる珪素鋼素材の成分の限定理由について説明する。
本発明は、少なくとも、質量%で、Si:0.8〜7%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.0075%以下、Mn:0.02〜0.20%、Seq.=S+0.406×Se:0.003〜0.05%を含有し、残部Feおよび不可避的不純物からなる成分組成、あるいは、この成分組成に更にCuを0.01〜0.30質量%含有させた成分組成を基本とし、必要に応じて他の成分を含有する方向性電磁鋼板用の珪素鋼スラブを素材として用いるものであり、各成分の含有範囲の限定理由は次のとおりである。
The present invention made on the basis of the above findings will be sequentially described below.
First, the reasons for limiting the components of the silicon steel material used in the present invention will be described.
In the present invention, at least by mass, Si: 0.8-7%, C: 0.085% or less, acid-soluble Al: 0.01-0.065%, N: 0.0075% or less, Mn: 0.02 to 0.20%, Seq. = S + 0.406 × Se: 0.003 to 0.05%, a component composition consisting of the balance Fe and inevitable impurities, or Cu to this component composition It is based on the component composition of 0.01 to 0.30% by mass, and uses silicon steel slabs for grain-oriented electrical steel sheets containing other components as necessary. The reasons for limitation are as follows.

Siは、添加量を多くすると電気抵抗が高くなり、鉄損特性が改善される。しかし、7%を超えて添加されると冷延が極めて困難となり、圧延時に割れてしまう。より工業生産に適するのは4.8%以下である。また、0.8%より少ないと、仕上げ焼鈍時にγ変態が生じ、鋼板の結晶方位が損なわれてしまう。   When Si is added in an increased amount, the electrical resistance increases and the iron loss characteristics are improved. However, if added over 7%, cold rolling becomes extremely difficult and cracks during rolling. More suitable for industrial production is 4.8% or less. On the other hand, if it is less than 0.8%, γ transformation occurs during finish annealing, and the crystal orientation of the steel sheet is impaired.

Cは、一次再結晶組織を制御するうえで有効な元素であるが、磁気特性に悪影響を及ぼすので、仕上げ焼鈍前に脱炭する必要がある。Cが0.085%より多いと、脱炭焼鈍時間が長くなり、工業生産における生産性が損なわれてしまう。   C is an effective element for controlling the primary recrystallization structure, but it adversely affects the magnetic properties, so it is necessary to decarburize before finish annealing. When C is more than 0.085%, the decarburization annealing time becomes long, and the productivity in industrial production is impaired.

酸可溶性Alは、本発明においてNと結合して(Al、Si)Nとして、インヒビターとしての機能を果すために必須の元素である。二次再結晶が安定する0.01〜0.065%を限定範囲とする。
Nは、0.012%を超えると、冷延時、鋼板中にブリスターとよばれる空孔を生じるため、0.012%を超えないようにする。また、インヒビターとして機能させるためには0.0075以下とすることが必要である。0.0075%を超えると析出物の分散状態が不均一となり二次再結晶が不安定になる。
In the present invention, acid-soluble Al is an element essential for binding to N and acting as an inhibitor as (Al, Si) N. The limiting range is 0.01 to 0.065% at which secondary recrystallization is stabilized.
If N exceeds 0.012%, voids called blisters are formed in the steel sheet during cold rolling, so N should not exceed 0.012%. Moreover, in order to function as an inhibitor, it is necessary to set it as 0.0075 or less. If it exceeds 0.0075%, the dispersion state of the precipitates becomes non-uniform and secondary recrystallization becomes unstable.

Mnは、0.02%より少ないと熱間圧延における割れの発生しやすくなる。また、MnS、MnSeとしてインヒビターとしての機能を果たすが、0.20%を超えるとMnS、MnSe析出物の分散が不均一になりやすくなるため二次再結晶が不安定になる。望ましくは、0.03〜0.09%である。   If Mn is less than 0.02%, cracks are likely to occur in hot rolling. In addition, MnS and MnSe function as an inhibitor. However, if it exceeds 0.20%, the dispersion of MnS and MnSe precipitates tends to be non-uniform and secondary recrystallization becomes unstable. Preferably, it is 0.03 to 0.09%.

S及びSeは、Mnと結合してインヒビターとして機能する。Seq.=S+0.406×Seが0.003%より少ないとインヒビターとしての機能が減じてしまう。また、0.05%を超えると析出物の分散が不均一になりやすくなるため二次再結晶が不安定になる。   S and Se bind to Mn and function as an inhibitor. When Seq. = S + 0.406 × Se is less than 0.003%, the function as an inhibitor is reduced. On the other hand, if it exceeds 0.05%, the dispersion of precipitates tends to be non-uniform and secondary recrystallization becomes unstable.

本発明では、更にインヒビター構成元素としてCuを添加することができる。CuもSやSeと析出物を形成してインヒビターとしての機能を果たす。0.01%より少ないとインヒビターとしての機能が減じてしまう。添加量が0.3%を超えると析出物の分散が不均一になりやすくなり鉄損低減効果が飽和してしまう。   In the present invention, Cu can be further added as an inhibitor constituent element. Cu also functions as an inhibitor by forming precipitates with S and Se. If it is less than 0.01%, the function as an inhibitor is reduced. If the addition amount exceeds 0.3%, the dispersion of precipitates tends to be non-uniform and the iron loss reduction effect is saturated.

本発明では、スラブの素材として、上記成分に加えて、必要に応じて、さらにSnを、質量%で、0.3%以下の範囲で含有できる。
また、特に特許請求の範囲には規定しないが、Cr、P、Sb、Ni、Biの少なくとも1種類を、Crでは0.3%以下、Pでは0.5%以下、Sbでは0.3%以下、Niでは1%以下、Biでは0.01%以下の範囲で含有できる。
In the present invention, as a slab of material, in addition to the above components, if necessary, the Sn Furthermore, by mass%, 0. It can be contained in an amount below 3% or less.
Further, although not specifically defined in the claims, at least one of Cr, P, Sb, Ni, and Bi is 0.3% or less for Cr, 0.5% or less for P, and 0.3% for Sb. Hereinafter, Ni can be contained in a range of 1% or less, and Bi in a range of 0.01% or less.

Crは、脱炭焼鈍の酸化層を改善し、グラス被膜形成に有効な元素であり、0.3%以下の範囲で添加する。
Pは、比抵抗を高めて鉄損を低減させることに有効な元素である。添加量が0.5%を超えると圧延性に問題を生じる。
Cr improves the decarburization annealing oxide layer and is an effective element for glass coating formation, and is added in the range of 0.3% or less.
P is an element effective for increasing the specific resistance and reducing the iron loss. If the addition amount exceeds 0.5%, a problem arises in rolling properties.

SnとSbは、良く知られている粒界偏析元素である。本発明はAlを含有しているため、仕上げ焼鈍の条件によっては焼鈍分離剤から放出される水分によりAlが酸化されてコイル位置でインヒビター強度が変動し、磁気特性がコイル位置で変動する場合がある。この対策の一つとして、これらの粒界偏析元素の添加により酸化を防止する方法があり、そのためにそれぞれ0.30%以下の範囲で添加できる。一方0.30%を超えると脱炭焼鈍時に酸化されにくく、グラス皮膜の形成が不十分となるとともに、脱炭焼鈍性を著しく阻害する。   Sn and Sb are well-known grain boundary segregation elements. Since the present invention contains Al, depending on the conditions of finish annealing, Al is oxidized by moisture released from the annealing separator, and the inhibitor strength varies at the coil position, and the magnetic characteristics may vary at the coil position. is there. As one of the countermeasures, there is a method of preventing oxidation by adding these grain boundary segregation elements. Therefore, each of them can be added in a range of 0.30% or less. On the other hand, if it exceeds 0.30%, it is difficult to be oxidized during the decarburization annealing, the formation of the glass film becomes insufficient, and the decarburization annealability is significantly inhibited.

Niは比抵抗を高めて鉄損を低減させることに有効な元素である。また、熱延板の金属組織を制御して磁気特性を向上させるうえで有効な元素である。しかしながら、添加量が1%を超えると二次再結晶が不安定になる。
Biは、0.01%以上添加すると硫化物などの析出物を安定化してインヒビターとしての機能を強化する効果がある。しかしながら、0.01%以上添加するとグラス被膜形成に悪影響を及ぼす。
Ni is an element effective for increasing the specific resistance and reducing the iron loss. Moreover, it is an element effective in improving the magnetic properties by controlling the metal structure of the hot-rolled sheet. However, when the addition amount exceeds 1%, secondary recrystallization becomes unstable.
Bi, when added in an amount of 0.01% or more, has the effect of stabilizing precipitates such as sulfides and strengthening the function as an inhibitor. However, addition of 0.01% or more adversely affects the formation of the glass film.

さらに、本発明で用いる珪素鋼素材は、磁気特性を損なわない範囲で、上記以外の元素及び/又は他の不可避的混入元素を含有していてもよい。   Furthermore, the silicon steel material used in the present invention may contain elements other than those described above and / or other inevitable elements as long as the magnetic properties are not impaired.

次に本発明の製造条件について説明する。
上記の成分組成を有する珪素鋼スラブは、転炉または電気炉等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処理し、ついで連続鋳造もしくは造塊後分塊圧延することによって得られる。その後、熱間圧延に先だってスラブ加熱がなされる。本発明においては、スラブ加熱温度は1350℃以下として、高温スラブ加熱の諸問題(専用の加熱炉が必要であり、また、溶融スケール量が多い等の問題)を回避する。
Next, the manufacturing conditions of the present invention will be described.
A silicon steel slab having the above component composition is obtained by melting steel with a converter or electric furnace, etc., vacuum-degassing the molten steel as necessary, and then performing continuous casting or block rolling after ingot forming. It is done. Thereafter, slab heating is performed prior to hot rolling. In the present invention, the slab heating temperature is set to 1350 ° C. or less to avoid various problems of high-temperature slab heating (problems such as requiring a dedicated heating furnace and a large amount of melt scale).

また、本発明ではスラブ加熱の下限温度はインヒビター(AlN、MnS、およびMnSeなど)が完全溶体化する必要がある。そのためには、スラブ加熱温度を、下記式で表される温度T1、T2、およびT3(℃)のいずれの温度以上とするとともに、インヒビター構成元素量を制御する必要がある。AlとNの含有量に関しては、下記式T1が1350℃以下となるようにする必要がある。同様に、MnとSの含有量、またMnとSeの含有量、さらにCuとSの含有量に関しては、それぞれ下記式のT2、T3、T4が1350℃以下となるようにする必要がある。
T1=10062/(2.72−log([Al]×[N]))−273
T2=14855/(6.82−log([Mn]×[S]))−273
T3=10733/(4.08−log([Mn]×[Se]))−273
T4=43091/(25.09−log([Cu]×[Cu]×[S]))−273
ここで、[Al]、[N]、[Mn]、[S]、[Se]、[Cu]は、それぞれ酸可溶性Al、N、Mn、S、Se、Cuの含有量(質量%)である。
Further, in the present invention, the lower limit temperature of slab heating requires that the inhibitor (AlN, MnS, MnSe, etc.) be completely in solution. For this purpose, it is necessary to set the slab heating temperature to be equal to or higher than any of the temperatures T1, T2, and T3 (° C.) represented by the following formula, and to control the amount of inhibitor constituent elements. Regarding the contents of Al and N, the following formula T1 needs to be 1350 ° C. or lower. Similarly, regarding the contents of Mn and S, the contents of Mn and Se, and the contents of Cu and S, T2, T3, and T4 in the following formulas must be 1350 ° C. or lower, respectively.
T1 = 10062 / (2.72−log ([Al] × [N])) − 273
T2 = 14855 / (6.82-log ([Mn] × [S]))-273
T3 = 10733 / (4.08-log ([Mn] × [Se]))-273
T4 = 43091 / (25.09-log ([Cu] * [Cu] * [S]))-273
Here, [Al], [N], [Mn], [S], [Se], and [Cu] are the contents (mass%) of acid-soluble Al, N, Mn, S, Se, and Cu, respectively. is there.

珪素鋼スラブは、通常は150〜350mmの範囲、好ましくは220〜280mmの厚みに鋳造されるが、30〜70mmの範囲のいわゆる薄スラブであっても良い。薄スラブの場合は熱延板を製造する際に中間厚みに粗加工を行う必要がないという利点がある。   Silicon steel slabs are usually cast to a thickness of 150 to 350 mm, preferably 220 to 280 mm, but may be so-called thin slabs of 30 to 70 mm. In the case of a thin slab, there is an advantage that it is not necessary to perform roughing to an intermediate thickness when manufacturing a hot-rolled sheet.

上述した温度にて加熱されたスラブは引続き熱間圧延され所要板厚の熱延板とされる。この熱延板を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で必要な時間焼鈍し、焼鈍後の粒組織においてラメラ間隔を20μm以上に制御する。一段目の焼鈍については、熱延板の再結晶を促進する観点からは5℃/秒以上、好ましくは10℃/秒以上の加熱速度で行い、1100℃以上の高温では0秒、1000℃程度の低温では30秒以上の時間焼鈍を行えば良い。また、二段目の焼鈍時間はラメラ構造を制御する観点から20秒以上行えば良い。二段目の焼鈍後はラメラ組織を保存する観点から、平均5℃/秒以上、好ましくは15℃/秒以上の冷却速度で冷却すれば良い。   The slab heated at the above-mentioned temperature is subsequently hot-rolled to obtain a hot-rolled sheet having a required thickness. The hot-rolled sheet is heated to a predetermined temperature of 1000 to 1150 ° C. and recrystallized, and then annealed at a lower temperature of 850 to 1100 ° C. for a necessary time, and the lamellar spacing is 20 μm in the grain structure after annealing. Control above. The first stage annealing is performed at a heating rate of 5 ° C./second or more, preferably 10 ° C./second or more from the viewpoint of promoting recrystallization of the hot-rolled sheet, and at a high temperature of 1100 ° C. or more, 0 second, about 1000 ° C. At low temperatures, annealing for 30 seconds or more may be performed. The second annealing time may be 20 seconds or more from the viewpoint of controlling the lamella structure. After the second annealing, from the viewpoint of preserving the lamella structure, it may be cooled at an average cooling rate of 5 ° C / second or more, preferably 15 ° C / second or more.

なお、熱延板焼鈍を2段階で行うことは、特許文献7にも一部記載されているが、その焼鈍の目的は、インヒビター状態の調整を行うことであり、本願発明のように、前記後者の方法で方向性電磁鋼板の製造する際、2段階の熱延板焼鈍によって、焼鈍後の粒組織におけるラメラ間隔を制御することにより、脱炭焼鈍の昇温過程における急速加熱範囲をより低い温度範囲にしても、一次再結晶後に二次再結晶しやすい方位の粒の存在する比率を高めることができることについては、何ら示唆するものではない。   Note that performing the hot-rolled sheet annealing in two stages is also described in part in Patent Document 7, but the purpose of the annealing is to adjust the inhibitor state, as in the present invention, When manufacturing grain-oriented electrical steel sheets by the latter method, the rapid heating range in the temperature raising process of decarburization annealing is lower by controlling the lamellar spacing in the grain structure after annealing by two-stage hot-rolled sheet annealing. Even in the temperature range, there is no suggestion that it is possible to increase the ratio of grains having orientations that are easily recrystallized after primary recrystallization.

その後、一回もしくは焼鈍を挟んだ二回以上に冷間圧延により最終板厚とする。冷間圧延の回数は、望む製品の特性レベルとコストとを勘案して適宜選択される。冷間圧延に際しては、最終冷間圧延率を80%以上とすることが、{411}や{111}等の一次再結晶方位を発達させる上で必要である。   Thereafter, the final thickness is obtained by cold rolling at least once or two or more times with annealing. The number of cold rolling operations is appropriately selected in consideration of the desired property level and cost of the product. In cold rolling, it is necessary to make the final cold rolling rate 80% or more in order to develop primary recrystallization orientations such as {411} and {111}.

冷間圧延後の鋼板は、鋼中に含まれるCを除去するために湿潤雰囲気中で脱炭焼鈍を施す。その際、脱炭焼鈍後の粒組織においてI{111 }/I{411 }の比率を3以下とし、その後二次再結晶発現前に窒素を増加させる処理を行うことにより、磁束密度の高い製品を安定して製造することができる。
この脱炭焼鈍後の一次再結晶を制御する方法としては、脱炭焼鈍工程の昇温過程における加熱速度を調整することにより制御される。本発明では、鋼板温度が550℃から720℃にある間を40℃/秒、好ましくは50〜250℃/秒、さらに好ましくは75〜125℃/秒の加熱速度で加熱する点に特徴がある。
The steel sheet after cold rolling is subjected to decarburization annealing in a humid atmosphere in order to remove C contained in the steel. At that time, a product having a high magnetic flux density is obtained by performing a treatment in which the ratio of I {111} / I {411} is set to 3 or less in the grain structure after decarburization annealing and then nitrogen is increased before secondary recrystallization is exhibited. Can be manufactured stably.
The primary recrystallization after the decarburization annealing is controlled by adjusting the heating rate in the temperature rising process of the decarburization annealing process. The present invention is characterized in that heating is performed at a heating rate of 40 ° C./second, preferably 50 to 250 ° C./second, more preferably 75 to 125 ° C./second while the steel sheet temperature is between 550 ° C. and 720 ° C. .

加熱速度は、一次再結晶集合組織I{111}/I{411}に大きな影響を及ぼす。一次再結晶では、結晶方位によって再結晶しやすさが異なるため、I{111}/I{411}を3以下とするためには、{411}方位粒が再結晶しやすい加熱速度に制御する必要がある。{411}方位粒は100℃/秒近傍の速度で一番再結晶しやすいので、I{111}/I{411}を3以下として磁束密度(B8)の高い製品を安定して製造するために、加熱速度を40℃/秒、好ましくは50〜250℃/秒、さらに好ましくは75〜125℃/秒の加熱速度で加熱する。   The heating rate has a great influence on the primary recrystallization texture I {111} / I {411}. In primary recrystallization, the recrystallization easiness varies depending on the crystal orientation. Therefore, in order to set I {111} / I {411} to 3 or less, the heating rate is controlled so that the {411} orientation grains are easily recrystallized. There is a need. Since {411} oriented grains are most easily recrystallized at a speed near 100 ° C./second, in order to stably produce a product having a high magnetic flux density (B8) with I {111} / I {411} being 3 or less. The heating rate is 40 ° C./second, preferably 50 to 250 ° C./second, more preferably 75 to 125 ° C./second.

この加熱速度で加熱する必要がある温度域は、基本的に550℃から720℃までの温度域である。もちろん、550℃以下の温度から上記の加熱速度範囲での急速加熱を開始してもよい。この加熱速度を高い加熱速度に維持すべき温度範囲の下限温度は、低温域での加熱サイクルの影響を受ける。そのため、急速加熱が必要な温度範囲を開始温度Ts(℃)から720℃としたときに、室温から500℃までの加熱速度H(℃/秒)に応じて以下のTs(℃)から720℃までの範囲とするのがよい。
H≦15: Ts≦550
15<H: Ts≦600
The temperature range that needs to be heated at this heating rate is basically the temperature range from 550 ° C to 720 ° C. Of course, you may start the rapid heating in the said heating rate range from the temperature of 550 degrees C or less. The lower limit temperature of the temperature range where the heating rate should be maintained at a high heating rate is affected by the heating cycle in the low temperature range. Therefore, when the temperature range requiring rapid heating is 720 ° C. from the starting temperature Ts (° C.), the following Ts (° C.) to 720 ° C. according to the heating rate H (° C./second) from room temperature to 500 ° C. It is good to be in the range up to.
H ≦ 15: Ts ≦ 550
15 <H: Ts ≦ 600

低温域の加熱速度が15℃/秒の標準的な加熱速度の場合には、550℃から720℃の範囲を40℃/秒以上の加熱速度で急速加熱する必要がある。低温域の加熱速度が15℃/秒よりも遅い場合には、550℃以下の温度から720℃の範囲を40℃/秒以上の加熱速度で急速加熱する必要がある。一方、低温域の加熱速度が15℃/秒よりも速い場合には、550℃よりも高い温度で600℃以下の温度から720℃までの範囲を40℃/秒以上の加熱速度で急速加熱すれば十分である。例えば、室温から50℃/秒で加熱した場合は、600℃から720℃の範囲の昇温速度が40℃/秒以上であればよい。   When the heating rate in the low temperature region is a standard heating rate of 15 ° C./second, it is necessary to rapidly heat the range of 550 ° C. to 720 ° C. at a heating rate of 40 ° C./second or more. When the heating rate in the low temperature region is slower than 15 ° C./second, it is necessary to rapidly heat the temperature from 550 ° C. or lower to 720 ° C. at a heating rate of 40 ° C./second or higher. On the other hand, when the heating rate in the low temperature range is faster than 15 ° C./second, rapid heating is performed at a temperature higher than 550 ° C. from 600 ° C. to 720 ° C. at a heating rate of 40 ° C./second or more. It is enough. For example, when heating from room temperature at 50 ° C./second, the temperature increase rate in the range of 600 ° C. to 720 ° C. may be 40 ° C./second or more.

上記の脱炭焼鈍の加熱速度を制御する方法は特に限定するものではないが、本発明では、急速加熱の温度範囲の上限が720℃となったことから、誘導加熱を有効に利用することができる。   The method for controlling the heating rate of the decarburization annealing is not particularly limited. However, in the present invention, since the upper limit of the temperature range of the rapid heating is 720 ° C., induction heating can be effectively used. it can.

また、上記の加熱速度の調整の効果を安定して発揮させるためには、特許文献5に示されているように、加熱した後に770〜900℃の温度域で雰囲気ガスの酸化度(PH2O/PH2)を0.15超1.1以下として鋼板の酸素量を2.3g/m2以下とすることが有効である。雰囲気ガスの酸化度が0.15未満では鋼板表面に形成されるグラス被膜の密着性が劣化し、1.1を越えるとグラス被膜に欠陥が生じる。また、鋼板の酸素量を2.3g/m2以下とすることにより、(Al,Si)Nインヒビタ−の分解を抑制して高い磁束密度を有する方向性電磁鋼板の製品が安定して製造できる。 Further, in order to stably exhibit the effect of adjusting the heating rate, as shown in Patent Document 5, the degree of oxidation of the atmospheric gas (PH 2 O / P) in the temperature range of 770 to 900 ° C. after heating is performed. It is effective to adjust the amount of oxygen in the steel sheet to 2.3 g / m 2 or less by setting PH2) to more than 0.15 and 1.1 or less. If the degree of oxidation of the atmospheric gas is less than 0.15, the adhesion of the glass coating formed on the steel sheet surface deteriorates, and if it exceeds 1.1, defects occur in the glass coating. Further, by setting the oxygen content of the steel sheet to 2.3 g / m 2 or less, it is possible to stably produce a grain-oriented electrical steel sheet having a high magnetic flux density by suppressing decomposition of the (Al, Si) N inhibitor. .

また、脱炭焼鈍の加熱を、特許文献3に示されているように、一次再結晶粒径が7〜18μm となるような温度と時間幅で行うことにより、二次再結晶をより安定して発現でき、さらに優れた方向性電磁鋼板を製造することができる。   Further, as shown in Patent Document 3, the decarburization annealing is performed at a temperature and a time width such that the primary recrystallized grain size becomes 7 to 18 μm, thereby making secondary recrystallization more stable. And a more excellent grain-oriented electrical steel sheet can be produced.

窒素を増加させる窒化処理としては、脱炭焼鈍に引き続いて、アンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍する方法、MnN等の窒化能のある粉末を焼鈍分離剤中に添加すること等により仕上げ焼鈍中に行う方法等がある。
脱炭焼鈍の加熱速度を高めた場合に二次再結晶をより安定的に行わせるためには、(Al,Si)Nの組成比率を調整することが望ましく、また、増加させた後の窒素量としては、鋼中のAl量:[Al]に対する窒素量:[N]の比、すなわち[N]/[Al]が、質量比として14/27以上となるようにする。
その後、マグネシアを主成分とする焼鈍分離剤を塗布した後に、仕上げ焼鈍を行い{110}<001>方位粒を二次再結晶により優先成長させる。
As a nitriding treatment for increasing nitrogen, a method of annealing in an atmosphere containing a nitriding gas such as ammonia following decarburization annealing, and a nitriding powder such as MnN are added to the annealing separator. For example, there is a method to be performed during finish annealing.
In order to perform secondary recrystallization more stably when the heating rate of decarburization annealing is increased, it is desirable to adjust the composition ratio of (Al, Si) N, and the nitrogen after the increase As the amount, the ratio of nitrogen amount: [N] to Al amount in steel: [Al], that is, [N] / [Al] is set to 14/27 or more as a mass ratio.
Thereafter, after applying an annealing separator mainly composed of magnesia, finish annealing is performed to preferentially grow {110} <001> oriented grains by secondary recrystallization.

以上、説明したように、本発明では、珪素鋼を、所定の析出物が完全溶体化する温度以上、かつ1350℃以下の温度で加熱した後に熱間圧延し、熱延板焼鈍し、次いで一回の冷間圧延または焼鈍を介して複数の冷間圧延を施して最終板厚とし、脱炭焼鈍後、焼鈍分離剤を塗布し、仕上げ焼鈍を施すとともに、脱炭焼鈍から仕上げ焼鈍の二次再結晶開始までの間に鋼板に窒化処理を施して、方向性電磁鋼板を製造する際に、熱延板を焼鈍する工程において、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍することにより、熱延板焼鈍後の粒組織においてラメラ間隔を20μm以上に制御するとともに、前記鋼板を脱炭焼鈍する際の昇温過程において、鋼板温度が550℃から720℃にある間を40℃/秒以上、好ましくは50〜250℃/秒、さらに好ましくは75〜125℃/秒の加熱速度で加熱し、次いで、脱炭焼鈍を、一次再結晶粒径が7〜18μmの範囲となるような温度、および時間にわたって行うことにより、磁束密度の高い方向性電磁鋼板を製造することができる。   As described above, in the present invention, silicon steel is heated at a temperature not lower than the temperature at which a predetermined precipitate is completely formed into a solution and not higher than 1350 ° C., and then hot-rolled, hot-rolled and annealed. After multiple cold rolling or annealing, multiple cold rolling is performed to obtain the final thickness, after decarburization annealing, an annealing separator is applied, finish annealing is performed, and secondary from decarburization annealing to final annealing In the process of annealing the hot-rolled sheet when the steel sheet is subjected to nitriding treatment before the start of recrystallization to produce a grain-oriented electrical steel sheet, it is recrystallized by heating to a predetermined temperature of 1000 to 1150 ° C. After that, by annealing at 850 to 1100 ° C. at a lower temperature than that, the lamellar spacing is controlled to 20 μm or more in the grain structure after hot-rolled sheet annealing, and in the temperature rising process when decarburizing and annealing the steel sheet, Steel plate temperature from 550 ° C While being at 20 ° C., heating at a heating rate of 40 ° C./second or more, preferably 50 to 250 ° C./second, more preferably 75 to 125 ° C./second, followed by decarburization annealing, A directional electrical steel sheet having a high magnetic flux density can be produced by performing the treatment over a temperature and time such that the range is 7 to 18 μm.

以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例である。本発明は、この例に限定されるものではなく、本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention. The present invention is not limited to this example, and various conditions can be adopted as long as the object of the present invention is achieved without departing from the present invention.

質量%で、Si:3.2%、C:0.05%、酸可溶性Al:0.024%、N:0.005%、Mn:0.04%、S:0.01%、を含有し、残部Feおよび不可避的不純物からなるスラブを1320℃の温度(この成分系の場合、T1=1242℃、T2=1181℃である。)で加熱した後、2.3mm厚に熱間圧延し、その後、一部の試料(A)は1130℃の一段焼鈍を行い、一部の試料(B)は1130℃+920℃の二段焼鈍を施した。これらの試料を0.3mm厚まで冷間圧延した後、(1)15℃/秒、(2)40℃/秒、および(3)100℃/秒の加熱速度で720℃まで加熱して、その後10℃/秒で850℃の温度まで加熱して脱炭焼鈍し、続いてアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02%に増加させ、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた試料の仕上げ焼鈍後の磁気特性を表1に示す。なお、試料の記号は、焼鈍方法と加熱速度の組み合わせを示す。熱延板焼鈍及び脱炭焼鈍とも本発明の条件を満たす場合には、高い磁束密度が得られる。
In mass%, Si: 3.2%, C: 0.05%, acid-soluble Al: 0.024%, N: 0.005%, Mn: 0.04%, S: 0.01% are contained. Then, the slab composed of the remaining Fe and inevitable impurities is heated at a temperature of 1320 ° C. (in the case of this component system, T1 = 1242 ° C. and T2 = 11181 ° C.) and then hot-rolled to a thickness of 2.3 mm. Thereafter, some samples (A) were subjected to one-step annealing at 1130 ° C., and some samples (B) were subjected to two-step annealing at 1130 ° C. + 920 ° C. After these samples were cold rolled to a thickness of 0.3 mm, (1) heated to 720 ° C. at a heating rate of 15 ° C./second, (2) 40 ° C./second, and (3) 100 ° C./second, After that, decarburization annealing is performed by heating at 10 ° C./second to a temperature of 850 ° C., followed by annealing in an ammonia-containing atmosphere to increase the nitrogen in the steel sheet to 0.02%, and then annealing with MgO as the main component After applying the separating agent, finish annealing was performed.
Table 1 shows the magnetic properties of the obtained sample after finish annealing. In addition, the symbol of a sample shows the combination of an annealing method and a heating rate. A high magnetic flux density is obtained when the conditions of the present invention are satisfied for both hot-rolled sheet annealing and decarburization annealing.

Figure 0005332134
Figure 0005332134

質量%で、Si:3.2%、C:0.055%、酸可溶性Al:0.026%、N:0.005%、Mn:0.05%、Cu:0.1%、S:0.012%を含有し、残部Feおよび不可避的不純物からなるスラブを1330℃の温度(この成分系の場合、T1=1250℃、T2=1206℃、T4=1212℃である。)で加熱した後、2.3mm厚に熱間圧延し、その後、一部の試料(A)は1120℃の一段焼鈍を行い、一部の試料(B)は1120℃+900℃の二段焼鈍を施した。これらの試料を0.3mm厚まで冷間圧延した後、20℃/秒の加熱速度で550℃まで加熱し、さらに(1)15℃/秒、(2)40℃/秒、(3)100℃/秒の加熱速度で550〜720℃まで加熱し、その後15℃/秒の加熱速度でさらに加熱して840℃の温度で脱炭焼鈍し、続いてアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02%に増加させ、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた試料の仕上げ焼鈍後の磁気特性を表2に示す。熱延板焼鈍及び脱炭焼鈍とも本発明の条件を満たす場合には、高い磁束密度が得られる。
In mass%, Si: 3.2%, C: 0.055%, acid-soluble Al: 0.026%, N: 0.005%, Mn: 0.05%, Cu: 0.1%, S: The slab containing 0.012% and the balance Fe and inevitable impurities was heated at a temperature of 1330 ° C. (in this component system, T1 = 1250 ° C., T2 = 1206 ° C., T4 = 1212 ° C.). Thereafter, it was hot-rolled to a thickness of 2.3 mm, after which some samples (A) were subjected to one-step annealing at 1120 ° C., and some samples (B) were subjected to two-step annealing at 1120 ° C. + 900 ° C. After these samples were cold-rolled to a thickness of 0.3 mm, they were heated to 550 ° C. at a heating rate of 20 ° C./second, and (1) 15 ° C./second, (2) 40 ° C./second, (3) 100 The steel sheet is heated to 550 to 720 ° C. at a heating rate of ℃ / second, then further heated at a heating rate of 15 ° C./second, decarburized and annealed at a temperature of 840 ° C., and subsequently annealed in an ammonia-containing atmosphere. Nitrogen was increased to 0.02%, and then an annealing separator mainly composed of MgO was applied, followed by finish annealing.
Table 2 shows the magnetic properties of the obtained sample after finish annealing. A high magnetic flux density is obtained when the conditions of the present invention are satisfied for both hot-rolled sheet annealing and decarburization annealing.

Figure 0005332134
Figure 0005332134

質量%で、Si:3.2%、C:0.055%、酸可溶性Al:0.026%、N:0.005%、Mn:0.05%、Cu:0.1%、S:0.012%、を含有し、残部Feおよび不可避的不純物からなるスラブを1330℃の温度で加熱した後、2.3mm厚に熱間圧延し、その後、1120℃+900℃の二段焼鈍を施しラメラ間隔を24μmとした。この試料を0.3mm厚まで冷間圧延した後、20℃/秒の加熱速度で550℃まで加熱し、さらに40℃/秒の加熱速度で550〜720℃まで加熱し、その後15℃/秒の加熱速度でさらに加熱して840℃の温度で脱炭焼鈍し、続いてアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.08〜0.02%に増加させ、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた窒素量の異なる試料の仕上げ焼鈍後の磁気特性を表3に示す。
In mass%, Si: 3.2%, C: 0.055%, acid-soluble Al: 0.026%, N: 0.005%, Mn: 0.05%, Cu: 0.1%, S: A slab containing 0.012% and the balance Fe and inevitable impurities is heated at a temperature of 1330 ° C., then hot-rolled to a thickness of 2.3 mm, and then subjected to a two-stage annealing at 1120 ° C. + 900 ° C. The lamella spacing was 24 μm. This sample was cold-rolled to a thickness of 0.3 mm, then heated to 550 ° C. at a heating rate of 20 ° C./second, further heated to 550-720 ° C. at a heating rate of 40 ° C./second, and then 15 ° C./second. Is further decarburized and annealed at a temperature of 840 ° C., followed by annealing in an ammonia-containing atmosphere to increase the nitrogen in the steel sheet to 0.08 to 0.02%, and then MgO as the main component After applying the annealing separating agent, finish annealing was performed.
Table 3 shows the magnetic properties after finish annealing of the obtained samples having different amounts of nitrogen.

Figure 0005332134
Figure 0005332134

試料として、実施例3で用いた冷延板を40℃/秒の加熱速度で720℃まで加熱し、その後15℃/秒の加熱速度でさらに加熱して800〜900℃の温度で脱炭焼鈍し、続いてアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.02%に増加させ、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた脱炭焼鈍後の一次再結晶粒径の異なる試料の仕上げ焼鈍後の磁気特性を表4に示す。
As a sample, the cold-rolled sheet used in Example 3 was heated to 720 ° C. at a heating rate of 40 ° C./second, then further heated at a heating rate of 15 ° C./second, and decarburized and annealed at a temperature of 800 to 900 ° C. Subsequently, annealing was performed in an ammonia-containing atmosphere to increase the nitrogen in the steel sheet to 0.02%. Then, after applying an annealing separator mainly composed of MgO, finish annealing was performed.
Table 4 shows the magnetic properties after finish annealing of the obtained samples having different primary recrystallized grain sizes after decarburization annealing.

Figure 0005332134
Figure 0005332134

(参考例)
質量%で、Si:3.2%、C:0.055%、酸可溶性Al:0.026%、N:0.006%、Mn:0.05%、S:0.05%、Se:0.015%、Sn:0.1%を含有し、残部Feおよび不可避的不純物からなるスラブを1330℃の温度(この成分系の場合、T1=1269℃、T2=1152℃、T3=1217℃)で加熱した後、2.3mm厚に熱間圧延し、その後、一部の試料(A)は1130℃の一段焼鈍を行い、一部の試料(B)は1130℃+920℃の二段焼鈍を施した。これらの試料を0.3mm厚まで冷間圧延した後、20℃/秒の加熱速度で550℃まで加熱し、さらに(1)15℃/秒、(2)100℃/秒の加熱速度で550〜720℃まで加熱し、その後15℃/秒の加熱速度でさらに加熱して840℃の温度で脱炭焼鈍し、続いてアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.018%に増加させ、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
得られた試料の仕上げ焼鈍後の磁気特性を表5に示す。
(Reference example)
In mass%, Si: 3.2%, C: 0.055%, acid-soluble Al: 0.026%, N: 0.006%, Mn: 0.05%, S: 0.05%, Se: A slab containing 0.015%, Sn: 0.1%, and the balance Fe and inevitable impurities is heated to a temperature of 1330 ° C. (in the case of this component system, T1 = 1269 ° C., T2 = 11152 ° C., T3 = 1217 ° C. ) And then hot rolled to a thickness of 2.3 mm, after which some samples (A) are subjected to one-step annealing at 1130 ° C. and some samples (B) are two-step annealing at 1130 ° C. + 920 ° C. Was given. These samples were cold-rolled to a thickness of 0.3 mm, then heated to 550 ° C. at a heating rate of 20 ° C./second, and (550) at a heating rate of (1) 15 ° C./second and (2) 100 ° C./second. Heat to ~ 720 ° C, then further heat at a heating rate of 15 ° C / second and decarburize and anneal at a temperature of 840 ° C, then anneal in an ammonia-containing atmosphere to increase the nitrogen in the steel sheet to 0.018% Then, after applying an annealing separator mainly composed of MgO, finish annealing was performed.
Magnetic properties after finish annealing of the obtained samples are shown in Table 5.

Figure 0005332134
Figure 0005332134

実施例3の冷延板を用いて、加熱速度(A)15℃/秒、(B)50℃/秒の加熱速度で、(1)500℃、(2)550℃および(3)600℃の温度まで加熱し、その後、100℃/秒の加熱速度で720℃まで加熱し、更に10℃/秒で830℃の温度まで加熱して脱炭焼鈍を施した。続いてアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.018%に増加させ、次いで、MgOを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。
仕上げ焼鈍後の試料の磁気特性を表6に示す。低温域の加熱速度を速めることにより、100℃/秒で加熱する開始温度を600℃に高めても良好な磁気特性が得られることが分かる。
Using the cold-rolled plate of Example 3, at a heating rate of (A) 15 ° C./sec, (B) 50 ° C./sec, (1) 500 ° C., (2) 550 ° C. and (3) 600 ° C. After that, it was heated to 720 ° C. at a heating rate of 100 ° C./second, and further heated to 830 ° C. at 10 ° C./second to perform decarburization annealing. Subsequently, annealing was performed in an ammonia-containing atmosphere to increase the nitrogen in the steel sheet to 0.018%. Then, after applying an annealing separator mainly composed of MgO, finish annealing was performed.
Table 6 shows the magnetic properties of the samples after finish annealing. It can be seen that by increasing the heating rate in the low temperature region, good magnetic properties can be obtained even if the starting temperature of heating at 100 ° C./second is increased to 600 ° C.

Figure 0005332134
Figure 0005332134

冷延前粒組織のラメラ間隔と磁束密度B8の関係を示す図である。It is a figure which shows the relationship between the lamella space | interval of the grain structure before cold rolling, and magnetic flux density B8. 脱炭焼鈍の昇温途中の550〜720℃の温度域の加熱速度と製品の磁束密度(B8)の関係を示す図である。It is a figure which shows the relationship between the heating rate of the temperature range of 550-720 degreeC in the middle of temperature rising of decarburization annealing, and the magnetic flux density (B8) of a product.

Claims (8)

質量%で、Si:0.8〜7%、C:0.085%以下、酸可溶性Al:0.01〜0.065%、N:0.0075%以下、Mn:0.02〜0.20%、Seq.=S+0.406×Se:0.003〜0.05%を含有し、残部Feおよび不可避的不純物からなる珪素鋼素材を、下記式で表される温度T1、T2、およびT3(℃)のいずれの温度以上、1350℃以下の温度で加熱した後に熱間圧延し、得られた熱延板を焼鈍し、次いで一回の冷間圧延または焼鈍を介して複数の冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、焼鈍分離剤を塗布し、仕上げ焼鈍を施すとともに、脱炭焼鈍から仕上げ焼鈍の二次再結晶開始までの間に鋼板の窒素量を増加させる処理を施すことよりなる方向性電磁鋼板の製造方法において、
前記熱延板の焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより低い850〜1100℃の温度で焼鈍する工程で行うことにより、焼鈍後の粒組織においてラメラ間隔を20μm以上に制御するとともに、
前記最終板厚の鋼板を脱炭焼鈍する際の昇温過程において、鋼板温度が550℃から720℃にある間を40℃/秒以上の加熱速度で加熱することを特徴とする方向性電磁鋼板の製造方法。
T1=10062/(2.72−log([Al]×[N]))−273
T2=14855/(6.82−log([Mn]×[S]))−273
T3=10733/(4.08−log([Mn]×[Se]))−273
ここで、[Al]、[N]、[Mn]、[S]、[Se]は、それぞれ
酸可溶性Al、N、Mn、S、Seの含有量である。
In mass%, Si: 0.8-7%, C: 0.085% or less, acid-soluble Al: 0.01-0.065%, N: 0.0075% or less, Mn: 0.02-0. 20%, Seq = S + 0.406 × Se:. containing from 0.003 to 0.05 percent, the silicon steel material ing the balance Fe and unavoidable impurities, the temperature T1, T2 represented by the following formula, and Hot rolling after heating at any temperature of T3 (° C.) or higher and 1350 ° C. or lower, annealing the obtained hot-rolled sheet, and then a plurality of cold through one cold rolling or annealing The steel sheet is rolled to the final thickness, and the steel sheet is decarburized and annealed, and then the annealing separator is applied, finish annealing is performed, and the steel sheet between decarburization annealing and the start of secondary recrystallization of finish annealing is applied. In a method for producing a grain-oriented electrical steel sheet, comprising applying a treatment to increase the amount of nitrogen
In the grain structure after annealing, the hot-rolled sheet is annealed at a temperature of 850 to 1100 ° C., which is lower than 850 to 1100 ° C., after being recrystallized by heating to a predetermined temperature of 1000 to 1150 ° C. While controlling the lamella spacing to 20 μm or more,
A grain-oriented electrical steel sheet, wherein the steel sheet is heated at a heating rate of 40 ° C./second or more while the steel sheet temperature is in the range of 550 ° C. to 720 ° C. in the temperature raising process when decarburizing and annealing the steel plate having the final thickness. Manufacturing method.
T1 = 10062 / (2.72−log ([Al] × [N])) − 273
T2 = 14855 / (6.82-log ([Mn] × [S]))-273
T3 = 10733 / (4.08-log ([Mn] × [Se]))-273
Here, [Al], [N], [Mn], [S], and [Se] are the contents of acid-soluble Al, N, Mn, S, and Se, respectively.
前記珪素鋼素材が、さらに、質量%で、Cu:0.01〜0.30%含有し,下記のT4(℃)以上の温度で加熱した後に熱間圧延することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
T4=43091/(25.09−log([Cu]×[Cu]×[S]))−273
ここで、[Cu]は、Cuの含有量である。
The silicon steel material further contains, by mass%, Cu: 0.01 to 0.30%, and is hot-rolled after being heated at a temperature equal to or higher than T4 (° C) below. The manufacturing method of the grain-oriented electrical steel sheet described in 1.
T4 = 43091 / (25.09-log ([Cu] * [Cu] * [S]))-273
Here, [Cu] is the Cu content.
前記鋼板を脱炭焼鈍する際の昇温過程において、鋼板温度が550℃から720℃にある間を50〜250℃/秒の加熱速度で加熱することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。   The temperature rising process at the time of decarburizing annealing of the steel sheet is performed at a heating rate of 50 to 250 ° C / second while the steel sheet temperature is in the range of 550 ° C to 720 ° C. Method for producing a grain-oriented electrical steel sheet. 前記鋼板を脱炭焼鈍する際の、前記鋼板温度が550℃から720℃にある間の加熱を、誘導加熱で行うことを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。   The directionality according to any one of claims 1 to 3, wherein the heating during the decarburization annealing of the steel plate is performed by induction heating while the steel plate temperature is between 550 ° C and 720 ° C. A method for producing electrical steel sheets. 前記鋼板を脱炭焼鈍する際、その昇温過程において前記加熱速度で加熱する温度範囲をTs(℃)から720℃としたときに、室温から500℃までの加熱速度H(℃/秒)に応じて以下のTs(℃)から720℃までの範囲とすることを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。
H≦15: Ts≦550
15<H: Ts≦600
When the steel sheet is decarburized and annealed, the heating rate H (° C./sec) from room temperature to 500 ° C. when the temperature range heated at the heating rate in the temperature raising process is Ts (° C.) to 720 ° C. The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 4, wherein the range is from the following Ts (° C) to 720 ° C.
H ≦ 15: Ts ≦ 550
15 <H: Ts ≦ 600
前記脱炭焼鈍を、脱炭焼鈍後の一次再結晶粒径が7μm以上18μm未満となるような温度と時間幅で行うことを特徴とする請求項1〜5のいずれか1項に記載の方向性電磁鋼板の製造方法。   The direction according to any one of claims 1 to 5, wherein the decarburization annealing is performed at a temperature and a time width such that a primary recrystallization grain size after decarburization annealing is 7 µm or more and less than 18 µm. Method for producing an electrical steel sheet. 前記窒素量を増加させる処理を、鋼板の窒素量[N]が、鋼板の酸可溶性Alの量[Al]に応じて、式:[N]≧14/27[Al]を満足するように行うことを特徴とする請求項1〜6のいずれか1項に記載の方向性電磁鋼板の製造方法。   The treatment for increasing the nitrogen amount is performed so that the nitrogen amount [N] of the steel sheet satisfies the formula: [N] ≧ 14/27 [Al] according to the amount of acid-soluble Al [Al] of the steel plate. The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 6. 前記珪素鋼素材が、さらに、質量%で、Sn:0.3%以下を含有することを特徴とする請求項1〜7のいずれか1項に記載の方向性電磁鋼板の製造方法。 Said silicon steel material further contains, by mass%, S n: the manufacturing method of the grain-oriented electrical steel sheet according to claim 1, characterized in that it contains 0.3% or less.
JP2007129385A 2006-05-24 2007-05-15 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet Active JP5332134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129385A JP5332134B2 (en) 2006-05-24 2007-05-15 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006144062 2006-05-24
JP2006144062 2006-05-24
JP2007129385A JP5332134B2 (en) 2006-05-24 2007-05-15 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2008001981A JP2008001981A (en) 2008-01-10
JP5332134B2 true JP5332134B2 (en) 2013-11-06

Family

ID=39006607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129385A Active JP5332134B2 (en) 2006-05-24 2007-05-15 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5332134B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757693B2 (en) * 2010-05-25 2015-07-29 新日鐵住金株式会社 Low iron loss unidirectional electrical steel sheet manufacturing method
EP2584054B1 (en) * 2010-06-18 2019-12-25 JFE Steel Corporation Oriented electromagnetic steel plate production method
JP5994981B2 (en) * 2011-08-12 2016-09-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN103429775B (en) 2011-12-16 2015-09-23 Posco公司 There is the preparation method of the grain-oriented electrical steel sheet of fine magnetic property
JP6607010B2 (en) * 2015-12-08 2019-11-20 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
KR102088405B1 (en) * 2017-12-26 2020-03-12 주식회사 포스코 Manufacturing method of oriented electrical steel sheet
JP7110642B2 (en) * 2018-03-20 2022-08-02 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
JP7110641B2 (en) * 2018-03-20 2022-08-02 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128646A (en) * 1992-10-15 1994-05-10 Nippon Steel Corp Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP3488181B2 (en) * 1999-09-09 2004-01-19 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4456317B2 (en) * 2001-04-16 2010-04-28 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
JP4427226B2 (en) * 2001-04-18 2010-03-03 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2008001981A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP5729414B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5320690B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP2008001979A (en) Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method
JP5300210B2 (en) Method for producing grain-oriented electrical steel sheet
JP5332134B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPWO2011148849A1 (en) Manufacturing method of unidirectional electrical steel sheet
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
JP6607010B2 (en) Method for producing grain-oriented electrical steel sheet
JP4714637B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2009256713A (en) Method for manufacturing grain-oriented electrical steel sheet
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP3943837B2 (en) Method for producing grain-oriented electrical steel sheet
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP5068580B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP2002069532A (en) Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
JP3485532B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350