JPH03120316A - Production of nonoriented silicon steel sheet - Google Patents

Production of nonoriented silicon steel sheet

Info

Publication number
JPH03120316A
JPH03120316A JP25750689A JP25750689A JPH03120316A JP H03120316 A JPH03120316 A JP H03120316A JP 25750689 A JP25750689 A JP 25750689A JP 25750689 A JP25750689 A JP 25750689A JP H03120316 A JPH03120316 A JP H03120316A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
cold
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25750689A
Other languages
Japanese (ja)
Inventor
Teruo Kaneko
金子 輝雄
Hiroyoshi Yashiki
裕義 屋鋪
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25750689A priority Critical patent/JPH03120316A/en
Publication of JPH03120316A publication Critical patent/JPH03120316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a silicon steel sheet having low iron loss and high magnetic flux density by carrying out reversing rolling at least in one stage among rolling stages at the time of rolling a slab of a steel containing specific amounts of Si, Al, and Mn into a metal sheet by means of hot rolling and cold rolling in manufacturing a nonoriented silicon steel sheet. CONSTITUTION:A slab of a steel having a composition which contains, by weight, >=1.8%, in total, of Si and Al and 0.5-2.0% Mn and in which relationships represented by Si(%)+Al(%)-0.5XMn(%)=1.8-3.0% exist among respective contents of Si, Al, and Mn mentioned above is hot-rolled, and the resulting hot rolled plate is subjected to recrystallization annealing and then to surface descaling treatment, or, the above hot rolled plate is descaled, recrystallization-annealed, cold-rolled once or cold-rolled or warm-rolled twice or more while process-annealed between the cold rolling stages to the final sheet thickness, and further finish-annealed so as to be formed into a silicon steel sheet. By carrying out reversing rolling at least in one stage among the above rolling stages, the nonoriented silicon steel sheet having high magnetic flux density and low iron loss can be stably produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Siと八lを合計で1.8重世%以上含有す
るいわゆる高級無方向性電磁鋼板の製造方法に係わり、
特に磁束密度の優れた低鉄損の無方向性電磁鋼板の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a so-called high-grade non-oriented electrical steel sheet containing a total of 1.8 weight percent or more of Si and octane.
In particular, the present invention relates to a method for producing non-oriented electrical steel sheets with excellent magnetic flux density and low iron loss.

(従来の技術) 無方向性電磁鋼板は、主としてモーターやトランスなど
の鉄心として用いられている磁気材料であり、高級無方
向性電磁w4Fi、の場合、昔通は素材の鋼スラブを熱
間圧延した後、脱スケールの前或いは後に再結晶焼鈍を
行い、1回又は中間焼鈍を挟む2回以上の冷間圧延又は
温間圧延で最終板厚になした後、仕上げ焼鈍を行うプロ
セスで製造されている。そして、前記熱間圧延、冷間圧
延又は温間圧延は、普通は生産性に優れた連続式のタン
デムミルで行われている。
(Prior technology) Non-oriented electrical steel sheet is a magnetic material mainly used as the iron core of motors and transformers. After that, recrystallization annealing is performed before or after descaling, and the final thickness is achieved by cold rolling or warm rolling once or twice with intermediate annealing, and then finish annealing is performed. ing. The hot rolling, cold rolling or warm rolling is usually carried out in a continuous tandem mill with excellent productivity.

ところで、無方向性電磁鋼板は前述のような用途に使用
されるので、その特性として低鉄tiと高磁束密度が求
められる。鉄損とは鉄心を磁化するときに発生ずる熱を
貝失で、熱損失を鉄心の単位重量当たりで表したものが
鉄損値である。この値が小さいものほど電力ロスが少な
く、一般に冷却が困難な大型の機器や発熱による回路の
安定性が問題となる機器では鉄損の小さい高級電磁鋼板
が用いられている。磁束密度とは鉄心への磁気エネルギ
ーの集中度を・示すもので、この値が大きいものほど鉄
心のサイズを小さくすることができるので、機器の小型
化をはかるうえで有利となる。
By the way, since non-oriented electrical steel sheets are used for the above-mentioned purposes, they are required to have low iron ti and high magnetic flux density as their characteristics. Iron loss is the heat generated when magnetizing an iron core, and the iron loss value is the heat loss expressed per unit weight of the iron core. The smaller this value is, the less power loss there is, and high-grade electrical steel sheets with low core loss are generally used in large equipment that is difficult to cool and equipment where circuit stability due to heat generation is a problem. Magnetic flux density indicates the degree of concentration of magnetic energy in the iron core, and the larger this value, the smaller the size of the iron core, which is advantageous in reducing the size of equipment.

前者の鉄を員は渦電流損とヒステリシス1貝の二つの要
因に支配されることが知られており、渦電流1!とは磁
化によって誘起される渦電流によるII失で、鋼の電気
抵抗と板厚に依存する。即ち、電気抵抗が大きく又は板
厚が薄いほど渦電流損は小さい、従って、鉄損の低減を
図るには板厚をh4くするか、鋼の電気抵抗を高めてや
るのがを効である。
It is known that the former type of steel is controlled by two factors: eddy current loss and hysteresis. is II loss due to eddy currents induced by magnetization, and depends on the electrical resistance and thickness of the steel. In other words, the larger the electrical resistance or the thinner the plate thickness, the smaller the eddy current loss. Therefore, in order to reduce iron loss, it is effective to increase the plate thickness to h4 or to increase the electrical resistance of the steel. .

