JPH0645823B2 - Method for manufacturing high silicon iron plate - Google Patents

Method for manufacturing high silicon iron plate

Info

Publication number
JPH0645823B2
JPH0645823B2 JP24975487A JP24975487A JPH0645823B2 JP H0645823 B2 JPH0645823 B2 JP H0645823B2 JP 24975487 A JP24975487 A JP 24975487A JP 24975487 A JP24975487 A JP 24975487A JP H0645823 B2 JPH0645823 B2 JP H0645823B2
Authority
JP
Japan
Prior art keywords
annealing
temperature
silicon iron
iron plate
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24975487A
Other languages
Japanese (ja)
Other versions
JPS63227716A (en
Inventor
芳一 ▲高▼田
文夫 藤田
淳一 稲垣
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Publication of JPS63227716A publication Critical patent/JPS63227716A/en
Publication of JPH0645823B2 publication Critical patent/JPH0645823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軟磁気特性の優れた無方向性高珪素鉄板の製造
方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a non-oriented high silicon iron plate having excellent soft magnetic properties.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来から、珪素を4.0wt%未満含有する鉄板は、その製
造方法により方向性珪素鋼板あるいは無方向性珪素鋼板
と呼ばれ、主として各種電磁誘導機器用の積層鉄芯や巻
鉄芯、あるいは電磁シールド用のケースなどに加工成型
され実用に供されている。
Conventionally, an iron plate containing less than 4.0 wt% of silicon is called a directional silicon steel plate or a non-oriented silicon steel plate depending on its manufacturing method, and is mainly used for laminated iron cores, wound iron cores, or electromagnetic shields for various electromagnetic induction devices. It is processed and molded into a case for use for practical use.

近年、省資源、省エネルギー等の観点から電磁電子部品
の小形化や高効率化が強く要請され、軟磁気特性の優れ
た、とりわけ鉄損が低く透磁率が高い材料が要求される
ようになつてきた。珪素鉄合金系において珪素の含有量
が増すと鉄損は低下し、そのうえ6.5wt%付近では透磁
率が極大となりさらに磁歪がほぼゼロとなる等優れた軟
磁気特性を示すことが知られている。しかしながら、珪
素の含有量が4.0wt%以上になると加工性が著しく劣化
し、このため従来では熱間圧延一冷間圧延の組み合わせ
からなる圧延法によつて工業的に製造することは困難と
され、その製造法としてはたとえば特開昭55-69223号公
報で示されるような超急冷凝固法等が開示されているに
すぎなかつた。しかし、この超急冷凝固法により製造さ
れる高珪素箔帯は圧延製品と比較して表面性状や表面の
平坦度が劣り、しかも幅広・厚物材の製造が困難である
等、電磁電子部品の素材として実用化する上で数多くの
問題点を有している。
In recent years, there has been a strong demand for miniaturization and high efficiency of electromagnetic electronic components from the viewpoint of resource saving and energy saving, and a material having excellent soft magnetic properties, particularly low iron loss and high magnetic permeability, has been demanded. It was It is known that in a silicon-iron alloy system, as the silicon content increases, the iron loss decreases, and in addition, the magnetic permeability reaches a maximum around 6.5 wt% and the magnetostriction becomes almost zero, and it exhibits excellent soft magnetic properties. . However, when the content of silicon is 4.0 wt% or more, the workability is significantly deteriorated. Therefore, it is conventionally difficult to industrially manufacture by a rolling method including a combination of hot rolling and cold rolling. However, as the manufacturing method thereof, for example, only the ultra-rapid solidification method as disclosed in JP-A-55-69223 is disclosed. However, the high silicon foil strip produced by this ultra rapid solidification method is inferior in surface texture and surface flatness to rolled products, and it is difficult to produce wide and thick materials. There are many problems in practical application as a material.

〔問題を解決するための手段〕[Means for solving problems]

このようななかで本発明者等は、Si含有量が4.0wt%
以上の無方向性高珪素鉄板の圧延による製造法について
検討を進めてきた。そしてその結果、熱間圧延条件等の
選択により圧延による高珪素鉄板の製造が可能であるこ
とが判ってきた。本出願人は、このような圧延による高
珪素鉄板の製造法の1つとして、先に特願昭60-5951号
(特開昭61-166923号)を提案した。この製造法は、高
珪素鋼のインゴットまたは連鋳スラブを特定の加熱・圧
延条件で分塊圧延または粗圧延することで結晶粒を微細
化し、次いで特定の条件で連続熱間圧延することにより
冷間圧延に適した熱延板組織とし、これを冷間圧延する
高珪素鉄板の製造法である。このような圧延法により製
造された高珪素鉄板は表面性状に優れるため積層鉄芯や
巻鉄芯等を製造する際占積率が高く、しかも厚物材が容
易に製造できることから電磁電子部品の組み立て工程を
大幅に簡略化できるなど極めて有利な特徴を有してい
る。
Under these circumstances, the present inventors have found that the Si content is 4.0 wt%.
We have proceeded to study the manufacturing method by rolling the non-oriented high-silicon iron plate. As a result, it has been found that it is possible to manufacture a high silicon iron sheet by rolling by selecting hot rolling conditions and the like. The present applicant has previously proposed Japanese Patent Application No. 60-5951 (Japanese Patent Application Laid-Open No. 61-166923) as one of the methods for producing a high silicon iron plate by such rolling. In this manufacturing method, an ingot or continuous cast slab of high-silicon steel is slab-rolled or rough-rolled under specific heating / rolling conditions to refine the crystal grains, and then continuously hot-rolled under specific conditions. This is a method for producing a high-silicon iron plate in which a hot-rolled sheet structure suitable for hot rolling is cold-rolled. Since the high silicon iron plate manufactured by such a rolling method has excellent surface properties, it has a high space factor when manufacturing a laminated iron core, a wound iron core, etc. It has extremely advantageous features such as the assembly process can be greatly simplified.

ところで、この種の珪素鉄板の有する優れた磁気特性を
得るためには、焼鈍して再結晶を起させることが必要と
されるが、従来圧延による製造自体が不可能とされてき
たことから、圧延により得られた高珪素鉄板の焼鈍条件
についての検討は未だなされた例はない。
By the way, in order to obtain the excellent magnetic properties of this kind of silicon iron plate, it is necessary to anneal and recrystallize, but since the production itself by conventional rolling has been impossible, No study has been made on the annealing conditions of the high-silicon iron plate obtained by rolling.

本発明者等はこのような現状に鑑み、4.0〜7.0wt%Si
鉄板についてその焼鈍方法について検討した結果、優れ
た磁気特性が得られる焼鈍条件を見い出したものであ
る。
In view of such a current situation, the present inventors have considered that 4.0-7.0 wt% Si
As a result of investigating the annealing method for an iron plate, the inventors found the annealing conditions that can obtain excellent magnetic properties.

すなわち本発明は、Si:4.0〜7.0wt%を含む高珪素鉄
合金スラブから熱間圧延、板温が400℃以下の準温間圧
延、焼鈍及び絶縁皮膜処理の各工程を経て高珪素鉄板を
製造するに当り、前記焼鈍処理では、200〜400℃の温度
で1分〜3時間の前焼鈍を行つた後、800〜1300℃の温
度で1分〜10分の最終焼鈍を行うことを特徴とする高
珪素鉄板の製造方法である。
That is, the present invention provides a high silicon iron sheet from a high silicon iron alloy slab containing Si: 4.0 to 7.0 wt% through hot rolling, quasi-warm rolling at a sheet temperature of 400 ° C. or less, annealing and insulating coating treatment. In the production, in the annealing treatment, pre-annealing is performed at a temperature of 200 to 400 ° C. for 1 minute to 3 hours, and then final annealing is performed at a temperature of 800 to 1300 ° C. for 1 minute to 10 minutes. And a method for manufacturing a high silicon iron plate.

以下、本発明の詳細を説明する。Hereinafter, the details of the present invention will be described.

本発明ではSiを4.0〜7.0wt%含有した鉄合金を溶製す
る。前述したようにSiは固有電気抵抗を高めて渦電流損
を減らし、鉄損を低下させるのに有効な元素であり、本
発明ではSi:4.0wt%以上の鉄合金をその対象とする。
一方、Siが7.0wt%を超えると磁歪の上昇、飽和磁束密
度や最大透磁率の低下など磁気特性が却つて劣化し、ま
た加工性も悪くなる。
In the present invention, an iron alloy containing 4.0 to 7.0 wt% of Si is melted. As described above, Si is an element effective in increasing the specific electric resistance to reduce the eddy current loss and lowering the iron loss. In the present invention, the target is an iron alloy having Si: 4.0 wt% or more.
On the other hand, when Si exceeds 7.0 wt%, the magnetic characteristics are deteriorated due to the increase of magnetostriction, the decrease of saturation magnetic flux density and the maximum magnetic permeability, and the workability is deteriorated.

なお、磁気特性をより向上させるため、Si以外の元素を
低減することも有効である。すなわち、C0.2%、Al
2%、Mn0.5%、P0.1%、(その他の不純物の総量)
0.2%、好ましくは、C0.01%、Al0.4%、Mn0.1%、
P0.1%、(その他の不純物の総量)0.05%とするこ
により磁気特性をより向上させることができる。
Note that it is also effective to reduce elements other than Si in order to further improve the magnetic characteristics. That is, C0.2%, Al
2%, Mn0.5%, P0.1%, (total amount of other impurities)
0.2%, preferably C0.01%, Al0.4%, Mn0.1%,
By setting P to 0.1% and (total amount of other impurities) to 0.05%, the magnetic characteristics can be further improved.

溶製された合金は熱間圧延された後、必要に応じて酸洗
または表面研削等の手段により脱スケール処理を施され
る。次いで、熱延板は必要に応じてスリツト、トリミン
グ等の処理がなされた後、室温〜400℃の温度域で準温
間圧延(冷間圧延を含む)される。この準温間圧延は、
バーナ輻射、誘導加熱等の加熱手段を用いて通板するス
トリツプ或いはコイル全体を加熱し、熱延板を上記温度
に保ちつつ圧延を行う。この圧延において、板温が400
℃を超えるとコイル幅方向の板厚プロフイル制御が困難
になるとともに、ストリップ表面に厚い酸化被膜が形成
され、その後に脱スケール処理を実施してもスケールの
除去が困難になる。このため圧延温度は400℃がその上
限とされる。
The melted alloy is hot-rolled and, if necessary, subjected to descaling treatment by means such as pickling or surface grinding. Next, the hot-rolled sheet is subjected to processing such as slitting and trimming, if necessary, and then subjected to quasi-warm rolling (including cold rolling) in a temperature range of room temperature to 400 ° C. This semi-warm rolling is
The strip or the entire coil to be passed is heated using a heating means such as burner radiation or induction heating, and rolling is performed while maintaining the hot rolled sheet at the above temperature. In this rolling, the plate temperature is 400
If the temperature exceeds ℃, it will be difficult to control the plate thickness profile in the coil width direction, and a thick oxide film will be formed on the strip surface, making it difficult to remove scale even if descaling treatment is performed thereafter. Therefore, the rolling temperature is limited to 400 ° C.

このようにして最終板厚まで圧延された高珪素鉄板は必
要に応じて脱スケール処理が施され、脱脂処理後磁気特
性を付与するため焼鈍に付される。本発明者等は、高珪
素鉄板の磁気特性を改善すべくその焼鈍条件と磁気特性
との関係について検討を行つた結果、準温間圧延後の焼
鈍工程においては、まず歪の解放が起こり、続いて再結
晶および粒成長が起こること、そして上記歪の回復条件
を変化させると再結晶後の集合組織が変化し、このため
高珪素鉄板の軟磁気特性が変化することを知見した。本
発明はこのような知見に基づき、高温短時間の最終焼鈍
の前段階で比較的低温域で前焼鈍を行うことにより、焼
鈍後の磁気特性を飛躍的に向上させるようにしたもので
ある。すなわち、前焼鈍では200〜400℃の温度で1分〜
3時間保持し、これを800〜1300℃の温度で1分〜10
分間最終焼鈍するようにしたものである。
The high-silicon iron plate thus rolled to the final plate thickness is subjected to a descaling process if necessary, and is annealed to impart magnetic properties after the degreasing process. The present inventors, as a result of examining the relationship between the annealing characteristics and the magnetic characteristics to improve the magnetic characteristics of the high silicon iron plate, in the annealing step after the quasi-warm rolling, the strain is released first, It was found that recrystallization and grain growth occur subsequently, and that the texture after recrystallization changes when the conditions for recovering the strain are changed, which changes the soft magnetic properties of the high silicon iron plate. Based on such knowledge, the present invention is intended to dramatically improve the magnetic characteristics after annealing by performing pre-annealing in a relatively low temperature region before the final annealing at high temperature for a short time. That is, in the pre-annealing at a temperature of 200 to 400 ° C for 1 minute to
Hold for 3 hours, at a temperature of 800-1300 ℃ for 1 minute-10
The final annealing was performed for a minute.

第1図は珪素鉄冷延板の前焼鈍条件と焼鈍後の鉄板の磁
気特性との関係を調べたもので、板厚0.50mmの6.48wt%
珪素鉄冷延板に第2図に示す熱サイクルで焼鈍を実施
し、磁気特性を調べた。すなわち、第2図に示す種々の
条件で回復のための前焼鈍を行い、続いて水素ガス雰囲
気中で1200℃、まで加熱して10分間の均熱を含む最終
焼鈍を行い、焼鈍後の鉄板から外径20mm、内径10mm
のリングを打ち抜き、その最大透磁率を調べたものであ
る。
Fig. 1 shows the relationship between the pre-annealing conditions of a silicon iron cold-rolled sheet and the magnetic properties of the annealed iron sheet. The sheet thickness of 0.50 mm was 6.48 wt%.
Annealing was performed on the silicon-iron cold-rolled sheet by the heat cycle shown in FIG. 2 to examine the magnetic characteristics. That is, pre-annealing for recovery is performed under various conditions shown in FIG. 2, followed by final annealing including heating in a hydrogen gas atmosphere up to 1200 ° C. and soaking for 10 minutes. To outer diameter 20 mm, inner diameter 10 mm
The ring was punched out and its maximum magnetic permeability was investigated.

同図から、適切な前焼鈍条件を選ぶことによつて軟磁気
特性が改善されることが判る。すなわち、前焼鈍温度が
100℃では歪の解放がほとんど起らず、また500℃では逆
に歪の解放が完全に起こつてしまうため改善効果が得ら
れず、200〜400℃の範囲において優れた磁気特性が得ら
れている。またこの温度域においても、前焼鈍均熱時間
が短か過ぎても長過ぎても効果が少なく、1分〜3時間
において優れた磁気特性が得られている。
From the figure, it is understood that the soft magnetic characteristics are improved by selecting an appropriate pre-annealing condition. That is, the pre-annealing temperature is
At 100 ° C, the strain is hardly released, and at 500 ° C, the strain is completely released, so the improvement effect cannot be obtained, and excellent magnetic characteristics are obtained in the range of 200 to 400 ° C. There is. Also in this temperature range, the effect is small if the pre-annealing soaking time is too short or too long, and excellent magnetic properties are obtained in 1 minute to 3 hours.

なお、上記前焼鈍は連続焼鈍ライン又は箱型焼鈍炉等を
使用しオフラインで行なつても良いが、連続焼鈍ライン
の前段(たとえば予熱帯等)で低温焼鈍し、一旦冷却せ
ずに直ちに最終焼鈍を行なつてもよく、この方法では磁
気特性を何ら損うことなくコスト低減を図ることができ
る。但し、このように2段焼鈍を行なう場合には前焼鈍
をあまり長時間することができないため、焼鈍時間を1
分から10分とする。
The pre-annealing may be performed off-line by using a continuous annealing line or a box-type annealing furnace, but it may be performed at low temperature in the preceding stage of the continuous annealing line (for example, pre-tropical zone) and immediately finished without cooling. Annealing may be performed, and this method can reduce the cost without damaging the magnetic properties. However, when the two-step annealing is performed as described above, the pre-annealing cannot be performed for a long time, so the annealing time is set to 1
From 10 minutes to 10 minutes.

また、前焼鈍は歪の解放を目的とするものであるから、
本発明で規定する条件を満足すれば上記した焼鈍方法以
外の手段を採ることができる。例えば、準温間圧延直後
直ちに巻取り、保温設備内で均熱しても上記条件を満足
すれば磁気特性を改善することができる。
In addition, since pre-annealing is intended to release strain,
If the conditions specified in the present invention are satisfied, means other than the above-mentioned annealing method can be adopted. For example, the magnetic properties can be improved if the above conditions are satisfied even if the material is wound immediately after the quasi-warm rolling and soaked in a heat insulation facility.

このようにして比較的低温で前焼鈍を施された高珪素鉄
板は800℃〜1300℃に再加熱され、同温度域で1〜10
分の焼鈍(通常、連続焼鈍)が施される。この最終焼鈍
において、処理温度が800℃未満、或いは処理時間が1
分未満では粒成長が十分起らず、所定の磁気特性が得ら
れない。また焼鈍温度が1300℃を超える焼鈍は工業的に
は困難である。さらに、最終焼鈍時間は長い程磁気特性
上好ましいが、連続焼鈍ライン長が長くなるため設備コ
ストが高くなる等、工業的問題がある。このため均熱時
間の上限は10分とする。このため本発明の最終焼鈍は
800℃〜1300℃の温度で1〜10分均熱することにより
行う。
The high-silicon iron plate that has been pre-annealed at a relatively low temperature in this way is reheated to 800 to 1300 ° C.
Minute annealing (usually continuous annealing) is performed. In this final annealing, the processing temperature is less than 800 ℃, or the processing time is 1
If it is less than the minute, grain growth does not sufficiently occur and desired magnetic properties cannot be obtained. Further, it is industrially difficult to anneal at an annealing temperature exceeding 1300 ° C. Further, the longer the final annealing time is, the more preferable it is in terms of magnetic properties, but there is an industrial problem such that the length of the continuous annealing line is long and the equipment cost is high. Therefore, the upper limit of the soaking time is 10 minutes. Therefore, the final annealing of the present invention is
It is carried out by soaking at a temperature of 800 ° C to 1300 ° C for 1 to 10 minutes.

このような最終焼鈍は、通常連続焼鈍または板状焼鈍に
よる短時間焼鈍であり、これにより箱型焼鈍等、バツチ
焼鈍での高温焼鈍による製品の焼付(密着)を防止しつ
つ、軟磁気特性の改善を図ることができる。
Such final annealing is usually a continuous annealing or a short-time annealing by plate-like annealing, which prevents seizure (adhesion) of the product due to high-temperature annealing in batch annealing such as box-type annealing, while maintaining soft magnetic properties. Can be improved.

なお、焼鈍時の雰囲気は非酸化性雰囲気であればよく、
また真空下で行うこともできる。
The atmosphere during annealing may be a non-oxidizing atmosphere,
It can also be performed under vacuum.

焼鈍後、高珪素鉄板を有機系または無機系の皮膜材料に
より絶縁皮膜処理する。この絶縁皮膜は、積層状態で使
用される高珪素鉄板の層間抵抗を上げるため形成するも
ので、例えば、シリカ及び第1リン酸マグネシウムの混
合液を板表面に塗布した後、800℃で焼付を行う処理が
なされる。
After annealing, the high silicon iron plate is subjected to an insulating film treatment with an organic or inorganic coating material. This insulating film is formed to increase the interlayer resistance of the high silicon iron plate used in the laminated state. For example, after applying a mixed solution of silica and dibasic magnesium phosphate to the plate surface, baking is performed at 800 ° C. The processing to be performed is performed.

〔実施例〕〔Example〕

・実施例 (1) 0.0028wt%C-6.48wt%Si-0.14wt%Mnなる組成の高珪素鉄合
金を真空溶解炉で溶製後、鋳造し、インゴツトとした。
このインゴツトを1180℃で3時間均熱後、分塊圧延し、
厚さ180mmのスラブとした後、再び1180℃に1時間均熱
し、熱間圧延により板厚2.5mmの熱延コイルとした。こ
の熱延コイルを酸洗後冷間圧延し、板厚0.50mmの冷圧コ
イルとした。
Example (1) A high silicon iron alloy having a composition of 0.0028 wt% C-6.48 wt% Si-0.14 wt% Mn was melted in a vacuum melting furnace and then cast into an ingot.
After soaking this ingot at 1180 ℃ for 3 hours, slab rolling,
After making a slab having a thickness of 180 mm, it was soaked again at 1180 ° C. for 1 hour and hot rolled to obtain a hot rolled coil having a plate thickness of 2.5 mm. The hot rolled coil was pickled and cold rolled to obtain a cold pressed coil having a plate thickness of 0.50 mm.

次にこのコイルを4分割し、箱型焼鈍炉内で第1表に示
す条件で低温前焼鈍を行ない、冷却後引き続いて1150
℃、3分間の均熱を含む連続焼鈍を行なつた。焼鈍後の
小コイルに対し、800℃で平坦化焼鈍を行なつた後、板
幅中央部から磁気測定用リングサンプルを打抜き、軟磁
気特性を調べた。その結果を第2表に示す。
Next, this coil was divided into four, and low temperature pre-annealing was performed in the box-type annealing furnace under the conditions shown in Table 1, followed by cooling and subsequent 1150
Continuous annealing including soaking for 3 minutes at ℃ was performed. The annealed small coil was flattened and annealed at 800 ° C, and a ring sample for magnetic measurement was punched out from the center of the sheet width, and the soft magnetic characteristics were investigated. The results are shown in Table 2.

・実施例 (2) 第3表に示す組成の高珪素鉄熱延板(板厚2.0mm)を酸
洗した後、入側に加熱設備を備えたリバース型冷間圧延
機を用いて、350℃×5分間の均熱を1パス毎に含む準
温間圧延を行ない。板厚0.3mmの圧延板とした。
-Example (2) After high-silicon iron hot-rolled sheet (sheet thickness 2.0 mm) having the composition shown in Table 3 was pickled, a reverse type cold rolling mill equipped with heating equipment on the inlet side was used, and 350 Semi-warm rolling including soaking for 5 minutes at ℃ for each pass is performed. A rolled plate having a plate thickness of 0.3 mm was used.

次にこれらのコイルを分割し、一部は箱型焼鈍炉内で30
0℃×1時間の前焼鈍を行ない、続いて、前焼鈍を施さ
ないコイルも含めて、1180℃、5分間の均熱を含む連続
焼鈍を行なつた。
Next, these coils were divided, and some of them were placed in a box-type annealing furnace.
Pre-annealing was performed at 0 ° C. for 1 hour, and then continuous annealing including soaking for 5 minutes at 1180 ° C. was performed including the coil not subjected to pre-annealing.

焼鈍後のコイル中央部からリング状磁気測定サンプルを
打抜後、直流磁気特性を測定した。その結果を第4表に
示す。
After the ring-shaped magnetic measurement sample was punched from the center of the coil after annealing, the DC magnetic characteristics were measured. The results are shown in Table 4.

・実施例 (3) 第5表は示す組成の高珪素鉄熱延板(板厚2.0mm)を酸
洗した後、入側に加熱設備を備えたリバース型冷間圧延
機を用いて、300℃×1分間の均熱を1パス毎に含む準
温間圧延を行ない。板厚0.3mmの圧延板とした。次にこ
れらのコイルを分割し、一部は箱型焼鈍炉で250℃×1
時間の前焼鈍を行ない、続いて、前焼鈍を施さないコイ
ルも含めて1200℃×2分間の均熱を含む連続焼鈍を行な
つた。
-Example (3) After high-silicon iron hot-rolled sheet (sheet thickness 2.0 mm) having the composition shown in Table 5 was pickled, a reverse type cold rolling mill equipped with heating equipment on the inlet side was used to obtain 300 Semi-warm rolling including soaking at ℃ × 1 minute for each pass is performed. A rolled plate having a plate thickness of 0.3 mm was used. Next, these coils were divided, and part of them was heated in a box-type annealing furnace at 250 ° C x 1
Pre-annealing was performed for a period of time, and then continuous annealing including soaking at 1200 ° C. for 2 minutes was performed including the coil not subjected to pre-annealing.

焼鈍後のコイル中央部から磁気測定サンプルを採取し、
直流磁気特性を測定した。その結果を第6表に示す。同
表から明らかなように、本発明によればより優れた磁気
特性が得られる。また、第5表の合金a、b、cを比較
するとFe、Si以外の元素が少ないと本発明の効果がより
顕著になることがわかる。
Collect the magnetic measurement sample from the center of the coil after annealing,
The DC magnetic properties were measured. The results are shown in Table 6. As is clear from the table, according to the present invention, more excellent magnetic characteristics can be obtained. Further, comparing the alloys a, b and c in Table 5, it can be seen that the effect of the present invention becomes more remarkable when the elements other than Fe and Si are small.

・実施例(4) 実施例(3)で作成した高珪素鋼帯にコロイダルシリカ第
一リン酸マグネシウム、無水クロム酸からなる絶縁皮膜
剤を塗布し、600℃で焼付けた。焼付け後、コイル中央
から磁気測定サンプルを採取し、三枚積層して鉄損を測
定した。その結果を第7表に示す。同表より明らかなよ
うに本発明によれば、より磁気特性の優れた鋼板が得ら
れる。
-Example (4) An insulating film agent made of colloidal silica monobasic magnesium phosphate and chromic anhydride was applied to the high silicon steel strip prepared in Example (3) and baked at 600 ° C. After baking, a magnetic measurement sample was taken from the center of the coil, and three sheets were laminated to measure the iron loss. The results are shown in Table 7. As is clear from the table, according to the present invention, a steel sheet having more excellent magnetic properties can be obtained.

〔発明の効果〕 以上述べたように本発明によれば、磁気特性が著しく改
善され、磁気特性に優れた安定した製品特性を有する無
方向性高珪素鉄板を得ることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a non-oriented high silicon iron plate having significantly improved magnetic characteristics and excellent magnetic characteristics and stable product characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は前焼鈍時間と磁気特性との関係を示すものであ
る。第2図は第1図の結果を得るのに用いた焼鈍熱サイ
クルを示すものである。
FIG. 1 shows the relationship between the pre-annealing time and the magnetic characteristics. FIG. 2 shows the annealing thermal cycle used to obtain the results of FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Si:4.0〜7.0wt%を含む高珪素鉄合金ス
ラブから熱間圧延、板温が400℃以下の準温間圧延、焼
鈍及び絶縁皮膜処理の各工程を経て高珪素鉄板を製造す
るに当り、前記焼鈍処理では、200〜400℃の温度で1分
〜3時間の前焼鈍を行った後、800〜1300℃の温度で1
分〜10分の最終焼鈍を行うことを特徴とする高珪素鉄
板の製造方法。
1. A high silicon iron sheet is produced from a high silicon iron alloy slab containing Si: 4.0 to 7.0 wt% through hot rolling, quasi warm rolling at a sheet temperature of 400 ° C. or less, annealing and insulating coating treatment. In the production, in the annealing treatment, pre-annealing is performed at a temperature of 200 to 400 ° C for 1 minute to 3 hours, and then 1 hour at a temperature of 800 to 1300 ° C.
A method for manufacturing a high-silicon iron plate, which comprises performing final annealing for 10 minutes to 10 minutes.
【請求項2】200〜400℃の温度で1〜10分間の前焼鈍
を行った後、直ちに加熱し、800〜1300℃の温度
で1分〜10分の最終焼鈍を行うことを特徴とする特許
請求の範囲(1)記載の高珪素鉄板の製造方法。
2. A pre-annealing at a temperature of 200 to 400 ° C. for 1 to 10 minutes, followed by immediate heating, and a final annealing at a temperature of 800 to 1300 ° C. for 1 to 10 minutes. A method for producing a high silicon iron plate according to claim (1).
JP24975487A 1986-10-07 1987-10-05 Method for manufacturing high silicon iron plate Expired - Fee Related JPH0645823B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-237138 1986-10-07
JP23713886 1986-10-07

Publications (2)

Publication Number Publication Date
JPS63227716A JPS63227716A (en) 1988-09-22
JPH0645823B2 true JPH0645823B2 (en) 1994-06-15

Family

ID=17010966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24975487A Expired - Fee Related JPH0645823B2 (en) 1986-10-07 1987-10-05 Method for manufacturing high silicon iron plate

Country Status (1)

Country Link
JP (1) JPH0645823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006184A4 (en) * 2019-07-31 2022-08-31 JFE Steel Corporation Non-oriented electromagnetic steel sheet and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490999B1 (en) * 2000-12-22 2005-05-24 주식회사 포스코 Method For Manufacturing Grain-Oriented Silicon Steel Containing High Silicon By Strip Casting Process
KR100560173B1 (en) * 2001-04-12 2006-03-13 한국과학기술원 Method for Making High ?? Steel Sheets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006184A4 (en) * 2019-07-31 2022-08-31 JFE Steel Corporation Non-oriented electromagnetic steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JPS63227716A (en) 1988-09-22

Similar Documents

Publication Publication Date Title
EP2796571B1 (en) High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6256225B2 (en)
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US5164024A (en) Method of making non-oriented electrical steel sheets having excellent magnetic properties
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPH0567683B2 (en)
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH0645823B2 (en) Method for manufacturing high silicon iron plate
JPH0841542A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
GB2060697A (en) Grain-oriented silicon steel production
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP2005530033A (en) Cold rolled steel strip for electromagnetic applications with a silicon content of 3.2% by weight or more
US4337101A (en) Processing for cube-on-edge oriented silicon steel
JP4259002B2 (en) Method for producing grain-oriented electrical steel sheet
JPH10273727A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH0433849B2 (en)
JPH0643612B2 (en) Method for manufacturing high silicon iron plate
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS62222022A (en) Manufacture of nonoriented electrical sheet having good brittleness resistance and magnetic characteristic after stress relief annealing
KR20030052139A (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees