JP2000096196A - Nonoriented silicon steel sheet with low iron loss, and its production - Google Patents

Nonoriented silicon steel sheet with low iron loss, and its production

Info

Publication number
JP2000096196A
JP2000096196A JP10272347A JP27234798A JP2000096196A JP 2000096196 A JP2000096196 A JP 2000096196A JP 10272347 A JP10272347 A JP 10272347A JP 27234798 A JP27234798 A JP 27234798A JP 2000096196 A JP2000096196 A JP 2000096196A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
oriented electrical
electrical steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10272347A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10272347A priority Critical patent/JP2000096196A/en
Publication of JP2000096196A publication Critical patent/JP2000096196A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a nonoriented silicon steel sheet having high magnetic flux density and low iron loss. SOLUTION: The steel sheet has a composition which consists of, by weight, 0.1-3.5% Si, 0.1-1.5% Mn, 0.0010-0.0025% C, <=0.002% N, <=0.002% S, <=0.003%,Pi, <=0.003% Nb, <=0.005% V, <=0.003% Zr, <=0.003% Ca, <=0.003% As, <=0.05% Cr, <=0.01% Sn, <=0.05% Cu, <=0.02% O, and the balance Fe with inevitable impurities and in which the value of Q, determined by equation Q=log ([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%])×[C%]), is regulated to -4.70. In the equation, [Ti%], [Nb%], [V%], [Zr%], [Ca%], and [C%] represent respective weight concentrations of Ti, Nb, V, Zr, Ca, and C in a product, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄芯材
料として用いられる、鉄損の低い無方向性電磁鋼板及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a low iron loss, which is used as an iron core material of electric equipment, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄芯材料として使用される回転機及び中・小型変
圧器等の分野においては、世界的な電力・エネルギー節
約さらにはフロンガス規制等の地球環境保全の動きの中
で、高効率化の動きが急速に広まりつつある。このた
め、無方向性電磁鋼板に対しても、その特性向上、すな
わち低鉄損化への要請がますます強まってきている。
2. Description of the Related Art In recent years, in the field of electric machines, particularly rotating machines and medium- and small-sized transformers in which non-oriented electrical steel sheets are used as an iron core material thereof, global electric power and energy savings as well as chlorofluorocarbon gas regulations. Among the movements for global environmental conservation, such as the above, the movement for higher efficiency is rapidly spreading. For this reason, there is an increasing demand for non-oriented electrical steel sheets to improve their properties, that is, reduce iron loss.

【0003】また一方で、鉄損低減の為に、単にSi或
いはAl等の含有量を高めるのみではなく、特公平6−
80169号公報に記載されているように、Mn及びS
の低減による高純度鋼化により析出物の無害化を図る方
法が開示されている。しかしながら、Mn及びSの含有
量を同時に低めると、析出物の量は減少するものの析出
物のサイズが微少化し、期待したほどの鉄損低減効果が
得られないという問題点があった。
[0003] On the other hand, in order to reduce iron loss, it is not merely necessary to increase the content of Si or Al.
No. 80169, Mn and S
A method is disclosed in which a precipitate is made harmless by making the steel highly pure by reducing the amount of the steel. However, when the contents of Mn and S are simultaneously reduced, the amount of the precipitates is reduced, but the size of the precipitates is reduced, and there is a problem that the expected iron loss reduction effect cannot be obtained.

【0004】特開平6−248398号公報には、S
i:1.5〜4.0%、Al:1.0〜3.0%のハイ
グレード無方向性電磁鋼板において、S≦0.0020
%、N≦0. 0030%、O≦0. 0030%に低減し
鉄損を改善する技術が開示されている。
Japanese Patent Application Laid-Open No. 6-248398 describes that S
In a high-grade non-oriented electrical steel sheet in which i: 1.5 to 4.0% and Al: 1.0 to 3.0%, S ≦ 0.0020
%, N ≦ 0.0030% and O ≦ 0.0030% to improve iron loss.

【0005】また、特開平9−195011号公報に
は、Si:1.0%以下の無方向性電磁鋼板において、
log(V(%)・N(%))≦−5.29とする技術
が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 9-195011 discloses a non-oriented electrical steel sheet having a Si content of 1.0% or less.
A technology that satisfies log (V (%) · N (%)) ≦ −5.29 is disclosed.

【0006】[0006]

【発明が解決しようとする課題】需要家の昨今の高効率
化への要請に応えるため、本発明者らは鋭意研究開発を
行い、特開平5−140649号公報において、無方向
性電磁鋼板の磁気特性への有害元素Tiの悪影響を除く
方法を提供した。すなわち、Si:1.0〜4.0%、
Al:0.001〜2.0%、N:≦0.0020%、
S:≦0.0020%、C:≦0.0030%、Mn:
0.1〜2.0%、Ti:0.003〜0.010%、
Zr:≦0.0050%、Nb:≦0.0050%、
V:≦0.0050%、P:≦0.2%、残部Feおよ
び不可避的不純物からなるスラブを用いて磁気特性を改
善する技術を提案している。
In order to respond to the recent demands for higher efficiency by customers, the present inventors have conducted intensive research and development, and have disclosed in Japanese Patent Application Laid-Open No. 5-140649 the use of non-oriented electrical steel sheets. A method has been provided for eliminating the adverse effects of the harmful element Ti on magnetic properties. That is, Si: 1.0 to 4.0%,
Al: 0.001 to 2.0%, N: ≦ 0.0020%,
S: ≦ 0.0020%, C: ≦ 0.0030%, Mn:
0.1-2.0%, Ti: 0.003-0.010%,
Zr: ≦ 0.0050%, Nb: ≦ 0.0050%,
A technique for improving magnetic properties using a slab consisting of V: ≤0.0050%, P: ≤0.2%, and the balance Fe and unavoidable impurities has been proposed.

【0007】しかし、これらの技術における鋼の高純化
では、連続して無方向性電磁鋼板の製鋼を行う際に、個
々の条件は満足しているにも関わらず、チャージ毎のバ
ラツキが生じやすく、安定して低鉄損の無方向性電磁鋼
板を得る観点からは若干の課題を残していた。
However, in the purification of steel in these technologies, when steel sheets of non-oriented electrical steel sheets are continuously produced, variations are likely to occur for each charge, although the individual conditions are satisfied. From the viewpoint of stably obtaining a non-oriented electrical steel sheet having a low iron loss, some problems remain.

【0008】本発明者らは、この点について詳細に解析
を行った結果、有害元素の総量と炭素との積が一定以下
であれば安定して低鉄損の無方向性電磁鋼板を製造しう
るという、新規な知見を見出した。
As a result of detailed analysis on this point, the present inventors have found that if the product of the total amount of harmful elements and carbon is equal to or less than a certain value, a non-oriented electrical steel sheet with low iron loss can be stably manufactured. We found a new finding that we could.

【0009】一方で、これまでの高純度鋼に関する発明
ではC含有量は磁気時効の観点からは少なければ少ない
ほどよいとされていたが、進歩した製鋼技術を適用する
ことによりC含有量が0.001%未満になると、高純
度鋼では鉄損は改善されるものの、磁束密度が低下する
という問題点が明らかになった。
On the other hand, in the conventional invention relating to high-purity steel, it has been considered that the smaller the C content, the better from the viewpoint of magnetic aging. However, by applying advanced steelmaking technology, the C content becomes zero. When the content is less than 0.001%, the problem that the iron loss is improved in the high-purity steel, but the magnetic flux density is lowered is clarified.

【0010】このように、従来技術では問題視されてい
なかった高純度鋼におけるC含有量を特定の範囲に制御
するという、従来の高純度鋼に関する発明では全く省み
られていなかった新規な知見を得ることにより、磁束密
度が高く、鉄損が低い無方向性電磁鋼板を安定して製造
することが可能となり、発明の完成に至った。
[0010] As described above, a new finding that the C content in high-purity steel, which has not been regarded as a problem in the prior art, is controlled to a specific range, has not been omitted at all in the conventional invention relating to high-purity steel. As a result, it becomes possible to stably produce a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, thereby completing the invention.

【0011】[0011]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1) 重量%で、 0.1%≦Si≦3.5%、 0.1%≦Mn≦1.5%、 C ≦0.004%、 N ≦0.002%、 S ≦0.002%、 Ti≦0.003%、 Nb≦0.003%、 V ≦0.005%、 Zr≦0.003%、 Ca≦0.003%、 As≦0.003% Cr≦0.05%、 Sn≦0.01%、 Cu≦0.05%、 O ≦0.02% を含有し、かつ下記式で定めるQ値が−4.70以下
を満足し、残部がFe及び不可避的不純物からなること
を特徴とする鉄損の低い無方向性電磁鋼板。Q=log
{([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%]) ×[ C%]}
・・・式(1)但し、[ Ti%]、[ Nb%]、[ V%]、
[ Zr%]、[ Ca%]、[ C%]は、それぞれTi、Nb、
V、Zr、Ca、Cの製品中の重量濃度。
The gist of the present invention is as follows. (1) By weight%, 0.1% ≦ Si ≦ 3.5%, 0.1% ≦ Mn ≦ 1.5%, C ≦ 0.004%, N ≦ 0.002%, S ≦ 0.002 %, Ti ≦ 0.003%, Nb ≦ 0.003%, V ≦ 0.005%, Zr ≦ 0.003%, Ca ≦ 0.003%, As ≦ 0.003% Cr ≦ 0.05%, It contains Sn ≦ 0.01%, Cu ≦ 0.05%, O ≦ 0.02%, and the Q value defined by the following formula satisfies −4.70 or less, with the balance being Fe and inevitable impurities. Non-oriented electrical steel sheet with low iron loss. Q = log
{([Ti%] + [Nb%] + [V%] + [Zr%] + [Ca%]) × [C%]}
... Equation (1) where [Ti%], [Nb%], [V%],
[Zr%], [Ca%] and [C%] are Ti, Nb,
Weight concentration of V, Zr, Ca, C in the product.

【0012】(2) 合金成分として、さらに重量%
で、 0.10%≦Al≦2.00% を含有することを特徴とする前記(1)記載の鉄損の低
い無方向性電磁鋼板。
(2) By weight, as an alloy component,
The non-oriented electrical steel sheet with low iron loss according to the above (1), wherein 0.10% ≦ Al ≦ 2.00%.

【0013】 (3) 重量%で、 0.1%≦Si≦3.5%、 0.1%≦Mn≦1.5%、 C ≦0.004%、 N ≦0.002%、 S ≦0.002%、 Ti≦0.003%、 Nb≦0.003%、 V ≦0.005%、 Zr≦0.003%、 Ca≦0.003%、 As≦0.003% Cr≦0.05%、 Sn≦0.01%、 Cu≦0.05%、 O ≦0.02% を含有し、かつ下記式で定めるQ値が−4.70以下
を満足し、残部がFe及び不可避的不純物からなるスラ
ブを熱間圧延して熱延板とし、次いで1回の冷間圧延を
施した後に仕上げ焼鈍を施し、その後さらにスキンパス
圧延を施すか或いは施さずに製品とすることを特徴とす
る鉄損の低い無方向性電磁鋼板の製造方法。 Q=log{([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%]) ×[ C%]} ・・・式(1) 但し、[ Ti%]、[ Nb%]、[ V%]、[ Zr%]、[ Ca
%]、[ C%]は、それぞれTi、Nb、V、Zr、Ca、
Cの製品中の重量濃度。
(3) By weight%, 0.1% ≦ Si ≦ 3.5%, 0.1% ≦ Mn ≦ 1.5%, C ≦ 0.004%, N ≦ 0.002%, S ≦ 0.002%, Ti ≦ 0.003%, Nb ≦ 0.003%, V ≦ 0.005%, Zr ≦ 0.003%, Ca ≦ 0.003%, As ≦ 0.003% Cr ≦ 0. 0.05%, Sn ≦ 0.01%, Cu ≦ 0.05%, O ≦ 0.02%, and the Q value defined by the following formula satisfies -4.70 or less, with the balance being Fe and inevitable A slab made of impurities is hot-rolled into a hot-rolled sheet, then subjected to a single cold rolling, followed by finish annealing, and then further subjected to skin pass rolling or not to give a product. A method for manufacturing non-oriented electrical steel sheets with low iron loss. Q = log {([Ti%] + [Nb%] + [V%] + [Zr%] + [Ca%]) × [C%]} Formula (1) where [Ti%], [Nb%], [V%], [Zr%], [Ca
%] And [C%] are Ti, Nb, V, Zr, Ca,
Weight concentration of C in product.

【0014】(4) 合金成分として、さらに重量%
で、 0.10%≦Al≦2.00% を含有するスラブを用いることを特徴とする前記(3)
記載の鉄損の低い無方向性電磁鋼板の製造方法。
(4) As an alloy component, further,
Wherein a slab containing 0.10% ≦ Al ≦ 2.00% is used.
A method for producing a non-oriented electrical steel sheet having a low iron loss as described above.

【0015】(5) 0.0010%≦C≦0.002
5%であることを特徴とする前記(1)、(2)、
(3)又は(4)記載の鉄損の低い無方向性電磁鋼板の
製造方法。
(5) 0.0010% ≦ C ≦ 0.002
(1), (2), or 5%.
(3) or (4) The manufacturing method of the non-oriented electrical steel sheet with low iron loss.

【0016】[0016]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。本発明者らは、低鉄損と高磁束密度を同時に達成す
るべく従来技術における問題点に鋭意検討を加えた結
果、変態を有す無方向性電磁鋼板にあって、Siを0.
10〜3.50%、Alを0.10〜2.00%、Mn
を0.10〜1.50%含有する鋼にあって、C、Sお
よびN含有量を低減し、さらにTi、V、Nb、Ca、
Zr、As、Cr、Sn、Cu、O含有量を特定の関係
式を満たした上で低減し、高純度鋼化するとともに、一
回の冷間圧延で最終板厚とし焼鈍を施すフルプロセス無
方向性電磁鋼板、あるいは中間焼鈍をはさむ二回以上の
冷間圧延により最終板厚とする無方向性電磁鋼板製造
法、熱延板焼鈍もしくは高温仕上げ、高温巻取りによる
制御熱延を活用した何れのプロセスにおいても鉄損の低
い無方向性電磁鋼板を製造することが可能であることを
見出し本発明に至った。さらに、C含有量を特定の範囲
に定めることにより、磁束密度が高くなることを見出し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The present inventors have conducted intensive studies on the problems in the prior art in order to simultaneously achieve a low iron loss and a high magnetic flux density. As a result, in a non-oriented electrical steel sheet having a transformation, Si was reduced to 0.1%.
10 to 3.50%, 0.10 to 2.00% Al, Mn
In a steel containing 0.10 to 1.50%, the content of C, S and N is reduced, and Ti, V, Nb, Ca,
The Zr, As, Cr, Sn, Cu, and O contents are reduced after satisfying a specific relational expression, and a high purity steel is obtained. A method of manufacturing a grain-oriented electrical steel sheet, or a non-oriented electrical steel sheet manufacturing method to make the final thickness by cold rolling two or more times with intermediate annealing, hot-rolled sheet annealing or high-temperature finishing, and controlled hot rolling by high-temperature winding The present inventors have found that a non-oriented electrical steel sheet with low iron loss can be produced also in the above process, and have reached the present invention. Furthermore, it has been found that the magnetic flux density is increased by setting the C content in a specific range.

【0017】無方向性電磁鋼板の磁気特性は、冷延前結
晶組織を粗大化することで改善することが可能である。
このため従来、仕上熱延において熱延終了温度を上昇さ
せるか、熱延板焼鈍、あるいは高温巻取りにより冷延前
結晶組織の粗大化を図り、製品の磁束密度を高め、鉄損
を低減させることが行われてきた。また、前記技術の効
果を最大限に発揮させるために、各種の高純度鋼に関す
る発明がこれまでなされてきた。
The magnetic properties of the non-oriented electrical steel sheet can be improved by enlarging the crystal structure before cold rolling.
For this reason, conventionally, in the finish hot rolling, the hot rolling end temperature is raised, or the hot rolled sheet is annealed, or the crystal structure before cold rolling is coarsened by high-temperature winding to increase the magnetic flux density of the product and reduce iron loss. Things have been done. Also, in order to maximize the effect of the above technology, inventions related to various high-purity steels have been made.

【0018】しかしながら、高純度鋼の製鋼技術が進歩
してC含有量が減少すると、これまで冷延前の結晶粒径
を粗大化することで得ていた高磁束密度が得られなくな
るという課題が明らかになった。この点について発明者
等は解析を行ったところ、従来技術では磁気時効による
鉄損悪化の原因となるため、含有量が少なければ少ない
ほどよしとされていたC含有量に、最適範囲があること
を見出し、発明の完成に至った。
However, as the steelmaking technology of high-purity steel advances and the C content decreases, there is a problem that the high magnetic flux density that has been obtained by increasing the crystal grain size before cold rolling cannot be obtained. It was revealed. The present inventors have analyzed this point, and found that there is an optimal range for the C content, which was considered to be better as the content was smaller because the iron loss deteriorated due to magnetic aging in the prior art. Heading, the invention was completed.

【0019】まず、成分について説明すると、Siは鋼
板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改
善するために添加される。Si含有量が0.10%未満
であると固有抵抗が十分に得られないので0.10%以
上添加する必要がある。一方、Si含有量が3.50%
を超えると冷間圧延が困難となるので3.50%以下に
定める。
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is less than 0.10%, sufficient resistivity cannot be obtained, so it is necessary to add 0.10% or more. On the other hand, the Si content is 3.50%
Exceeds 3.50%, cold rolling becomes difficult.

【0020】Mnは、Siと同様に鋼板の固有抵抗を増
大させ渦電流損を低減させる効果を有する。このため、
Mn含有量は0.10%以上とする必要がある、一方、
Mn含有量が1.50%を超えると熱延時の変形抵抗が
増加し熱延が困難となるとともに、冷延前結晶組織が微
細化しやすくなり、製品の磁気特性が悪化するので、M
n含有量は1.50%以下とする必要がある。
Mn, like Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. For this reason,
The Mn content needs to be 0.10% or more, while
If the Mn content exceeds 1.50%, the deformation resistance during hot rolling increases and hot rolling becomes difficult, and the crystal structure before cold rolling tends to become finer, which deteriorates the magnetic properties of the product.
The n content needs to be 1.50% or less.

【0021】Alも、Si,Mnと同様に、鋼板の固有
抵抗を増大させ渦電流損を低減させる効果を有する。A
lによってこのような効果を得るためには、0.10%
以上添加する必要がある。一方、Al含有量が2.00
%を超えると、磁束密度が低下し、コスト高ともなるの
で2.00%以下とする。また、鋼中のAl含有量が
0.10%未満であっても本発明の効果はなんら損なわ
れるものではない。
Al, like Si and Mn, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. A
In order to obtain such an effect by 1, 0.10%
It is necessary to add above. On the other hand, when the Al content is 2.00
%, The magnetic flux density is reduced and the cost is increased. Further, even if the Al content in the steel is less than 0.10%, the effect of the present invention is not impaired at all.

【0022】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P,
B,Ni,Sbの1種または2種以上を鋼中に含有させ
ても本発明の効果は損なわれない。
In order to improve the mechanical properties, magnetic properties and rust resistance of the product or for other purposes, P,
Even if one or more of B, Ni and Sb are contained in steel, the effect of the present invention is not impaired.

【0023】C含有量が0.004%を超えると、製品
の使用中に磁気時効が生じて鉄損が悪化するため0.0
04%以下とする必要がある。磁気時効を防止し、磁束
密度を向上させる観点からは、Cは0.0025%以下
かつ0.0010%以上に制御することが好ましい。
If the C content exceeds 0.004%, magnetic aging occurs during use of the product, and iron loss deteriorates.
It is necessary to make it 04% or less. From the viewpoint of preventing magnetic aging and improving magnetic flux density, it is preferable to control C to 0.0025% or less and 0.0010% or more.

【0024】S,Nは熱間圧延工程におけるスラブ加熱
中に一部再固溶し、熱間圧延中にMnS等の硫化物、A
lN等の窒化物を形成する。これらが存在することによ
り熱延後のγ相からα相への変態時にα相の核を提供す
ると共に変態後のα相結晶組織の粒成長を妨げるため、
その含有量は共に0.002%以下とする必要がある。
S and N partially re-dissolve during slab heating in the hot rolling step, and sulfides such as MnS and A
A nitride such as 1N is formed. Due to the presence of these, at the time of transformation from the γ phase to the α phase after hot rolling, it provides the nucleus of the α phase and hinders the grain growth of the α phase crystal structure after the transformation,
Its content must be 0.002% or less.

【0025】また、Ti含有量、Nb含有量、V含有
量、Zr含有量、Ca含有量、Cr含有量がそれぞれ
0.003%、0.003%、0.005%、0.00
3%、0.003%、0.05%を超えるとTi,V,
Nb,Zr,Ca,Crの炭化物の析出が顕著となり、
熱延結晶組織の粗大化が阻害されるとともに仕上焼鈍工
程での結晶粒成長が阻害され磁気特性が悪化する。この
ため、Ti含有量、Nb含有量、V含有量、Zr含有
量、Ca含有量、Cr含有量はそれぞれ0.003%以
下、0.003%以下、0.005%以下、0.003
%以下、0.003%以下、0.05%以下とする必要
がある。
The Ti content, Nb content, V content, Zr content, Ca content, and Cr content are 0.003%, 0.003%, 0.005%, and 0.005%, respectively.
If it exceeds 3%, 0.003% or 0.05%, Ti, V,
Precipitation of carbides of Nb, Zr, Ca, Cr becomes remarkable,
The coarsening of the hot-rolled crystal structure is hindered, and the crystal grain growth in the finish annealing step is hindered, deteriorating the magnetic properties. Therefore, the Ti content, Nb content, V content, Zr content, Ca content, and Cr content are 0.003% or less, 0.003% or less, 0.005% or less, and 0.003% or less, respectively.
%, 0.003% or less, and 0.05% or less.

【0026】また、本発明では個々のTi,V,Nb,
Zr,Ca単独の含有量に加えて、全体を含めた総量
と、C含有量との間に特定の関係が成立する必要があ
る。すなわち、式(1)で定めるQ値において、 Q=log{([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%]) ×[ C%]} ・・・式(1) 但し、[ Ti%]、[ Nb%]、[ V%]、[ Zr%]、[ Ca
%]、[ C%]は、それぞれTi、Nb、V、Zr、Ca、
Cの製品中の重量濃度。式(1)のQ値が−4.70を
超えると本発明が意図する低鉄損無方向性電磁鋼板を得
ることが出来ない。従って、式(1)のQ値は−4.7
0以下である必要がある。
In the present invention, each of Ti, V, Nb,
In addition to the content of Zr and Ca alone, a specific relationship needs to be established between the total content including the whole and the C content. That is, in the Q value determined by the equation (1), Q = log {([Ti%] + [Nb%] + [V%] + [Zr%] + [Ca%]) × [C%]} Equation (1) where [Ti%], [Nb%], [V%], [Zr%], [Ca
%] And [C%] are Ti, Nb, V, Zr, Ca,
Weight concentration of C in product. When the Q value of the formula (1) exceeds -4.70, it is not possible to obtain the low iron loss non-oriented electrical steel sheet intended by the present invention. Therefore, the Q value of equation (1) is -4.7.
Must be 0 or less.

【0027】さらに、結晶粒成長を阻害する析出物の形
成に影響を及ぼす要因として、As含有量を抑制する必
要がある、Asは、それ自体では、本発明の成分範囲内
の鋼では、上記の硫化物や窒化物等の析出物を形成する
ことは無い。しかし、鋼中に、一定量以上のAsが含有
されると、硫化物サイズが微細になるため、熱延結晶組
織の粗大化を著しく阻害する。このような観点から、A
s含有量は0.0030%以下にする必要がある。
Further, as a factor affecting the formation of precipitates that inhibit crystal grain growth, it is necessary to suppress the As content. As is itself, in steel within the component range of the present invention, No precipitates such as sulfides and nitrides are formed. However, if a certain amount or more of As is contained in the steel, the sulfide size becomes fine, so that the coarsening of the hot-rolled crystal structure is significantly inhibited. From such a viewpoint, A
The s content needs to be 0.0030% or less.

【0028】Sn、Cuは鋼の結晶粒界に偏析して粒成
長を妨げ、成品鉄損を悪化させるので、それぞれ含有量
は0.01%以下、0.05%以下とすることが必要で
ある。
Since Sn and Cu segregate at the crystal grain boundaries of steel and hinder grain growth and worsen product iron loss, their contents must be 0.01% or less and 0.05% or less, respectively. is there.

【0029】O含有量が0.02%を超えるとSi
2 、Al2 3 等の酸化物系介在物の析出が顕著とな
り結晶粒成長を妨げ、成品鉄損を悪化させるので、含有
量は0.02%以下とする必要がある。
If the O content exceeds 0.02%, Si
Precipitation of oxide-based inclusions such as O 2 and Al 2 O 3 becomes remarkable, hindering crystal grain growth and exacerbating the iron loss of the product. Therefore, the content needs to be 0.02% or less.

【0030】Pは、製品の打ち抜き性を良好ならしめる
ために0.1%までの範囲内において添加される。P≦
0.2%であれば、製品の磁気特性の観点から問題がな
い。Bは熱間圧延時にBNを形成させてAlNの微細析
出を妨げ、Nを無害化させるために添加される。
P is added in a range of up to 0.1% in order to improve the punchability of the product. P ≦
If it is 0.2%, there is no problem from the viewpoint of the magnetic properties of the product. B is added in order to form BN at the time of hot rolling, to prevent fine precipitation of AlN, and to render N harmless.

【0031】B含有量はNとの量のバランスが必要であ
り、その含有量は両者の比B%/N%が0.5から1.
5の範囲を満たすことが好ましい。
The B content needs to be balanced with the amount of N, and the content of B is 0.5 to 1.
Preferably, the range of 5 is satisfied.

【0032】次に本発明の成分範囲規定理由について説
明する。本発明者らは鋭意検討を重ねた結果、C,N,
SをはじめとしてTi,V,Nb,As,Ca,Cr,
Sn,Cu,O等の不純物含有量を制御することによ
り、製品における鉄損と磁束密度という2つの磁気特性
が双方とも著しく改善され得ることを発見し本発明の完
成に至った。
Next, the reasons for defining the component range of the present invention will be described. The present inventors have conducted intensive studies and found that C, N,
S, Ti, V, Nb, As, Ca, Cr,
By controlling the content of impurities such as Sn, Cu, and O, it has been discovered that both magnetic properties, namely, iron loss and magnetic flux density, in a product can be significantly improved, and the present invention has been completed.

【0033】本発明の構成要件を確認するために、以下
のような実験を行った。表1、表2に示す成分の鋼を溶
製し仕上げ熱延を実施し、2.5mm厚に仕上げた。こ
の際に、熱延終了温度を変化させると共に、熱延後の熱
延板を熱延板焼鈍に供し、種々の冷延前結晶粒径の熱延
板を酸洗、冷延し0.5mm厚とし、脱脂した後、72
0℃で30秒焼鈍し、エプスタイン試料を切断して磁気
特性を測定した。
The following experiment was conducted in order to confirm the constituent requirements of the present invention. Steel having the components shown in Tables 1 and 2 was melted and subjected to finish hot rolling to finish to a thickness of 2.5 mm. At this time, while changing the hot-rolling termination temperature, the hot-rolled sheet after hot-rolling is subjected to hot-rolling sheet annealing, and hot-rolled sheets having various crystal grain sizes before cold rolling are pickled and cold-rolled to 0.5 mm. After thickening and degreasing, 72
After annealing at 0 ° C. for 30 seconds, the Epstein sample was cut and its magnetic properties were measured.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】図1に冷延前結晶粒径と磁束密度の関係を
示す。比較例の材料よりも、本発明の材料の方が磁束密
度が高いことが分かる。さらに、比較例の材料では冷延
前結晶粒径が100μm以上では磁束密度の増加が頭打
ちになるが、本発明の材料では高磁束密度が得られてい
ることが分かる。
FIG. 1 shows the relationship between the crystal grain size before cold rolling and the magnetic flux density. It can be seen that the material of the present invention has a higher magnetic flux density than the material of the comparative example. Furthermore, in the material of the comparative example, when the crystal grain size before cold rolling is 100 μm or more, the increase in the magnetic flux density reaches a plateau, but it can be seen that the material of the present invention has a high magnetic flux density.

【0037】次に、表3、表4に示す成分の鋼を溶製し
仕上熱延を実施し、2.5mm厚に仕上げた。この際
に、熱延終了温度を変化させると共に、熱延後の熱延板
を熱延板焼鈍に供し、種々の冷延前結晶粒径の熱延板を
酸洗、冷延し0.5mm厚とし、脱脂した後、720℃
で30秒焼鈍し、エプスタイン試料を切断し、750℃
で2時間の需要家相当の歪み取り焼鈍を施した後、磁気
特性を測定した。
Next, steels having the components shown in Tables 3 and 4 were melted and subjected to finish hot rolling to finish to a thickness of 2.5 mm. At this time, while changing the hot-rolling termination temperature, the hot-rolled sheet after hot-rolling is subjected to hot-rolling sheet annealing, and hot-rolled sheets having various crystal grain sizes before cold rolling are pickled and cold-rolled to 0.5 mm. After thickening and degreasing, 720 ° C
For 30 seconds at 750 ° C. to cut the Epstein sample.
After performing a strain relief annealing corresponding to a customer for 2 hours, magnetic properties were measured.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】図2に冷延前結晶粒径と鉄損の関係を示
す。比較例の材料よりも、本発明の材料の方が鉄損が低
いことが分かる。このようにC含有量を特定範囲にした
高純度鋼を用いることにより、製品における鉄損を低減
するとともに、磁束密度を高め、優れた磁気特性の無方
向性電磁鋼板を製造することが可能である。
FIG. 2 shows the relationship between the crystal grain size before cold rolling and iron loss. It can be seen that the material of the present invention has lower iron loss than the material of the comparative example. By using a high-purity steel having a C content in a specific range as described above, it is possible to reduce iron loss in a product, increase a magnetic flux density, and produce a non-oriented electrical steel sheet having excellent magnetic properties. is there.

【0041】前記成分からなる鋼スラブは、転炉で溶製
され連続鋳造あるいは造塊−分塊圧延により製造され
る。鋼スラブは公知の方法にて加熱される。本発明では
熱延板焼鈍を施すかあるいは施さず、一回の冷間圧延と
連続焼鈍により製品とする。また、さらにスキンパス圧
延工程を付加して製品としてもよい。
The steel slab composed of the above components is produced in a converter and is produced by continuous casting or ingot-bulking rolling. The steel slab is heated by a known method. In the present invention, hot rolled sheet annealing is performed or not, and a product is formed by one cold rolling and continuous annealing. Further, a skin pass rolling step may be added to obtain a product.

【0042】また、中間焼鈍をはさむ2回以上の冷間圧
延により最終板厚としても良い。さらに、その後スキン
パスを施して最終板厚としてもよい。スキンパス圧延は
2%未満ではその効果が得られず、20%以上では磁気
特性が悪化するため2%から20%とする。
Further, the final thickness may be obtained by performing cold rolling two or more times with intermediate annealing. Further, a skin pass may be performed thereafter to obtain a final thickness. If the skin pass rolling is less than 2%, the effect cannot be obtained, and if it is more than 20%, the magnetic properties deteriorate, so the content is set to 2% to 20%.

【0043】[0043]

【実施例】次に、本発明の実施例について述べる。 [実施例1]表5に示した成分を有する無方向性電磁鋼
板用スラブを通常の方法にて加熱し、熱延により2.5
mmに仕上げた。その後、酸洗を施し、冷間圧延により
0.50mmに仕上げた。これを連続焼鈍炉にて730
℃で30秒間焼鈍した。その後、エプスタイン試料に切
断し、磁気特性を測定した。表5中に本発明と比較例の
成分と磁気特性測定結果をあわせて示す。このように鋼
の純度を制御すれば、鉄損値の低い磁気特性の優れた無
方向性電磁鋼板を得ることが可能である。
Next, an embodiment of the present invention will be described. [Example 1] A slab for a non-oriented electrical steel sheet having the components shown in Table 5 was heated by a usual method, and was subjected to hot rolling by 2.5 mm.
mm. Then, it pickled and finished to 0.50 mm by cold rolling. This is 730 in a continuous annealing furnace.
Annealed at 30 ° C. for 30 seconds. Thereafter, the sample was cut into Epstein samples, and the magnetic properties were measured. Table 5 also shows the components of the present invention and comparative examples and the results of measuring magnetic properties. By controlling the purity of the steel in this way, it is possible to obtain a non-oriented electrical steel sheet having a low iron loss value and excellent magnetic properties.

【0044】[0044]

【表5】 [Table 5]

【0045】[実施例2]表6に示した成分の無方向性
電磁鋼板用スラブを通常の方法にて加熱し、熱延により
2.5mmに仕上げた。その後、酸洗を施し、冷間圧延
により0.55mmに仕上げた。次に連続焼鈍炉にて7
00℃で20秒間焼鈍を施し、圧下率9%のスキンパス
圧延により0.50mm厚に仕上げ、750℃2時間の
需要家相当の焼鈍を施した。これらの試料からエプスタ
イン試験片を切り出し、磁気特性を測定した。その結果
を表6に示す。
Example 2 A slab for a non-oriented electrical steel sheet having the components shown in Table 6 was heated by a usual method and finished to 2.5 mm by hot rolling. Then, it pickled and finished to 0.55 mm by cold rolling. Next, in a continuous annealing furnace,
Annealing was performed at 00 ° C. for 20 seconds, and finished by skin pass rolling at a reduction of 9% to a thickness of 0.50 mm, followed by annealing at 750 ° C. for 2 hours corresponding to a customer. Epstein test pieces were cut out from these samples, and the magnetic properties were measured. Table 6 shows the results.

【0046】[0046]

【表6】 [Table 6]

【0047】このように、C含有量を特定範囲にとった
高純度鋼を用いることにより鉄損値の低い材料が得られ
ることがわかる。
As described above, it is found that a material having a low iron loss value can be obtained by using a high-purity steel having a C content within a specific range.

【0048】[0048]

【発明の効果】このように本発明によれば、鉄損の低
い、磁気特性の優れた無方向性電磁鋼板を製造すること
が可能である。
As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet having low iron loss and excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷延前結晶粒径と磁束密度の関係を示す図表で
ある。
FIG. 1 is a table showing the relationship between the crystal grain size before cold rolling and the magnetic flux density.

【図2】冷延前結晶粒径と鉄損の関係を示す図表であ
る。
FIG. 2 is a table showing the relationship between the crystal grain size before cold rolling and iron loss.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 0.1%≦Si≦3.5%、 0.1%≦Mn≦1.5%、 C ≦0.004%、 N ≦0.002%、 S ≦0.002%、 Ti≦0.003%、 Nb≦0.003%、 V ≦0.005%、 Zr≦0.003%、 Ca≦0.003%、 As≦0.003% Cr≦0.05%、 Sn≦0.01%、 Cu≦0.05%、 O ≦0.02% を含有し、かつ下記式(1)で定めるQ値が−4.70
以下を満足し、残部がFe及び不可避的不純物からなる
ことを特徴とする鉄損の低い無方向性電磁鋼板。 Q=log{([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%]) ×[ C%]} ・・・式(1) 但し、[ Ti%]、[ Nb%]、[ V%]、[ Zr%]、[ Ca
%]、[ C%]は、それぞれTi、Nb、V、Zr、Ca、
Cの製品中の重量濃度。
1.% by weight: 0.1% ≦ Si ≦ 3.5%, 0.1% ≦ Mn ≦ 1.5%, C ≦ 0.004%, N ≦ 0.002%, S ≦ 0 0.002%, Ti ≦ 0.003%, Nb ≦ 0.003%, V ≦ 0.005%, Zr ≦ 0.003%, Ca ≦ 0.003%, As ≦ 0.003% Cr ≦ 0.05 %, Sn ≦ 0.01%, Cu ≦ 0.05%, O ≦ 0.02%, and the Q value determined by the following formula (1) is −4.70.
A non-oriented electrical steel sheet having low iron loss, satisfying the following, with the balance being Fe and inevitable impurities. Q = log {([Ti%] + [Nb%] + [V%] + [Zr%] + [Ca%]) × [C%]} Formula (1) where [Ti%], [Nb%], [V%], [Zr%], [Ca
%] And [C%] are Ti, Nb, V, Zr, Ca,
Weight concentration of C in product.
【請求項2】 合金成分として、さらに重量%で、 0.10%≦Al≦2.00% を含有することを特徴とする請求項1記載の鉄損の低い
無方向性電磁鋼板。
2. The non-oriented electrical steel sheet according to claim 1, further comprising 0.10% ≦ Al ≦ 2.00% by weight as an alloy component.
【請求項3】 重量%で、 0.1%≦Si≦3.5%、 0.1%≦Mn≦1.5%、 C ≦0.004%、 N ≦0.002%、 S ≦0.002%、 Ti≦0.003%、 Nb≦0.003%、 V ≦0.005%、 Zr≦0.003%、 Ca≦0.003%、 As≦0.003% Cr≦0.05%、 Sn≦0.01%、 Cu≦0.05%、 O ≦0.02% を含有し、かつ下記式(1)で定めるQ値が−4.70
以下を満足し、残部がFe及び不可避的不純物からなる
スラブを熱間圧延して熱延板とし、次いで1回の冷間圧
延を施した後に仕上げ焼鈍を施し、その後さらにスキン
パス圧延を施すか或いは施さずに製品とすることを特徴
とする鉄損の低い無方向性電磁鋼板の製造方法。 Q=log{([Ti%]+[Nb%]+[V%]+[Zr%]+[Ca%]) ×[ C%]} ・・・式(1) 但し、[ Ti%]、[ Nb%]、[ V%]、[ Zr%]、[ Ca
%]、[ C%]は、それぞれTi、Nb、V、Zr、Ca、
Cの製品中の重量濃度。
3.% by weight: 0.1% ≦ Si ≦ 3.5%, 0.1% ≦ Mn ≦ 1.5%, C ≦ 0.004%, N ≦ 0.002%, S ≦ 0 0.002%, Ti ≦ 0.003%, Nb ≦ 0.003%, V ≦ 0.005%, Zr ≦ 0.003%, Ca ≦ 0.003%, As ≦ 0.003% Cr ≦ 0.05 %, Sn ≦ 0.01%, Cu ≦ 0.05%, O ≦ 0.02%, and the Q value determined by the following formula (1) is −4.70.
A slab consisting of Fe and inevitable impurities is hot-rolled to form a hot-rolled sheet, and the steel sheet is subjected to one-time cold rolling, then to finish annealing, and then to skin pass rolling, or A method for producing a non-oriented electrical steel sheet having a low iron loss, wherein the non-oriented electrical steel sheet is manufactured without being subjected to a treatment. Q = log {([Ti%] + [Nb%] + [V%] + [Zr%] + [Ca%]) × [C%]} Expression (1) where [Ti%], [Nb%], [V%], [Zr%], [Ca
%] And [C%] are Ti, Nb, V, Zr, Ca,
Weight concentration of C in product.
【請求項4】 合金成分として、さらに重量%で、 0.10%≦Al≦2.00% を含有するスラブを用いることを特徴とする請求項3記
載の鉄損の低い無方向性電磁鋼板の製造方法。
4. The non-oriented electrical steel sheet according to claim 3, wherein a slab containing 0.10% ≦ Al ≦ 2.00% by weight is further used as an alloy component. Manufacturing method.
【請求項5】 0.0010%≦C≦0.0025%で
あることを特徴とする請求項1、2、3又は4記載の鉄
損の低い無方向性電磁鋼板の製造方法。
5. The method for producing a non-oriented electrical steel sheet having a low iron loss according to claim 1, wherein 0.0010% ≦ C ≦ 0.0025%.
JP10272347A 1998-09-25 1998-09-25 Nonoriented silicon steel sheet with low iron loss, and its production Withdrawn JP2000096196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272347A JP2000096196A (en) 1998-09-25 1998-09-25 Nonoriented silicon steel sheet with low iron loss, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272347A JP2000096196A (en) 1998-09-25 1998-09-25 Nonoriented silicon steel sheet with low iron loss, and its production

Publications (1)

Publication Number Publication Date
JP2000096196A true JP2000096196A (en) 2000-04-04

Family

ID=17512624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272347A Withdrawn JP2000096196A (en) 1998-09-25 1998-09-25 Nonoriented silicon steel sheet with low iron loss, and its production

Country Status (1)

Country Link
JP (1) JP2000096196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics
JP2016199787A (en) * 2015-04-10 2016-12-01 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet
WO2022113263A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
JP2016199787A (en) * 2015-04-10 2016-12-01 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet
WO2022113263A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2000219917A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
WO2019062732A1 (en) Cold-rolled magnetic lamination steel with excellent magnetic properties and manufacturing method therefor
JP2024041844A (en) Manufacturing method of non-oriented electrical steel sheet
JP2000219916A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2000096196A (en) Nonoriented silicon steel sheet with low iron loss, and its production
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JPH09316535A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH08283853A (en) Production of nonoriented cilicon steel sheet excellent in magnetic property
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2002302746A (en) Low core loss nonoriented electric steel sheet excellent in workability and method for producing the same
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH0643614B2 (en) Manufacturing method of semi-processed electrical steel sheet
JPH03120316A (en) Production of nonoriented silicon steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110