板厚に関してはあまり薄くすると鉄心の積層作業に手間
がかかるなどの問題があるので、JIS規格では0.3
5−一、0.50−一および0.65mmの三種が規定
されているeffi気抵抗に関しては、鋼中にSi、A
l。
Regarding the plate thickness, if it is made too thin, there are problems such as the work of laminating the iron core takes time, so the JIS standard is 0.3.
5-1, 0.50-1, and 0.65 mm are specified for the effi resistance, which contains Si, A, and
l.

Me等の各種合金元素を添加して高めている。その中で
も効果が大きく、しかも安価であるSiが多く添加され
ている。電磁鋼板が別名珪素鋼板といわれる所以であり
、81含存量の多いものほど低鉄IQの高級電磁鋼板と
されている。
It is increased by adding various alloying elements such as Me. Among them, a large amount of Si is added, which has a large effect and is inexpensive. This is why electrical steel sheets are also called silicon steel sheets, and the higher the 81 content, the higher the quality of electrical steel sheets with lower iron IQ.

ヒステリシスを貝は磁化の過程において、石壁移動の妨
げとなる微細な炭化物、窒化物、硫化物および酸化物等
の析出物や結晶粒界が少ないほど小さい、このため、高
級’ia磁鋼板の製造においては、不純物の少ない鋼を
使用し、結晶粒が成長しやすい製造条件がとられている
0例えば、CおよびNの含有量を低くしたTi、 Nb
、■等の炭窒化物形成元素を含まない鋼を使用して炭化
物や窒化物の生成を抑えている。低級it&iiwJ板
ではAlを添加しないのが普通であるのに対して、高級
電磁鋼板では渦電流損を低減する目的で多量の^2が添
加されているのであるが、八lNを粗大化することで悪
影響を避けている。Pi化物および酸化物については、
鋼中のSおよび酸素を極力少なくすることで対処してい
る。さらに、焼鈍条件を調整することで、結晶粒を十分
成長させるとともに適性な粒径にコントロールしている
During the process of magnetization, the hysteresis is smaller as the grain boundaries and precipitates such as fine carbides, nitrides, sulfides, and oxides that obstruct the movement of the stone wall are small. For example, Ti, Nb with low content of C and N are used, and steel with few impurities is used, and manufacturing conditions are adopted to facilitate the growth of crystal grains.
, ■ The formation of carbides and nitrides is suppressed by using steel that does not contain carbonitride-forming elements. Low-grade IT&IIWJ sheets usually do not have Al added to them, whereas high-grade electrical steel sheets have a large amount of ^2 added for the purpose of reducing eddy current loss. to avoid negative effects. For Pi oxides and oxides,
This problem is dealt with by minimizing the amount of S and oxygen in the steel. Furthermore, by adjusting the annealing conditions, the crystal grains are grown sufficiently and controlled to have an appropriate grain size.

ところが、以上述べた方法はいずれも磁束密度を下げる
方向にある。渦電流…の低減を目的にSiなどの合金元
素を多量添加すると、鉄の含有量がその分だけ減少する
ので磁束密度が低くなる。ヒステリシス頃の低減を目的
に不純物の少ない鋼を使用し、結晶粒を成長させると、
通常は磁気特性に好ましくない集合組織(結晶の配向)
が発達して磁束密度が低下する。
However, all of the methods described above tend to lower the magnetic flux density. When a large amount of an alloying element such as Si is added for the purpose of reducing eddy currents, the iron content decreases by that amount, resulting in a lower magnetic flux density. If we use steel with few impurities and grow crystal grains to reduce hysteresis,
Texture (crystal orientation) that is usually unfavorable for magnetic properties
develops and the magnetic flux density decreases.

このようなことから高磁束密度と低鉄損を両立させる方
法が種々検討されており、一般に集合組織を制Hする方
法が有効であるといわれている。
For this reason, various methods of achieving both high magnetic flux density and low iron loss have been studied, and it is generally said that a method of controlling H of the texture is effective.

方向性電磁鋼板は、この方法を最大限に活用したもので
あって、磁化が容易なく100>軸を圧延方向に揃える
ことで、その方向の鉄損と磁束密度の両方がともに優れ
ているのである。しかし、無方向性電磁鋼板の場合は、
方向性電磁鋼板とは異なり圧延方向だけでなく板面内の
あらゆる方向に<100>軸が多く存在することが必要
であり、板面に平行な(1001面をもった結晶粒がよ
り多くあるほど特性にすぐれている。ところが、前記す
るような仕上げ焼鈍で結晶粒を大きくすると(1001
面の結晶粒が少なくなり、磁束密度が低下する。
Grain-oriented electrical steel sheets make the most of this method; they do not easily magnetize, and by aligning the 100> axis in the rolling direction, both iron loss and magnetic flux density in that direction are excellent. be. However, in the case of non-oriented electrical steel sheets,
Unlike grain-oriented electrical steel sheets, it is necessary that many <100> axes exist not only in the rolling direction but also in all directions within the sheet surface, and there are more crystal grains parallel to the sheet surface (1001 planes). However, when the crystal grains are enlarged by final annealing as described above (1001
The number of crystal grains on the surface decreases, and the magnetic flux density decreases.

一方、無方向性1i磁鋼板の集合組織を改良する方法も
種々提案されている0例えば、仕上げ焼鈍の加熱速度を
非常に速くする(特開昭59−74223号)、仕上げ
焼鈍を二段階で行う(特開昭60−152628号)、
冷間圧延に代えて温間で圧延を行う(特開昭58−18
1822号)、等の方法である。これらの方法は集合組
織をある程度は改善することができるものの、その効果
は期待するほど大きくはなく、且つ、これらの方法はい
ずれも工業的に実施が困難である。
On the other hand, various methods have been proposed for improving the texture of non-oriented 1i magnetic steel sheets. (Japanese Patent Application Laid-open No. 60-152628),
Warm rolling is performed instead of cold rolling (Japanese Unexamined Patent Publication No. 58-18
1822), etc. Although these methods can improve the texture to some extent, the effects are not as great as expected, and all of these methods are difficult to implement industrially.

このように、従来の方法では低鉄1員と高磁束密度を両
立させるのが難しく、特にSiと^Eを多く含む高級電
磁鋼板になるほど困難であった。このため鉄損は低くて
も磁束密度が低いため鉄心のすイズを小さくすることが
できず、NHKの製造コストの上昇を招くなど高級材料
を使用する利点がtpなわれていた。仮に、磁束密度の
低いものを無理に高い磁束密度で使用すると、励磁電流
の増加により鉄損が増え機器全体の損失がむしろ大きく
なる場合がある。
As described above, in the conventional method, it is difficult to achieve both low iron member and high magnetic flux density, and it is especially difficult for high-grade electrical steel sheets containing a large amount of Si and ^E. For this reason, even if the iron loss is low, the magnetic flux density is low, making it impossible to reduce the size of the iron core, leading to an increase in NHK's manufacturing costs, which negates the advantages of using high-grade materials. If a device with a low magnetic flux density is used with an unreasonably high magnetic flux density, the iron loss will increase due to an increase in the excitation current, and the loss of the entire device may actually increase.

(発明が解決しようとする課題) 本発明の課題は、鉄損の低減と磁束密度の向上を両立さ
せることができる工業的に実施可能な方法を提供するこ
とにある。即ち、本発明の目的は■1重密度の高い低鉄
損の無方向性電磁鋼板を容易に製造することができる方
法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide an industrially practicable method that can reduce iron loss and improve magnetic flux density at the same time. That is, the object of the present invention is (1) to provide a method that can easily produce a non-oriented electrical steel sheet with high double density and low core loss.

(課題を解決するための手段) 従来、無方向性iit磁鋼板の製造では熱間圧延工程お
よび冷間圧延工程はともに生産性のよい連続式のタンデ
ムミルで行うのがtaであるが、本発明者らはこれらの
工程のいずれか一方又は両方をレバース圧延で行うと、
製品の磁束密度が著しく向上すること、および素材にS
i、APおよびHnの含有量を特定した不純物の少ない
鋼を使■ずれば、更に特性が改善されることを見出した
(Means for solving the problem) Conventionally, in the production of non-oriented IIT magnetic steel sheets, both the hot rolling process and the cold rolling process are carried out in a highly productive continuous tandem mill. The inventors performed one or both of these steps by reverse rolling,
The magnetic flux density of the product is significantly improved, and the material contains S.
It has been found that the properties can be further improved by using steel with low impurities whose contents of i, AP and Hn are specified.

本発明は、上記知見をもとに完成したものであって、そ
の要旨は「SiとAlを合計で1.8重蓋%以上含有す
る鋼スラブを出発材料とし、これを熱間圧延する工程、
脱スケールの前又は後で再結晶焼鈍する工程、1回又は
中間焼鈍を挟む2回以上の冷間圧延又は温間圧延で最終
板厚にする工程、および仕上げve錬を施す工程を経る
ことによって無方向性電磁鋼板を製造する方法において
、前記熱間圧延工程、冷間圧延工程又は温間圧延工程の
少なくとも一工程の圧延をレバース圧延で行うことを特
徴とする無方向性電磁鋼板の製造方法」にある。
The present invention was completed based on the above knowledge, and its gist is ``A process of hot rolling a steel slab containing a total of 1.8% or more of Si and Al as a starting material. ,
By going through the steps of recrystallization annealing before or after descaling, a step of cold rolling or warm rolling one time or two or more times with intermediate annealing to achieve the final plate thickness, and a step of applying finish refining. A method for producing a non-oriented electrical steel sheet, characterized in that at least one of the hot rolling step, cold rolling step, or warm rolling step is performed by reverse rolling. "It is in.

本発明において、上記出発材料にSiとA2を合計で1
.8重蓋%以上、−1を0.5〜2.0重世%含み、且
つ、SN、AlおよびMnの含有■が下記0式を満足す
る鋼スラブを使用すれば、−段と特性に優れた無方向性
電磁鋼板を製造することができる。
In the present invention, a total of 1 Si and A2 is added to the above starting material.
.. If a steel slab is used that contains 8 weight percent or more, 0.5 to 2.0 weight percent of -1, and the content of SN, Al, and Mn satisfies the following formula 0, it will have the same characteristics as - stage. Excellent non-oriented electrical steel sheets can be manufactured.

Si(%)+Al(%)  0.5%Mn(%)−1,
8〜3.0C%)・ ・■ 但し、式中元素の「%」は「1鼠%」である。
Si (%) + Al (%) 0.5%Mn (%) -1,
8-3.0C%)・・■ However, "%" of the element in the formula is "1%".

(作用) 本発明では出発材料にSiとAl!、を合計で1.8重
量%以上含有する鋼スラブを使用する。
(Function) In the present invention, Si and Al are used as starting materials! A steel slab containing 1.8% by weight or more of , in total is used.

SiとA2の合計含有量が1,8重蓋%未満のいわゆる
低級な材料でも、後述するレバース圧延の効果が得られ
ないわけではないが、このものはα/T変態を有するこ
とから熱間圧延工程での圧延方向の影響を受は難く、し
かも仕上げ焼鈍の上限が変態点で規制されるため、結晶
粒がネ■粒化し難いことなどからレバース圧延を行って
も効果が小さい。
Even so-called low-grade materials with a total content of Si and A2 of less than 1.8% are not incapable of obtaining the effects of reverse rolling, which will be described later, but because they have α/T transformation, they cannot be hot-rolled. It is difficult to be affected by the rolling direction in the rolling process, and the upper limit of finish annealing is regulated by the transformation point, so even if reverse rolling is performed, the effect is small because it is difficult for the crystal grains to become black.

また、低級の無方向性it ui m仮は、一般に磁束
密度が高く問題が少ないうえ、経済性の要求の方が強い
材料でもあるので敢えて本発明を採用し、鉄損と磁束密
度を改善する必要性が少ない、このようなことからSi
とAlを合計で1.8重蓋%以上含有する鋼スラブを出
発材料としたのである。
In addition, low-grade non-directional IT materials generally have high magnetic flux density and have few problems, and are also materials with strong demands for economic efficiency, so we purposely adopted the present invention to improve iron loss and magnetic flux density. Because of this, Si
A steel slab containing a total of 1.8% or more of aluminum and aluminum was used as the starting material.

出発材料として、少なくともSiと^iを合計で1.8
重量%以上含有し、不純物の少ない鋼スラブを使用し、
後述する方法で製造すれば高磁束密度を有する低鉄損の
無方向性!磁鋼板を得ることができる。更に、素材とし
てMnを0.5〜2.0111置%含み、且つ、SI、
  ANおよびMnの含有量が前記0式を満たする鋼ス
ラブを使用すると、−段と磁束密度に優れた低鉄損の無
方向性電磁鋼板を製造することができる。
As starting materials, at least Si and ^i with a total of 1.8
Using steel slabs with less impurities and containing more than % by weight,
If manufactured using the method described below, it will be non-directional with high magnetic flux density and low iron loss! Magnetic steel sheets can be obtained. Furthermore, it contains 0.5 to 2.0111% of Mn as a material, and SI,
By using a steel slab whose AN and Mn content satisfies the above formula 0, it is possible to produce a non-oriented electrical steel sheet with low core loss and excellent magnetic flux density.

Mnは単位面積当たりの電気抵抗増加率がSiやAlの
約半分で渦電流損低減の効果が小さいため、従来あまり
使用されていなかったが、本発明者らの検討結果による
と、MnはSiやAlに比べて磁束密度に対する悪影響
が少なく、SlおよびA2の含有量に応じ適性な範囲で
添加すると、高磁束密度と低鉄損の両立を図れることが
判明した。この理由については今のところ不明であるが
、集合組織の改善効果によるもの、或いは合金元素の種
類による原子半径や電子構造の差によるものなどが考え
られる。しかし、Mnの含有量が0.5重鼠%未満では
前記の効果が得られず、2.0重量%を趙えて含有させ
ると綱が脆化するのみならず結晶粒の成長も悪くなる。
Mn has not been used much in the past because its electrical resistance increase rate per unit area is about half that of Si and Al, and the effect of reducing eddy current loss is small. However, according to the results of the studies conducted by the present inventors, Mn It has been found that it has less adverse effect on magnetic flux density than Al and Al, and when added in an appropriate range depending on the contents of Sl and A2, it is possible to achieve both high magnetic flux density and low core loss. The reason for this is currently unknown, but it is thought to be due to the effect of improving the texture, or due to differences in atomic radius or electronic structure depending on the type of alloying element. However, if the Mn content is less than 0.5% by weight, the above-mentioned effects cannot be obtained, and if the content exceeds 2.0% by weight, not only will the steel become brittle, but the growth of crystal grains will also be impaired.

また、Hnを0.5〜2.0重吋%の範囲で含ませても
、[Si%十A1%−〇、5 ×Mn%]で示す値が1
.8%未満の場合は、変態点が現れ結晶粒の粒径を制御
nするのが難しくなるため、低鉄損を確保するのが困難
となる。一方、[Si%+八P%へ0.5×Mn%]で
示す値が3.0%を超えると!イ1束密東回確保が難し
くなる。
Furthermore, even if Hn is included in the range of 0.5 to 2.0% by weight, the value expressed as [Si% + A1% - 〇, 5 × Mn%] is 1
.. If it is less than 8%, a transformation point appears and it becomes difficult to control the grain size of the crystal grains, making it difficult to ensure low iron loss. On the other hand, if the value shown by [0.5 x Mn% to Si% + 8P%] exceeds 3.0%! It will be difficult to secure one batch of tickets to the east.

本発明で使用する鋼スラブは、少なくともSiと^2を
合計で1.8重量%以上含んだものであるが、合計含有
量が1.8重量%以上であってもどちらか一方が過度に
少ないと十分な特性が得られず、多いと弊害が発生する
場合がある。望ましい個々の含有量は下記のとおりであ
る。
The steel slab used in the present invention contains at least 1.8% by weight or more of Si and ^2 in total, but even if the total content is 1.8% or more, one or the other may be present in an excessive amount. If the amount is too low, sufficient characteristics cannot be obtained, and when the amount is too high, harmful effects may occur. Desirable individual contents are as follows.

Siは前述したように鋼の電気抵抗を増して渦電流損を
低減する作用があるが、少ないと高級無方向性電磁鋼板
として必要な鉄1員レベルを確保するのが難しく、過度
に多いと冷間圧延性が著しく損なわれるので、1.5〜
3.5重置%程度の含有量とするのが°よい、^2も高
級無方向性1を磁鋼板では電気抵抗の増加およびl!N
の粗大化を目的に添加されるが、少ないと効果が小さく
、多く添加してもより大きな効果が得られずにコストの
みが上昇するから、0.1〜1.O重量%程度の含有量
とするのがよい。
As mentioned above, Si has the effect of increasing the electrical resistance of steel and reducing eddy current loss, but if it is too low, it will be difficult to secure the level of iron 1 member required for high-grade non-oriented electrical steel sheets, and if it is too high, Since cold rolling property is significantly impaired, 1.5~
It is preferable to have a content of about 3.5% by weight.^2 Also, high-grade non-directional 1 is used in magnetic steel sheets to increase electrical resistance and l! N
It is added for the purpose of coarsening, but if it is too little, the effect will be small, and if it is added too much, no greater effect will be obtained and only the cost will increase, so 0.1 to 1. The content is preferably about 0% by weight.

なお、本発明が対象とするような高級無方向性電磁鋼板
には、以上述べた成分の他にC,P、S。
In addition to the above-mentioned components, the high-grade non-oriented electrical steel sheet targeted by the present invention contains C, P, and S.

N等の成分が含まれている。Contains components such as N.

Cは炭化物を形成してあらゆる磁気特性を劣化させる成
分であるので、含有量はできるだけ少ない方がよい、特
に磁気時効を防止するには0.005重景1以下、望ま
しくは0.003重世%以下とするのがよい。
Since C is a component that forms carbides and deteriorates all magnetic properties, it is better to keep the content as low as possible.In particular, to prevent magnetic aging, it should be less than 0.005 C, preferably 0.003 C. % or less.

Pは強度の調整および電気抵抗を増加させる目的で含ま
せてもよいが、多く添加すると冷間圧延性を阻害するの
で、0.1重量%以下の含有iAが望ましい。
P may be included for the purpose of adjusting strength and increasing electrical resistance, but since adding too much impairs cold rollability, the iA content is preferably 0.1% by weight or less.

Sは硫化物系の析出物を形成して磁気特性を劣化させる
成分であるので、含有量ば0.005重足%以下、望ま
しくは0.002重量%以下とするのがよい。
Since S is a component that forms sulfide-based precipitates and deteriorates magnetic properties, the content is preferably 0.005% by weight or less, preferably 0.002% by weight or less.

Nも窒化物を形成して磁気特性を劣化させる成分である
ので、含有量はo、oos重量%以下、望ましくは0.
003重量%以下とするのがよい。
Since N is also a component that forms nitrides and deteriorates magnetic properties, the content should be less than 0.00% by weight, preferably 0.0000% by weight.
The content is preferably 0.03% by weight or less.

本発明方法では、以上述べた成分を含む鋼スラブを出発
材料とし、これを熱間圧延する工程、脱スケールの前又
は後で再結晶焼鈍する工程、1回又は中間焼鈍を挟む2
回以上の冷間圧延又は温間圧延で最終板厚にする工程、
および仕上げ焼鈍を施す工程を経て無方向性電磁鋼板を
製造するのであるが、重要なことは熱間圧延工程、冷間
圧延工程又は温間圧延工程の少なくとも一工程の圧延を
レバース圧延で行うことである。
In the method of the present invention, a steel slab containing the above-mentioned components is used as a starting material, a step of hot rolling it, a step of recrystallization annealing before or after descaling, and a step of performing one or two intermediate annealing steps.
The process of achieving the final plate thickness by cold rolling or warm rolling more than once,
A non-oriented electrical steel sheet is manufactured through a process of final annealing and final annealing.What is important is that at least one of the hot rolling, cold rolling, or warm rolling processes is performed by reverse rolling. It is.

熱間圧延工程、冷間圧延工程又は温間圧延工程の少なく
とも一工程の圧延をレバース圧延で行えば「1東回度が
著しく向上する。この詳細な機構については今のところ
不明であるが、タンデムミルによる連続圧延では圧延方
向が一方向であるのに対し、レバース式のミルでは圧延
方向が順次逆になるため圧延&[I織の微細な構造が変
化するためと推定される0例えば、結晶粒界近傍での結
晶構造や方位が微妙に影響を受け、そのため最終仕上げ
焼鈍後の集合組織が改善されることなどによって磁束密
度が向上するものと考えられる。
If at least one of the hot rolling process, cold rolling process, or warm rolling process is performed by reverse rolling, the degree of rotation will be significantly improved.The detailed mechanism is currently unknown, but In continuous rolling by a tandem mill, the rolling direction is unidirectional, whereas in a lever-type mill, the rolling direction is sequentially reversed, which is presumed to change the fine structure of the rolling & [I weave.0 For example, It is thought that the crystal structure and orientation near the grain boundaries are subtly affected, and as a result, the texture after final annealing is improved, thereby improving the magnetic flux density.

無方向性1を磁鋼板を熱間圧延工程および冷間圧延工程
を経て製造する場合、或いは熱間圧延工程および温間圧
延工程を経て製造する場合、いずれの場合でも両工程の
圧延をレバース圧延で行うのが最も望ましいが、熱間圧
延工程のみ、冷間圧延工程又は温間圧延工程のみの一工
程だけをレバース圧延で行ってもかまわない、−工程だ
けでも磁束密度を向上させることができる。熱間圧延工
程をレバース圧延で行う場合は、ネ■圧延および仕上げ
圧延ともレバース圧延で行ってもよいが、仕−にげ圧延
をレバース圧延で行うと仕上げ温度を確保するための特
殊な保温炉が必要となるので、熱間圧延工程の場合は粗
圧延をレバース圧延で行う方が現実的である。熱延ミル
の粗圧延機がレバース式でない場合は、厚板ミルで鋼ス
ラブを中間jvまでレバース圧延することも有効である
When producing non-oriented 1 magnetic steel sheets through a hot rolling process and a cold rolling process, or when manufacturing a magnetic steel sheet through a hot rolling process and a warm rolling process, in either case, rolling in both processes is reverse rolling. It is most preferable to perform reverse rolling, but only the hot rolling process, the cold rolling process, or the warm rolling process can be performed by reverse rolling. Even just the - process can improve the magnetic flux density. . When the hot rolling process is performed by reverse rolling, both rolling and finish rolling may be performed by reverse rolling, but if finishing rolling is performed by reverse rolling, a special insulating furnace is required to ensure the finishing temperature. Therefore, in the case of a hot rolling process, it is more realistic to perform rough rolling by reverse rolling. If the rough rolling mill of the hot rolling mill is not a lever type, it is also effective to reverse roll the steel slab to intermediate JV in a thick plate mill.

レバース圧延の効果は、熱間圧延工程よりも童ろ冷間圧
延工程又は温間圧延工程の方が大きい。
The effect of reverse rolling is greater in the cold rolling process or the warm rolling process than in the hot rolling process.

これは最終の集合&[l織に対して工程が近い分だけよ
り直接的な影響を与えることができるためと考えられる
This is thought to be because the closer the process is to the final set & [l weave, the more direct the influence can be exerted.

以下、各工程の望ましい条件を説明する。Desirable conditions for each step will be explained below.

(+)!iilスラブの加熱 加熱温度があまり低いと熱延仕上げ温度の確保が困難と
なるうえに表面疵が増加する。一方、高温で加熱すると
スケールが厚く生成して歩留りが低下するので、110
0〜1250°Cが適当である。
(+)! If the heating temperature of the iii slab is too low, it will be difficult to secure the hot rolling finishing temperature and surface defects will increase. On the other hand, if heated at high temperatures, thick scale will form and the yield will decrease, so 110
A temperature of 0 to 1250°C is suitable.

(2)熱間圧延 熱間圧延をレバース圧延で行う場合は、3パス以上行う
のが望ましい、また、仕上げ温度は一般に高い方が望ま
しいので、粗圧延は950″C以上で行い、仕上げは8
00℃以上の温度で行うのがよい。
(2) Hot rolling When hot rolling is performed by reverse rolling, it is desirable to perform three or more passes.Also, it is generally desirable to have a higher finishing temperature, so rough rolling is performed at 950″C or higher, and finishing is performed at 8°C.
It is preferable to carry out the process at a temperature of 00°C or higher.

巻き取り温度は酸洗脱スケール性との兼ね合いから55
0〜650″Cの範囲がよい。
The winding temperature is 55% due to the balance with pickling and descaling properties.
A range of 0 to 650″C is preferable.

(3)再結晶焼鈍 焼鈍温度は750°C以上、望ましくは850℃以上と
するのがよい、しかし、あまり温度を高くすると結晶粒
が必要以上に粗大化し、冷間加工時に割れを生じ易くな
るので上限は1000’C程度とするのがよい。
(3) Recrystallization annealing The annealing temperature should be 750°C or higher, preferably 850°C or higher. However, if the temperature is too high, the crystal grains will become coarser than necessary and cracks will easily occur during cold working. Therefore, the upper limit is preferably about 1000'C.

(4)冷間圧延 レバース圧延を冷間圧延で行う場合は、同じく3バス以
上行うのがよい。
(4) Cold Rolling When reverse rolling is performed by cold rolling, it is also preferable to perform three or more passes.

冷間圧延は1回又は2回以上でもよいが、磁束密度を重
視するならば圧下率75〜85%の範囲で1回冷延法で
行うのがよい、鉄損を重視するならば中間焼鈍を挟む2
回冷延法で実施するのがよい。
Cold rolling may be performed once or twice or more, but if magnetic flux density is important, it is better to perform cold rolling once at a reduction rate of 75 to 85%.If iron loss is important, intermediate annealing is recommended. sandwich 2
It is preferable to carry out the rolling process using a double cold rolling method.

中間焼鈍は800〜+000°Cが適当である。A suitable temperature for intermediate annealing is 800 to +000°C.

(5)温間圧延 鋼スラブがSi等の合金を多く含む冷間圧延性の悪い材
料の場合は、前記冷間圧延に代えて100〜300°C
の温度域で温間圧延で最終板厚に加工してもよい、温間
圧延をレバース圧延で行う場合も3バス以上がよい。
(5) If the warm-rolled steel slab is a material with poor cold-rollability that contains a large amount of alloys such as Si, instead of the above-mentioned cold rolling,
The final plate thickness may be obtained by warm rolling in a temperature range of 3 or more baths when warm rolling is performed by reverse rolling.

(6)仕上げ焼鈍 仕上げ焼鈍は、850〜1050’Cの温度で3分以内
の連続焼鈍で行うのがよい。
(6) Finish annealing Finish annealing is preferably carried out by continuous annealing at a temperature of 850 to 1050'C for up to 3 minutes.

以下、実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

(実施例) 第1表に示す化学組成の230mm厚の鋼スラブを使用
し、これを第2表に示す各種条件で熱間圧延し、酸洗前
又は後に再結晶焼鈍を施し、次いで、冷間圧延又は温間
圧延で最終板厚にした後、仕上げ焼鈍を行った。
(Example) A 230 mm thick steel slab with the chemical composition shown in Table 1 was used, hot rolled under various conditions shown in Table 2, recrystallized annealed before or after pickling, and then cooled. After the final plate thickness was achieved by intermediate rolling or warm rolling, final annealing was performed.

本発明例のものは、熱間圧延、冷間圧延又は温間圧延の
いずれかをレバース式ミルで行った。比較例のものは熱
間圧延、冷間圧延又は温間圧延は連続式タンデムミルで
行った。
In the examples of the present invention, either hot rolling, cold rolling, or warm rolling was performed using a liver mill. In the comparative examples, hot rolling, cold rolling, or warm rolling was performed using a continuous tandem mill.

こうして得られた無方向性電磁鋼板の鉄を員と磁束密度
を調べた結果を第2表に製造条件とともに示す。
The results of examining the iron content and magnetic flux density of the non-oriented electrical steel sheet thus obtained are shown in Table 2 together with the manufacturing conditions.

なお、第2表において、In圧延方法欄および冷間圧延
面に示す「R」はレバース圧延、「TJは連続圧延を意
味する。
In addition, in Table 2, "R" shown in the In rolling method column and cold rolling surface means reverse rolling, and "TJ" means continuous rolling.

(以下余白) 第2表より、本発明例のものはいずれも比較例のものよ
り鉄1員および磁束密度がともに良好である。特に、?
Inを0.5%以上含育し、Sl、Al!およびMnの
含有量を前記条件を満たすように調整した鋼種D−Fを
出発材■とし、熱間圧延、冷間圧延又は温間圧延の少な
くとも一工程をレバース圧延で行った8117、律9、
Mailは、鉄tlおよび磁束密度が一段と優れている
(The following is a blank space) From Table 2, all of the examples of the present invention are better in iron 1 member and magnetic flux density than those of the comparative examples. especially,?
Contains 0.5% or more of In, Sl, Al! and 8117, Code 9, in which at least one step of hot rolling, cold rolling, or warm rolling was performed by reverse rolling, using steel type D-F whose Mn content was adjusted to meet the above conditions as a starting material (1).
Mail has even better iron tl and magnetic flux density.

(発明の効果) 以上説明した如く、本発明方法によれば磁束密度の高い
低鉄1員の無方向性電磁鋼板を安定して製造することが
できる。
(Effects of the Invention) As explained above, according to the method of the present invention, a low-iron one-member non-oriented electrical steel sheet with a high magnetic flux density can be stably produced.

Claims (2)

【特許請求の範囲】[Claims] (1)SiとAlを合計で1.8重量%以上含有する鋼
スラブを出発材料とし、これを熱間圧延する工程、脱ス
ケールの前又は後で再結晶焼鈍する工程、1回又は中間
焼鈍を挟む2回以上の冷間圧延又は温間圧延で最終板厚
にする工程、および仕上げ焼鈍を施す工程を経ることに
よって無方向性電磁鋼板を製造する方法において、前記
熱間圧延工程、冷間圧延工程又は温間圧延工程の少なく
とも一工程の圧延をレバース圧延で行うことを特徴とす
る無方向性電磁鋼板の製造方法。
(1) Using a steel slab containing 1.8% by weight or more of Si and Al in total as a starting material, hot rolling it, recrystallization annealing before or after descaling, single or intermediate annealing In a method of manufacturing a non-oriented electrical steel sheet by passing through two or more cold rolling or warm rolling steps to achieve the final thickness, and a step of final annealing, the hot rolling step, the cold rolling step, and a final annealing step are performed. A method for manufacturing a non-oriented electrical steel sheet, characterized in that at least one rolling step of the rolling step or the warm rolling step is performed by reverse rolling.
(2)出発材料がSiとAlを合計で1.8重量%以上
、Mnを0.5〜2.0重量%含み、且つ、Si、Al
およびMnの含有量が下記式を満足する鋼スラブである
ことを特徴とする請求項(1)記載の無方向性電磁鋼板
の製造方法。 Si(%)+Al(%)−0.5×Mn(%)=1.8
〜3.0(%)但し、式中元素の「%」は「重量%」で
ある。
(2) The starting material contains 1.8% by weight or more of Si and Al in total and 0.5 to 2.0% by weight of Mn, and Si, Al
The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the steel slab has a content of Mn and Mn that satisfies the following formula. Si (%) + Al (%) - 0.5 x Mn (%) = 1.8
~3.0 (%) However, "%" of the element in the formula is "% by weight".
JP25750689A 1989-10-02 1989-10-02 Production of nonoriented silicon steel sheet Pending JPH03120316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25750689A JPH03120316A (en) 1989-10-02 1989-10-02 Production of nonoriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25750689A JPH03120316A (en) 1989-10-02 1989-10-02 Production of nonoriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH03120316A true JPH03120316A (en) 1991-05-22

Family

ID=17307244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25750689A Pending JPH03120316A (en) 1989-10-02 1989-10-02 Production of nonoriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH03120316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638368B2 (en) * 1999-06-16 2003-10-28 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and method for producing the same
WO2023248861A1 (en) * 2022-06-20 2023-12-28 Jfeスチール株式会社 Method for producing electromagnetic steel sheet, and cold-rolled sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654370A (en) * 1979-10-11 1981-05-14 Mitsubishi Electric Corp Testing method of semiconductor
JPS5834531A (en) * 1981-08-17 1983-03-01 ライセンテイア・パテント−フエルヴアルトウンクス−ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウンク Compression air breaker
JPS644453A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having excellent rusting resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654370A (en) * 1979-10-11 1981-05-14 Mitsubishi Electric Corp Testing method of semiconductor
JPS5834531A (en) * 1981-08-17 1983-03-01 ライセンテイア・パテント−フエルヴアルトウンクス−ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウンク Compression air breaker
JPS644453A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having excellent rusting resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638368B2 (en) * 1999-06-16 2003-10-28 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and method for producing the same
WO2023248861A1 (en) * 2022-06-20 2023-12-28 Jfeスチール株式会社 Method for producing electromagnetic steel sheet, and cold-rolled sheet

Similar Documents

Publication Publication Date Title
US20080121314A1 (en) Non-Oriented Electrical Steel Sheets with Excellent Magnetic Properties and Method for Manufacturing the Same
US20140216606A1 (en) Non-oriented Electrical Steel Strip Having Excellent Magnetic Properties and Production Method Thereof
JP2009149993A (en) Method for producing non-oriented electrical steel sheet
JP2024041844A (en) Method for producing non-oriented magnetic steel sheet
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
KR20180074147A (en) Thin hot-rolled electrical steel sheets and method for manufacturing the same
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
KR20210044200A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPH03120316A (en) Production of nonoriented silicon steel sheet
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR100240993B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPS6253571B2 (en)
JP2000096196A (en) Nonoriented silicon steel sheet with low iron loss, and its production
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH04362128A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
CN116848271A (en) Non-oriented electrical steel sheet and method for manufacturing same
JP2023116341A (en) Production method of electromagnetic steel sheet
JP2525722B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet