JPH0643614B2 - Manufacturing method of semi-processed electrical steel sheet - Google Patents

Manufacturing method of semi-processed electrical steel sheet

Info

Publication number
JPH0643614B2
JPH0643614B2 JP61279150A JP27915086A JPH0643614B2 JP H0643614 B2 JPH0643614 B2 JP H0643614B2 JP 61279150 A JP61279150 A JP 61279150A JP 27915086 A JP27915086 A JP 27915086A JP H0643614 B2 JPH0643614 B2 JP H0643614B2
Authority
JP
Japan
Prior art keywords
annealing
iron loss
steel sheet
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61279150A
Other languages
Japanese (ja)
Other versions
JPS63134631A (en
Inventor
裕義 屋鋪
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61279150A priority Critical patent/JPH0643614B2/en
Publication of JPS63134631A publication Critical patent/JPS63134631A/en
Publication of JPH0643614B2 publication Critical patent/JPH0643614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄損および磁束密度が共に優れたセミプロセ
ス電磁鋼板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a semi-processed electromagnetic steel sheet having excellent iron loss and magnetic flux density.

〔従来の技術〕[Conventional technology]

近時、エネルギー事情の逼迫から、エネルギー消費量の
節減が世界的に強く要求されるところとなっており、電
気機器についても高性能化による電力消費量の低減が大
きな課題となっている。このような状況を背景に、昨
今、低鉄損であるとともに高い磁束密度を示す高性能電
磁鋼板の要求が高まってきた。
Recently, due to the tight energy situation, there is a strong demand for saving energy consumption worldwide, and the reduction of power consumption by improving the performance of electrical equipment has become a major issue. Against this background, there has recently been an increasing demand for high-performance magnetic steel sheets having low iron loss and high magnetic flux density.

ところで、電磁鋼板、とくに無方向性電磁鋼板は、製造
後ユーザー側でI形、E形等の複雑な形状に打ち抜いて
使用されることが多いが、この場合打ち抜き後において
歪取り焼鈍を施すのが通例となっている。
By the way, an electromagnetic steel sheet, especially a non-oriented electrical steel sheet, is often used after being manufactured by punching it into a complicated shape such as an I shape or an E shape. In this case, strain relief annealing is performed after the punching. Is customary.

この歪取り焼鈍は一般に750℃×2h程度の条件で実
施され、結晶粒の粗大化も可能なことから、鉄損特性の
向上に利用できる。また、電磁鋼板の打ち抜き性は結晶
粒が小さいほど良好であることから、打ち抜き前の段階
にあっては結晶粒の成長を抑えた方が好ましい。
This strain relief annealing is generally carried out under the conditions of about 750 ° C. × 2 h, and since the crystal grains can be coarsened, it can be used for improving the iron loss characteristics. Further, the smaller the grain size, the better the punching property of the electromagnetic steel sheet. Therefore, it is preferable to suppress the growth of the grain size before the punching.

そこで従来から、この歪取り焼鈍の実施を前提とした無
方向性電磁鋼板、すなわち歪取り焼鈍の実施によって始
めて所定の鉄損特性が得られる無方向性電磁鋼板が製造
されている。これはセミプロセス電磁鋼板と呼ばれ、歪
取り焼鈍を前提としないフルプロセス電磁鋼板と区別さ
れる。
Therefore, conventionally, there has been manufactured a non-oriented electrical steel sheet on the premise of carrying out the strain relief annealing, that is, a non-oriented electrical steel sheet capable of obtaining a predetermined iron loss characteristic only by carrying out the strain relief annealing. This is called a semi-process electrical steel sheet and is distinguished from a full-process electrical steel sheet that does not require strain relief annealing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、従来の電磁鋼板においては、鉄損を下げる目
的から、固有抵抗を増加させ渦電流損を減じる効果のあ
るSi,Alの添加が採用されていた。ところがこのよ
うなSi,Alの添加は反面、磁束密度の低下をもたら
すものであり、したがってこの種の電磁鋼板にあっては
低鉄損と高磁束密度の両立は不可能であった。
By the way, in the conventional magnetic steel sheet, the addition of Si and Al, which has the effect of increasing the specific resistance and reducing the eddy current loss, has been adopted for the purpose of reducing the iron loss. However, such addition of Si and Al, on the other hand, causes a decrease in magnetic flux density, and therefore it was impossible to achieve both low iron loss and high magnetic flux density in this type of electrical steel sheet.

このようなことから、最近になって鉄損が低くしかも磁
束密度の高いセミプロセス電磁鋼板の開発が進められる
ようになり、既に有効な製造方法も提案されている。そ
の1つは、特公昭61−7446号公報に記載された方
法である。
Under these circumstances, development of a semi-processed electromagnetic steel sheet having a low iron loss and a high magnetic flux density has recently been advanced, and an effective manufacturing method has already been proposed. One of them is the method described in Japanese Patent Publication No. 61-7446.

この製造方法は、上記Si,Alによる対策に代えてM
nを使用するというもので、これにより磁束密度低下の
弊害を来すことなく、すなわち高磁束密度を維持しなが
ら、鉄損の向上を達成するものである。すなわち、この
製造法は、C0.005%以下、Si0.1〜1.0
%、Mn0.75〜1.50%、S0.005%以下の
熱延板を使用する。ところが、この方法では、十分な磁
束密度を達成するためには熱延板焼鈍を欠くことができ
ない。またスキンパス圧延を行わないと十分な鉄損の低
下が実現できないが、これを行った場合には磁束密度の
低下が避けられず、十分に高い磁束密度が得られない。
このように、特公昭61−7446号記載の方法も、実
際には低鉄損と高磁束密度の両立を図ることは困難であ
り、また工数、コストの点でも不利な面がある。
This manufacturing method uses M instead of the above measures using Si and Al.
By using n, the improvement of the iron loss is achieved without the adverse effect of lowering the magnetic flux density, that is, while maintaining the high magnetic flux density. That is, this manufacturing method is C0.005% or less, Si0.1-1.0
%, Mn 0.75 to 1.50%, S 0.005% or less is used. However, in this method, hot-rolled sheet annealing is indispensable in order to achieve a sufficient magnetic flux density. Further, if skin pass rolling is not performed, a sufficient reduction in iron loss cannot be realized, but if this is done, a reduction in magnetic flux density cannot be avoided, and a sufficiently high magnetic flux density cannot be obtained.
As described above, in the method disclosed in Japanese Patent Publication No. 61-7446, it is actually difficult to achieve both low iron loss and high magnetic flux density, and there are disadvantages in terms of man-hours and cost.

