JPH0643612B2 - Method for manufacturing high silicon iron plate - Google Patents

Method for manufacturing high silicon iron plate

Info

Publication number
JPH0643612B2
JPH0643612B2 JP23914786A JP23914786A JPH0643612B2 JP H0643612 B2 JPH0643612 B2 JP H0643612B2 JP 23914786 A JP23914786 A JP 23914786A JP 23914786 A JP23914786 A JP 23914786A JP H0643612 B2 JPH0643612 B2 JP H0643612B2
Authority
JP
Japan
Prior art keywords
annealing
temperature
silicon iron
iron plate
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23914786A
Other languages
Japanese (ja)
Other versions
JPS6393823A (en
Inventor
芳一 ▲高▼田
昭 日裏
弘憲 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP23914786A priority Critical patent/JPH0643612B2/en
Publication of JPS6393823A publication Critical patent/JPS6393823A/en
Publication of JPH0643612B2 publication Critical patent/JPH0643612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無方向性高珪素鉄板の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a non-oriented high silicon iron plate.

〔従来の技術及びその問題点〕 珪素鉄板は優れた軟磁気特性を有するため、従来から電
力用の磁心や回転機用の材料として大量に使用されて来
たが、近年省エネルギー、省資源の観点から変圧器、回
転機などの電気機器の効率化、小型化が強く要請され、
これに伴いその鉄心用材料である珪素鉄板にも、より優
れた軟磁気特性及び鉄損特性が要求されるようになって
きた。この珪素鉄板の軟磁気特性はSiの添加量ととも
に向上し、特に6.5wt%付近で最高の透磁率を示し、さ
らに固有電気抵抗も高いことから、鉄損も小さくなるこ
とが知られている。
[Prior Art and its Problems] Silicon iron plates have been used in large quantities as magnetic cores for electric power and materials for rotating machines because of their excellent soft magnetic properties. Strongly demands for efficiency and miniaturization of electrical equipment such as transformers and rotating machines.
Along with this, the silicon iron plate, which is a material for the iron core, is required to have more excellent soft magnetic characteristics and iron loss characteristics. It is known that the soft magnetic properties of this silicon iron plate improve with the addition amount of Si, and show the highest magnetic permeability especially near 6.5 wt%, and further, the specific electric resistance is high, so that the iron loss is also small.

しかし、珪素鉄板はSi含有量が4.0wt%以上となると加
工性が急激に劣化し、このため従来では圧延法(熱間−
冷間圧延法)により高珪素鉄板を工業的規模で製造する
ことは不可能であるとされていた。
However, the workability of the silicon iron plate deteriorates sharply when the Si content is 4.0 wt% or more.
It has been considered impossible to produce a high-silicon iron plate on an industrial scale by the cold rolling method).

このような圧延法に対し、近年超急冷凝固法と称される
方法が研究開発されているが、この方法により製造され
る高珪素箔帯は表面性状や表面の平坦度が劣り、また厚
さや板幅が限定されてしまい、加えて生産性が劣り生産
コストも高くつく等、工業規模で実施する上で多くの問
題を有している。
In contrast to such a rolling method, a method called an ultra-rapid solidification method has been researched and developed in recent years, but the high silicon foil strip produced by this method is inferior in surface properties and surface flatness, and has a thickness The plate width is limited, and in addition, productivity is inferior and production costs are high, and there are many problems in carrying out on an industrial scale.

〔問題を解決するための手段〕[Means for solving problems]

このようななかで本発明者等は、Si含有量が4.0wt%以
上の高珪素鉄板の圧延による製造法について検討を進め
てきた。そしてその結果、熱間圧延条件等の選択により
圧延による高珪素鉄板の製造が可能であることが判って
きた。本出願人は、このような圧延による高珪素鉄板の
製造法の1つとして、先に特願昭60−5951号(特
開昭61−166923号)を提案した。この製造法
は、高珪素鋼のインゴットまたは連鋳スラブを特定の加
熱・圧延条件で分塊圧延または粗圧延することで結晶粒
を微細化し、次いで特定の条件で連続熱間圧延すること
により冷間圧延に適した熱延板組織とし、これを冷間圧
延する高珪素鉄板の製造法である。
Under these circumstances, the present inventors have been studying a manufacturing method by rolling a high silicon iron plate having a Si content of 4.0 wt% or more. As a result, it has been found that it is possible to manufacture a high silicon iron sheet by rolling by selecting hot rolling conditions and the like. The present applicant has previously proposed Japanese Patent Application No. 60-5951 (Japanese Patent Application Laid-Open No. 61-166923) as one of the methods for producing a high silicon iron plate by such rolling. In this manufacturing method, an ingot or continuous cast slab of high-silicon steel is slab-rolled or rough-rolled under specific heating / rolling conditions to refine the crystal grains, and then continuously hot-rolled under specific conditions. This is a method for producing a high-silicon iron plate in which a hot-rolled sheet structure suitable for hot rolling is cold-rolled.

ところで、この種の珪素鉄板の有する優れた磁気特性を
得るためには、焼鈍して再結晶を起させることが必要と
されるが、従来圧延による製造自体が不可能とされてき
たことから、圧延により得られた高珪素鉄板の焼鈍条件
についての検討は未だなされた例はない。
By the way, in order to obtain the excellent magnetic properties of this kind of silicon iron plate, it is necessary to anneal and recrystallize, but since the production itself by conventional rolling has been impossible, No study has been made on the annealing conditions of the high-silicon iron plate obtained by rolling.

本発明者等はこのような現状に鑑み、4.0〜7.0wt%Si
鉄板の焼鈍方法について検討した結果、優れた磁気特性
が得られる焼鈍条件を見い出したものである。
In view of such a current situation, the present inventors have made 4.0-7.0 wt% Si
As a result of studying the annealing method of the iron plate, the inventors found the annealing conditions that can obtain excellent magnetic properties.

すなわち本発明は、Si:4.0〜7.0wt%を含む高珪素鉄
合金スラブから熱間圧延、準温間圧延、焼鈍及び絶縁皮
膜処理の各工程を経て高珪素鉄板を製造するに当り、前
記準温間圧延を室温〜400℃の温度で行い、前記焼鈍処
理では、200〜400℃の温度で30分〜10時間の前焼鈍を行
い、次いで800〜1300℃の温度で10分超〜10時間の箱焼
鈍を行うことを特徴とする無方向性高珪素鉄板の製造方
法である。
That is, according to the present invention, when a high silicon iron sheet is produced from a high silicon iron alloy slab containing Si: 4.0 to 7.0 wt% through hot rolling, quasi warm rolling, annealing and insulating film treatment, Warm rolling is performed at a temperature of room temperature to 400 ° C, and in the annealing treatment, pre-annealing is performed at a temperature of 200 to 400 ° C for 30 minutes to 10 hours, and then at a temperature of 800 to 1300 ° C for more than 10 minutes to 10 hours. The method for producing a non-oriented high-silicon iron plate is characterized by carrying out box annealing.

以下、本発明の詳細を説明する。Hereinafter, the details of the present invention will be described.

本発明ではSiを4.0〜7.0wt%含有した鉄合金を溶製す
る。前述したようにSiは固有電気抵抗を高めて渦電流
損を減らし、鉄損を低下させるのに有効な元素であり、
本発明ではSiを4.0wt%以上の鉄合金をその対象とす
る。一方、Siが7.0wt%を超えると、磁歪の上昇、飽和
磁束密度や最大透磁率の低下など磁気特性が却って劣化
し、また加工性も悪くなる。溶製された合金は熱間圧延
され、必要に応じて脱スケール処理された後、室温〜40
00℃の温度範囲で準温間圧延(冷間圧延を含む)され
る。
In the present invention, an iron alloy containing 4.0 to 7.0 wt% Si is melted. As described above, Si is an element effective in increasing the specific electric resistance, reducing the eddy current loss, and reducing the iron loss.
In the present invention, the target is an iron alloy containing 4.0 wt% or more of Si. On the other hand, when Si exceeds 7.0 wt%, the magnetic characteristics rather deteriorate, such as an increase in magnetostriction, a decrease in saturation magnetic flux density and maximum magnetic permeability, and workability also deteriorates. The molten alloy is hot-rolled and, if necessary, descaled, then at room temperature to 40
Semi-warm rolling (including cold rolling) is performed in the temperature range of 00 ° C.

この準温間圧延温度は、基本的には圧延中に組織が再結
晶しない温度条件によって規定される。Si:4〜7wt%
の鋼板では、再結晶は500℃超の温度において生じる。
この観点から言えば準温間圧延は室温以上500℃以下に
おいて実施することが可能である。しかしながら、400
℃を超える温度で準温間圧延を実施した場合、鋼板表面
の酸化が著しく、その後に脱スケール処理を実施しても
スケールの除去が困難になるとともに、歩留の低下をき
たし好ましくない。このため本発明では室温〜400℃の
準温間圧延を行う。
This semi-warm rolling temperature is basically defined by a temperature condition in which the structure does not recrystallize during rolling. Si: 4 to 7 wt%
Recrystallization occurs at temperatures above 500 ° C.
From this point of view, the quasi-warm rolling can be performed at room temperature or higher and 500 ° C. or lower. However, 400
When the quasi-warm rolling is performed at a temperature higher than ° C, the surface of the steel sheet is remarkably oxidized, and even if a descaling treatment is performed thereafter, it is difficult to remove the scale and the yield is reduced, which is not preferable. Therefore, in the present invention, the quasi-warm rolling at room temperature to 400 ° C is performed.

次いで、この圧延材は必要に応じて脱スケール処理が施
され、脱脂後焼鈍処理される。
Next, this rolled material is subjected to a descaling treatment if necessary, and annealed after degreasing.

この焼鈍処理では、まず200℃から400℃の間の温度域で
30分間から10時間保持される。上記の温度範囲では、再
結晶は起こらず回復が起こるが、200℃未満の温度で
は、回復の効果を得るのに長時間を必要とし、400℃超
では、回復量が多きすぎ逆に磁気特性が劣化する。ここ
で言う回復は、磁気特性に対して次の効果を与えると推
定される。
In this annealing process, first in the temperature range between 200 ℃ and 400 ℃.
Hold for 30 minutes to 10 hours. In the above temperature range, recrystallization does not occur and recovery occurs, but at temperatures below 200 ° C, it takes a long time to obtain the effect of recovery, and above 400 ° C, the recovery amount is too large and the magnetic properties are reversed. Deteriorates. The recovery here is presumed to have the following effects on the magnetic properties.

準温間圧延材は、圧延集合組織の主方位の1つである{1
11}面を持っており、この結晶面は磁気特性に対して非
常に有害であるといわれている。焼鈍時の再結晶の核生
成とその成長速度は、内部の省エネルギーに依存してい
るので、ある適当な条件の下でこの内部の歪エネルギー
を解放(回復)しておくと再結晶焼鈍時に板面内に{11
1}面以外の結晶面の密度を増大させ、磁気特性に良い影
響を与えると考えられる。
Quasi-warm rolled material is one of the main orientations of rolling texture {1
It has a {11} plane, and this crystal plane is said to be extremely harmful to magnetic properties. Since the nucleation of recrystallization and its growth rate during annealing depend on the internal energy saving, if the internal strain energy is released (recovered) under certain appropriate conditions, the plate will be recrystallized during annealing. In the plane (11
It is thought that it increases the density of crystal planes other than the 1} plane, and has a good effect on the magnetic properties.

このようにして比較的低温で前焼鈍を施された圧延材は
800〜1300℃の温度で箱焼鈍され、再結晶組織が形成さ
れる。均熱時間は10分超、10時間以内が好ましい。この
最終焼鈍において均熱温度が800℃未満では粒成長が十
分に起こらず所定の磁気特性が得られない。また焼鈍温
度が1300℃を超える焼鈍は異常粒成長を起こし、優れた
磁気特性が得られない。
In this way, the rolled material that has been pre-annealed at a relatively low temperature
Box annealing is performed at a temperature of 800 to 1300 ° C, and a recrystallized structure is formed. The soaking time is preferably over 10 minutes and within 10 hours. In this final annealing, if the soaking temperature is less than 800 ° C, grain growth does not sufficiently occur and the predetermined magnetic properties cannot be obtained. Further, annealing at an annealing temperature exceeding 1300 ° C causes abnormal grain growth, and excellent magnetic properties cannot be obtained.

ここでの焼鈍温度および均熱時間は用途によって選定さ
れる。すなわち、使用する周波数での鉄損、必要とされ
る軟磁気特性や磁歪等と焼鈍コストの兼合い等から決定
されるべきである。
The annealing temperature and soaking time here are selected depending on the application. That is, it should be determined in consideration of the iron loss at the frequency used, the required soft magnetic characteristics and magnetostriction, and the cost of annealing.

第1図は本発明における焼鈍の効果を示すもので、横軸
は再結晶焼鈍時の焼鈍温度を表わし、縦軸は本願焼鈍後
に測定した最大透磁率μ2と単純焼鈍した後に測定した
最大透磁率μ1の比(μ2/μ1)を表わしている。ここ
での単純焼鈍は、前焼鈍を実施せずに100℃/hrの昇温
速度で加熱し、本願焼鈍と同時間再結晶焼鈍を行ない、
同速度で冷却している。第1図において、2本の実線間
が本発明の効果を表わしている。この効果は、焼鈍前過
程の履歴因子及び焼鈍時の因子に依存している。例え
ば、準温間圧延温度が低い場合は本発明における前焼鈍
温度を高めに取るか、あるいは前焼鈍時間を長く取る
(保持時間を長くする)ことにより、この効果が顕著に
なる。第1図に幅があるのは、前焼鈍温度及び時間、再
結晶焼鈍時間ならびに昇温、冷却速度条件の違いによる
ものである。
FIG. 1 shows the effect of annealing in the present invention, where the horizontal axis represents the annealing temperature during recrystallization annealing, and the vertical axis represents the maximum magnetic permeability μ 2 measured after the annealing of the present application and the maximum permeability measured after simple annealing. It represents the ratio of magnetic susceptibility μ 12 / μ 1 ). The simple annealing here is performed at a temperature rising rate of 100 ° C./hr without performing pre-annealing, and recrystallization annealing is performed for the same time as the annealing of the present application.
Cooling at the same speed. In FIG. 1, the effect between the two solid lines represents the effect of the present invention. This effect depends on the hysteresis factor in the pre-annealing process and the factor during annealing. For example, when the semi-warm rolling temperature is low, the effect becomes remarkable by increasing the pre-annealing temperature in the present invention or increasing the pre-annealing time (lengthening the holding time). The width of FIG. 1 varies depending on the pre-annealing temperature and time, the recrystallization annealing time, the temperature rise, and the cooling rate conditions.

上記前焼鈍においては、200〜400℃の温度域に10時間を
超えて保持すると特性が劣化するため、これを避けるべ
きである。第2図は前焼鈍の保持時間と得られる磁気特
性との関係をまとめたもので、横軸は前焼鈍(200℃〜4
00℃)における保持時間を示し、縦軸は保持時間に対す
る磁気特性を、保持時間が30分間の場合を1とした時の
相対的な最大透磁率で表わしている。但し、ここでの再
結晶焼鈍温度、時間及び昇温・冷却速度はすべて同一条
件で行ったものである。
In the above-mentioned pre-annealing, if the temperature is kept in the temperature range of 200 to 400 ° C. for more than 10 hours, the characteristics will be deteriorated and this should be avoided. Fig. 2 summarizes the relationship between the holding time of pre-annealing and the obtained magnetic properties. The horizontal axis shows pre-annealing (200 ℃ ~ 4
The holding time at 00 ° C) is shown, and the vertical axis shows the magnetic characteristics with respect to the holding time by the relative maximum magnetic permeability when the holding time is 30 minutes. However, the recrystallization annealing temperature, time, and temperature rising / cooling rate were all the same.

本発明の焼鈍において、200℃未満、400℃超の各昇温速
度、全サイクル中の冷却速度については特に限定しない
が、冷却に関しては歪が入らないように急冷しないこと
が好ましい。
In the annealing of the present invention, the temperature rising rates of less than 200 ° C. and more than 400 ° C., and the cooling rate during the entire cycle are not particularly limited, but it is preferable not to perform rapid cooling so as to prevent distortion in cooling.

また焼鈍は無酸化または還元状態で実施すべきである。
焼鈍雰囲気は保護雰囲気ガスでも可能ではあるが、効果
を顕著なものとするため還元性ガスまたは不活性ガス、
若しくはこれらの混合ガスとすべきである。なお、焼鈍
は炉内圧力を10-1torr以下にした真空条件下で行っても
よく、これによっても顕著な効果がられる。
Also, the annealing should be performed in the non-oxidized or reduced state.
The annealing atmosphere can be a protective atmosphere gas, but in order to make the effect remarkable, a reducing gas or an inert gas,
Or it should be a mixed gas of these. The annealing may be performed under a vacuum condition in which the pressure inside the furnace is set to 10 -1 torr or less, and this also has a remarkable effect.

焼鈍後、高珪素鉄板を絶縁皮膜処理する。この絶縁皮膜
は、積層状態で使用される高珪素鉄板の層間抵抗を上げ
るため形成するもので、例えば、シリカ及び第1リン酸
マグネシウムの混合液を板表面に塗布した後、800℃で
焼付を行う処理がなされる。
After annealing, the high silicon iron plate is treated with an insulating film. This insulating film is formed to increase the interlayer resistance of the high silicon iron plate used in the laminated state. For example, after applying a mixed solution of silica and dibasic magnesium phosphate to the plate surface, baking is performed at 800 ° C. The processing to be performed is performed.

〔実施例〕〔Example〕

・実施例(1) 第1表に示す成分組成からなる鉄合金スラブを熱間圧延
し、2mmの板厚とした後、板温100℃の状態で板厚0.3mm
まで準温間圧延した。その後、脱スケール、脱脂し、窒
素雰囲気中にて第3図(a)〜(e)に示すような種々の熱サ
イクルで、1000℃まで昇温し、焼鈍した。
-Example (1) An iron alloy slab having the composition shown in Table 1 was hot-rolled to a plate thickness of 2 mm, and then a plate thickness of 0.3 mm at a plate temperature of 100 ° C.
Semi-warm rolling. Then, descaling and degreasing were performed, and the temperature was raised to 1000 ° C. and annealed in a nitrogen atmosphere by various heat cycles as shown in FIGS. 3 (a) to (e).

このようにして得られたサンプルについて、最大透磁率
及び鉄損を測定した。ここで、測定はリング状(外径20
mm、内径10mm)サンプルにて行なった。第4図は各熱サ
イクルの供試材の最大透磁率を、また第5図は同じく鉄
損を示している。
The maximum magnetic permeability and the iron loss of the sample thus obtained were measured. Here, the measurement is ring-shaped (outer diameter 20
mm, inner diameter 10 mm). FIG. 4 shows the maximum magnetic permeability of the test material for each heat cycle, and FIG. 5 also shows the core loss.

両図において、縦軸はそれぞれ各熱サイクル後と単純焼
鈍後の最大透磁率の比μ2/μ1、ならびに鉄損(W
10/400)の比W2/W1を示す。
In both figures, the vertical axis represents the ratio of maximum permeability after each heat cycle and after simple annealing, μ 2 / μ 1 , and iron loss (W
The ratio W 2 / W 1 of 10/400 ) is shown.

但し、ここで単純焼鈍の熱サイクルは第3図(e)に示さ
れるものである。このように、200℃から400℃の間の温
度域に30分間以上10時間以内保持させることにより優れ
た磁気特性が得られることがわかる。
However, the thermal cycle of simple annealing is shown in FIG. 3 (e). As described above, it is understood that excellent magnetic properties can be obtained by keeping the temperature range between 200 ° C. and 400 ° C. for 30 minutes or more and 10 hours or less.

・実施例(2) 第2表に示す成分組成からなる鉄合金スラブを熱間圧延
し、2mmの板厚とした後、板温50℃の状態で板厚0.3mmま
で圧延した。その後、脱スケール、脱脂し、水素雰囲気
中にて第6図(a)〜(e)に示されるような種々の熱サイク
ルで1200℃まで昇温し、焼鈍した。
-Example (2) An iron alloy slab having the composition shown in Table 2 was hot-rolled to a plate thickness of 2 mm, and then rolled to a plate thickness of 0.3 mm at a plate temperature of 50 ° C. After that, descaling and degreasing were performed, and in a hydrogen atmosphere, the temperature was raised to 1200 ° C. by various heat cycles as shown in FIGS. 6 (a) to 6 (e), and annealing was performed.

このようにして得られたサンプルについて、最大透磁率
及び鉄損を測定した。ここで測定はリング状(外径20m
m、内径10mm)サンプルにて行なった。第7図は各熱サ
イクルに対する最大透磁率を示し、第8図は同じく鉄損
を示している。ここで縦軸は、それぞれ各熱サイクル後
と単純焼鈍後の最大透磁率の比μ2/μ1、ならびに鉄損
(W10/400)の比W2/W1を示す。但し、ここで単純焼
鈍の熱サイクルは第6図(e)に示されるものであり、雰
囲気は上記と同様に水素である。このように、200℃か
ら400℃の間の温度域に30分間以上10時間以内保持させ
ることにより優れた磁気特性が得られることがわかる。
The maximum magnetic permeability and the iron loss of the sample thus obtained were measured. The measurement here is ring-shaped (outer diameter 20 m
m, inner diameter 10 mm). FIG. 7 shows the maximum magnetic permeability for each heat cycle, and FIG. 8 also shows the core loss. Here, the vertical axis represents the ratio of maximum permeability μ 2 / μ 1 after each heat cycle and after simple annealing, and the ratio W 2 / W 1 of iron loss (W 10/400 ). However, the thermal cycle of the simple annealing is as shown in FIG. 6 (e), and the atmosphere is hydrogen as described above. As described above, it is understood that excellent magnetic properties can be obtained by keeping the temperature range between 200 ° C. and 400 ° C. for 30 minutes or more and 10 hours or less.

〔発明の効果〕 以上述べたように本発明によれば、磁気特性が著しく改
善され、磁気特性に優れた安定した製品特性を有する無
方向性高珪素鉄板を得ることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a non-oriented high silicon iron plate having significantly improved magnetic characteristics and excellent magnetic characteristics and stable product characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における焼鈍の効果を、再結晶焼鈍時の
焼鈍温度と磁気特性との関係で示すものである。第2図
は本発明における低温焼鈍の効果を低温焼鈍の保持時間
と得られる磁気特性との関係で示すものである。第3図
(a)〜(e)は実施例(1)において用いた熱サイクルを示す
ものである。第4図は実施例(1)における各供試材の最
大透磁率を、また第5図は同じく鉄損を示すものであ
る。第6図(a)〜(e)は実施例(2)において用いた熱サイ
クルを示すものである。第7図は実施例(2)における各
供試材の最大透磁率を、また第8図は同じく鉄損を示す
ものである。
FIG. 1 shows the effect of annealing in the present invention by the relationship between the annealing temperature and the magnetic characteristics during recrystallization annealing. FIG. 2 shows the effect of low temperature annealing in the present invention in relation to the holding time of low temperature annealing and the obtained magnetic characteristics. Fig. 3
(a)-(e) shows the thermal cycle used in Example (1). FIG. 4 shows the maximum magnetic permeability of each test material in Example (1), and FIG. 5 also shows the core loss. FIGS. 6 (a) to 6 (e) show the thermal cycle used in Example (2). FIG. 7 shows the maximum magnetic permeability of each test material in Example (2), and FIG. 8 also shows the core loss.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Si:4.0〜7.0wt%を含む高珪素鉄合金ス
ラブから熱間圧延、準温間圧延、焼鈍及び絶縁皮膜処理
の各工程を経て高珪素鉄板を製造するに当り、前記準温
間圧延を室温〜400℃の温度で行い、前記焼鈍処理で
は、200〜400℃の温度で30分〜10時間の前焼鈍を行い、
次いで800〜1300℃の温度で10分超〜10時間の箱焼鈍を
行うことを特徴とする高珪素鉄板の製造方法。
1. A high silicon iron sheet is produced from a high silicon iron alloy slab containing Si: 4.0 to 7.0 wt% through hot rolling, semi-warm rolling, annealing and insulating coating treatment. Warm rolling is performed at a temperature of room temperature to 400 ° C., and in the annealing treatment, pre-annealing is performed at a temperature of 200 to 400 ° C. for 30 minutes to 10 hours,
Then, a method for producing a high-silicon iron plate, which comprises performing box annealing at a temperature of 800 to 1300 ° C. for more than 10 minutes to 10 hours.
【請求項2】前焼鈍後、直ちに800〜1300℃に加熱する
ことを特徴とする特許請求の範囲(1)記載の高珪素鉄板
の製造方法。
2. The method for producing a high silicon iron plate according to claim 1, wherein the pre-annealing is immediately heated to 800 to 1300 ° C.
JP23914786A 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate Expired - Lifetime JPH0643612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23914786A JPH0643612B2 (en) 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23914786A JPH0643612B2 (en) 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate

Publications (2)

Publication Number Publication Date
JPS6393823A JPS6393823A (en) 1988-04-25
JPH0643612B2 true JPH0643612B2 (en) 1994-06-08

Family

ID=17040451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23914786A Expired - Lifetime JPH0643612B2 (en) 1986-10-09 1986-10-09 Method for manufacturing high silicon iron plate

Country Status (1)

Country Link
JP (1) JPH0643612B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757888B2 (en) * 1989-05-26 1995-06-21 株式会社神戸製鋼所 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
CN103266205A (en) * 2013-04-12 2013-08-28 南通新京隆电器有限公司 EI type orientation silicon steel plate annealing process

Also Published As

Publication number Publication date
JPS6393823A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
RU2529258C1 (en) Method to produce sheet from unoriented electrical steel
EP2796571B1 (en) High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
MX2013005804A (en) Method for producing directional electromagnetic steel sheet.
JP6404356B2 (en) Soft high silicon steel sheet and method for producing the same
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS5920731B2 (en) Manufacturing method for electric iron plates with excellent magnetic properties
JPH0651889B2 (en) Method for producing non-oriented silicon steel by ultra-high speed annealing
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO1986007390A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
US3144363A (en) Process for producing oriented silicon steel and the product thereof
KR960011799B1 (en) Method of producing non-oriented electrical steel sheet having good magnetic properties
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JPH055126A (en) Production of nonoriented silicon steel sheet
KR20150074938A (en) Soft silicon steel and manufacturing method thereof
JPH0643612B2 (en) Method for manufacturing high silicon iron plate
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0645823B2 (en) Method for manufacturing high silicon iron plate
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPH0747775B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after stress relief annealing
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JPS6242968B2 (en)