JP6319586B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP6319586B2
JP6319586B2 JP2015080479A JP2015080479A JP6319586B2 JP 6319586 B2 JP6319586 B2 JP 6319586B2 JP 2015080479 A JP2015080479 A JP 2015080479A JP 2015080479 A JP2015080479 A JP 2015080479A JP 6319586 B2 JP6319586 B2 JP 6319586B2
Authority
JP
Japan
Prior art keywords
mass
less
temperature
heating
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080479A
Other languages
Japanese (ja)
Other versions
JP2016199787A (en
Inventor
龍一 末廣
龍一 末廣
智幸 大久保
智幸 大久保
尾田 善彦
善彦 尾田
宏章 中島
宏章 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015080479A priority Critical patent/JP6319586B2/en
Publication of JP2016199787A publication Critical patent/JP2016199787A/en
Application granted granted Critical
Publication of JP6319586B2 publication Critical patent/JP6319586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板の製造方法に関し、具体的には、高い磁束密度を有する無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for manufacturing a non-oriented electrical steel sheet, and specifically relates to a method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density.

近年、地球環境を保護する観点から省エネルギー化が推進されており、電気機器の分野においても、高効率化や小型化が積極的に指向されている。そのため、電気機器の鉄心材料として広く使用されている無方向性電磁鋼板にも、高磁束密度化や低鉄損化が強く望まれるようになってきている。   In recent years, energy saving has been promoted from the viewpoint of protecting the global environment, and in the field of electrical equipment, high efficiency and miniaturization are actively directed. Therefore, high magnetic flux density and low iron loss have been strongly desired for non-oriented electrical steel sheets that are widely used as iron core materials for electrical equipment.

無方向性電磁鋼板の磁束密度を向上するためには、製品板の集合組織の改善、すなわち{111}方位粒を低減したり、{110}や{100}方位粒を増加させたりすることが有効である。そのため、無方向性電磁鋼板の製造においては、従来、冷間圧延前の結晶粒径を大きくすることや、冷延圧下率を最適化することなどが行われている。   In order to improve the magnetic flux density of the non-oriented electrical steel sheet, it is possible to improve the texture of the product plate, that is, reduce {111} orientation grains or increase {110} or {100} orientation grains. It is valid. Therefore, in the manufacture of non-oriented electrical steel sheets, conventionally, the crystal grain size before cold rolling is increased, the cold rolling reduction ratio is optimized, and the like.

集合組織を改善するその他の手段としては、再結晶焼鈍における加熱速度を高める技術がある。この技術は、方向性電磁鋼板の製造において、よく用いられている技術であり、脱炭焼鈍(一次再結晶焼鈍)における加熱速度を高めると、脱炭焼鈍後の鋼板の{110}方位粒が増加し、2次再結晶後の鋼板組織が微細化して鉄損が改善されること利用したものである(例えば、特許文献1を参照。)。同様に、無方向性電磁鋼板でも、仕上焼鈍の加熱速度を高めることで、集合組織を変化させ、磁束密度を向上させる技術が提案されている(例えば、特許文献2を参照)。   As another means for improving the texture, there is a technique for increasing the heating rate in the recrystallization annealing. This technique is a technique often used in the production of grain-oriented electrical steel sheets. When the heating rate in decarburization annealing (primary recrystallization annealing) is increased, the {110} orientation grains of the steel sheet after decarburization annealing are increased. It is utilized that the steel loss after secondary recrystallization is refined and iron loss is improved (see, for example, Patent Document 1). Similarly, even in non-oriented electrical steel sheets, a technique has been proposed in which the texture is changed and the magnetic flux density is improved by increasing the heating rate of finish annealing (see, for example, Patent Document 2).

特開平01−290716号公報Japanese Patent Laid-Open No. 01-290716 特開平02−011728号公報Japanese Patent Laid-Open No. 02-011728

しかしながら、上記特許文献1に開示の技術は、方向性電磁鋼板に関するものであり、無方向性電磁鋼板にそのまま適用することはできない。また、上記特許文献2に開示の技術は、発明者らが検討した結果では、磁束密度向上効果が安定して得られないことが明らかとなった。   However, the technique disclosed in Patent Document 1 relates to a grain-oriented electrical steel sheet and cannot be applied to a non-oriented electrical steel sheet as it is. Further, it has been clarified that the technique disclosed in Patent Document 2 cannot stably obtain the effect of improving the magnetic flux density, as a result of examination by the inventors.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、仕上焼鈍において、集合組織の改善を目的として急速加熱を行う場合でも、安定して高い磁束密度を実現することができる無方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to stably achieve a high magnetic flux density even in the case of rapid heating for the purpose of improving the texture in finish annealing. It is in proposing the manufacturing method of the non-oriented electrical steel sheet which can do.

発明者らは、上記課題の解決に向けて、鋼中に含まれる微量成分および仕上焼鈍における昇温パターンに着目して鋭意検討を重ねた。その結果、鋼素材(スラブ)中に含まれる微量成分、特に、Ti,NbおよびAsを極微量に制限することに加えて、仕上焼鈍の加熱過程における250〜630℃間で適正な保定処理を施すとともに、630〜700℃間を急速加熱することによって、安定して高い磁束密度の無方向性電磁鋼板を得ることができることを見出し、本発明を開発するに至った。   In order to solve the above-mentioned problems, the inventors have made extensive studies focusing on trace components contained in steel and a temperature rising pattern in finish annealing. As a result, in addition to limiting the trace components contained in the steel material (slab), particularly Ti, Nb and As, to a very small amount, an appropriate holding treatment is performed between 250 and 630 ° C. in the heating process of finish annealing. As a result, it was found that a non-oriented electrical steel sheet having a high magnetic flux density can be obtained stably by rapidly heating between 630 and 700 ° C., and the present invention has been developed.

すなわち、本発明は、C:0.0050mass%以下、Si:8.0mass%以下、Mn:0.03〜3.0mass%、P:0.1mass%以下、S:0.005mass%以下、Al:3.0mass%以下、N:0.005mass%以下、Ni:3.0mass%以下、Cr:5.0mass%以下、Ti:0.003mass%以下、Nb:0.003mass%以下、As:0.005mass%以下およびO:0.005mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍し、あるいは熱延板焼鈍することなく、1回または中間焼鈍を挟む2回以上の冷間圧延した後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、上記仕上焼鈍の加熱過程における250〜630℃間の任意の温度Tに、0.5秒以上の時間t間保持する保定処理を1回以上、かつ、上記tの総和が0.5〜10秒となる回数施した後、630〜700℃間を平均昇温速度50℃/s以上で加熱することを特徴とする無方向性電磁鋼板の製造方法を提案する。ここで、上記保持時間tは、温度Tに対して±2℃以内の温度に保持される時間のことをいう。 That is, the present invention includes C: 0.0050 mass% or less, Si: 8.0 mass% or less, Mn: 0.03 to 3.0 mass%, P: 0.1 mass% or less, S: 0.005 mass% or less, Al : 3.0 mass% or less, N: 0.005 mass% or less, Ni: 3.0 mass% or less, Cr: 5.0 mass% or less, Ti: 0.003 mass% or less, Nb: 0.003 mass% or less, As: 0 A steel slab containing 0.005 mass% or less and O: 0.005 mass% or less, with the balance being composed of Fe and inevitable impurities, hot-rolled, hot-rolled sheet annealed, or hot-rolled sheet annealed In the method of manufacturing a non-oriented electrical steel sheet that is subjected to finish annealing after one or two or more cold rolls sandwiching intermediate annealing, in the heating process of the finish annealing. Kicking the arbitrary temperature T i of between two hundred fifty to six hundred thirty ° C., number of times or more once retention process for holding between 0.5 seconds or longer t i, and the sum of the t i is 0.5 to 10 seconds After the application, a method for producing a non-oriented electrical steel sheet is proposed, characterized by heating between 630 and 700 ° C. at an average heating rate of 50 ° C./s or more. Here, the holding time t i refers to the time during which the temperature T i is held at a temperature within ± 2 ° C.

本発明の無方向性電磁鋼板の製造方法は、上記冷間圧延における最終冷間圧延前のフェライト粒径を50μm以下に制御することを特徴とする。   The method for producing a non-oriented electrical steel sheet according to the present invention is characterized in that the ferrite grain size before the final cold rolling in the cold rolling is controlled to 50 μm or less.

また、本発明の無方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.005〜0.20mass%の範囲で含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel slab used for the manufacturing method of the non-oriented electrical steel sheet of this invention is further 0.005-0.20mass, respectively 1 type or 2 types chosen from Sn and Sb. % Content.

また、本発明の無方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Ca,MgおよびREMのうちから選ばれる1種または2種以上をそれぞれ0.0001〜0.010mass%の範囲で含有することを特徴とする。   Moreover, the steel slab used in the method for producing a non-oriented electrical steel sheet of the present invention further includes one or more selected from Ca, Mg, and REM in addition to the above component composition. It contains in the range of 0.010 mass%.

本発明によれば、仕上焼鈍において急速加熱を行う場合でも、高い磁束密度を有する無方向性電磁鋼板を安定して製造することが可能となるので、電気機器の省エネルギー化に大いに寄与する。   According to the present invention, a non-oriented electrical steel sheet having a high magnetic flux density can be stably produced even when rapid heating is performed in finish annealing, which greatly contributes to energy saving of electrical equipment.

630〜700℃間の平均昇温速度と保定処理が、磁束密度B50に及ぼす影響を示すグラフである。The average heating rate and retention process between 630-700 ° C. is a graph showing the effect on the magnetic flux density B 50. 保定処理における保定温度と保定時間が、磁束密度B50に及ぼす影響を示すグラフである。Between retention temperature and the coercive scheduled in retention process is a graph showing the effect on the magnetic flux density B 50. As含有量と保定処理条件が、磁束密度B50に及ぼす影響を示すグラフである。As content and retention process conditions is a graph showing the effect on the magnetic flux density B 50. 保定処理温度Tについて説明する図である。It is a diagram illustrating a retention treatment temperature T i.

まず、本発明を開発する契機となった一連の実験について説明する。
<実験1>
C:0.0021mass%、Si:1.01mass%、Mn:0.29mass%、P:0.06mass%、S:0.0012mass%、Al:0.0005mass%、N:0.0016mass%、Ni:0.01mass%、Cr:0.01mass%、Ti:0.0012mass%、Nb:0.0004mass%、As:0.001mass%およびO:0.0018mass%を含有する鋼を実験室的に溶解し、鋼塊とした後、熱間圧延して板厚2.4mmの熱延板とした。上記熱延板の鋼板組織を調べたところ、完全に再結晶しており、フェライト粒径は22μmであった。ここで、上記フェライト粒径は、切断法で板厚全体のフェライト粒径を測定したときの平均値である(以降、同様)。
First, a series of experiments that triggered the development of the present invention will be described.
<Experiment 1>
C: 0.0021 mass%, Si: 1.01 mass%, Mn: 0.29 mass%, P: 0.06 mass%, S: 0.0012 mass%, Al: 0.0005 mass%, N: 0.0016 mass%, Ni : Steel containing 0.01 mass%, Cr: 0.01 mass%, Ti: 0.0012 mass%, Nb: 0.0004 mass%, As: 0.001 mass% and O: 0.0018 mass% are melted in the laboratory. Then, after forming a steel ingot, it was hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm. When the steel sheet structure of the hot-rolled sheet was examined, it was completely recrystallized and the ferrite grain size was 22 μm. Here, the ferrite particle diameter is an average value when the ferrite particle diameter of the entire plate thickness is measured by a cutting method (hereinafter the same).

次いで、上記熱延板を酸洗し、冷間圧延して板厚0.35mmの冷延板とした後、均熱温度900℃、均熱時間10sの仕上焼鈍を施した。
この際、上記仕上焼鈍の室温から740℃までの加熱は、複数台の誘導加熱装置を直列に並べた加熱装置を用いて行い、室温から630℃までは、平均昇温速度30℃/sで加熱するとともに、表1に示す加熱途中の温度T,T,Tにおいて、それぞれ時間t,t,t間保持する保定処理を施し、続く630℃から740℃までは、誘導加熱装置の出力を変えて630〜740℃間の平均昇温速度を30〜400℃/sの範囲で種々に変化させて加熱した(630〜700℃の平均昇温速度も同じ)。次いで、740℃から均熱温度(900℃)までは、電気炉を用いて、平均昇温速度10℃/sで加熱した。
Next, the hot-rolled sheet was pickled and cold-rolled to obtain a cold-rolled sheet having a thickness of 0.35 mm, and then subjected to finish annealing at a soaking temperature of 900 ° C. and a soaking time of 10 s.
At this time, heating from room temperature to 740 ° C. in the finish annealing is performed using a heating device in which a plurality of induction heating devices are arranged in series, and from room temperature to 630 ° C., the average temperature increase rate is 30 ° C./s. In addition to heating, at the temperatures T 1 , T 2 , and T 3 in the middle of heating shown in Table 1, the holding treatment is performed for the times t 1 , t 2 , and t 3 , respectively, and the subsequent induction from 630 ° C. to 740 ° C. Heating was performed by changing the output of the heating device and changing the average temperature increase rate between 630 and 740 ° C. in various ways within the range of 30 to 400 ° C./s (the same is true for the average temperature increase rate of 630 to 700 ° C.). Subsequently, from 740 degreeC to soaking temperature (900 degreeC), it heated with the average temperature increase rate of 10 degree-C / s using the electric furnace.

Figure 0006319586
Figure 0006319586

ここで、上記保定時間tはTの温度に対して±2℃の範囲内にある時間、tはTの温度に対して±2℃の範囲内にある時間、tはTの温度に対して±2℃の範囲内にある時間であり、また、上記室温から630℃までの平均昇温速度は、保定時間の合計(t+t+t)を除いた時間における平均昇温速度である。また、仕上焼鈍における雰囲気は、vol%比でH:N=2:8で、露点−20℃(PHO/PH=0.006)の水素−窒素混合雰囲気とした。 Here, the holding time t 1 is a time within a range of ± 2 ° C. with respect to the temperature of T 1 , t 2 is a time within a range of ± 2 ° C. with respect to the temperature of T 2 , and t 3 is T a 3 times in the range of ± 2 ℃ relative temperature, the average heating rate of up to 630 ° C. from the room temperature, in the time other than the sum of the dwelling scheduled to (t 1 + t 2 + t 3) Average heating rate. The atmosphere in the finish annealing was a hydrogen-nitrogen mixed atmosphere having a vol% ratio of H 2 : N 2 = 2: 8 and a dew point of −20 ° C. (PH 2 O / PH 2 = 0.006).

斯くして得た各々の仕上焼鈍板から、圧延方向をL、板幅方向をWとしたとき、L:180mm×W:30mmの試験片を2枚ずつ、L:30mm×W:180mmの試験片を2枚ずつ採取し、エプスタイン試験で磁気特性(磁束密度B50)を評価した。 From each of the finish annealed plates thus obtained, when the rolling direction is L and the plate width direction is W, two L: 180 mm × W: 30 mm test pieces, L: 30 mm × W: 180 mm test Two pieces were collected and evaluated for magnetic properties (magnetic flux density B 50 ) by an Epstein test.

図1に、630〜700℃間の平均昇温速度と加熱途中の保定処理が、磁束密度B50におよぼす影響を示した。この図から、630〜700℃間の平均昇温速度を50℃/s以上とした上で、加熱途中において保定処理を施すことで、磁束密度が向上することがわかる。 FIG. 1 shows the influence of the average heating rate between 630 and 700 ° C. and the holding treatment during heating on the magnetic flux density B 50 . From this figure, it can be seen that the magnetic flux density is improved by applying the retention treatment during heating after setting the average temperature rising rate between 630 and 700 ° C. to 50 ° C./s or more.

そこで、上記実験で得られた試験片について、X線回折装置で、一次再結晶集合組織を調査したところ、磁束密度が高いものは、低いものに比べて{111}強度が低くなっていることがわかった。すなわち、従来から、仕上焼鈍を急速加熱することで、無方向性電磁鋼板の磁束密度が向上することは知られているが、より高い磁束密度を得るためには、加熱途中の温度で保定処理を施すことが有効であることがわかった。   Therefore, when the primary recrystallized texture was examined with an X-ray diffractometer for the test piece obtained in the above experiment, the one with a high magnetic flux density had a lower {111} strength than the one with a low magnetic flux density. I understood. That is, conventionally, it is known that the magnetic flux density of the non-oriented electrical steel sheet is improved by rapidly heating the finish annealing, but in order to obtain a higher magnetic flux density, the holding treatment is performed at a temperature during heating. It was found that it was effective to apply

上記の理由について、発明者らは以下のように考えている。
{111}粒は、圧延により蓄積された歪エネルギーが高く、加熱過程においては、低い温度から優先的に再結晶が進行する。そこで、昇温速度を上げてやると、{111}粒の再結晶が進行する前に鋼板が高温に到達するので、{111}粒以外の方位を持つ結晶粒も再結晶を起こすようになり、仕上焼鈍後の再結晶組織中で磁気特性に悪影響をおよぼす{111}粒の頻度が相対的に減少する。ここで、さらに加熱途中の再結晶が開始する温度以下の温度で保定処理を施した場合には、蓄積された歪エネルギーの大きい{111}粒から回復が優先的に進行し、再結晶の優先性が低下する。これにより、急速加熱を適用したときの{111}方位粒の低減効果がより高められる。
The inventors consider the following reason as follows.
{111} grains have high strain energy accumulated by rolling, and recrystallization proceeds preferentially from a low temperature in the heating process. Therefore, if the rate of temperature increase is increased, the steel sheet reaches a high temperature before the recrystallization of {111} grains proceeds, so that crystal grains having orientations other than {111} grains also cause recrystallization. The frequency of {111} grains that adversely affect the magnetic properties in the recrystallized structure after finish annealing is relatively reduced. Here, when the holding treatment is performed at a temperature lower than the temperature at which recrystallization in the middle of heating starts, recovery preferentially proceeds from {111} grains having a large accumulated strain energy, and recrystallization is prioritized. Sex is reduced. Thereby, the reduction effect of {111} orientation grains when applying rapid heating is further enhanced.

次に、発明者らは、急速加熱の途中で施す保定処理の温度と時間が、磁気特性におよぼす影響を調査する実験を行った。
<実験2>
C:0.0025mass%、Si:1.10mass%、Mn:0.40mass%、P:0.05mass%、S:0.0005mass%、Al:0.0005mass%、N:0.0010mass%、Ni:0.01mass%、Cr:0.01mass%、Ti:0.0010mass%、Nb:0.0005mass%、As:0.002mass%およびO:0.0012mass%を含有する鋼を実験室的に溶解し、鋼塊とした後、熱間圧延して板厚2.4mmの熱延板とした。上記熱延板の鋼板組織を調べたところ、完全に再結晶しており、フェライト粒径は20μmであった。
Next, the inventors conducted an experiment to investigate the influence of the temperature and time of the retention treatment applied during the rapid heating on the magnetic properties.
<Experiment 2>
C: 0.0025 mass%, Si: 1.10 mass%, Mn: 0.40 mass%, P: 0.05 mass%, S: 0.0005 mass%, Al: 0.0005 mass%, N: 0.0010 mass%, Ni : Steel containing 0.01 mass%, Cr: 0.01 mass%, Ti: 0.0010 mass%, Nb: 0.0005 mass%, As: 0.002 mass% and O: 0.0012 mass% are melted in the laboratory. Then, after forming a steel ingot, it was hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm. When the steel sheet structure of the hot-rolled sheet was examined, it was completely recrystallized and the ferrite grain size was 20 μm.

次いで、上記熱延板を酸洗し、冷間圧延して板厚0.35mmの冷延板とした後、均熱温度900℃、均熱時間10sの仕上焼鈍を施した。
この際、上記仕上焼鈍の室温から740℃までの加熱は、複数台の誘導加熱装置を直列に並べた加熱装置を用いて行い、加熱途中の100〜680℃間の種々の温度Tまでは、平均昇温速度30℃/sで加熱し、温度Tにおいて、保定時間tを0.2〜20秒の範囲で種々に変化させて保持する1回の保定処理を施した後、上記保定温度Tから740℃までは、630〜740℃間の平均昇温速度を200℃/sとして加熱した(630〜700℃の平均昇温速度も同じ)。次いで、740℃から均熱温度(900℃)までは、電気炉を用いて、平均昇温速度10℃/sで加熱した。
Next, the hot-rolled sheet was pickled and cold-rolled to obtain a cold-rolled sheet having a thickness of 0.35 mm, and then subjected to finish annealing at a soaking temperature of 900 ° C. and a soaking time of 10 s.
At this time, heating from room temperature to 740 ° C. in the finish annealing is performed using a heating device in which a plurality of induction heating devices are arranged in series, and until various temperatures T 1 between 100 to 680 ° C. during heating are performed. Then, after heating at an average temperature increase rate of 30 ° C./s and performing a single holding treatment at the temperature T 1 , holding the holding time t 1 in various ranges in the range of 0.2 to 20 seconds, From the holding temperature T 1 to 740 ° C., heating was performed at an average temperature increase rate of 630 to 740 ° C. at 200 ° C./s (the same is true for the average temperature increase rate of 630 to 700 ° C.). Subsequently, from 740 degreeC to soaking temperature (900 degreeC), it heated with the average temperature increase rate of 10 degree-C / s using the electric furnace.

ここで、上記保定時間tはTの温度に対して±2℃の範囲内にある時間である。また、仕上焼鈍における雰囲気は、vol%比でH:N=2:8で、露点−20℃(PHO/PH=0.006)の水素−窒素混合雰囲気とした。 Here, the holding time t 1 is a time within a range of ± 2 ° C. with respect to the temperature of T 1 . The atmosphere in the finish annealing was a hydrogen-nitrogen mixed atmosphere having a vol% ratio of H 2 : N 2 = 2: 8 and a dew point of −20 ° C. (PH 2 O / PH 2 = 0.006).

斯くして得た各々の仕上焼鈍板から、<実験1>と同様にして試験片を採取し、エプスタイン試験で磁気特性(磁束密度B50)を評価した。
図2に、保定温度Tと保定時間tが磁束密度B50におよぼす影響を示す。この図から、保定温度Tが250〜630℃の範囲、かつ、保定時間tが0.5〜10秒の範囲のときに良好な磁束密度が得られることがわかった。
Test pieces were collected from each finish-annealed plate thus obtained in the same manner as in <Experiment 1>, and magnetic properties (magnetic flux density B50 ) were evaluated by an Epstein test.
FIG. 2 shows the influence of the holding temperature T 1 and the holding time t 1 on the magnetic flux density B 50 . From this figure, retention temperature T 1 is the range of two hundred fifty to six hundred and thirty ° C., and, holding constant-time t 1 it was found that good magnetic flux density at a range of 0.5 to 10 seconds is obtained.

次に、発明者らは、鋼中の不純物元素が、急速加熱による磁気特性向上効果に及ぼす影響を調査する実験を行った。
<実験3>
C:0.0015mass%、Si:1.20mass%、Mn:0.60mass%、P:0.07mass%、S:0.0015mass%、Al:0.0010mass%、N:0.0007mass%、Ni:0.02mass%、Cr:0.03mass%、Ti:0.0018mass%、Nb:0.0011mass%およびO:0.0011mass%を含有し、さらに、Asを0.002〜0.010mass%の範囲で種々に変化させて添加した鋼を実験室的に溶解し、鋼塊とした後、熱間圧延して板厚2.4mmの熱延板とした。なお、上記熱延板の鋼板組織を調べたところ、完全に再結晶しており、フェライト粒径は17〜23μmの範囲であった。
Next, the inventors conducted an experiment to investigate the influence of impurity elements in steel on the magnetic property improvement effect by rapid heating.
<Experiment 3>
C: 0.0015 mass%, Si: 1.20 mass%, Mn: 0.60 mass%, P: 0.07 mass%, S: 0.0015 mass%, Al: 0.0010 mass%, N: 0.0007 mass%, Ni : 0.02 mass%, Cr: 0.03 mass%, Ti: 0.0018 mass%, Nb: 0.0011 mass% and O: 0.0011 mass%, further, As is 0.002 to 0.010 mass% The steel added with various changes in the range was melted in the laboratory to form a steel ingot, and then hot rolled to obtain a hot rolled sheet having a thickness of 2.4 mm. In addition, when the steel plate structure | tissue of the said hot rolled sheet was investigated, it recrystallized completely and the ferrite particle size was the range of 17-23 micrometers.

次いで、上記熱延板を酸洗し、冷間圧延して板厚0.35mmの冷延板とした後、均熱温度900℃、均熱時間10sの仕上焼鈍を施した。
この際、上記仕上焼鈍の室温から740℃までの加熱は、複数台の誘導加熱装置を直列に並べた加熱装置を用いて行い、室温から630℃までは、平均昇温速度30℃/sで加熱するとともに、表2に示す加熱途中の温度T,T,Tにおいて、それぞれ時間t,t,t間保持する保定処理を施した後、630℃から740℃までは、誘導加熱装置の出力を変えて630〜740℃間の平均昇温速度を30℃/sと200℃/sの2水準に変化させて加熱した(630〜700℃の平均昇温速度も同じ)。次いで、740℃から均熱温度(900℃)までは、電気炉を用いて、平均昇温速度10℃/sで加熱した。
Next, the hot-rolled sheet was pickled and cold-rolled to obtain a cold-rolled sheet having a thickness of 0.35 mm, and then subjected to finish annealing at a soaking temperature of 900 ° C. and a soaking time of 10 s.
At this time, heating from room temperature to 740 ° C. in the finish annealing is performed using a heating device in which a plurality of induction heating devices are arranged in series, and from room temperature to 630 ° C., the average temperature increase rate is 30 ° C./s. In addition to heating, at the temperatures T 1 , T 2 , T 3 in the middle of heating shown in Table 2, after holding treatment for the time t 1 , t 2 , t 3 , respectively, from 630 ° C. to 740 ° C., Heating was performed by changing the output of the induction heating device and changing the average temperature increase rate between 630-740 ° C. to two levels of 30 ° C./s and 200 ° C./s (the same is true for the average temperature increase rate of 630-700 ° C.) . Subsequently, from 740 degreeC to soaking temperature (900 degreeC), it heated with the average temperature increase rate of 10 degree-C / s using the electric furnace.

Figure 0006319586
Figure 0006319586

ここで、上記保定時間tはTの温度に対して±2℃の範囲内にある時間、tはTの温度に対して±2℃の範囲内にある時間、tはTの温度に対して±2℃の範囲内にある時間であり、また、上記室温から630℃までの平均昇温速度は、保定時間の合計(t+t+t)を除いた時間の平均昇温速度、また、上記630℃から740℃までの平均昇温速度は、630〜700℃間の平均昇温速度である。また、仕上焼鈍における雰囲気は、vol%比でH:N=2:8で、露点−20℃(PHO/PH=0.006)の水素−窒素混合雰囲気とした。 Here, the holding time t 1 is a time within a range of ± 2 ° C. with respect to the temperature of T 1 , t 2 is a time within a range of ± 2 ° C. with respect to the temperature of T 2 , and t 3 is T a 3 times in the range of ± 2 ℃ relative temperature, the average heating rate of up to 630 ° C. from the room temperature, the sum of the dwelling scheduled (t 1 + t 2 + t 3) excluding the time The average temperature increase rate, and the average temperature increase rate from 630 ° C. to 740 ° C. is an average temperature increase rate between 630 and 700 ° C. The atmosphere in the finish annealing was a hydrogen-nitrogen mixed atmosphere having a vol% ratio of H 2 : N 2 = 2: 8 and a dew point of −20 ° C. (PH 2 O / PH 2 = 0.006).

斯くして得た各々の仕上焼鈍板から、<実験1>と同様にして試験片を採取し、エプスタイン試験で磁気特性(磁束密度B50)を評価した。
図3に、As含有量が磁束密度B50に及ぼす影響を示す。この図から、As含有量が0.0050mass%を超えると、急速加熱および加熱途中の保定処理による磁束密度向上効果が弱くなることがわかった。
Test pieces were collected from each finish-annealed plate thus obtained in the same manner as in <Experiment 1>, and magnetic properties (magnetic flux density B50 ) were evaluated by an Epstein test.
Figure 3 shows the effect of As content on the magnetic flux density B 50. From this figure, it was found that when the As content exceeds 0.0050 mass%, the effect of improving the magnetic flux density by rapid heating and the retention treatment during heating is weakened.

そこで、上記の原因を調査するため、上記試験片の一次再結晶集合組織を調査したところ、急速加熱および保定処理したものであっても、As含有量が高いものは、{111}強度が高くなっていることがわかった。すなわち、Asは、{111}方位粒の比率を高め、磁束密度を低下させる有害元素であり、高い磁束密度を安定して実現するためには、不純物として混入してくるAsの含有量を0.005mass%以下に制限する必要があることがわかった。   Then, in order to investigate said cause, when the primary recrystallization texture of the said test piece was investigated, even if it carried out rapid heating and holding process, what has high As content has high {111} intensity | strength. I found out that That is, As is a harmful element that increases the ratio of {111} -oriented grains and lowers the magnetic flux density. In order to stably realize a high magnetic flux density, the content of As mixed in as impurities is reduced to 0. It was found that it was necessary to limit to 0.005 mass% or less.

発明者らは、さらに、上記As以外の微量成分についても同様の実験を行い、仕上焼鈍後の{111}強度に及ぼす影響を調査した。その結果、Asと同様、磁束密度に悪影響を及ぼす有害元素として、TiおよびNbがあり、それぞれ0.003mass%以下に制限する必要があることがわかった。   The inventors further conducted the same experiment for trace components other than the above As, and investigated the influence on {111} strength after finish annealing. As a result, similar to As, it was found that there are Ti and Nb as harmful elements that adversely affect the magnetic flux density, and it is necessary to limit each to 0.003 mass% or less.

上記のように、Ti,NbおよびAsが仕上焼鈍後の{111}強度に悪影響を及ぼす理由について、発明者らは以下のように考えている。
Ti,NbおよびAsは、仕上焼鈍における回復・再結晶を遅延させる元素であるが、再結晶が速い{111}方位粒は、その影響を受け難いため、上記有害元素が多く含まれる場合には、{110}や{100}方位粒に対する{111}方位粒の優位性が相対的に高くなってしまう。そのため、昇温速度を高めても、{111}方位粒の生成を抑制することができず、急速加熱による磁束密度向上効果が得られなくなる。
したがって、仕上焼鈍で急速加熱する場合に、安定して高い磁束密度を得るためには、Ti,NbおよびAsを極微量に低減した、高純度の鋼素材を用いる必要があることがわかった。
本発明は、上記の新規な知見に基いて開発したものである。
As described above, the inventors consider the reason why Ti, Nb, and As adversely affect the {111} strength after finish annealing as follows.
Ti, Nb, and As are elements that delay recovery / recrystallization in finish annealing, but {111} oriented grains that are recrystallized quickly are not easily affected. , {110} and {100} oriented grains have a relatively superior predominance of {111} oriented grains. Therefore, even if the heating rate is increased, the generation of {111} oriented grains cannot be suppressed, and the effect of improving the magnetic flux density by rapid heating cannot be obtained.
Therefore, it has been found that in order to obtain a high magnetic flux density stably when rapid heating is performed by finish annealing, it is necessary to use a high-purity steel material in which Ti, Nb, and As are reduced to an extremely small amount.
The present invention has been developed based on the above-described novel findings.

次に、本発明の無方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.0050mass%以下
Cは、磁気時効を起こし、炭化物を形成して鉄損特性を劣化させる元素であるので、本発明では0.0050mass%以下に制限する。好ましくは0.0040mass%以下である。なお、下限は特に規定しないが、脱炭コストを抑制する観点から、0.0001mass%程度とすることが好ましい。
Next, the component composition of the steel material (slab) used for manufacturing the non-oriented electrical steel sheet of the present invention will be described.
C: 0.0050 mass% or less C is an element that causes magnetic aging and forms carbides to deteriorate iron loss characteristics. Therefore, in the present invention, C is limited to 0.0050 mass% or less. Preferably it is 0.0040 mass% or less. In addition, although a minimum is not prescribed | regulated, it is preferable to set it as about 0.0001 mass% from a viewpoint of suppressing decarburization cost.

Si:8.0mass%以下
Siは、鋼の比抵抗を高め、鉄損を低減するのに有効な元素であり、0.5mass%以上添加するのが好ましい。しかし、8.0mass%を超える添加は、圧延して製造することを困難とするため、上限は8.0mass%程度とする。なお、製造性の観点からは4.0mass%以下が好ましい。また、Si含有量が高いと、磁束密度が低下するため、高磁束密度を得るためには、2.0mass%以下が好ましい。
Si: 8.0 mass% or less Si is an element effective for increasing the specific resistance of steel and reducing iron loss, and is preferably added in an amount of 0.5 mass% or more. However, since addition exceeding 8.0 mass% makes it difficult to roll and manufacture, an upper limit shall be about 8.0 mass%. In addition, 4.0 mass% or less is preferable from a viewpoint of manufacturability. Moreover, since magnetic flux density will fall when Si content is high, in order to obtain a high magnetic flux density, 2.0 mass% or less is preferable.

Mn:0.03〜3.0mass%、
Mnは、Sを固定して熱間脆性を防止する効果のほか、鋼の比抵抗を増加させて鉄損を低減する効果がある。上記効果を得るためには、0.03mass%以上の添加が必要である。しかし、3.0mass%を超えると、磁束密度の低下が顕著になる。よって、Mnは0.03〜3.0mass%の範囲とする。好ましくは0.05〜1.0mass%の範囲である。
Mn: 0.03-3.0 mass%,
In addition to the effect of fixing S to prevent hot brittleness, Mn has the effect of increasing the specific resistance of steel and reducing iron loss. In order to acquire the said effect, addition of 0.03 mass% or more is required. However, when it exceeds 3.0 mass%, the magnetic flux density is significantly reduced. Therefore, Mn is set to a range of 0.03 to 3.0 mass%. Preferably it is the range of 0.05-1.0 mass%.

P:0.1mass%以下
Pは、固溶強化能が大きいため、鋼の強度調整に用いられる元素である。しかし、0.1mass%を超えると、鋼が脆化して圧延することが困難になるので、Pの上限は0.1mass%とする。好ましくは0.08mass%以下である。なお、下限は特に規定しないが、脱Pコストを抑制する観点からは、0.001mass%程度とするのが好ましい。
P: 0.1 mass% or less P is an element used for adjusting the strength of steel because of its high solid solution strengthening ability. However, if it exceeds 0.1 mass%, the steel becomes brittle and difficult to roll, so the upper limit of P is set to 0.1 mass%. Preferably it is 0.08 mass% or less. In addition, although a minimum is not prescribed | regulated, it is preferable to set it as about 0.001 mass% from a viewpoint of suppressing removal P cost.

Al:3.0mass%以下
Alは、Siと同様、鋼の比抵抗を高めて、鉄損を低減する効果がある。しかし、3.0mass%を超えると、圧延することが困難になるため、Alの上限は3.0mass%程度とする。
ただし、Alの含有量が0.01〜0.1mass%の範囲では、微細なAlNが析出して鉄損が増加するため、好ましくは0.01mass%以下もしくは0.1〜2.0mass%の範囲である。なお、Alを低減すると、集合組織が改善され、磁束密度が向上するので、上記効果を得たい場合には、Alを0.01mass%以下とすることが好ましい。
Al: 3.0 mass% or less Al, like Si, has the effect of increasing the specific resistance of steel and reducing iron loss. However, if it exceeds 3.0 mass%, it becomes difficult to roll, so the upper limit of Al is about 3.0 mass%.
However, when the Al content is in the range of 0.01 to 0.1 mass%, fine AlN precipitates and the iron loss increases, and therefore, preferably 0.01 mass% or less or 0.1 to 2.0 mass%. It is a range. Note that, if Al is reduced, the texture is improved and the magnetic flux density is improved. Therefore, when it is desired to obtain the above effect, Al is preferably 0.01 mass% or less.

S,N,O:それぞれ0.005mass%以下
S,N,Oは、いずれも微細析出物を形成して、鉄損を増加させる有害元素であり、特に0.005mass%を超えると悪影響が顕著になる。よって、S,N,Oは、それぞれ0.005mass%以下に制限する。より好ましくは、それぞれ0.003mass%以下である。
S, N, O: 0.005 mass% or less for each S, N, O is a harmful element that forms fine precipitates and increases iron loss. Especially when the content exceeds 0.005 mass%, the adverse effect is remarkable. become. Therefore, S, N, and O are limited to 0.005 mass% or less, respectively. More preferably, each is 0.003 mass% or less.

Ni:3.0mass%以下
Niは、鋼の強度調整のために添加される元素である。しかし、3.0mass%を超える添加は、原料コストの上昇を招くため、Niの上限は3.0mass%程度とする。好ましくは2.5mass%以下である。なお、下限は特に規定されないが、脱Niコストを抑制する観点から、0.001mass%程度とするのが好ましい。
Ni: 3.0 mass% or less Ni is an element added for adjusting the strength of steel. However, addition exceeding 3.0 mass% leads to an increase in raw material cost, so the upper limit of Ni is about 3.0 mass%. Preferably it is 2.5 mass% or less. In addition, although a minimum is not prescribed | regulated in particular, it is preferable to set it as about 0.001 mass% from a viewpoint of suppressing Ni removal cost.

Cr:5.0mass%以下
Crは、鋼の比抵抗を高めて、鉄損を低減する効果がある元素である。しかし、5.0mass%を超えると、却って鉄損が悪化するため、Crの上限は5.0mass%程度とする。好ましくは3.0mass%以下である。なお、下限は特に規定されないが、脱Crコスト抑制の観点から0.001mass%程度とするのが好ましい。
Cr: 5.0 mass% or less Cr is an element having an effect of increasing the specific resistance of steel and reducing iron loss. However, if it exceeds 5.0 mass%, the iron loss deteriorates, so the upper limit of Cr is set to about 5.0 mass%. Preferably it is 3.0 mass% or less. The lower limit is not particularly defined, but is preferably about 0.001 mass% from the viewpoint of reducing Cr removal cost.

Ti,Nb:それぞれ0.003mass%以下
TiおよびNbは、仕上焼鈍における回復・再結晶を遅延させ、仕上焼鈍後の{111}方位粒を増加させて、急速加熱の磁束密度向上効果を失わせる有害元素である。特に上記の悪影響は0.003mass%を超えると顕著になる。よって、TiおよびNbは、それぞれ0.003mass%以下に制限する。好ましくは、それぞれ0.002mass%以下である。
Ti and Nb: each 0.003 mass% or less Ti and Nb delay recovery and recrystallization in finish annealing, increase {111} orientation grains after finish annealing, and lose the effect of rapid heating to increase magnetic flux density It is a harmful element. In particular, the above-mentioned adverse effects become significant when the amount exceeds 0.003 mass%. Therefore, Ti and Nb are limited to 0.003 mass% or less, respectively. Preferably, it is 0.002 mass% or less, respectively.

As:0.005mass%以下
Asは、Ti,Nbと同様、仕上焼鈍における回復・再結晶を遅延させ、仕上焼鈍後の{111}方位粒を増加させて、急速加熱の磁束密度向上効果を失わせる有害元素である。特に上記の悪影響は0.005mass%を超えると顕著になる。よって、Asは0.005mass%以下に制限する。好ましくは0.003mass%以下である。
As: 0.005 mass% or less As is the case with Ti and Nb, As is delayed recovery and recrystallization in finish annealing, increasing the {111} orientation grains after finish annealing, and the effect of improving the magnetic flux density by rapid heating is lost. It is a harmful element. In particular, the above-mentioned adverse effects become significant when the amount exceeds 0.005 mass%. Therefore, As is limited to 0.005 mass% or less. Preferably it is 0.003 mass% or less.

本発明の無方向性電磁鋼板の製造に用いるスラブは、上記成分の他に、以下の成分を含有することができる。
Sn,Sb:それぞれ0.005〜0.20mass%
Sn,Sbは、再結晶集合組織を改善し、磁束密度や鉄損を改善する効果がある。上記の効果を得るためにはそれぞれ0.005mass%以上添加するのが好ましい。しかし、0.20mass%超え添加しても、上記効果が飽和する。よって、SnおよびSbのいずれか1以上を添加する場合には、それぞれ0.005〜0.20mass%の範囲で添加するのが好ましい。
The slab used for producing the non-oriented electrical steel sheet of the present invention can contain the following components in addition to the above components.
Sn, Sb: 0.005 to 0.20 mass% each
Sn and Sb have the effect of improving the recrystallization texture and improving the magnetic flux density and iron loss. In order to acquire said effect, it is preferable to add 0.005 mass% or more, respectively. However, the above effect is saturated even if added over 0.20 mass%. Therefore, when adding any one or more of Sn and Sb, it is preferable to add in the range of 0.005-0.20 mass%, respectively.

Ca,Mg,REM:それぞれ0.0001〜0.010mass%
Ca,MgおよびREMは、安定な硫化物やセレン化物を形成し、結晶粒の粒成長性を改善する効果がある。上記の効果を得るためには、それぞれ0.0001mass%以上添加するのが好ましい。しかし、0.010mass%超え添加すると、却って鉄損が劣化する。よって、Ca,MgおよびREMのいずれか1以上を添加する場合には、それぞれ0.0001〜0.010mass%の範囲とするのが好ましい。
なお、本発明の無方向性電磁鋼板の製造に用いるスラブにおける上記成分以外の残部は、Feおよび不可避的不純物である。
Ca, Mg, REM: 0.0001 to 0.010 mass% each
Ca, Mg, and REM have the effect of forming stable sulfides and selenides and improving the grain growth of crystal grains. In order to acquire said effect, it is preferable to add 0.0001 mass% or more, respectively. However, if added over 0.010 mass%, the iron loss deteriorates. Therefore, when adding any one or more of Ca, Mg, and REM, it is preferable to set it as the range of 0.0001-0.010 mass%, respectively.
In addition, the remainder other than the said component in the slab used for manufacture of the non-oriented electrical steel sheet of this invention is Fe and an unavoidable impurity.

次に、本発明の無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板は、転炉あるいは電気炉などで鋼を溶解し、脱ガス設備等で二次精錬する常法の精錬プロセスで前述した成分組成に調整した溶鋼を連続鋳造法でスラブとした後、熱間圧延し、必要に応じて熱延板焼鈍を施した後、酸洗し、冷間圧延し、仕上焼鈍を施す方法で製造することができる。
Next, the manufacturing method of the non-oriented electrical steel sheet of this invention is demonstrated.
The non-oriented electrical steel sheet of the present invention is a continuous casting method in which molten steel is melted in a converter or electric furnace, and is adjusted to the above-described component composition in a conventional refining process in which secondary refining is performed with a degassing facility or the like. After making into a slab, it can be manufactured by a method of hot rolling, subjecting it to hot-rolled sheet annealing as necessary, pickling, cold rolling, and finishing annealing.

ここで、上記熱間圧延の条件は、特に規定しないが、磁気特性を高める観点から、仕上圧延終了温度は700〜900℃、巻取温度は600〜800℃の範囲とするのが好ましい。また、熱間圧延後の熱延板焼鈍は、必要に応じて行えばよい。   Here, although the conditions for the above hot rolling are not particularly defined, it is preferable that the finish rolling finish temperature is in the range of 700 to 900 ° C. and the winding temperature is in the range of 600 to 800 ° C. from the viewpoint of enhancing the magnetic properties. Moreover, what is necessary is just to perform the hot-rolled sheet annealing after hot rolling as needed.

次いで、上記熱間圧延後または熱延板焼鈍後の熱延板は、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。
この際、上記冷間圧延の最終冷間圧延(1回圧延法の場合は、その冷間圧延)前における鋼板のフェライト粒径を50μm以下に制御するのが好ましい。
Subsequently, the hot-rolled sheet after the hot rolling or after the hot-rolled sheet annealing is made into a cold-rolled sheet having a final thickness by one or more cold rollings sandwiching the intermediate annealing.
Under the present circumstances, it is preferable to control the ferrite grain size of the steel plate before the last cold rolling of the said cold rolling (in the case of a single rolling method) to 50 micrometers or less.

というのは、仕上焼鈍における再結晶においては、{111}方位を有する再結晶粒は、最終冷延前組織の粒界近傍から生成するため、最終冷延前組織のフェライト粒径が小さほど、冷延・再結晶後の組織に{111}再結晶粒が多くなるので、急速加熱による{111}低減効果が顕著になるからである。より好ましいフェライト粒径は、40μm以下である。なお、上記フェライト粒径は、板厚全体について切断法で測定した平均結晶粒のことをいう。 Because, in the recrystallization in finish annealing, the recrystallized grains having a {111} orientation, for generating from the grain boundary near the final cold rolling before tissue, the more the ferrite grain size of the final cold rolling before the tissue is less This is because {111} recrystallized grains increase in the structure after cold rolling and recrystallization, so that the {111} reduction effect by rapid heating becomes remarkable. A more preferable ferrite particle size is 40 μm or less. In addition, the said ferrite particle diameter means the average crystal grain measured with the cutting method about the whole board thickness.

ここで、上記フェライト粒径の制御は、熱間圧延における仕上圧延終了温度や、巻取温度(自己焼鈍温度)、熱延板焼鈍温度、中間焼鈍温度などを調整することで行うことができる。なお、リジングを防止する観点からは、最終冷間圧延前の鋼板組織は、再結晶率を80%以上とするのが望ましい。   Here, the ferrite grain size can be controlled by adjusting the finish rolling end temperature in hot rolling, the coiling temperature (self-annealing temperature), the hot-rolled sheet annealing temperature, the intermediate annealing temperature, and the like. From the viewpoint of preventing ridging, it is desirable that the steel sheet structure before the final cold rolling has a recrystallization rate of 80% or more.

上記最終板厚とした冷延板は、仕上焼鈍を行い、無方向性電磁鋼板とする。
この際、上記仕上焼鈍は、磁束密度を高めるためには、加熱過程における630〜700℃間の平均昇温速度を50℃/s以上とすることが必要であり、好ましくは100℃/s以上である。なお、昇温速度の上限は特に規定しないが、設備コストを抑える観点から、上限は1000℃/s程度である。
なお、急速加熱後の700℃超えの温度域における昇温速度は、特に規定しないが、30℃/s以上とするのが好ましい。
The cold-rolled sheet having the final thickness is subjected to finish annealing to obtain a non-oriented electrical steel sheet.
At this time, in order to increase the magnetic flux density, the finish annealing requires that the average heating rate between 630 and 700 ° C. in the heating process be 50 ° C./s or more, preferably 100 ° C./s or more. It is. The upper limit of the rate of temperature rise is not particularly specified, but the upper limit is about 1000 ° C./s from the viewpoint of reducing the equipment cost.
The rate of temperature rise in the temperature range exceeding 700 ° C. after the rapid heating is not particularly specified, but is preferably 30 ° C./s or more.

ここで、上記のように平均昇温速度を規定する温度範囲を630〜700℃間とするのは、上記温度範囲は再結晶が進行する領域であり、この温度領域の平均昇温速度が、磁束密度に大きな影響を与えるからである。すなわち、630℃未満の温度域は、再結晶がほとんど生じないため、平均昇温速度の影響が現れないからであり、一方、700℃超えの温度域は、再結晶が十分に進行して、平均昇温速度を変化させても効果が得られないからである。   Here, the temperature range defining the average rate of temperature rise as described above is between 630 and 700 ° C., the temperature range is a region where recrystallization proceeds, and the average rate of temperature rise in this temperature region is This is because the magnetic flux density is greatly affected. That is, since the recrystallization hardly occurs in the temperature range below 630 ° C., the influence of the average heating rate does not appear, whereas in the temperature range above 700 ° C., the recrystallization proceeds sufficiently, This is because the effect cannot be obtained even if the average temperature increase rate is changed.

上記630〜700℃間の急速加熱は、ラジアントチューブや電気ヒータからの輻射熱で行ってもよいが、炉内をかなりの高温とする必要があり、炉寿命が短くなってしまうため、誘導加熱装置や通電加熱装置を用いて行うことが好ましい。なお、急速加熱終了から均熱温度までの加熱は、ラジアントチューブや電気ヒータを用いて加熱することが好ましい。また、均熱帯においては、温度ムラを小さくする観点から、ラジアントチューブや電気ヒータによる輻射熱で加熱することが好ましい。   The rapid heating between 630 and 700 ° C. may be performed by radiant heat from a radiant tube or an electric heater, but the furnace needs to be heated to a considerably high temperature, and the furnace life is shortened. Or using an electric heating apparatus. The heating from the end of rapid heating to the soaking temperature is preferably performed using a radiant tube or an electric heater. In the soaking zone, it is preferable to heat by radiant heat from a radiant tube or an electric heater from the viewpoint of reducing temperature unevenness.

また、本発明において重要なことは、上記仕上焼鈍の急速加熱区間に至るまでの250〜630℃間の任意の温度Tにおいて0.5秒以上の時間t間保持する保定処理を、上記保持時間tの総和が0.5〜10秒となる1回以上の回数施す必要があることである。 Moreover, what is important in the present invention is that the holding treatment for holding time t i of 0.5 seconds or more at an arbitrary temperature T i between 250 to 630 ° C. until the rapid heating section of the finish annealing is performed. the sum of the retention time t i is that it is necessary to perform one or more times to be 0.5 to 10 seconds.

上記保持時間tは、図4に示すように、温度Tに対して±2℃以内の温度に保持される時間のことをいい、図4(a)のように、温度が一定に保持される場合だけでなく、図4(b)のように、T±2℃の範囲内に連続して保持される場合でもよい。 As shown in FIG. 4, the holding time t i is a time during which the temperature T i is kept within ± 2 ° C. The temperature is kept constant as shown in FIG. 4 (a). As shown in FIG. 4 (b), it may be possible to hold continuously within a range of T i ± 2 ° C.

また、上記保定処理は、1回である必要はなく、保定時間の合計が0.5〜10秒の範囲内であれば複数回行ってもよい。例えば、250〜630℃間の温度T(保定温度:T、T、・・・T)において、上記保定温度Tに対して±2℃の温度に保持される時間t(保持時間:t、t、・・・t)の合計が0.5〜10秒の範囲内であれば複数回行ってもよい。ただし、それぞれの保持時間Tは、短か過ぎると回復の効果が得られないため、0.5秒以上とする。 In addition, the retaining process need not be performed once, and may be performed a plurality of times as long as the total retaining time is in the range of 0.5 to 10 seconds. For example, the temperature T i of between two hundred and fifty to six hundred and thirty ° C. (retention temperature: T 1, T 2, ··· T N) at the time is maintained at a temperature of ± 2 ℃ relative to the retention temperature T i t i ( retention time: t 1, t 2, the sum of · · · t N) may be performed more than once as long as it is within the range of 0.5 to 10 seconds. However, if each holding time T i is too short, a recovery effect cannot be obtained.

ここで、上記保定処理を行う温度Tの範囲を250〜630℃とする理由は、保定温度Tが250℃を下回ると、{111}粒の回復が進まないため、保定処理の効果が得られず、一方、630℃を上回ると、保定処理中に再結晶が進行し、却って{111}強度が増大してしまうからである。好ましい保定温度は280〜550℃の範囲である。 The reason for the 250 to 630 ° C. The range of temperature T i to carry out the retention process, when retaining the temperature T i is lower than 250 ° C., since no progress has {111} grain recovery, the effect of retaining the processing On the other hand, if the temperature exceeds 630 ° C., recrystallization proceeds during the retention treatment, and the {111} strength increases on the contrary. A preferable holding temperature is in the range of 280 to 550 ° C.

また、保定時間tの総和(t+t+・・・+t)を0.5〜10秒とする理由は、0.5秒未満であると、{111}粒の回復が進まないため、保定処理の効果が得られず、一方、10秒を超えると、保定処理中に回復が進行しすぎて、再結晶温度が上昇し、急速加熱を適用する温度範囲で保定処理の効果が得られなくなるからである。好ましい保定時間の総和は1〜6秒の範囲である。 The reason why the sum of the coercive constant-time t i the (t 1 + t 2 + ··· + t N) and 0.5 to 10 seconds, is less than 0.5 seconds, does not proceed is {111} grain Recovery Therefore, the effect of the retention treatment cannot be obtained. On the other hand, if it exceeds 10 seconds, the recovery proceeds too much during the retention treatment, the recrystallization temperature rises, and the effect of the retention treatment is effective in the temperature range where rapid heating is applied. This is because it cannot be obtained. A preferable sum of the holding times is in the range of 1 to 6 seconds.

なお、250〜630℃間の温度域で、複数回の保定処理を行う場合における保定温度Tと、次の保定温度T(i+1)との間の昇温速度、すなわち、保定時間を除く時間における昇温速度は、遅すぎると加熱設備が長大になり過ぎることや、保定処理との違いを明確にするため、10℃/s以上とするのが望ましい。また、室温から250℃までの昇温速度は、{111}粒の回復が進行しない領域であるので、特に規定しないが、加熱設備が長大となりすぎないよう、10℃/s以上とするのが望ましい。 Incidentally, in a temperature range between two hundred fifty to six hundred thirty ° C., and retaining the temperature T i when performing retention process a plurality of times, heating rate between subsequent retention temperature T (i + 1), i.e., the time except for the dwelling scheduled In order to clarify the difference between the heating rate in the heating process and the retention treatment, if it is too slow, or 10 ° C./s or more is desirable. The rate of temperature increase from room temperature to 250 ° C. is a region where the recovery of {111} grains does not proceed, and is not particularly specified. However, the heating rate should be 10 ° C./s or more so that the heating equipment does not become too long. desirable.

また、保定処理を行う設備としては、特に規定しないが、例えば、誘導加熱装置や直接通電加熱装置を複数台並べ、その間に、電気ヒータなどで温度を均一に保持した区間を設けたもの等が挙げられる。また、室温から保定処理を行う温度までの加熱設備は、上記昇温速度が得られればよく、特に限定されない。   In addition, although there are no particular restrictions on the equipment for performing the retention treatment, for example, there are devices in which a plurality of induction heating devices and direct current heating devices are arranged, and a section in which the temperature is uniformly maintained by an electric heater or the like is provided therebetween Can be mentioned. Moreover, the heating equipment from room temperature to the temperature which performs a retention process should just obtain the said temperature increase rate, and is not specifically limited.

また、上記仕上焼鈍における焼鈍雰囲気は、還元性雰囲気とすることが好ましく、例えば、PH2O/PH2が0.1以下の水素−窒素混合雰囲気とするのが好ましい。 The annealing atmosphere in the finish annealing is preferably a reducing atmosphere, for example, a hydrogen-nitrogen mixed atmosphere having a P H2O / PH2 of 0.1 or less.

次いで、上記仕上焼鈍後の鋼板は、必要に応じて絶縁被膜を被成して製品板とする。上記絶縁被膜は、要求特性に応じて、公知の有機、無機、有機・無機混合コーティングを用いることができる。例えば、良好な打抜き性を確保するためには、樹脂を含有する有機コーティングを、溶接性を重視する場合には半有機や無機コーティングを塗布するのが好ましい。   Next, the steel sheet after the finish annealing is formed into a product plate by applying an insulating coating as necessary. The said insulating film can use well-known organic, inorganic, organic-inorganic mixed coating according to a required characteristic. For example, in order to ensure good punchability, it is preferable to apply an organic coating containing a resin, or a semi-organic or inorganic coating when emphasizing weldability.

表3に示した各種成分組成を有する鋼スラブを1100℃の温度に20分間再加熱した後、仕上圧延終了温度を750℃、巻取温度を630℃とする熱間圧延し、板厚2.7mmの熱延板とした後、上記熱延板に熱延板焼鈍を施した後、あるいは、熱延板焼鈍を施すことなく、酸洗し、冷間圧延して最終板厚0.5mmの冷延板とした。なお、最終冷間圧延前の鋼板は、いずれも再結晶率が100%であることを確認した。
次いで、上記熱延板を酸洗し、1回または中間焼鈍を挟む2回の冷間圧延して板厚0.5mmの冷延板とした。この際、上記冷間圧延の最終冷間圧延前の鋼板全圧厚におけるフェライト粒径(平均粒径)を切断法で測定した。
次いで、上記冷延板を、vol%比でH:N=2:8で、露点−40℃(PHO/PH=0.001)の水素−窒素混合雰囲気下で、920℃×10sの仕上焼鈍を施し、その後、絶縁被膜を被成して製品板(無方向性電磁鋼板)とした。
この際、上記仕上焼鈍においては、室温から740℃までの加熱は、複数台の誘導加熱装置を直列に並べた加熱装置を用いて行い、室温から630℃までの加熱途中において、表4に示した温度、時間で保定1〜4の保定処理を施した後、最後の保定処理温度Tから740℃までを、630〜700℃間の平均昇温速度が表4に示した値となるよう加熱した。なお、室温から最初の保定温度Tまでの平均昇温速度は10〜20℃/s、最初の保定温度T1から最後の保定温度Tまでの平均昇温速度は10〜20℃/s、最後の保定処理温度Tから630℃までの平均昇温速度は10〜20℃/s、700℃から740℃までの平均昇温速度は30〜40℃/sの範囲であった。次いで、740℃から均熱温度(920℃)までを、ラジアントチューブで平均昇温速度15℃/sで加熱した。
The steel slab having the various composition shown in Table 3 was reheated to a temperature of 1100 ° C. for 20 minutes, and then hot-rolled to a finish rolling finish temperature of 750 ° C. and a coiling temperature of 630 ° C. After making a hot rolled sheet of 7 mm, the hot rolled sheet is subjected to hot rolled sheet annealing, or without being subjected to hot rolled sheet annealing, pickling and cold rolling to obtain a final sheet thickness of 0.5 mm. Cold-rolled sheet was used. In addition, it was confirmed that all the steel plates before the final cold rolling had a recrystallization rate of 100%.
Next, the hot-rolled sheet was pickled and cold-rolled once or twice with intermediate annealing in between to obtain a cold-rolled sheet having a thickness of 0.5 mm. Under the present circumstances, the ferrite particle size (average particle diameter) in the steel plate total thickness before the last cold rolling of the said cold rolling was measured with the cutting method.
Next, the cold-rolled sheet was 920 ° C. in a vol-% ratio of H 2 : N 2 = 2: 8 under a hydrogen-nitrogen mixed atmosphere with a dew point of −40 ° C. (PH 2 O / PH 2 = 0.001). A finish annealing of × 10 s was performed, and then an insulating coating was formed to obtain a product plate (non-oriented electrical steel sheet).
At this time, in the above finish annealing, heating from room temperature to 740 ° C. is performed using a heating device in which a plurality of induction heating devices are arranged in series, and the heating from room temperature to 630 ° C. is shown in Table 4. After carrying out the holding treatments of holdings 1 to 4 at a predetermined temperature and time, the average heating rate between 630 to 700 ° C. is the value shown in Table 4 from the last holding treatment temperature T N to 740 ° C. Heated. The average heating rate from room temperature up to the first retention temperature T 1 of the 10 to 20 ° C. / s, the average heating rate from the first retention temperature T1 to the end of the retention temperature T N 10~20 ℃ / s, The average temperature increase rate from the last retention treatment temperature T N to 630 ° C. was 10 to 20 ° C./s, and the average temperature increase rate from 700 ° C. to 740 ° C. was in the range of 30 to 40 ° C./s. Subsequently, from 740 degreeC to soaking temperature (920 degreeC), it heated with the average temperature increase rate of 15 degree-C / s with the radiant tube.

Figure 0006319586
Figure 0006319586

Figure 0006319586
Figure 0006319586

Figure 0006319586
Figure 0006319586

斯くして得た各々の製品板から、圧延方向をL、板幅方向をWとしたとき、L:180mm×W:30mmの試験片を2枚ずつ、L:30mm×W:180mmの試験片を2枚ずつ採取し、エプスタイン試験で磁気特性(鉄損W15/50、磁束密度B50)を測定した。
表4に、熱延板焼鈍条件、最終冷間圧延前フェライト粒径、仕上焼鈍における保定処理条件、630〜700℃間の平均昇温速度とともに、磁気特性の測定結果を示した。
この結果から、本発明に適合する成分組成を有する鋼素材を用いて、本発明に適合する条件で製造した無方向性電磁鋼板は、いずれも優れた磁気特性を有していること、特に、最終冷間圧延前のフェライト粒径を50μm以下に制御した鋼板では、磁束密度B50が大きく向上していることがわかる。
From each of the product plates thus obtained, when the rolling direction is L and the plate width direction is W, two L: 180 mm × W: 30 mm test pieces, L: 30 mm × W: 180 mm test pieces Two samples were collected and magnetic properties (iron loss W 15/50 , magnetic flux density B 50 ) were measured by an Epstein test.
Table 4 shows the measurement results of the magnetic properties, together with the hot-rolled sheet annealing conditions, the ferrite grain diameter before the final cold rolling, the retention treatment conditions in the finish annealing, and the average temperature increase rate between 630 to 700 ° C.
From this result, the non-oriented electrical steel sheet manufactured under the conditions suitable for the present invention using the steel material having the component composition suitable for the present invention has excellent magnetic properties, in particular, It can be seen that the magnetic flux density B 50 is greatly improved in the steel sheet in which the ferrite grain size before final cold rolling is controlled to 50 μm or less.

Claims (3)

C:0.0050mass%以下、Si:8.0mass%以下、Mn:0.03〜3.0mass%、P:0.1mass%以下、S:0.005mass%以下、Al:3.0mass%以下、N:0.005mass%以下、Ni:3.0mass%以下、Cr:5.0mass%以下、Ti:0.003mass%以下、Nb:0.003mass%以下、As:0.005mass%以下およびO:0.005mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブを熱間圧延し熱延板焼鈍することなく、1回または中間焼鈍を挟む2回以上の冷間圧延した後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、
上記冷間圧延における最終冷間圧延前のフェライト粒径を50μm以下に制御し、
上記仕上焼鈍の加熱過程における250〜630℃間を平均昇温速度10℃/以上で加熱するとともに、250〜630℃間の任意の温度Tに、0.5秒以上の時間t間保持する保定処理を1回以上、かつ、上記tの総和が0.5〜10秒となる回数施した後、630〜700℃間を平均昇温速度50℃/s以上で加熱することを特徴とする無方向性電磁鋼板の製造方法。ここで、上記保持時間tは、温度Tに対して±2℃以内の温度に保持される時間のことをいう。
C: 0.0050 mass% or less, Si: 8.0 mass% or less, Mn: 0.03 to 3.0 mass%, P: 0.1 mass% or less, S: 0.005 mass% or less, Al: 3.0 mass% or less N: 0.005 mass% or less, Ni: 3.0 mass% or less, Cr: 5.0 mass% or less, Ti: 0.003 mass% or less, Nb: 0.003 mass% or less, As: 0.005 mass% or less, and O : Steel slab containing 0.005 mass% or less, the balance being composed of Fe and inevitable impurities , hot-rolled, and cold-rolled twice or more sandwiching intermediate annealing without hot-rolled sheet annealing In the method for producing a non-oriented electrical steel sheet that is subjected to finish annealing after hot rolling,
The ferrite grain size before the final cold rolling in the cold rolling is controlled to 50 μm or less,
While heating at 250 to 630 ° C. in the heating process of the above-mentioned finish annealing at an average temperature rising rate of 10 ° C./more , hold at an arbitrary temperature T i between 250 to 630 ° C. for a time t i of 0.5 seconds or more. The holding treatment is performed at least once, and after the number of times that the total of t i is 0.5 to 10 seconds is applied, the temperature between 630 and 700 ° C. is heated at an average temperature increase rate of 50 ° C./s or more. A method for producing a non-oriented electrical steel sheet. Here, the holding time t i refers to the time during which the temperature T i is held at a temperature within ± 2 ° C.
上記鋼スラブは、上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種をそれぞれ0.005〜0.20mass%の範囲で含有することを特徴とする請求項に記載の無方向性電磁鋼板の製造方法。 The steel slab, in addition to the above chemical composition, in claim 1, characterized in that it contains in one or two, respectively 0.005~0.20Mass% range selected from among Sn and Sb The manufacturing method of the non-oriented electrical steel sheet of description. 上記鋼スラブは、上記成分組成に加えてさらに、Ca,MgおよびREMのうちから選ばれる1種または2種以上をそれぞれ0.0001〜0.010mass%の範囲で含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。 The steel slab further contains one or more selected from Ca, Mg and REM in the range of 0.0001 to 0.010 mass% in addition to the above component composition. Item 3. The method for producing a non-oriented electrical steel sheet according to Item 1 or 2 .
JP2015080479A 2015-04-10 2015-04-10 Method for producing non-oriented electrical steel sheet Active JP6319586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015080479A JP6319586B2 (en) 2015-04-10 2015-04-10 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080479A JP6319586B2 (en) 2015-04-10 2015-04-10 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2016199787A JP2016199787A (en) 2016-12-01
JP6319586B2 true JP6319586B2 (en) 2018-05-09

Family

ID=57424118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080479A Active JP6319586B2 (en) 2015-04-10 2015-04-10 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6319586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200009321A (en) * 2018-07-18 2020-01-30 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043525B1 (en) * 2017-12-26 2019-11-12 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
KR102009393B1 (en) 2017-12-26 2019-08-09 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102134311B1 (en) * 2018-09-27 2020-07-15 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
WO2020094230A1 (en) * 2018-11-08 2020-05-14 Thyssenkrupp Steel Europe Ag Electric steel strip or sheet for higher frequency electric motor applications, with improved polarisation and low magnetic losses
CN111254341B (en) * 2020-03-02 2022-08-09 马鞍山钢铁股份有限公司 High-magnetic-induction non-oriented electrical steel for small power generation equipment and production method thereof
CN111471927B (en) * 2020-04-27 2022-03-25 马鞍山钢铁股份有限公司 High-magnetic-induction non-oriented silicon steel for automobile generator and preparation method thereof
CN113737089B (en) * 2020-05-29 2022-07-15 宝山钢铁股份有限公司 Low-cost and extremely-low-aluminum non-oriented electrical steel plate and manufacturing method thereof
KR20230023103A (en) 2021-08-09 2023-02-17 주식회사 포스코 Non-oreinted electrical steel sheet and manufacturing method of the same
KR20240045883A (en) * 2022-09-30 2024-04-08 현대제철 주식회사 Non-oriented elecrical steel sheet and method of manufacturing the same
KR20240098847A (en) * 2022-12-21 2024-06-28 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR20240098949A (en) 2022-12-21 2024-06-28 주식회사 포스코 Non-oriented electrical steel sheet and method for the same
KR20240098950A (en) 2022-12-21 2024-06-28 주식회사 포스코 Non-oriented electrical steel sheet and method for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742556B2 (en) * 1988-12-22 1995-05-10 新日本製鐵株式会社 Ultra-thin electromagnetic steel strip with low iron loss and high magnetic flux density and method for manufacturing the same
JP2000096196A (en) * 1998-09-25 2000-04-04 Nippon Steel Corp Nonoriented silicon steel sheet with low iron loss, and its production
JP5712863B2 (en) * 2011-08-23 2015-05-07 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP5854233B2 (en) * 2013-02-14 2016-02-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
MX2015011022A (en) * 2013-02-28 2015-10-22 Jfe Steel Corp Production method for grain-oriented electrical steel sheets.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200009321A (en) * 2018-07-18 2020-01-30 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102106409B1 (en) * 2018-07-18 2020-05-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP2016199787A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6319586B2 (en) Method for producing non-oriented electrical steel sheet
JP6241633B2 (en) Method for producing non-oriented electrical steel sheet
KR102103856B1 (en) Method for producing non-oriented electrical steel sheet
JP6455468B2 (en) Method for producing grain-oriented electrical steel sheet
JP5737483B2 (en) Method for producing grain-oriented electrical steel sheet
JP6236470B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
US11225699B2 (en) Method for producing non-oriented electrical steel sheet
JP6390876B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2017155057A1 (en) Method for producing grain-oriented electrical steel sheet
JP2014114499A (en) Grain oriented silicon steel plate
JP6888603B2 (en) Manufacturing method of grain-oriented electrical steel sheet
RU2744254C1 (en) Textured electrical steel sheet with low level of core losses and method of its production
JP2015193921A (en) Method for manufacturing oriented electromagnetic steel sheet excellent in iron loss characteristics
JP6143010B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
JP2017110263A (en) Hot rolled sheet for unidirectional electromagnetic steel sheet and manufacturing method thereof and manufacturing method of unidirectional electromagnetic steel sheet thereof
JP2016084540A (en) Method of producing grain oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6319586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250