本発明は、上記実状に鑑みなされたものであって、ユー
ザー側での打抜き、歪取り焼鈍後において、十分に低い
鉄損値と高い磁束密度とを実現でき、しかも製造工程が
簡略化できるセミプロセス電磁鋼板の製造方法の提供を
目的とする。
The present invention has been made in view of the above circumstances, punching on the user side, after strain relief annealing, it is possible to realize a sufficiently low iron loss value and high magnetic flux density, and further, the manufacturing process can be simplified. It is intended to provide a method for manufacturing a process electromagnetic steel sheet.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記した従来の技術を踏まえ、鉄損と磁
束密度の2特性の両立を可能にする方法を見出すべく、
鋭意実験、研究を行った。
Based on the above-mentioned conventional technique, the present inventors have found a method that enables compatibility of two characteristics of iron loss and magnetic flux density.
Diligently conducted experiments and research.

その結果、特公昭61−7446号の技術に従って、M
nを0.75〜1.5%含有させた場合において、その
Mnに対し多い目のCを共存させ、このMn,C共存の
下で冷延後の焼鈍を実施するようにすれば、鉄損、磁束
密度がともに改善され、鉄損を下げるためのスキンパ
ス圧延を省略しても十分に低い鉄損が確保できること、
またこの場合、スキンパス圧延の省略によって磁束密
度の低下が避けられ、上記C,Mn共存下での焼鈍の効
果と相俟ち、著しく高い磁束密度が実現されることを知
見した。
As a result, in accordance with the technique of Japanese Examined Patent Publication No. 61-7446, M
When n is contained in an amount of 0.75 to 1.5%, a large amount of C is coexistent with respect to Mn, and annealing after cold rolling is performed under the coexistence of Mn and C. Loss and magnetic flux density are both improved, and a sufficiently low iron loss can be secured even if skin pass rolling for reducing iron loss is omitted.
Further, in this case, it was found that the reduction of the magnetic flux density can be avoided by omitting the skin pass rolling, and a remarkably high magnetic flux density is realized in combination with the effect of annealing in the presence of C and Mn.

本発明は、上記の知見に基づくものであって、下記製造
方法を要旨とする。
The present invention is based on the above findings and has as its gist the following production method.

C0.006〜0.03%、Si0.1〜1.0%、M
n0.75〜1.5%、P≦0.150%、S≦0.0
05%で、必要に応じSol.Al0.1〜0.3%
か、またはSol.Al0.1未満とB/N0.5〜
1.5となる量のBとを含み、残部がFeおよび不可避
的不純物からなる熱延鋼板を脱スケールして、または脱
スケールの前または後に650〜850℃で30秒以上
焼鈍(熱延板焼鈍)して、冷間圧延し、しかるのち焼鈍
を行いC量を0.005%以下にすることを特徴とする
セミプロセス無方向性電磁鋼板の製造方法。
C0.006-0.03%, Si0.1-1.0%, M
n 0.75-1.5%, P ≦ 0.150%, S ≦ 0.0
05%, Sol. Al 0.1-0.3%
Or Sol. Al less than 0.1 and B / N 0.5-
A hot-rolled steel sheet containing B in an amount of 1.5 and the balance of Fe and unavoidable impurities is descaled, or annealed at 650 to 850 ° C. for 30 seconds or more before or after descaling (hot-rolled sheet). Annealing), cold rolling, and then annealing to make the C content 0.005% or less, a method for producing a semi-process non-oriented electrical steel sheet.

一般にこの種電磁鋼板については、C量は原則として少
ないほどよいとの認識がある。Cは最終製品の段階で、
磁気時効を生じさせ、鉄損を増加させるよう働くからで
あるが、こうした観点からCは従来、0.005%以下
に規制するのが通例であった。
In general, it is recognized that for this type of electrical steel sheet, the smaller the amount of C, the better. C is the final product stage,
This is because it works to cause magnetic aging and increase iron loss. From this viewpoint, it has been customary to regulate C to 0.005% or less.

これに対し本発明は、Cを当初0.006〜0.03%
と多目に含有させるものであり、0.75%以上のMn
にこの多目のCを共存させて、冷延後の焼鈍を行うとい
うものである。このC,Mn共存下での焼鈍の実施によ
り、きわめて低い鉄損と高いレベルの磁束密度が実現さ
れることになる。Mnは頭記した如くそれ単独の作用と
しても、鉄損を下げる働きがあるが、上記のような条件
下で焼鈍を行えば、このMn本来の効果の上に、それと
は別の磁気特性(鉄損、磁束密度)の改善作用がもたら
され、これが上乗せされた形となる。このようなことか
らスキンパス圧延なしのままで、鉄損、磁束密度の高い
レベルでの両立が達成されることになるのである。
On the other hand, in the present invention, C is initially 0.006 to 0.03%.
And more than 0.75% of Mn.
The coexistence of this large amount of C is followed by annealing after cold rolling. By carrying out the annealing in the coexistence of C and Mn, extremely low iron loss and high level magnetic flux density are realized. As mentioned above, Mn has a function of lowering iron loss as its own action, but if annealing is performed under the above-mentioned conditions, in addition to the original effect of Mn, another magnetic characteristic ( Iron loss, magnetic flux density) are improved, and this is the added form. From this, it is possible to achieve both iron loss and magnetic flux density at a high level without skin pass rolling.

上記C,Mn共存下での焼鈍により磁気特性が改善され
るそのメカニズムについては、未だ十分な解明に至って
おらず、明確なことはいえないが、次のように考えられ
る。
The mechanism by which the magnetic properties are improved by annealing in the coexistence of C and Mn has not yet been fully clarified and it cannot be said clearly, but it is considered as follows.

MnとCは親和力の強い元素の組み合わせであるため、
冷延後の焼鈍時にCとMnが適量存在すると、CとMn
がペアを組んだ状態が多数形成されることが考えられ
る。このようなCとMnのペアは、焼鈍過程での再結晶
挙動に対し、単独の状態(固溶状態)を各元素とは異っ
た影響を及ぼすことになり、このような関係で、適量の
Mn、C共存の下では、磁気特性に有利な(100)面
や(110)面の集積度の高い集合組織が形成され易く
なるものと考察される。
Since Mn and C are a combination of elements having a strong affinity,
If an appropriate amount of C and Mn is present during annealing after cold rolling, C and Mn
It is conceivable that a large number of pairs will be formed. Such a pair of C and Mn affects the recrystallization behavior in the annealing process in a single state (solid solution state) different from that of each element. It is considered that the coexistence of Mn and C makes it easy to form a texture having a high degree of integration of the (100) plane or the (110) plane, which is advantageous in magnetic properties.

なお、上記のような焼鈍を行う場合にも、その多目にし
たC量が最終製品の段階まで持ち込まれると、当然磁気
時効による鉄損増加の弊害が生じることになる。こうし
た弊害を避けて本来のすぐれた磁気特性を維持するため
には、冷延後の焼鈍において、脱炭を進めてやり、C含
有量を、磁気時効の実質的に生じない0.005%以下
のレベルまで低下させるようにすることが必要となって
くる。
Even when the above-described annealing is performed, if the increased C amount is brought to the final product stage, naturally the adverse effect of increasing iron loss due to magnetic aging will occur. In order to avoid such adverse effects and maintain the original excellent magnetic properties, decarburization is performed in the annealing after cold rolling, and the C content is 0.005% or less at which magnetic aging does not substantially occur. It will be necessary to reduce it to the level of.

以下、本発明の各構成要件について、具体的に説明す
る。
Hereinafter, each constituent element of the present invention will be specifically described.

○ まず、熱延鋼板の鋼成分についていうと、その各成
分の限定理由は次のとおりである。
First, regarding the steel components of the hot-rolled steel sheet, the reasons for limiting each component are as follows.

C:Mnとともに本発明において最も重要な元素であ
る。Mnとの共存に意味があり、そのような共存状態に
おいて、冷延後の焼鈍を経て磁気特性の改善に貢献す
る。
C: It is the most important element in the present invention together with Mn. Coexistence with Mn is significant, and in such a coexistence state, it contributes to the improvement of magnetic properties through annealing after cold rolling.

第1図はCの磁気特性に及ぼす効果を示し初期C量(熱
延板C量)を変化させて磁気特性を調査した結果のプロ
ット図である。供試材は、C以外の鋼成分は本発明の条
件を満たすもの(0.7%Si−1.2%Mn−0.0
10%P−0.003〜0.004%S)を用い、これ
を後述実施例に示すプロセス(熱延板焼鈍実施材の熱延
板焼鈍条件は800℃×2分)で0.5mm厚の冷延板と
し、その後750℃で焼鈍を行ってC0.005%以下
に脱炭したもの(初期C量0.005%以下のものは脱
炭なし)である。図の鉄損、磁束密度の値は、実施例に
示す方法で測定した歪取焼鈍(750℃×2h〔非脱
炭〕)後の値である。
FIG. 1 is a plot diagram showing the effect of C on the magnetic characteristics and investigating the magnetic characteristics by changing the initial C amount (hot rolled sheet C amount). The steel materials other than C satisfy the conditions of the present invention (0.7% Si-1.2% Mn-0.0).
10% P-0.003 to 0.004% S), which is 0.5 mm thick in the process (the hot-rolled sheet annealing condition of the hot-rolled sheet annealed material is 800 ° C. × 2 minutes) shown in the examples below. Cold-rolled sheet, then annealed at 750 ° C. and decarburized to a C content of 0.005% or less (an initial C content of 0.005% or less is not decarburized). The values of iron loss and magnetic flux density in the figure are values after strain relief annealing (750 ° C. × 2 h [non-decarburization]) measured by the method shown in the examples.

同図のデータ(熱延板焼鈍省略材)よりして、Cが0.
006%以上含有されていると、磁束密度が向上し、鉄
損の値も低下することが分る。しかしこのC量が0.0
30%をこえると磁束密度が次第に低下し、鉄損の方も
僅かながら増加の傾向が認められる。このような磁気特
性劣化の傾向は、初期C量の増加にしたがって最終C量
として0.005%以下を得るための脱炭焼鈍時間が長
くなり内部酸化層の厚みが増すことによると考えられ
る。
Based on the data in the figure (material for omitting annealing of hot rolled sheet), C was 0.
It can be seen that when the content is 006% or more, the magnetic flux density is improved and the iron loss value is also reduced. However, this C content is 0.0
When it exceeds 30%, the magnetic flux density gradually decreases, and the iron loss tends to slightly increase. It is considered that such a tendency of deterioration of the magnetic properties is due to the fact that the decarburization annealing time for obtaining the final C content of 0.005% or less becomes longer as the initial C content increases, and the thickness of the internal oxide layer increases.

したがってC量(初期C量)は0.006〜0.030
%の範囲とした。
Therefore, the C amount (initial C amount) is 0.006 to 0.030.
The range is%.

Si:Siは固有抵抗を増加させ、鉄損低下に有効に寄
与する元素であるが、反面磁束密度の低下をもたらす。
1%をこえると、この磁束密度の低下が著しく、本発明
の目的の1つである高磁束密度が達成不可能となる。ま
た0.1%未満では、鉄損の面で十分な効果が期待でき
ない。よって、Siは0.1〜1.0%の範囲とした。
Si: Si is an element that increases the specific resistance and effectively contributes to the reduction of iron loss, but on the other hand, it causes the reduction of the magnetic flux density.
When it exceeds 1%, the magnetic flux density is remarkably lowered, and the high magnetic flux density, which is one of the objects of the present invention, cannot be achieved. If it is less than 0.1%, a sufficient effect cannot be expected in terms of iron loss. Therefore, Si is set to the range of 0.1 to 1.0%.

Mn:Cとともに本発明鋼の基幹をなす元素であり、C
との共存下において、冷延後の焼鈍を経て磁気特性の改
善に大きく寄与する。
Mn: C is an element that forms the basis of the steel of the present invention together with C,
In the coexistence with, it greatly contributes to the improvement of magnetic properties through annealing after cold rolling.

第2図は、Mn量を変化させて磁気特性を調査した結果
のプロット図である。同データはC0.02%,0.0
03%で、C,Mn以外の鋼成分は本発明条件を満たす
鋼(Si:0.5%、P:0.015%、S:0.00
2〜0.003%)を第1図と同様のプロセス(熱延板
焼鈍なし)で冷延板とし、このうちC0.02%材は7
20℃で焼鈍を行って0.005%以下に脱炭し、C
0.003%材の方は750℃×1hの非脱炭焼鈍を行
い、このようにして得たものについて、第1図の場合と
同様にして歪取焼鈍後の磁気特性を調査したものであ
る。
FIG. 2 is a plot of the results of investigating the magnetic characteristics by changing the amount of Mn. The data is C 0.02%, 0.0
Steel composition other than C and Mn satisfying the conditions of the present invention (Si: 0.5%, P: 0.015%, S: 0.00
2 to 0.003%) was made into a cold-rolled sheet by the same process as in FIG. 1 (without hot-rolled sheet annealing), of which C0.02% material was 7%.
Annealing is performed at 20 ° C to decarburize to 0.005% or less, and C
The 0.003% material was subjected to non-decarburization annealing at 750 ° C. for 1 h, and the magnetic properties after strain relief annealing were investigated in the same manner as in FIG. 1 for the thus obtained material. is there.

同図によると、初期C量が0.02%(本発明範囲内)
のものでは、Mnが0.75%以上の領域において、磁
束密度、鉄損がともに著しく改善される傾向がみられ
る。C量が0.003%(本発明範囲外)ともともと低
いものでは、Mn0.75%以上にあっても、鉄損、磁
束密度はともに劣ったものとなっている。すなわち、適
正量のC存在の下で、Mn量を0.75%以上にして焼
鈍することが、良好な磁気特性を得る上できわめて有効
に作用することが分る。
According to the figure, the initial C amount is 0.02% (within the range of the present invention).
In the case of No. 1, the magnetic flux density and the iron loss tend to be remarkably improved in the region where Mn is 0.75% or more. When the C content is 0.003% (outside the range of the present invention) and is originally low, the iron loss and the magnetic flux density are both inferior even when Mn is 0.75% or more. That is, it can be seen that annealing in the presence of an appropriate amount of C with the amount of Mn being 0.75% or more is extremely effective in obtaining good magnetic properties.

ただし、Mn量が1.5%をこえると、冷延時割れが生
じ易くなり、またAc変態点が低下することから十分
な焼鈍温度をとることができなくなる。
However, if the amount of Mn exceeds 1.5%, cracking during cold rolling tends to occur, and the Ac 3 transformation point decreases, so that a sufficient annealing temperature cannot be obtained.

以上のことから、Mnは0.75〜1.5%の範囲に限
定した。
From the above, Mn was limited to the range of 0.75 to 1.5%.

P:Pは鋼板の強度を高め打抜き性を改善するのに有効
な元素であるが、0.150%をこえると鋼板の脆化が
避けられず、このため0.150%以下に限定した。な
お下限については不可避的不純物程度のP量でもとくに
問題を生じることはないので、規定はしない。
P: P is an element effective in increasing the strength of the steel sheet and improving the punching property, but if it exceeds 0.150%, the embrittlement of the steel sheet cannot be avoided, and therefore it is limited to 0.150% or less. The lower limit is not specified because even if the amount of P is an unavoidable impurity, no particular problem occurs.

S:Sは硫化物を形成し焼鈍時の粒成長性を低下させ、
鉄損を増加させる有害な元素である。
S: S forms sulfides and reduces the grain growth during annealing,
It is a harmful element that increases iron loss.

第3図は、S量と磁気特性の関係を示す実験データのプ
ロット図で、S量を変化させその他の成分を本発明の範
囲内で一定の値とした鋼(0.01%C−0.30%S
i−0.85%Mn−0.060%P)を素材として用
い、冷延後の焼鈍を700℃で行う点以外は第1図の場
合(熱延板焼鈍なし)と全く同じプロセスを経て磁気特
性を調査した結果に基づく。
FIG. 3 is a plot diagram of experimental data showing the relationship between the S content and the magnetic properties. Steel having a constant S content and a constant content within the scope of the present invention (0.01% C-0 .30% S
i-0.85% Mn-0.060% P) is used as a material, and the process is exactly the same as in the case of FIG. 1 (without hot-rolled sheet annealing) except that annealing after cold rolling is performed at 700 ° C. Based on the results of investigation of magnetic properties.

同図から明らかなように、S量が0.005%以下にな
ると、鉄損がきわめて良好な値となる。
As is clear from the figure, when the S content is 0.005% or less, the iron loss becomes a very good value.

したがって、Sは0.005%以下に限定した。Therefore, S is limited to 0.005% or less.

なお、0.005%以下の範囲において、Sは鉄損の面
で少ないほど有利であり、したがってSの下限値につい
てはとくに指定しない。
In the range of 0.005% or less, S is more advantageous in terms of iron loss, and therefore, the lower limit of S is not specified.

Sol.Al:AlはSiと同様に固有抵抗を増加させ
鉄損を下げる効果がある。しかしその量が0.3%をこ
えると、磁束密度の低下を来たし好ましくない。
Sol. Al: Al has the effect of increasing the specific resistance and lowering the iron loss like Si. However, if the amount exceeds 0.3%, the magnetic flux density decreases, which is not preferable.

ここでSol.Al0.1%以上の添加では必要ない
が、これが0.1%未満の場合低鉄損を得るには、微細
AlNの析出により焼鈍時の粒成長が阻害される傾向を
排除してやることが必要であり、これはBをB/N0.
5〜1.5となる範囲の量添加することにより達成し得
る。
Here, Sol. Although it is not necessary to add Al of 0.1% or more, if it is less than 0.1%, in order to obtain a low iron loss, it is necessary to eliminate the tendency of grain growth during annealing due to precipitation of fine AlN. Yes, this is B to B / N0.
This can be achieved by adding an amount in the range of 5 to 1.5.

このようなことから、本発明においては、sol.Al
0.1〜0.3%、またはSol.Al0.1%未満で
B/N0.5〜1.5となる量のBを含むという条件の
何れかを採用することとした。
Therefore, in the present invention, sol. Al
0.1-0.3%, or Sol. It was decided to adopt any of the conditions that B was contained in an amount of B / N of 0.5 to 1.5 when Al was less than 0.1%.

なお、Sol.Al0.003%以下の不純物レベルの
Al量の場合には、当然上記Bの添加は不要である。
In addition, Sol. When the amount of Al is an impurity level of 0.003% or less, naturally, the addition of B is unnecessary.

○ 次に、製造プロセスについて述べる。○ Next, the manufacturing process will be described.

本発明の方法は、基本的には上記のような成分条件に適
合した熱延鋼板を用い、これを脱スケール後冷間圧延
し、次いで焼鈍を行うというもので、場合によっては脱
スケールの前または後に熱延板焼鈍が行われる。
The method of the present invention basically uses a hot-rolled steel sheet that conforms to the above-described compositional conditions, cold-rolls it after descaling, and then performs annealing, and in some cases before descaling. Alternatively, hot-rolled sheet annealing is performed later.

ここで、上記各工程についていうと、 ・熱延板焼鈍 この焼鈍は、磁束密度、鉄損の両面で有効である。これ
は、前出第1図に示した、熱延板焼鈍実施材と同省略材
との比較から明らかである。
Here, the above-mentioned steps are as follows: Hot-rolled sheet annealing This annealing is effective for both magnetic flux density and iron loss. This is clear from the comparison between the annealed material for hot-rolled sheet and the omitted material shown in FIG.

焼鈍条件は、650〜850℃×30秒以上とする必要
がある。すなわち650℃未満の温度では上記磁気特性
改善の効果が十分に得られず、また850℃をこえると
結晶粒が粗大化して冷間圧延性の悪化や著しい肌荒れを
来たすことになる。焼鈍時間については、30秒未満で
は、焼鈍の効果が期待できない。
The annealing condition needs to be 650 to 850 ° C. × 30 seconds or more. That is, at a temperature of less than 650 ° C., the effect of improving the magnetic properties cannot be sufficiently obtained, and at a temperature of more than 850 ° C., the crystal grains are coarsened to cause deterioration of cold rolling property and remarkable rough skin. If the annealing time is less than 30 seconds, the effect of annealing cannot be expected.

なお、熱延板そのものを得る工程については、とくに制
限するものでない。転炉溶製−連続鋳造熱間圧延のプロ
セスを経るのが常法であるが、本発明の場合にも、これ
と同じプロセスによることができる。
The process for obtaining the hot rolled sheet itself is not particularly limited. It is a usual method to go through the process of converter melting-continuous casting hot rolling, but in the case of the present invention, the same process can be used.

・脱スケール、冷間圧延 何れも、通常どおりでよい。脱スケールは、酸洗処理が
一般で、冷間圧延は1回を原則とする。
・ Descaling and cold rolling can be performed as usual. As for descaling, pickling is generally performed, and cold rolling is performed once in principle.

・冷延後の焼鈍 既述したとおり本発明は、適量のC,Mnが共存する状
態で冷延後の焼鈍を行って磁束密度、鉄損の両特性を向
上させるというところに最大の特徴がある。冷延後の焼
鈍は本発明においてはこのように大切な役割を担ってい
るのである。
-Annealing after cold rolling As described above, the present invention has the greatest feature in that annealing after cold rolling is performed in a state where appropriate amounts of C and Mn coexist to improve both characteristics of magnetic flux density and iron loss. is there. The annealing after cold rolling plays such an important role in the present invention.

冷延後の焼鈍は、一般にメーカー側で行われる再結晶お
よび硬度調整等を目的とした連続焼鈍あるいは箱焼鈍、
ユーザー側で行われる打ち抜き歪みの除去や結晶粒径粗
大化等を目的とした歪取焼鈍が実施されている。
Annealing after cold rolling is generally continuous annealing or box annealing for the purpose of recrystallization and hardness adjustment performed on the manufacturer side,
Strain relief annealing is performed on the user side for the purpose of removing punching strain and coarsening of crystal grain size.

本発明では冷延後の再結晶をさせる段階ではCとMnを
共存させる必要がある。しかし最終製品ではCが0.0
05%を超えて含有されていると、磁気時効が生じ鉄損
増加を招く。従って冷延後の再結晶工程またはそれ以降
の工程で脱炭を行うことが必要であり、冷延後のメーカ
ー側の連続焼鈍または箱焼鈍、ユーザー側での歪取焼鈍
のいずれかを脱炭焼鈍とし、Cを0.005%以下とし
なければならない。なおこの最終C量の下限について
は、Cが少ない程磁気時効には有利であり、特に限定は
しない。
In the present invention, C and Mn must coexist at the stage of recrystallization after cold rolling. However, C is 0.0 in the final product.
If the content exceeds 05%, magnetic aging occurs and iron loss increases. Therefore, it is necessary to perform decarburization in the recrystallization step after cold rolling or in the subsequent steps, and decarburize either continuous annealing or box annealing on the manufacturer side after cold rolling or strain relief annealing on the user side. It should be annealed and C should be 0.005% or less. The lower limit of the final C amount is more advantageous for magnetic aging as the amount of C is smaller, and is not particularly limited.

すなわち本発明における冷延後の焼鈍は、第4図にIグ
ループとして示されているように、C−Mnの共存焼鈍
を兼ねた脱炭焼鈍をメーカー側で冷延後に行うことを基
本とするが、同図にIIグループとして示されるように、
メーカー側でC−Mnの共存焼鈍のみを実施して、脱炭
はユーザー側の歪取焼鈍で行わせることも可能である。
That is, in the annealing after cold rolling in the present invention, as shown in Group I in FIG. 4, decarburization annealing which also serves as coexisting annealing of C-Mn is basically performed after cold rolling on the manufacturer side. However, as shown as II group in the figure,
It is also possible to carry out only C-Mn co-annealing on the manufacturer side and decarburize it by strain relief annealing on the user side.

また、Iグループにおける脱炭焼鈍はOCA炉脱炭焼鈍
(I−A,B)、脱炭を伴う連続焼鈍(I−C)の何れ
を採用してもよく、IIグループにおけるC−Mn共存焼
鈍も、箱焼鈍(II−A,B)、連続焼鈍(II−C)の何
れによってもよい。
Further, the decarburization annealing in the group I may be either OCA decarburization annealing (IA, B) or continuous annealing accompanied by decarburization (IC), and C-Mn coexisting annealing in the group II. Alternatively, either box annealing (II-A, B) or continuous annealing (II-C) may be used.

OCA炉脱炭焼鈍、または箱焼鈍を採用する場合には、
その焼鈍後に、平坦化のための連続焼鈍(I−A,II−
A)、もしくはそれに代わる圧下率2%以下のスキンパ
ス圧延(I−B,II−B)を実施するようにするのがよ
い。
When adopting OCA furnace decarburization annealing or box annealing,
After the annealing, continuous annealing for flattening (IA, II-
It is preferable to carry out A) or an alternative skin pass rolling (IB, II-B) with a rolling reduction of 2% or less.

なお、Iグループにおける脱炭焼鈍については、再結晶
が完了するまでは脱炭を行わず、再結晶完了後に脱炭反
応が始まるように炉内雰囲気の調整を行うようにするの
がよい。
Regarding the decarburization annealing in Group I, it is preferable that the decarburization is not performed until the recrystallization is completed and the furnace atmosphere is adjusted so that the decarburization reaction starts after the recrystallization is completed.

なお、電磁鋼板を製造する場合、通常はさらに絶縁コー
ティングを付与する工程が入ってくるが、本発明の場合
にも、製造の最終工程としてこのコーティングの工程を
実施することは可能であり、本発明はこのようなケース
をも含むものとする。
In addition, when manufacturing an electromagnetic steel sheet, a step of further applying an insulating coating usually comes in, but in the case of the present invention, it is possible to carry out this coating step as the final step of the production. The invention includes such a case.

〔実施例1〕 第1表に示す各成分組成の鋼を転炉で溶製し、これを連
続鋳造により鋳片(250mm厚さ×1000mm幅)とな
し、続いて熱間圧延を行って厚み2.3mmの熱延板を得
た。次いでこの熱延板に酸洗−冷間圧延(2.3mm→
0.5mm)−冷延後の焼鈍(メーカー側)(第1表の条
件)を施した。この際、No.3,4,7,12,14,
21,22については、酸洗後の段階で同表に示す条件
の熱延板焼鈍を行い、またNo.4〜8および22につい
ては、冷延後の焼鈍のあと同表の条件のスキンパス圧延
を実施した。No.4のスキンパスは結晶粒粗大化のため
のスキンパスで、それ以外のスキンパスはOCA炉脱炭
焼鈍後の平坦化が目的である。
[Example 1] Steel of each component composition shown in Table 1 was melted in a converter and formed into a slab (250 mm thickness x 1000 mm width) by continuous casting, followed by hot rolling to obtain a thickness. A 2.3 mm hot rolled plate was obtained. Next, pickling-cold rolling (2.3 mm →
0.5 mm) -Annealed after cold rolling (manufacturer side) (conditions in Table 1). At this time, No. 3, 4, 7, 12, 14,
For Nos. 21 and 22, hot-rolled sheet annealing was performed under the conditions shown in the same table after the pickling, and for Nos. 4 to 8 and 22, after the cold rolling, after the skin pass rolling under the conditions shown in the same table. Was carried out. The No. 4 skin pass is a skin pass for grain coarsening, and the other skin passes are for the purpose of flattening after the OCA furnace decarburization annealing.

こうして得た各供試鋼板について、同表の条件で歪取焼
鈍(非脱炭:乾N雰囲気,脱炭:20%H,80%
,露点+30℃)を行い、磁気特性(鉄損、磁束密
度)を調査した。特性調査は、30mm幅×280mm長さ
のエプスタイン試験片を、圧延方向とその直角方向から
8枚ずつ採取して行った。
For each of the test steel plates thus obtained, stress relief annealing was performed under the conditions shown in the table (non-decarburizing: dry N 2 atmosphere, decarburizing: 20% H 2 , 80%
The magnetic properties (iron loss, magnetic flux density) were investigated by conducting N 2 and dew point + 30 ° C.). The characteristic investigation was performed by collecting eight Epstein test pieces each having a width of 30 mm and a length of 280 mm from the rolling direction and the direction perpendicular thereto.

結果を第1表の右欄に示す。The results are shown in the right column of Table 1.

同表の結果について説明する。 The results of the table will be described.

・No.1は、この種電磁鋼板の最も基本的な例で、Si
を高目に含有させて鉄損の改善を図ったものであるが、
これは磁束密度の点で劣っている。
・ No. 1 is the most basic example of this type of electrical steel sheet, Si
Is included in order to improve iron loss.
This is inferior in terms of magnetic flux density.

・No.2〜4は、予めC量を本発明における最終C量レ
ベル(0.005%以下)として脱炭を行わなかったも
のである。No.2はとくに鉄損が高く、No.3は熱延板焼
鈍を実施したため、鉄損、磁束密度ともNo.2より良好
ではあるが、なお十分なものではない。No.4はスキン
パス圧延を行ったもので、鉄損については非常に良好と
なっているが、磁束密度の低下がみられる。
-Nos. 2 to 4 are those in which decarburization was not performed in advance with the C amount as the final C amount level (0.005% or less) in the present invention. No. 2 had particularly high iron loss, and No. 3 had better iron loss and magnetic flux density than No. 2 because it was subjected to hot-rolled sheet annealing, but it is still not sufficient. No. 4 was skin-pass rolled and had very good iron loss, but a decrease in magnetic flux density was observed.

・No.5は、素材鋼成分がC量を除きNo.2〜4と略同一
条件の本発明例である。これは熱延板焼鈍を行っておら
ず、その点で同条件のNo.2と比べると、鉄損、磁気特
性とを相当にすぐれた値となっており、またスキンパス
圧延を行ったNo.4に比較しても、鉄損の点では多少高
い値となっているが、磁束密度については勝っており、
両特性のバランスという点でよりすぐれたものとなって
いる。
-No. 5 is an example of the present invention in which the material steel component is substantially the same as Nos. 2 to 4 except for the amount of C. This is because hot-rolled sheet annealing has not been performed, and in that respect, it has considerably excellent iron loss and magnetic properties as compared to No. 2 under the same conditions, and skin-pass rolling No. Although it is a little higher in terms of iron loss than that of 4, the magnetic flux density is superior,
It is superior in terms of the balance of both characteristics.

・No.6,7は、熱延板焼鈍実施の有無の点でのみ異な
る2つの本発明例で、両者の比較から熱延板焼鈍が鉄
損、磁束密度の両方に有効であることから分る。
-Nos. 6 and 7 are two examples of the present invention which differ only in the presence or absence of hot-rolled sheet annealing. From the comparison of the two, hot-rolled sheet annealing is effective for both iron loss and magnetic flux density. It

・No.8は初期C量が本発明範囲(0.006〜0.0
3%)の上限を上廻るもので、これは冷延後の焼鈍でC
量を0.003%以下に脱炭したにも拘らず、初期C量
以外は実質的差異のない本発明例No.6に比べ、鉄損、
磁束密度がともに劣っている。
・ No. 8 has an initial C amount within the range of the present invention (0.006 to 0.0
3%) above the upper limit, which is C during annealing after cold rolling.
Although the amount was decarburized to 0.003% or less, iron loss, compared with Example No. 6 of the present invention, which had substantially no difference except for the initial C amount,
Both magnetic flux densities are inferior.

・No.9と10はMn量の点でのみ異なる2例で、No.9
は本発明範囲を下廻るMn量のために、本発明例である
No.10に対し、鉄損、磁束密度とも劣っている。
・ No. 9 and 10 are two examples that differ only in the amount of Mn.
Is an example of the present invention because of an Mn amount below the range of the present invention.
Both iron loss and magnetic flux density are inferior to No. 10.

・No.11〜14は、全て本発明例で、No.11と12,
No.13と14は、それぞれ熱延板焼鈍の有無の点での
み異なり、No.13と14は素材鋼にAlが添加された
例である。No.11と12,No.13と14の比較から、
磁気特性に対する熱延板焼鈍の効果が明らかである。ま
たAlの添加があるNo.13,14はとくに鉄損の点で
よりすぐれたものとなっている。
・ No. 11 to 14 are all examples of the present invention, and No. 11 and 12,
Nos. 13 and 14 differ only in the presence or absence of hot-rolled sheet annealing, and Nos. 13 and 14 are examples in which Al is added to the raw steel. From the comparison of No. 11 and 12, No. 13 and 14,
The effect of hot rolled sheet annealing on magnetic properties is clear. In addition, Nos. 13 and 14 in which Al is added are particularly superior in terms of iron loss.

・No.15と16は、B添加の有無が異なる2例で、No.
15はSol.Al0.030%でBの添加がなく、S
ol.Al0.1%未満のときBをB/N0.5〜1.
5となる重含有するという本発明の規定を満足せず、こ
の条件を満たす本発明例No.16(B/N0.9)に比
較して、とくに鉄損が大きく劣っている。
・ No. 15 and 16 are two cases with and without B addition.
15 is Sol. Al0.030% with no addition of B, S
ol. When Al is less than 0.1%, B is B / N 0.5-1.
5 does not satisfy the requirement of the present invention that the heavy content is 5, and the iron loss is significantly inferior in comparison with Inventive Example No. 16 (B / N 0.9) satisfying this condition.

・No.17は、初期C量を本発明の最終C量レベル(≦
0.005%)とし脱炭を実施しなかった例であり、こ
の点を除き略同条件の本発明例であるNo.11に比べ
て、鉄損、磁束密度ともに悪い。
・ No. 17 is the final C amount level of the present invention (≤
0.005%) and no decarburization was carried out, and iron loss and magnetic flux density were worse than those of No. 11 of the present invention which was under substantially the same conditions except this point.

.No.18〜20は、S量以外の条件を一定にしS量を
変化させてその影響をみたもので、No.18と19はS
≦0.005%の条件を満たす本発明例で、No.20は
その条件に適合しない例である。No.18と19とは、
磁気特性に大差がなく何れも良好な値となっているが、
No.20は鉄損の値が大きなものとなっている。
. Nos. 18 to 20 are conditions in which conditions other than the S amount are fixed and the S amount is changed to see the effect. Nos. 18 and 19 are S amounts.
This is an example of the present invention satisfying the condition of ≤0.005%, and No. 20 is an example that does not meet the condition. No. 18 and 19
There is no big difference in the magnetic characteristics, and all have good values,
No. 20 has a large iron loss value.

No.21と22は、Al添加のある本発明例で、No.21
は0.1%以上のAlを含むもの、No.22はAl0.
1%未満でBをB/N0.5〜1.5となる量含有する
ものであるが、これらは何れも、鉄損、磁束密度の両面
ですぐれた値を示している。
Nos. 21 and 22 are examples of the present invention in which Al is added.
Contains 0.1% or more of Al, and No. 22 is Al0.
When less than 1%, B is contained in an amount of B / N of 0.5 to 1.5, all of which show excellent values in terms of iron loss and magnetic flux density.

〔実施例2〕 第2表に示す各成分組成の鋼を転炉で溶製し、実施例1
と同一の条件で冷間圧延まで行い、その後同表に示す冷
延後の焼鈍または更にスキンパス圧延を実施し、しかる
のち同表の条件で歪取焼鈍を行って磁気特性を評価し
た。
[Example 2] Example 1 was prepared by smelting steel having each of the component compositions shown in Table 2 in a converter.
Up to cold rolling under the same conditions as above, after that, annealing after cold rolling shown in the same table or further skin pass rolling was carried out, and then stress relief annealing was carried out under the conditions shown in the same table to evaluate the magnetic properties.

No.1,3,4は、冷延後の処理を種々の工程で実施し
た本発明例で、何れも良好な磁気特性が得られている。
なお、No.2は、初期C量を本発明の最終C量レベルと
して脱炭を行なわなかった例であり、この点を除き略同
条件のNo.1に比べ、鉄損、磁束密度ともに劣ってい
る。
Nos. 1, 3 and 4 are examples of the present invention in which the treatment after cold rolling was carried out in various steps, and good magnetic properties were obtained in all cases.
No. 2 is an example in which the initial C content was set as the final C content level of the present invention and decarburization was not performed. Except this point, the iron loss and magnetic flux density were inferior to those of No. 1 under substantially the same conditions. ing.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように本発明は、セミプロセス
電磁鋼板の製造において、磁束密度を低下させるスキン
パス圧延を行うことなく、歪取り焼鈍後の特性として十
分に低い鉄損を実現することを可能にし、相反傾向をも
つ磁束密度と鉄損の両立を可能ならしめる効果があり、
しかもスキンパス圧延を行わず、また高価な元素の使用
も不要であることから、工数の節減のみならず、コスト
面でも有利であり、その実用価値は極めておきい。
As is clear from the above description, in the production of the semi-processed electromagnetic steel sheet, the present invention can realize a sufficiently low iron loss as a characteristic after stress relief annealing without performing skin pass rolling for reducing the magnetic flux density. And has the effect of making it possible to achieve both magnetic flux density and iron loss, which have a reciprocal tendency.
Moreover, since no skin pass rolling is performed and the use of expensive elements is not required, it is advantageous not only in reducing man-hours but also in cost, and its practical value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は磁気特性に対するCの効果を示す実験データの
プロット図、第2図は磁気特性に対するMnの効果を示
す実験データのプロット図、第3図は磁気特性に対する
Sの効果を示す同上図、第4図は本発明における冷延後
の焼鈍について種々のバリエーションを説明するブロッ
ク図である。
FIG. 1 is a plot of experimental data showing the effect of C on the magnetic properties, FIG. 2 is a plot of experimental data showing the effect of Mn on the magnetic properties, and FIG. 3 is a diagram showing the effect of S on the magnetic properties. FIG. 4 is a block diagram explaining various variations of annealing after cold rolling in the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C0.006〜0.030%、Si0.1
〜1.0%、Mn0.75〜1.5%、P≦0.150
%、S≦0.005%で、残部がFeおよび不可避的不
純物からなる熱延鋼板を脱スケール後、冷間圧延し、し
かるのち焼鈍を行いC量を0.005%以下とすること
を特徴とするセミプロセス電磁鋼板の製造方法。
1. C0.006-0.030%, Si0.1
~ 1.0%, Mn 0.75 to 1.5%, P ≤ 0.150
%, S ≦ 0.005%, the balance being Fe and unavoidable impurities, the hot-rolled steel sheet is descaled, cold-rolled, and then annealed to make the C content 0.005% or less. And a method for manufacturing a semi-processed electrical steel sheet.
【請求項2】C0.006〜0.030%、Si0.1
〜1.0%、Mn0.75〜1.5%、P≦0.150
%、S≦0.005%で、Sol.Al0.1〜0.3
%を含有し、残部がFeおよび不可避的不純物からなる
熱延鋼板を脱スケール後、冷間圧延し、しかるのち焼鈍
を行いC量を0.005%以下とすることを特徴とする
セミプロセス電磁鋼板の製造方法。
2. C0.006-0.030%, Si0.1
~ 1.0%, Mn 0.75 to 1.5%, P ≤ 0.150
%, S ≦ 0.005%, Sol. Al0.1-0.3
%, The balance being Fe and unavoidable impurities, the hot-rolled steel sheet is descaled, cold-rolled, and then annealed to make the C content 0.005% or less. Steel plate manufacturing method.
【請求項3】C0.006〜0.030%、Si0.1
〜1.0%、Mn0.75〜1.5%、P≦0.150
%、S≦0.005%で、Sol.Al0.1%未満を
含み更にB/N0.5〜1.5となる量のBを含有し、
残部がFeおよび不可避的不純物からなる熱延鋼板を脱
スケール後、冷間圧延し、しかるのち焼鈍を行いC量を
0.005%以下とすることを特徴とするセミプロセス
電磁鋼板の製造方法。
3. C0.006 to 0.030%, Si0.1
~ 1.0%, Mn 0.75 to 1.5%, P ≤ 0.150
%, S ≦ 0.005%, Sol. Containing less than 0.1% Al and further containing B in an amount of B / N 0.5 to 1.5,
A method for producing a semi-processed electromagnetic steel sheet, comprising descaling a hot-rolled steel sheet, the balance of which is Fe and unavoidable impurities, followed by cold rolling, followed by annealing to a C content of 0.005% or less.
【請求項4】脱スケールの前または後に650〜850
℃で30秒以上の焼鈍を行うことを特徴とする特許請求
の範囲第1項乃至第3項の何れかに記載のセミプロセス
電磁鋼板の製造方法。
4. 650-850 before or after descaling.
The method for producing a semi-processed electromagnetic steel sheet according to any one of claims 1 to 3, wherein annealing is performed at 30 ° C for 30 seconds or more.
JP61279150A 1986-11-22 1986-11-22 Manufacturing method of semi-processed electrical steel sheet Expired - Lifetime JPH0643614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279150A JPH0643614B2 (en) 1986-11-22 1986-11-22 Manufacturing method of semi-processed electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279150A JPH0643614B2 (en) 1986-11-22 1986-11-22 Manufacturing method of semi-processed electrical steel sheet

Publications (2)

Publication Number Publication Date
JPS63134631A JPS63134631A (en) 1988-06-07
JPH0643614B2 true JPH0643614B2 (en) 1994-06-08

Family

ID=17607143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279150A Expired - Lifetime JPH0643614B2 (en) 1986-11-22 1986-11-22 Manufacturing method of semi-processed electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH0643614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129034A1 (en) 2013-02-21 2014-08-28 Jfeスチール株式会社 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068489B2 (en) * 1988-12-28 1994-02-02 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent weldability after magnetic annealing
US5724479A (en) * 1994-12-28 1998-03-03 Takahashi; Kei Fluid flow controlling member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067217A (en) * 1973-10-20 1975-06-05
JPS5845352A (en) * 1981-09-11 1983-03-16 Kawasaki Steel Corp Semi-processed electrical steel plate with superior punchability and its manufacture
JPS59157259A (en) * 1983-01-25 1984-09-06 Nippon Steel Corp Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JPS617446A (en) * 1984-06-21 1986-01-14 Toshiba Corp Surface measuring device of linear body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067217A (en) * 1973-10-20 1975-06-05
JPS5845352A (en) * 1981-09-11 1983-03-16 Kawasaki Steel Corp Semi-processed electrical steel plate with superior punchability and its manufacture
JPS59157259A (en) * 1983-01-25 1984-09-06 Nippon Steel Corp Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JPS617446A (en) * 1984-06-21 1986-01-14 Toshiba Corp Surface measuring device of linear body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129034A1 (en) 2013-02-21 2014-08-28 Jfeスチール株式会社 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties

Also Published As

Publication number Publication date
JPS63134631A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP2004353036A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
EP0084980B1 (en) Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH0643614B2 (en) Manufacturing method of semi-processed electrical steel sheet
JP3843955B2 (en) Non-oriented electrical steel sheet
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH0625747A (en) Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3737558B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2870818B2 (en) Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2515146B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0625381B2 (en) Method for producing grain-oriented electrical steel sheet