JP6888603B2 - Manufacturing method of grain-oriented electrical steel sheet - Google Patents

Manufacturing method of grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6888603B2
JP6888603B2 JP2018225107A JP2018225107A JP6888603B2 JP 6888603 B2 JP6888603 B2 JP 6888603B2 JP 2018225107 A JP2018225107 A JP 2018225107A JP 2018225107 A JP2018225107 A JP 2018225107A JP 6888603 B2 JP6888603 B2 JP 6888603B2
Authority
JP
Japan
Prior art keywords
mass
temperature
annealing
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018225107A
Other languages
Japanese (ja)
Other versions
JP2020084303A (en
Inventor
今村 猛
今村  猛
之啓 新垣
之啓 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018225107A priority Critical patent/JP6888603B2/en
Publication of JP2020084303A publication Critical patent/JP2020084303A/en
Application granted granted Critical
Publication of JP6888603B2 publication Critical patent/JP6888603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、変圧器の鉄心材料等に用いて好適な、磁気特性に優れる方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties, which is suitable for use as an iron core material of a transformer or the like.

電磁鋼板は、変圧器やモータ等の鉄心として広く用いられている軟磁性材料であり、特に方向性電磁鋼板は、その結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積し、磁気特性に優れていることから、主に大型の変圧器等に使用されている。変圧器の無負荷損(エネルギーロス)を低減するためには、方向性電磁鋼板には低鉄損であることが必要である。この鉄損を低減するため、従来、板厚の低減やSi含有量の増加、結晶方位の配向性向上、鋼板への張力付与、鋼板表面の平滑化、二次再結晶組織の細粒化などの手段が用いられてきた。 Electrical steel sheets are soft magnetic materials widely used as iron cores for transformers, motors, etc. In particular, grain-oriented electrical steel sheets are highly integrated in the {110} <001> orientation, which is called the Goss orientation. Since it has excellent magnetic characteristics, it is mainly used for large transformers. In order to reduce the no-load loss (energy loss) of the transformer, it is necessary for the grain-oriented electrical steel sheet to have a low iron loss. In order to reduce this iron loss, conventional methods such as reducing the plate thickness and increasing the Si content, improving the orientation of the crystal orientation, applying tension to the steel sheet, smoothing the surface of the steel sheet, and refining the secondary recrystallization structure, etc. Means have been used.

このうち、二次再結晶組織を細粒化させる技術としては、脱炭焼鈍時に急速加熱する方法や脱炭焼鈍直前に急速加熱処理し、一次再結晶集合組織を改善する方法が多数開示されている。例えば、特許文献1には、最終板厚まで圧延したストリップを脱炭焼鈍する直前に、酸素ポテンシャルPHO/PHが0.2以下の非酸化性雰囲気中で100℃/s以上で700℃以上の温度に急速加熱することにより、低鉄損の方向性電磁鋼板を得る技術が開示されている。 Among these, as a technique for finely granulating the secondary recrystallization structure, many methods have been disclosed, such as a method of rapid heating during decarburization annealing and a method of rapid heat treatment immediately before decarburization annealing to improve the primary recrystallization texture. There is. For example, Patent Document 1 states that immediately before decarburizing and annealing a strip rolled to a final plate thickness, the oxygen potential PH 2 O / PH 2 is 700 at 100 ° C./s or higher in a non-oxidizing atmosphere of 0.2 or lower. A technique for obtaining a grain-oriented electrical steel sheet having low iron loss by rapidly heating to a temperature of ° C. or higher is disclosed.

また、特許文献2には、雰囲気中の酸素濃度を500ppm以下とし、かつ、加熱速度100℃/s以上で800〜950℃の温度に急速加熱した後、急速加熱した温度よりも低い775〜840℃の温度で保持し、その後、815〜875℃の温度で脱炭焼鈍することにより、低鉄損の方向性電磁鋼板を得る技術が開示されている。 Further, in Patent Document 2, the oxygen concentration in the atmosphere is set to 500 ppm or less, and the temperature is rapidly heated to 800 to 950 ° C. at a heating rate of 100 ° C./s or more, and then rapidly heated to a temperature of 800 to 950 ° C., which is lower than the temperature of 775 to 840. A technique for obtaining a grain-oriented electrical steel sheet having low iron loss by holding at a temperature of ° C. and then decarburizing and annealing at a temperature of 815 to 875 ° C. is disclosed.

また、特許文献3には、脱炭焼鈍工程の600℃以上の温度域を95℃/s以上の昇温速度で800℃以上の温度に加熱し、この温度域の雰囲気を適正に制御することにより、被膜特性と磁気特性に優れる方向性電磁鋼板を得る技術が開示されている。 Further, Patent Document 3 states that the temperature range of 600 ° C. or higher in the decarburization annealing step is heated to a temperature of 800 ° C. or higher at a heating rate of 95 ° C./s or higher, and the atmosphere in this temperature range is appropriately controlled. Discloses a technique for obtaining a grain-oriented electrical steel sheet having excellent coating properties and magnetic properties.

また、特許文献4には、ホットストリップ中のAlN量をN as AlNにして25ppm以下に制限し、かつ脱炭焼鈍時に加熱速度80℃/s以上で700℃以上の温度まで加熱することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。 Further, in Patent Document 4, the amount of AlN in the hot strip is limited to 25 ppm or less by setting it to Nas AlN, and heating is performed at a heating rate of 80 ° C./s or more to a temperature of 700 ° C. or more during decarburization annealing. A technique for obtaining a grain-oriented electrical steel sheet with low iron loss is disclosed.

これら急速加熱の技術思想は、再結晶温度近傍まで短時間で昇温することにより、通常の加熱速度であれば優先的に形成するγファイバー(<111>//ND方位)の発達を抑制し、二次再結晶の核となる{110}<001>組織の発生を促進することで一次再結晶集合組織の改質し、二次再結晶後の結晶粒を小さくすることであると理解されている。 These technical ideas of rapid heating suppress the development of γ fibers (<111> // ND orientation) that are preferentially formed at normal heating rates by raising the temperature to near the recrystallization temperature in a short time. It is understood that the primary recrystallization texture is modified by promoting the generation of the {110} <001> structure that is the core of the secondary recrystallization, and the crystal grains after the secondary recrystallization are reduced. ing.

これらの急速加熱による一次再結晶集合組織改善の手法の多くは、室温から概ね700℃以上の温度範囲における昇温速度を一義的に規定するものであり、これらの技術を適用することにより、二次再結晶粒が細かくなり、鉄損が改善することが知られている。 Many of these methods for improving the primary recrystallization texture by rapid heating uniquely define the rate of temperature rise in the temperature range from room temperature to approximately 700 ° C. or higher. It is known that the next recrystallized grains become finer and the iron loss is improved.

しかしながら、急速加熱技術では、加熱時の鋼板の温度ムラに起因すると考えられる磁気特性のばらつきが散見されるという問題があった。そこで、磁気特性のばらつきを低減するために、上記急速加熱の途中の中間温度において、該温度に短時間保持する保定処理を1回(特許文献5)もしくは複数回(特許文献6)施す方向性電磁鋼板の製造方法が開示されている。 However, the rapid heating technique has a problem that variations in magnetic characteristics, which are considered to be caused by temperature unevenness of the steel sheet during heating, are scattered. Therefore, in order to reduce the variation in magnetic characteristics, the direction is to perform the retention treatment for a short time at the intermediate temperature during the rapid heating once (Patent Document 5) or a plurality of times (Patent Document 6). A method for manufacturing an electromagnetic steel sheet is disclosed.

特開平07−062436号公報Japanese Unexamined Patent Publication No. 07-062436 特開平10−298653号公報Japanese Unexamined Patent Publication No. 10-298653 特開2003−027194号公報Japanese Unexamined Patent Publication No. 2003-027194 特開平10−130729号公報Japanese Unexamined Patent Publication No. 10-130729 特開2014−025106号公報Japanese Unexamined Patent Publication No. 2014-025106 特開2015−183189号公報Japanese Unexamined Patent Publication No. 2015-183189

上記に開示された技術では、多くの場合、100〜300℃/s程度の昇温速度が急速加熱とされ、その比較として、20〜50℃/s程度の昇温速度が従来条件として評価されている。
しかしながら、発明者らが、急速加熱の効果を検証するため300℃/sを超える昇温速度で脱炭焼鈍を施したところ、昇温速度を400℃/s以上と極めて速くした場合、磁束密度が低下するという新たな問題が顕在化した。すなわち、本来、急速加熱は、鉄損低減を目的に開発された技術であるが、磁束密度が劣化すると、それに伴い鉄損も劣化するため、期待するほどの鉄損低減効果が得られないことが明らかとなった。
In the techniques disclosed above, in many cases, a heating rate of about 100 to 300 ° C./s is regarded as rapid heating, and as a comparison, a heating rate of about 20 to 50 ° C./s is evaluated as a conventional condition. ing.
However, when the inventors performed decarburization annealing at a heating rate exceeding 300 ° C./s to verify the effect of rapid heating, when the heating rate was extremely high at 400 ° C./s or more, the magnetic flux density. A new problem has emerged. That is, although rapid heating was originally developed for the purpose of reducing iron loss, when the magnetic flux density deteriorates, the iron loss also deteriorates, so that the expected iron loss reduction effect cannot be obtained. Became clear.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、脱炭焼鈍時の昇温速度を極めて早くした場合であっても、磁気特性、特に鉄損特性に優れる方向性電磁鋼板を製造する方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to have magnetic characteristics, particularly iron loss characteristics, even when the heating rate at the time of decarburization annealing is extremely high. The purpose is to propose a method for producing an excellent grain-oriented electrical steel sheet.

発明者らは、上記課題の解決に向け、脱炭焼鈍の昇温パターンが磁気特性に及ぼす影響に着目して鋭意検討を重ねた。その結果、脱炭焼鈍の急速加熱で昇温途中の中間温度で短時間の保定処理を施す際、該中間温度の前後で昇温速度を変化させる、具体的には、室温から中間温度までの低温域では昇温速度を遅く、かつ、中間温度より高温域では昇温速度を早くすることで、磁束密度の低下を招くことなく、低鉄損の方向性電磁鋼板を安定して得られることを見出し、本発明を開発するに至った。 In order to solve the above problems, the inventors have made extensive studies focusing on the effect of the temperature rise pattern of decarburization annealing on the magnetic characteristics. As a result, when a short-time retention treatment is performed at an intermediate temperature during temperature rise by rapid heating of decarburization annealing, the heating rate is changed before and after the intermediate temperature, specifically, from room temperature to intermediate temperature. By slowing the temperature rise rate in the low temperature range and increasing the temperature rise rate in the high temperature range above the intermediate temperature, it is possible to stably obtain a directional electromagnetic steel plate with low iron loss without causing a decrease in magnetic flux density. , And have come to develop the present invention.

すなわち、本発明は、C:0.02〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.02〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後,鋼板表面にMgOを主体とした焼鈍分離剤を塗布し、純化処理を含む仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記脱炭焼鈍の室温から700℃までの昇温時に、300℃以上500℃以下の任意の中間温度で0.1〜5.0秒間保持する保定処理を施してから再度加熱する際に、室温から上記中間温度までの平均昇温速度を200℃/s以下とし、かつ、上記保定処理後の上記中間温度から700℃までの平均昇温速度を400℃/s以上とすることを特徴とする方向性電磁鋼板の製造方法を提案する。 That is, the present invention contains C: 0.02 to 0.10 mass%, Si: 2.0 to 8.0 mass% and Mn: 0.02 to 1.0 mass%, and the balance is derived from Fe and unavoidable impurities. A steel material having the same composition is hot-rolled to obtain a hot-rolled plate, and if necessary, hot-rolled plate is annealed, and then cold-rolled once or two or more times with intermediate annealing sandwiched between them to make a final plate. It consists of a series of steps in which a thick cold-rolled sheet is subjected to decarburization annealing that also serves as primary recrystallization annealing, then an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and finish annealing including purification treatment is performed. In the method for producing a directional electromagnetic steel sheet, a retention treatment is performed in which the decarburization annealing is held at an arbitrary intermediate temperature of 300 ° C. or higher and 500 ° C. or lower for 0.1 to 5.0 seconds when the temperature is raised from room temperature to 700 ° C. Then, when heating again, the average temperature rise rate from room temperature to the intermediate temperature is set to 200 ° C./s or less, and the average temperature rise rate from the intermediate temperature to 700 ° C. after the retention treatment is 400 ° C./s. We propose a method for manufacturing a directional electromagnetic steel sheet, which is characterized by having s or more.

本発明の方向性電磁鋼板の製造方法は、上記脱炭焼鈍を800℃以上の任意の均熱温度で施す際に、750℃から均熱温度までの平均昇温速度を10℃/s以下とすることが好ましい。 In the method for producing a directional electromagnetic steel plate of the present invention, when the decarburization annealing is performed at an arbitrary soaking temperature of 800 ° C. or higher, the average heating rate from 750 ° C. to the soaking temperature is 10 ° C./s or less. It is preferable to do so.

また、本発明の方向性電磁鋼板の製造方法は、上記脱炭焼鈍の昇温時において、室温から上記中間温度までの平均昇温速度を150℃/s以下とすることが好ましい。 Further, in the method for producing grain-oriented electrical steel sheets of the present invention, it is preferable that the average heating rate from room temperature to the intermediate temperature is 150 ° C./s or less when the temperature is raised by decarburization annealing.

また、本発明の上記鋼素材は、上記成分組成に加えてさらに、下記A群およびB群のうちの少なくとも1群のインヒビター形成成分を含有することが好ましい。

・A群;Al:0.005〜0.050mass%およびN:0.003〜0.020mass%
・B群;Se:0.003〜0.030mass%およびS:0.002〜0.03mass%から選ばれる1種または2種
Further, the steel material of the present invention preferably further contains at least one inhibitor-forming component of the following groups A and B in addition to the above component composition.
Note: Group A; Al: 0.005 to 0.050 mass% and N: 0.003 to 0.020 mass%
Group B; Se: 0.003 to 0.030 mass% and S: 0.002 to 0.03 mass%, one or two selected

また、本発明の上記鋼素材は、上記成分組成に加えてさらに、下記C群およびD群のうちの少なくとも1群の成分を含有することが好ましい。

・C群;Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%およびP:0.005〜0.50mass%のうちから選ばれる1種または2種以上
・D群;Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%およびNb:0.0010〜0.0200mass%のうちから選ばれる1種または2種以上
Further, the steel material of the present invention preferably further contains at least one component of the following groups C and D in addition to the above component composition.
Description-Group C: One or more selected from Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass% and P: 0.005 to 0.50 mass%-D Group; Ni: 0.01 to 1.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0. One or more selected from 005 to 0.100 mass%, B: 0.0002 to 0.0025 mass% and Nb: 0.0010 to 0.0200 mass%

本発明によれば、脱炭焼鈍の急速加熱で昇温途中の中間温度で短時間の保定処理を施す際、該中間温度の前後の昇温速度を適正化することで、高磁束密度かつ低鉄損の方向性電磁鋼板を安定して製造することが可能となる。したがって、本発明によれば、変圧器等の鉄心材料として好適な方向性電磁鋼板を提供することができる。 According to the present invention, when performing a short-term retention treatment at an intermediate temperature during temperature rise by rapid heating of decarburization annealing, the temperature rise rate before and after the intermediate temperature is optimized to achieve high magnetic flux density and low magnetic flux density. Directional iron loss direction It becomes possible to stably manufacture an electromagnetic steel sheet. Therefore, according to the present invention, it is possible to provide a grain-oriented electrical steel sheet suitable as an iron core material for a transformer or the like.

脱炭焼鈍時の昇温パターンが方向性電磁鋼板の磁束密度Bに及ぼす影響を示すグラフである。It is a graph which shows the influence which the temperature rise pattern at the time of decarburization annealing has on the magnetic flux density B 8 of the grain-oriented electrical steel sheet. 脱炭焼鈍時の昇温パターンが方向性電磁鋼板の鉄損W17/50に及ぼす影響を示すグラフである。It is a graph which shows the influence which the temperature rise pattern at the time of decarburization annealing has on the iron loss W 17/50 of a grain-oriented electrical steel sheet.

本発明を開発する契機となった実験について説明する。
<実験1>
C:0.055mass%、Si:3.18mass%、Mn:0.12mass%を含有する鋼スラブを連続鋳造にて製造し、1400℃の温度に加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、冷間圧延して1.5mmの中間板厚とし、1130℃×100秒の中間焼鈍を施した後、最終冷間圧延して板厚0.23mmの冷延板に仕上げた。次いで、50vol%H−50vol%Nで露点が60℃の湿潤雰囲気下で、850℃×120秒の一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、昇温途中の中間温度500℃で1秒間保持する保定処理し、室温(25℃)から500℃までの平均昇温速度および保定処理後の500℃から700℃までの平均昇温速度を種々に変更した。なお、室温(25℃)から500℃までの平均昇温速度は、その温度差である475℃を、保定処理時間を含んだ加熱所要時間で除した平均昇温速度である。また、700℃から750℃までは50℃/s、750℃から均熱温度である850℃までは5℃/sで昇温した。その後、MgOを主体とする焼鈍分離剤を塗布し、乾燥した後、室温から1200℃まで約20℃/時間で昇温して二次再結晶を完了させた後、水素雰囲気下で、1200℃に10時間保持する純化処理を行う仕上焼鈍を施し、製品板とした。
The experiment that triggered the development of the present invention will be described.
<Experiment 1>
A steel slab containing C: 0.055 mass%, Si: 3.18 mass%, and Mn: 0.12 mass% is produced by continuous casting, heated to a temperature of 1400 ° C., and then hot-rolled to have a plate thickness of 2. .2 mm hot-rolled plate, hot-rolled plate annealed at 1050 ° C for 60 seconds, then cold-rolled to an intermediate plate thickness of 1.5 mm, after intermediate annealing at 1130 ° C for 100 seconds. The final cold rolling was performed to obtain a cold rolled plate having a plate thickness of 0.23 mm. Then, the dew point at 50vol% H 2 -50vol% N 2 is in a humid atmosphere at 60 ° C., was subjected to a decarburization annealing serving also as a primary recrystallization annealing of 850 ° C. × 120 seconds. At this time, the retention treatment is carried out at an intermediate temperature of 500 ° C. during the temperature rise for 1 second, and the average temperature rise rate from room temperature (25 ° C.) to 500 ° C. and the average temperature rise rate from 500 ° C. to 700 ° C. after the retention treatment. Was changed in various ways. The average heating rate from room temperature (25 ° C.) to 500 ° C. is the average heating rate obtained by dividing the temperature difference of 475 ° C. by the required heating time including the retention treatment time. The temperature was raised at 50 ° C./s from 700 ° C. to 750 ° C. and at 5 ° C./s from 750 ° C. to 850 ° C., which is the soaking temperature. Then, an annealing separator mainly containing MgO is applied, dried, and then heated from room temperature to 1200 ° C. at about 20 ° C./hour to complete secondary recrystallization, and then at 1200 ° C. under a hydrogen atmosphere. Was subjected to finish annealing, which was subjected to a purification treatment of holding for 10 hours, to obtain a product plate.

上記のようにして得た製品板からサンプルを採取し、磁気特性をJIS C2550−1:2011に記載のエプスタイン試験法で測定した。得られた磁束密度Bと昇温パターンとの関係を図1に、鉄損W17/50と昇温パターンとの関係を図2に示す。これらの図より、中間温度である500℃より高温側(500℃から700℃まで)の平均昇温速度を400℃/s以上とした場合には、中間温度より低温側(室温(25℃)から500℃まで)の昇温速度条件により、磁気特性が大きく変化しており、中間温度より低温側の平均昇温速度を200℃/s以下とすることで、従来の全期間(室温(25℃)から700℃まで)を200℃/s程度の平均昇温速度とする場合と同等以上の磁気特性が得られることがわかる。特に室温(25℃)から500℃までの昇温速度を150℃以下とすることで、従来よりも優れた鉄損特性が得られる。 A sample was taken from the product plate obtained as described above, and the magnetic properties were measured by the Epstein test method described in JIS C2550-1: 2011. The relationship between the obtained magnetic flux density B 8 and the temperature rise pattern is shown in FIG. 1, and the relationship between the iron loss W 17/50 and the temperature rise pattern is shown in FIG. From these figures, when the average rate of temperature rise on the side (from 500 ° C to 700 ° C) higher than the intermediate temperature of 500 ° C is 400 ° C / s or higher, the side lower than the intermediate temperature (room temperature (25 ° C)). The magnetic characteristics change greatly depending on the temperature rise rate condition from to 500 ° C., and by setting the average temperature rise rate on the lower temperature side than the intermediate temperature to 200 ° C./s or less, the conventional whole period (room temperature (25)) It can be seen that magnetic characteristics equal to or higher than those in the case where the average temperature rise rate is about 200 ° C./s) can be obtained from (° C.) to 700 ° C.). In particular, by setting the heating rate from room temperature (25 ° C.) to 500 ° C. to 150 ° C. or lower, excellent iron loss characteristics can be obtained.

本実験結果のように、中間温度より高温側(500℃から700℃まで)の平均昇温速度を400℃/s以上とした場合に、中間温度より低温側(室温(25℃)から500℃まで)の平均昇温速度条件により磁気特性が大きく変化する理由については、現時点では十分に明らかではないが、発明者らは次のように考えている。 As shown in the results of this experiment, when the average temperature rise rate on the higher temperature side (from 500 ° C to 700 ° C) than the intermediate temperature is 400 ° C / s or more, the temperature on the lower side than the intermediate temperature (room temperature (25 ° C) to 500 ° C) The reason why the magnetic characteristics change significantly depending on the average temperature rise rate condition (up to) is not sufficiently clear at this time, but the inventors think as follows.

上述したように、脱炭焼鈍時の急速加熱の効果は、50℃/s程度の通常加熱速度であれば優先的に形成するγファイバー(<111>//ND方位)の発達を抑制し、二次再結晶の核となる{110}<001>組織の発生を促進するなどの一次再結晶集合組織の改質を介し、二次再結晶後の結晶粒を小さくすることで、低鉄損化が達成されるということである。よって、再結晶が始まる500℃から700℃までの昇温速度をより速くすることで、二次再結晶後の結晶粒微細化効果がより発揮されると期待される。 As described above, the effect of rapid heating during decarburization annealing suppresses the development of γ fibers (<111> // ND orientation) that are preferentially formed at a normal heating rate of about 50 ° C./s. Low iron loss by reducing the crystal grains after secondary recrystallization through modification of the primary recrystallization texture, such as promoting the generation of the {110} <001> structure that is the core of secondary recrystallization. It means that the conversion will be achieved. Therefore, it is expected that the effect of grain refinement after the secondary recrystallization will be more exerted by increasing the rate of temperature rise from 500 ° C. to 700 ° C. at which recrystallization starts.

そのうえで、本実験では、急速加熱途中の中間温度で短時間の保定処理を採用している。上述の通り、この処理は磁気特性の安定化には必須と考えており、この作用は、歪の蓄積しやすい<111>//ND圧延安定方位の歪の開放を優先して起こさせ、該方位の再結晶を抑制することにより、<111>//ND方位の圧延組織から生じる<111>//ND方位の再結晶粒を減少させることにあると考えている。しかし、室温から500℃のような低温域での昇温速度が速いと、鋼中に固溶したCが移動する時間が短いため、圧延により導入された転位をCで固着することが困難となり、その結果、中間温度での保定処理時に、過度に歪が開放されて回復組織となり、再結晶後の方位やその後の二次再結晶に悪影響を与える。しかし、低温域の昇温速度を遅くすることで、転位がCで固着されて動きにくくなり、中間温度での保定処理時における歪の解放と残存のバランスがとれ、磁気特性が良好となったものと考えられる。 In addition, in this experiment, a short-time retention process is adopted at an intermediate temperature during rapid heating. As described above, this process is considered to be indispensable for stabilizing the magnetic characteristics, and this action preferentially causes the release of the strain in the <111> // ND rolling stable direction in which the strain tends to accumulate. By suppressing the recrystallization of the orientation, it is considered that the number of recrystallized grains of the <111> // ND orientation generated from the rolled structure of the <111> // ND orientation is reduced. However, if the rate of temperature rise in a low temperature range such as room temperature to 500 ° C. is high, the time for solid solution C to move in the steel is short, and it becomes difficult to fix the dislocations introduced by rolling with C. As a result, during the retention process at an intermediate temperature, the strain is excessively released to form a recovered structure, which adversely affects the orientation after recrystallization and the subsequent secondary recrystallization. However, by slowing the temperature rise rate in the low temperature range, the dislocations are fixed at C and become difficult to move, and the strain release and residual balance during the retention process at the intermediate temperature are balanced, and the magnetic characteristics are improved. It is considered to be.

このようなメカニズムから考えると、400℃/s以上という超急速加熱においては、昇温途中における保定処理の時間は特許文献5に記載された時間(1〜10秒)よりも短くする必要があると思われる。また、Cが転位の固着に有効に作用するためには、素材のC量は0.02mass%以上であれば、十分であると考えられる。また、上述した理由から、本発明は保定処理温度(中間温度)から700℃までの昇温速度が極めて速い場合を対象としており、この温度域の昇温速度が400℃/s未満の場合は対象外とする。 Considering such a mechanism, in the ultra-rapid heating of 400 ° C./s or more, the retention treatment time during the temperature rise needs to be shorter than the time (1 to 10 seconds) described in Patent Document 5. I think that the. Further, in order for C to effectively act on the fixation of dislocations, it is considered sufficient if the amount of C in the material is 0.02 mass% or more. Further, for the above-mentioned reason, the present invention is intended for a case where the temperature rising rate from the retention treatment temperature (intermediate temperature) to 700 ° C. is extremely high, and when the temperature rising rate in this temperature range is less than 400 ° C./s. Exclude the target.

次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)が有すべき成分組成について説明する。
C:0.02〜0.10mass%
上述したように、素材中のCが0.02mass%に満たないと、Cによる転位の固着効果が発現しないため、磁気特性に悪影響がある。一方、0.10mass%を超えると、製品板の磁気時効が問題とならない0.005mass%以下に脱炭焼鈍で低減することが困難になる。よって、Cは0.02〜0.10mass%の範囲とする。好ましくは、0.025〜0.08mass%の範囲である。
Next, the component composition that the steel material (slab) used for producing the grain-oriented electrical steel sheet of the present invention should have will be described.
C: 0.02 to 0.10 mass%
As described above, if C in the material is less than 0.02 mass%, the effect of fixing dislocations by C does not appear, which adversely affects the magnetic properties. On the other hand, if it exceeds 0.10 mass%, it becomes difficult to reduce the magnetic aging of the product plate to 0.005 mass% or less, which is not a problem, by decarburization annealing. Therefore, C is in the range of 0.02 to 0.10 mass%. Preferably, it is in the range of 0.025 to 0.08 mass%.

Si:2.0〜8.0mass%
Siは、鋼の比抵抗を高め、鉄損を改善するために必要な元素であるが、2.0mass%未満であると上記効果が十分に得られず、一方、8.0mass%を超えると、鋼の加工性が劣化し、圧延して製造することが困難となる。よって、Siは2.0〜8.0mass%の範囲とする。好ましくは、2.5〜4.0mass%の範囲である。
Si: 2.0 to 8.0 mass%
Si is an element necessary for increasing the specific resistance of steel and improving iron loss, but if it is less than 2.0 mass%, the above effect cannot be sufficiently obtained, while if it exceeds 8.0 mass%, it cannot be sufficiently obtained. , The workability of steel deteriorates, making it difficult to roll and manufacture. Therefore, Si is in the range of 2.0 to 8.0 mass%. Preferably, it is in the range of 2.5 to 4.0 mass%.

Mn:0.02〜1.0mass%
Mnは、熱間加工性を良好にするために必要な元素であるが、0.02mass%未満では上記効果が十分に得られず、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。したがって、Mnは0.02〜1.0mass%の範囲とする。好ましくは、0.05〜0.30%の範囲である。
Mn: 0.02-1.0 mass%
Mn is an element necessary for improving hot workability, but if it is less than 0.02 mass%, the above effect cannot be sufficiently obtained, while if it exceeds 1.0 mass%, the magnetic flux density of the product plate is high. Will decrease. Therefore, Mn is in the range of 0.02 to 1.0 mass%. Preferably, it is in the range of 0.05 to 0.30%.

本発明の鋼素材(スラブ)は、上記成分以外の残部は、Feおよび不可避不純物である。ただし、本発明では、上記基本成分に加えて、二次再結晶を安定して発現させるため、下記A群およびB群のうちの少なくとも1群のインヒビター形成成分を含有することができる。
・A群;Al:0.005〜0.050mass%およびN:0.003〜0.020mass%
・B群;Se:0.003〜0.030mass%およびS:0.002〜0.03mass%から選ばれる1種または2種
二次再結晶を生じさせるために、インヒビターを利用する場合には、インヒビターとしてAlNを利用するとき(AlN系)と、MnSおよびMnSeから選ばれる1種または2種を利用するとき(MnS・MnSe系)と、上記両インヒビターを併合して利用するとき(AlN+MnS・MnSe系)のいずれかから選択することができる。
具体的には、AlN系の場合には、AlおよびNをそれぞれAl:0.005〜0.050mass%およびN:0.003〜0.020mass%の範囲で含有させることが好ましい。また、MnS・MnSe系の場合には、Se:0.003〜0.030mass%およびS:0.002〜0.03mass%から選ばれる1種または2種を含有させることが好ましい。また、AlN+MnS・MnSe系の場合には、Al:0.005〜0.050mass%およびN:0.003〜0.020mass%に加えて、Se:0.003〜0.030mass%およびS:0.002〜0.03mass%から選ばれる1種または2種を含有させることが好ましい。それぞれ添加量が上記下限量より少ない場合にはインヒビター効果が十分に得られず、一方、上記上限量を超えると析出したインヒビターがスラブ加熱時に未固溶のまま残存し、インヒビター効果が低減するため、二次再結晶が不安定化し、十分な磁気特性が得られなくなる。
In the steel material (slab) of the present invention, the balance other than the above components is Fe and unavoidable impurities. However, in the present invention, in addition to the above basic components, at least one inhibitor-forming component of the following groups A and B can be contained in order to stably express secondary recrystallization.
Group A; Al: 0.005 to 0.050 mass% and N: 0.003 to 0.020 mass%
Group B; When an inhibitor is used to generate one or two secondary recrystallizations selected from Se: 0.003 to 0.030 mass% and S: 0.002 to 0.03 mass%. When AlN is used as an inhibitor (AlN system), when one or two types selected from MnS and MnSe are used (MnS / MnSe system), and when both of the above inhibitors are used in combination (AlN + MnS. It can be selected from any of MnSe type).
Specifically, in the case of the AlN system, it is preferable to contain Al and N in the range of Al: 0.005 to 0.050 mass% and N: 0.003 to 0.020 mass%, respectively. Further, in the case of the MnS / MnSe system, it is preferable to contain one or two kinds selected from Se: 0.003 to 0.030 mass% and S: 0.002 to 0.03 mass%. In the case of AlN + MnS / MnSe system, in addition to Al: 0.005 to 0.050 mass% and N: 0.003 to 0.020 mass%, Se: 0.003 to 0.030 mass% and S: 0. It is preferable to contain one or two kinds selected from .002 to 0.03 mass%. When the addition amount is less than the above lower limit amount, the inhibitory effect cannot be sufficiently obtained, while when the addition amount exceeds the above upper limit amount, the precipitated inhibitor remains undissolved during slab heating, and the inhibitory effect is reduced. , Secondary recrystallization becomes unstable and sufficient magnetic properties cannot be obtained.

さらに、本発明の鋼素材(スラブ)は、上記成分に加えて、下記C群およびD群のうちの少なくとも1群の成分を含有することができる。

・C群;Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%およびP:0.005〜0.50mass%のうちから選ばれる1種または2種以上
・D群;Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025%およびNb:0.0010〜0.0200のうちから選ばれる1種または2種以上
C群の元素であるCr,CuおよびPは、いずれも鉄損を低減する効果がある元素であり、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%およびP:0.005〜0.50mass%のうちから選ばれる1種または2種以上を単独または複合して含有することができる。それぞれの元素の含有量が上記下限値より少ない場合には、上記磁気特性効果が十分に得られず、一方、上記上限値を超えると、二次再結晶粒の発達が抑制され、磁気特性が劣化するようになる。
Further, the steel material (slab) of the present invention can contain at least one component of the following groups C and D in addition to the above components.
Description-Group C: One or more selected from Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass% and P: 0.005 to 0.50 mass%-D Group; Ni: 0.01 to 1.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0. One or more selected from 005 to 0.100 mass%, B: 0.0002 to 0.0025% and Nb: 0.0010 to 0.0200 Cr, Cu and P, which are elements of group C, are , All of which are elements having an effect of reducing iron loss, and are among Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, and P: 0.005 to 0.50 mass%. One or more selected species can be contained alone or in combination. When the content of each element is less than the above lower limit value, the above magnetic characteristic effect cannot be sufficiently obtained, while when the content exceeds the above upper limit value, the development of secondary recrystallized grains is suppressed and the magnetic characteristics are deteriorated. It will deteriorate.

また、D群の元素であるNi、Sb、Sn、Bi、Mo、BおよびNbは、いずれも磁束密度を向上する効果がある元素であり、Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%およびNb:0.0010〜0.0200mass%のうちから選ばれる1種または2種以上を単独または複合して添加できる。それぞれの元素の含有量が上記下限値より少ない場合には、上記磁気特性向上効果が十分に得られず、一方、上記上限値を超えると、二次再結晶粒の発達が抑制されて磁気特性が劣化するようになる。 Further, the elements of Group D, Ni, Sb, Sn, Bi, Mo, B and Nb, are all elements having an effect of improving the magnetic flux density, and Ni: 0.01 to 1.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.100 mass%, B: 0.0002 to 0. One or more selected from 0025mass% and Nb: 0.0010 to 0.0200mass% can be added alone or in combination. When the content of each element is less than the above lower limit value, the effect of improving the magnetic characteristics is not sufficiently obtained, while when the content exceeds the above upper limit value, the development of secondary recrystallized grains is suppressed and the magnetic characteristics Will deteriorate.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。
Next, the method for manufacturing the grain-oriented electrical steel sheet of the present invention will be described.
The steel material used for producing the directional electromagnetic steel sheet of the present invention is a steel material obtained by melting a steel having the above-mentioned composition by a conventional refining process and then using a conventionally known ingot-lump rolling method or continuous casting method. (Slab) may be produced, or a thin slab having a thickness of 100 mm or less may be produced by a direct casting method.

上記スラブは、通常の方法で加熱して熱間圧延する。熱間圧延前のスラブ加熱は、インヒビター形成成分を含む場合は、1400℃程度まで加熱し、一方、インヒビター成分を含まない場合は、1250℃以下の温度に加熱する。なお、1400℃のような高温まで加熱する場合は、加熱効率の観点から、誘導加熱方式を採用することが望ましい。また、インヒビター形成成分を含有しない場合には、鋳造後、加熱することなく直ちに熱間圧延してもよい。さらに、薄鋳片の場合には、スラブと同様、熱間圧延を行ってもよいし、熱間圧延を省略して、そのまま以降の工程に進めてもよい。 The slab is heated by a usual method and hot-rolled. The slab heating before hot rolling is heated to about 1400 ° C. when the inhibitor forming component is contained, while heating to a temperature of 1250 ° C. or less when the inhibitor component is not contained. When heating to a high temperature such as 1400 ° C., it is desirable to adopt an induction heating method from the viewpoint of heating efficiency. Further, when the inhibitor-forming component is not contained, hot rolling may be performed immediately after casting without heating. Further, in the case of thin slabs, hot rolling may be performed as in the case of slabs, or hot rolling may be omitted and the process may proceed as it is.

次いで、上記の熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。良好な磁気特性を得るためには、熱延板焼鈍温度は800℃以上1150℃以下とするのが好ましい。熱延板焼鈍温度が800℃未満であると、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが困難になり、二次再結晶の発達が阻害されるおそれがある。一方、熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の結晶粒が粗大化しすぎて、整粒の一次再結晶組織を得られなくなるおそれがある。 Next, the hot-rolled plate obtained by the above-mentioned hot rolling is annealed by hot-rolled plate, if necessary. In order to obtain good magnetic properties, the annealing temperature of the hot-rolled plate is preferably 800 ° C. or higher and 1150 ° C. or lower. If the hot-rolled plate annealing temperature is less than 800 ° C., the band structure formed by hot rolling remains, making it difficult to obtain a sized primary recrystallization structure and inhibiting the development of secondary recrystallization. There is a risk of On the other hand, if the hot-rolled plate annealing temperature exceeds 1150 ° C., the crystal grains after the hot-rolled plate annealing may become too coarse and the primary recrystallization structure of the sized grains may not be obtained.

熱延後あるいは熱延板焼鈍を施した後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とする。上記中間焼鈍を実施する場合の焼鈍温度は、900℃以上1200℃以下とするのが好ましい。中間焼鈍温度が900℃未満であると、再結晶粒が細かくなり、一次再結晶組織におけるGoss核が減少し、製品板の磁気特性が劣化するおそれがある。一方、1200℃を超えると、熱延板焼鈍のときと同様に結晶粒が粗大化しすぎて、整粒の一次再結晶組織を得られなくなるおそれがある。
なお、再結晶集合組織を改善して磁気特性をより向上させる観点からは、最終板厚とする最終冷間圧延は、鋼板温度を100℃〜300℃に高めて圧延する温間圧延を採用することが有効である。
The hot-rolled plate after hot-rolling or after hot-rolling plate annealing is cold-rolled once or cold-rolled two or more times with intermediate annealing sandwiched between them to obtain a cold-rolled plate having a final plate thickness. When the intermediate annealing is carried out, the annealing temperature is preferably 900 ° C. or higher and 1200 ° C. or lower. If the intermediate annealing temperature is less than 900 ° C., the recrystallized grains become finer, the Goss nuclei in the primary recrystallized structure decrease, and the magnetic properties of the product plate may deteriorate. On the other hand, if the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the case of hot-rolled sheet annealing, and there is a risk that a primary recrystallized structure of sized grains cannot be obtained.
From the viewpoint of improving the recrystallization texture and further improving the magnetic properties, the final cold rolling, which is the final plate thickness, employs warm rolling in which the steel plate temperature is raised to 100 ° C. to 300 ° C. and rolled. Is effective.

最終板厚とした冷延板は、次いで、本発明において最も重要な工程である、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。脱炭焼鈍における昇温パターンは、先述した理由により、室温(25℃)から700℃までの温度区間を、室温から300℃以上500℃以下の任意の温度(中間温度)までを平均昇温速度200℃/s以下で加熱し、該中間温度で0.1〜5.0秒間の短時間保持する保定処理を施した後、再度、保定処理後の中間温度から700℃までを平均昇温速度400℃/s以上で加熱することが必要である。 The cold-rolled plate having the final plate thickness is then subjected to decarburization annealing, which is the most important step in the present invention, which also serves as primary recrystallization annealing. For the reason mentioned above, the temperature rise pattern in decarburization annealing is the average temperature rise rate in the temperature interval from room temperature (25 ° C) to 700 ° C, and from room temperature to any temperature (intermediate temperature) of 300 ° C or more and 500 ° C or less. After heating at 200 ° C./s or less and holding at the intermediate temperature for a short time of 0.1 to 5.0 seconds, the average temperature rise rate from the intermediate temperature after the retention treatment to 700 ° C. It is necessary to heat at 400 ° C./s or higher.

ここで、上記保定処理する中間温度を300℃以上500℃以下とする理由は、300℃未満では歪の解放が不十分であり、一方、500℃を超えると、再結晶が開始するからである。また、上記保定処理する時間を0.1〜5.0秒間とする理由は、0.1秒未満では、保定処理の効果が十分ではなく、一方、5.0秒を超えると歪が解放されて回復組織となるからである。 Here, the reason why the intermediate temperature for the retention treatment is set to 300 ° C. or higher and 500 ° C. or lower is that strain release is insufficient below 300 ° C., while recrystallization starts when the temperature exceeds 500 ° C. .. The reason why the retention process is set to 0.1 to 5.0 seconds is that if it is less than 0.1 seconds, the effect of the retention process is not sufficient, while if it exceeds 5.0 seconds, the strain is released. This is because it becomes a recovery organization.

なお、上記保定処理は、その効果の発生メカニズムの観点から考えると、1回でも複数回でも問題ないが、複数回の場合は、保持時間の合計が上記範囲内に入る必要がある。また、保定処理中の温度変動は、−20℃/s〜+20℃/sの範囲に制御するのが好ましい。 From the viewpoint of the mechanism of occurrence of the effect, the retention process may be performed once or a plurality of times, but in the case of a plurality of times, the total holding time must be within the above range. Further, the temperature fluctuation during the retention process is preferably controlled in the range of −20 ° C./s to + 20 ° C./s.

また、室温から300℃以上500℃以下の任意の温度(中間温度)までの平均昇温速度は、200℃/s以下とする必要があるが、先述した図2からわかるように、室温から300〜500℃間の中間温度までの平均昇温速度を150℃/s以下とすると、より良好な磁気特性が得られる。ただし、この区間の昇温速度が遅いと処理時間が長時間化するため、操業性の観点から、平均昇温速度は20℃/s以上とするのが好ましい。ここで、室温から中間温度までの平均昇温速度は、その温度差を、保定処理時間を含んだ加熱所要時間で除した平均昇温速度である。 Further, the average temperature rise rate from room temperature to an arbitrary temperature (intermediate temperature) of 300 ° C. or higher and 500 ° C. or lower needs to be 200 ° C./s or lower, but as can be seen from FIG. When the average heating rate up to the intermediate temperature between ~ 500 ° C. is 150 ° C./s or less, better magnetic characteristics can be obtained. However, if the heating rate in this section is slow, the processing time becomes long, so from the viewpoint of operability, the average heating rate is preferably 20 ° C./s or more. Here, the average heating rate from room temperature to the intermediate temperature is the average heating rate obtained by dividing the temperature difference by the required heating time including the retention treatment time.

また、本発明においては、保定処理後の中間温度から700℃までの平均昇温速度は、400℃/s以上とする必要があるが、好ましくは600℃/s以上である。なお、この温度区間の昇温速度の上限は、加熱設備にもよるが、経済性を考慮すれば、1250℃/s程度である。 Further, in the present invention, the average heating rate from the intermediate temperature to 700 ° C. after the retention treatment needs to be 400 ° C./s or more, but is preferably 600 ° C./s or more. The upper limit of the heating rate in this temperature section depends on the heating equipment, but is about 1250 ° C./s in consideration of economic efficiency.

なお、脱炭焼鈍における均熱温度は、脱炭を十分に行う観点から800℃以上900℃以下であることが好ましい。ただし、上記した700℃から均熱温度までの昇温速度については、特に限定しない。また、750℃から均熱温度までの平均昇温速度は、脱炭時間をより多く確保する観点から10℃/s以下とするのが好ましい。 The soaking temperature in decarburization annealing is preferably 800 ° C. or higher and 900 ° C. or lower from the viewpoint of sufficient decarburization. However, the rate of temperature rise from 700 ° C. to the soaking temperature is not particularly limited. The average heating rate from 750 ° C. to the soaking temperature is preferably 10 ° C./s or less from the viewpoint of ensuring a longer decarburization time.

また、脱炭焼鈍時の雰囲気は、脱炭性を確保する観点から、湿潤雰囲気とするのが好ましく、露点で30℃以上とするのがより好ましい。また、同じく脱炭性を確保する観点から、雰囲気には水素ガス(H)を含有させることが好ましく、その濃度は5vol%以上70vol%以下とするのがより好ましい。 Further, the atmosphere at the time of decarburization annealing is preferably a moist atmosphere from the viewpoint of ensuring decarburization, and more preferably 30 ° C. or higher at the dew point. Similarly, from the viewpoint of ensuring decarburization, the atmosphere preferably contains hydrogen gas (H 2 ), and the concentration thereof is more preferably 5 vol% or more and 70 vol% or less.

次いで、上記脱炭焼鈍を施した鋼板は、焼鈍時の鋼板同士の融着を防止するとともに、フォルステライト被膜を形成するため、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した後、二次再結晶焼鈍と純化処理を含む仕上焼鈍を施す。 Next, the decarburized and annealed steel sheet was dried by applying an annealing separator mainly composed of MgO to the surface of the steel sheet in order to prevent fusion of the steel sheets during annealing and to form a forsterite film. After that, finish annealing including secondary recrystallization annealing and purification treatment is performed.

上記仕上焼鈍の焼鈍温度は、二次再結晶を発現し、完了させるためには、800℃以上の温度で20時間以上保持することが望ましい。また、鋼中の不純物を除去して磁気特性を向上したり、フォルステライト被膜を形成させたりする場合には、上記二次再結晶を完了させた後、さらに1180℃以上の温度に昇温し、水素雰囲気下で、該温度に3時間以上保持する純化処理を施すことが好ましい。 The annealing temperature of the finish annealing is preferably maintained at a temperature of 800 ° C. or higher for 20 hours or longer in order to develop and complete secondary recrystallization. Further, in the case of removing impurities in the steel to improve the magnetic properties or forming a forsterite film, the temperature is further raised to 1180 ° C. or higher after the secondary recrystallization is completed. , It is preferable to carry out a purification treatment in which the temperature is maintained at the temperature for 3 hours or more in a hydrogen atmosphere.

上記仕上焼鈍後の鋼板は、鋼板表面に付着した未反応の焼鈍分離剤を除去する水洗やブラッシング、酸洗等を行い、その後、平坦化焼鈍を施して形状を矯正することが、鉄損低減のためには有効である。 The steel sheet after finish annealing is washed with water, brushed, pickled, etc. to remove the unreacted annealing separator adhering to the surface of the steel sheet, and then flattened and annealed to correct the shape, thereby reducing iron loss. Is valid for.

なお、本発明の鋼板を積層して使用する場合には、鉄損を改善するため、上記した平坦化焼鈍あるいはその前後の工程において、鋼板表面に絶縁被膜を被成することが好ましく、より鉄損を低減のためには、上記絶縁被膜に張力付与被膜を採用するのが好ましい。さらに、上記絶縁被膜を被成するに当たっては、バインダーを介したり、物理蒸着法や化学蒸着法によって無機物を鋼板表面に蒸着させたりした後、被膜を被成するのが好ましい。これにより、被膜密着性に優れかつ鉄損低減効果が大きい被膜が得られる。 When the steel sheets of the present invention are laminated and used, in order to improve iron loss, it is preferable to coat the surface of the steel sheets with an insulating film in the above-mentioned flattening annealing or the steps before and after the above-mentioned flattening annealing, and more iron. In order to reduce the loss, it is preferable to use a tension applying film as the insulating film. Further, in forming the insulating coating, it is preferable to coat the coating after depositing an inorganic substance on the surface of the steel sheet via a binder or by a physical vapor deposition method or a chemical vapor deposition method. As a result, a film having excellent film adhesion and a large iron loss reducing effect can be obtained.

C:0.035mass%、Si:3.53mass%、Mn:0.06mass%、Al:0.032mass%、Se:0.019mass%およびN:0.009mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1420℃の温度に加熱した後、熱間圧延して板厚2.7mmの熱延板とし、次いで、この熱延板に1050℃×50秒の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。
次いで、上記冷延板に、50vol%H−50vol%Nで露点が60℃の湿潤雰囲気下で、840℃×120秒の一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、昇温途中の500℃で0.3秒間保持する保定処理を施すとともに、室温(25℃)から上記500℃までの平均昇温速度および保定処理後の500℃から700℃までの平均昇温速度を表1に記載したように種々に変化させた。なお、室温(25℃)から500℃までの平均昇温速度は、温度差である475℃を、保定処理時間を含む加熱所要時間で除した値である。さらに、700℃から750℃までは40℃/sの昇温速度とし、750℃から均熱温度(840℃)までの昇温速度は、表1に記載したように種々に変化させた。
次いで、上記脱炭焼鈍後の鋼板は、MgOを主体とする焼鈍分離剤を塗布・乾燥し、その後、室温から平均昇温速度15℃/時間で窒素雰囲気下で昇温して二次再結晶を完了させた後、さらに、1180℃まで昇温し、水素雰囲気下で該温度に4時間保持して純化処理する仕上焼鈍を施し、製品板とした。
C: 0.035 mass%, Si: 3.53 mass%, Mn: 0.06 mass%, Al: 0.032 mass%, Se: 0.019 mass% and N: 0.009 mass%, and the balance is Fe and unavoidable. A steel slab having a component composition composed of target impurities is heated to a temperature of 1420 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.7 mm, and then the hot-rolled plate is subjected to 1050 ° C. × 50 seconds. After annealing the hot-rolled plate, it was cold-rolled to finish a cold-rolled plate having a final plate thickness of 0.23 mm.
Then, the cold-rolled sheet, the dew point at 50vol% H 2 -50vol% N 2 is in a humid atmosphere at 60 ° C., was subjected to a decarburization annealing serving also as a primary recrystallization annealing of 840 ° C. × 120 seconds. At this time, a retention treatment is performed in which the temperature is maintained at 500 ° C. during the temperature rise for 0.3 seconds, and the average temperature rise rate from room temperature (25 ° C.) to the above 500 ° C. and the average from 500 ° C. to 700 ° C. after the retention treatment. The rate of temperature rise was variously changed as shown in Table 1. The average heating rate from room temperature (25 ° C.) to 500 ° C. is a value obtained by dividing the temperature difference of 475 ° C. by the required heating time including the retention treatment time. Further, the temperature rising rate from 700 ° C. to 750 ° C. was set to 40 ° C./s, and the heating rate from 750 ° C. to the soaking temperature (840 ° C.) was variously changed as shown in Table 1.
Next, the steel sheet after decarburization and annealing is coated and dried with an annealing separator mainly composed of MgO, and then the temperature is raised from room temperature at an average temperature rise rate of 15 ° C./hour under a nitrogen atmosphere for secondary recrystallization. After the above was completed, the temperature was further raised to 1180 ° C., and the product plate was subjected to finish annealing in which the temperature was maintained at the temperature for 4 hours in a hydrogen atmosphere for purification treatment.

斯くして得た製品板から、サンプルを採取し、JIS C2550−1:2011に記載のエプスタイン試験法で磁気特性を測定し、その結果を表1に併記した。同表から、本発明に適合する条件で製造した鋼板は、いずれも磁束密度Bおよび鉄損W17/50が優れていることがわかる。 A sample was taken from the product plate thus obtained, the magnetic properties were measured by the Epstein test method described in JIS C2550-1: 2011, and the results are also shown in Table 1. From the table, it can be seen that the steel sheets manufactured under the conditions conforming to the present invention are all excellent in magnetic flux density B 8 and iron loss W 17/50.

Figure 0006888603
Figure 0006888603

表2に記載した成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを1320℃の温度に加熱した後、熱間圧延して板厚2.0mmの熱延板とし、次いで、上記熱延板に1070℃×80秒の熱延板焼鈍を施し、冷間圧延して最終板厚0.20mmの冷延板に仕上げた。次いで、上記冷延板に、50vol%H−50vol%Nで、露点55℃の湿潤雰囲気下で、825℃×120秒の一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、昇温途中の300℃で3.0秒間保持する保定処理を施すとともに、室温(25℃)から上記300℃までを平均昇温速度100℃/sおよび上記保定処理後の300℃から700℃までを平均昇温速度500℃/sで加熱した。なお、上記室温(25℃)から500℃までの平均昇温速度は、温度差である275℃を、保定処理時間を含む加熱所要時間で除した値である。さらに、700℃から750℃までは平均昇温速度25℃/sで、750℃から均熱温度(840℃)までは平均昇温速度3℃/sで加熱した。
上記脱炭焼鈍後の鋼板は、MgOを主体とする焼鈍分離剤を塗布・乾燥し、その後、窒素雰囲気下で900℃の温度に50時間保持して二次再結晶を完了させた後、さらに、1250℃まで昇温し、水素雰囲気下で該温度に10時間保持して純化処理する仕上焼鈍を施し、製品板とした。
A steel slab having the component composition shown in Table 2 and having the balance of Fe and unavoidable impurities is heated to a temperature of 1320 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.0 mm, and then The hot-rolled plate was annealed at 1070 ° C. for 80 seconds and cold-rolled to finish a cold-rolled plate having a final plate thickness of 0.20 mm. Then, the cold-rolled sheet, with 50vol% H 2 -50vol% N 2 , under a humid atmosphere with a dew point of 55 ° C., was subjected to a decarburization annealing serving also as a primary recrystallization annealing of 825 ° C. × 120 seconds. At this time, a retention treatment is performed in which the temperature is maintained at 300 ° C. during the temperature rise for 3.0 seconds, and the average temperature rise rate from room temperature (25 ° C.) to the above 300 ° C. is 100 ° C./s and from 300 ° C. after the retention treatment. The temperature was heated up to 700 ° C. at an average heating rate of 500 ° C./s. The average heating rate from room temperature (25 ° C.) to 500 ° C. is a value obtained by dividing the temperature difference of 275 ° C. by the required heating time including the retention treatment time. Further, heating was performed at an average heating rate of 25 ° C./s from 700 ° C. to 750 ° C., and at an average heating rate of 3 ° C./s from 750 ° C. to the soaking temperature (840 ° C.).
The steel sheet after decarburization and annealing is coated and dried with an annealing separator mainly composed of MgO, and then kept at a temperature of 900 ° C. for 50 hours in a nitrogen atmosphere to complete secondary recrystallization, and then further. The temperature was raised to 1250 ° C., and the product plate was subjected to finish annealing in which the temperature was maintained at the temperature for 10 hours for purification treatment.

斯くして得た製品板から、サンプルを採取し、JIS C2550−1:2011に記載のエプスタイン試験法で磁気特性を測定し、その結果を表2に併記した。同表から、本発明に適合する成分組成の素材を用い、本発明に適合する条件で製造した鋼板は、いずれも磁束密度Bおよび鉄損W17/50が優れていることがわかる。 A sample was taken from the product board thus obtained, the magnetic properties were measured by the Epstein test method described in JIS C2550-1: 2011, and the results are also shown in Table 2. From the table, it can be seen that the steel sheets manufactured under the conditions conforming to the present invention using the materials having the component composition conforming to the present invention are all excellent in the magnetic flux density B 8 and the iron loss W 17/50.

Figure 0006888603
Figure 0006888603

Claims (5)

C:0.02〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.02〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後,鋼板表面にMgOを主体とした焼鈍分離剤を塗布し、純化処理を含む仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記脱炭焼鈍の室温から700℃までの昇温時に、300℃以上500℃以下の任意の中間温度で0.1〜5.0秒間保持する保定処理を施してから再度加熱する際に、室温から前記中間温度までの平均昇温速度を200℃/s以下とし、かつ、前記保定処理後の前記中間温度から700℃までの平均昇温速度を400℃/s以上とすることを特徴とする方向性電磁鋼板の製造方法。
Steel containing C: 0.02 to 0.10 mass%, Si: 2.0 to 8.0 mass% and Mn: 0.02 to 1.0 mass%, and having a component composition in which the balance is Fe and unavoidable impurities. The material is hot-rolled to obtain a hot-rolled plate, and if necessary, hot-rolled plate is annealed, and then cold-rolled once or two or more times with intermediate annealing in between to obtain a cold-rolled plate with the final plate thickness. , After performing decarburization annealing that also serves as primary recrystallization annealing, an annealing separator mainly containing MgO is applied to the surface of the steel sheet, and finish annealing including purification treatment is performed. Manufacture of directional electromagnetic steel sheet. In the method
When the decarburization annealing raises the temperature from room temperature to 700 ° C., it is held at an arbitrary intermediate temperature of 300 ° C. or higher and 500 ° C. or lower for 0.1 to 5.0 seconds, and then heated again at room temperature. The average temperature rise rate from the intermediate temperature to the intermediate temperature is 200 ° C./s or less, and the average temperature rise rate from the intermediate temperature to 700 ° C. after the retention treatment is 400 ° C./s or more. Manufacturing method of directional electromagnetic steel plate.
前記脱炭焼鈍を800℃以上の均熱温度で施す際に、750℃から均熱温度までの平均昇温速度を10℃/s以下とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The direction according to claim 1, wherein when the decarburization annealing is performed at a soaking temperature of 800 ° C. or higher, the average heating rate from 750 ° C. to the soaking temperature is 10 ° C./s or less. Manufacturing method of electromagnetic steel plate. 前記脱炭焼鈍の昇温時における室温から前記中間温度までの平均昇温速度を150℃/s以下とすることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 The method for producing a directional electromagnetic steel plate according to claim 1 or 2, wherein the average temperature rising rate from room temperature to the intermediate temperature at the time of raising the temperature of the decarburization annealing is 150 ° C./s or less. 前記鋼素材は、前記成分組成に加えてさらに、下記A群およびB群のうちの少なくとも1群のインヒビター形成成分を含有することを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。

・A群;Al:0.005〜0.050mass%およびN:0.003〜0.020mass%
・B群;Se:0.003〜0.030mass%およびS:0.002〜0.03mass%から選ばれる1種または2種
The steel material according to any one of claims 1 to 3, wherein the steel material further contains at least one inhibitor-forming component of the following groups A and B in addition to the component composition. Manufacturing method of grain-oriented electrical steel sheet.
Note: Group A; Al: 0.005 to 0.050 mass% and N: 0.003 to 0.020 mass%
Group B; Se: 0.003 to 0.030 mass% and S: 0.002 to 0.03 mass%, one or two selected
前記鋼素材は、前記成分組成に加えてさらに、下記C群およびD群のうちの少なくとも1群の成分を含有することを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。

・C群;Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%およびP:0.005〜0.50mass%のうちから選ばれる1種または2種以上
・D群;Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%およびNb:0.0010〜0.0200mass%のうちから選ばれる1種または2種以上
The direction according to any one of claims 1 to 4, wherein the steel material further contains at least one component of the following groups C and D in addition to the component composition. Manufacturing method of electrical steel sheet.
Description-Group C: One or more selected from Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass% and P: 0.005 to 0.50 mass%-D Group; Ni: 0.01 to 1.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0. One or more selected from 005 to 0.100 mass%, B: 0.0002 to 0.0025 mass% and Nb: 0.0010 to 0.0200 mass%
JP2018225107A 2018-11-30 2018-11-30 Manufacturing method of grain-oriented electrical steel sheet Active JP6888603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225107A JP6888603B2 (en) 2018-11-30 2018-11-30 Manufacturing method of grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225107A JP6888603B2 (en) 2018-11-30 2018-11-30 Manufacturing method of grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2020084303A JP2020084303A (en) 2020-06-04
JP6888603B2 true JP6888603B2 (en) 2021-06-16

Family

ID=70906719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225107A Active JP6888603B2 (en) 2018-11-30 2018-11-30 Manufacturing method of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6888603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261518A1 (en) * 2020-06-24 2021-12-30 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet
JPWO2024053627A1 (en) * 2022-09-06 2024-03-14
JPWO2024053628A1 (en) * 2022-09-06 2024-03-14

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456862B2 (en) * 1997-04-25 2003-10-14 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP5439866B2 (en) * 2008-03-05 2014-03-12 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
US9663839B2 (en) * 2011-12-16 2017-05-30 Posco Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
JP5672273B2 (en) * 2012-07-26 2015-02-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5854236B2 (en) * 2013-03-06 2016-02-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6256693B2 (en) * 2014-03-20 2018-01-10 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN107974543B (en) * 2017-12-12 2019-06-28 武汉钢铁有限公司 A kind of production method of thickness≤0.20mm low temperature high magnetic induction grain-oriented silicon steel

Also Published As

Publication number Publication date
JP2020084303A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6455468B2 (en) Method for producing grain-oriented electrical steel sheet
KR101558292B1 (en) Method for producing grain-oriented electrical steel sheet
JP5737483B2 (en) Method for producing grain-oriented electrical steel sheet
JP6319586B2 (en) Method for producing non-oriented electrical steel sheet
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
JP6260513B2 (en) Method for producing grain-oriented electrical steel sheet
JP6888603B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2015200002A (en) Method for producing grain oriented magnetic steel sheet
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP2011195875A (en) Method for producing grain-oriented magnetic steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5754115B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2015193921A (en) Method for manufacturing oriented electromagnetic steel sheet excellent in iron loss characteristics
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP6143010B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP6900977B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
JP2021138984A (en) Manufacturing method of directional magnetic steel sheet
JP2016084540A (en) Method of producing grain oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R150 Certificate of patent or registration of utility model

Ref document number: 6888603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250