KR100328032B1 - A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet - Google Patents

A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet Download PDF

Info

Publication number
KR100328032B1
KR100328032B1 KR1019970050772A KR19970050772A KR100328032B1 KR 100328032 B1 KR100328032 B1 KR 100328032B1 KR 1019970050772 A KR1019970050772 A KR 1019970050772A KR 19970050772 A KR19970050772 A KR 19970050772A KR 100328032 B1 KR100328032 B1 KR 100328032B1
Authority
KR
South Korea
Prior art keywords
rolling
cold rolling
silicon steel
less
steel sheet
Prior art date
Application number
KR1019970050772A
Other languages
Korean (ko)
Other versions
KR19990030536A (en
Inventor
나종갑
이청산
우종수
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970050772A priority Critical patent/KR100328032B1/en
Publication of KR19990030536A publication Critical patent/KR19990030536A/en
Application granted granted Critical
Publication of KR100328032B1 publication Critical patent/KR100328032B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/42Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for step-by-step or planetary rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate

Abstract

PURPOSE: A method for manufacturing grain oriented super thin silicon steel sheets with superior magnetic properties is provided. CONSTITUTION: In a method for manufacturing grain oriented super thin silicon steel sheet where silicon steel ingot comprising Si 0.5 to 3.0 wt.%, 0.010 wt.% or less of C, 0.002 wt.% or less of Mn, S 0.005 to 0.03 wt.%, 0.01 wt.% or less of N, 0.01 wt.% or less of Al, a balance of Fe and incidental impurities is subject to hot rolling, pickling, first cold rolling, first process annealing, second cold rolling, second process annealing, third cold rolling and final annealing, the method is characterized in that the reduction ratio in each pass in cold rolling processes is 20 to 40 %.

Description

무방향성 극박 규소강판의 제조방법{A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet}A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet}

본 발명은 발전기, 전동기 등의 철심재료로 사용되는 무방향성 규소강판의 제조방법에 관한 것으로, 보다 상세하게는 자기적 특성이 우수한 두께 150㎛이하인 극박 무방향성 규소강판의 제조방법에 관한 것이다.The present invention relates to a method for producing non-oriented silicon steel sheet used as an iron core material such as a generator, an electric motor, and more particularly, to a method for producing an ultra-thin non-oriented silicon steel sheet having a thickness of 150 µm or less with excellent magnetic properties.

주로 대형 터빈 발전기, 전동기 등과 같은 회전기에 철심으로 사용되는 무방향성 규소강판은 이들 기기의 특성에 결정적인 영향을 미친다. 따라서 우수한 자기적 특성을 갖는 무방향성 규소강판의 개발은 이들 기기의 특성 향상뿐만 아니라 에너지 절약 측면에서도 중요하다.Non-oriented silicon steel sheets mainly used as iron cores in rotating machines such as large turbine generators and electric motors have a decisive influence on the characteristics of these devices. Therefore, the development of non-oriented silicon steel sheet having excellent magnetic properties is important not only in improving the characteristics of these devices but also in terms of energy saving.

무방향성 규소강판은 회전기의 철심재료로 사용됨에 따라 사용 중 인가되는 자장 방향이 변화하게 된다. 따라서 우수한 자기적 특성을 갖는 무방향성 규소강판은 철손도 낮아야할 뿐 아니라 압연방향과 압연 수직방향의 자기적 특성이 차이가 가능하면 적도록 하는 것이 중요하다.As the non-oriented silicon steel sheet is used as the iron core material of the rotor, the direction of the magnetic field applied during use is changed. Therefore, it is important that the non-oriented silicon steel sheet having excellent magnetic properties not only have low iron loss but also have as little magnetic properties as possible in the rolling direction and the rolling vertical direction.

무방향성 규소강판의 자기적 특성을 향상시킬 수 있는 방법으로 일본 공개특허공보 평1-19171에는 열간압연판을 재가열 온도이상 700℃이하의 온도에서 소둔한 후 3-15%의 압하율로 냉간압연을 한 다음 다시 700-800℃에서 소둔한 다음 냉간압연 한다. 그리고, 그 냉간압연판을 다시 재가열 온도이상 800℃이하의 온도에서 소둔한 후 3-15% 스킨패스를 실시하여 재결정립의 크기를 조대하게 하여 자기적 특성을 향상시키는 방법이 제시되어 있다. 그러나 이 방법은 기존의 제조 공정에 비하여 재가열 소둔 및 스킨패스 공정이 부과되어 생산단가가 높아지는 단점과 Si함량이 2.0% 이하인 규소강에만 적용된다는 단점이 있다.As a method of improving the magnetic properties of non-oriented silicon steel sheet, Japanese Laid-Open Patent Publication No. Hei 1-19171 discloses that a hot rolled sheet is annealed at a reheating temperature of more than 700 ° C. and then cold rolled at a rate of 3-15%. After annealing again, annealing at 700-800 ℃ and cold rolling. Then, the cold rolled sheet is annealed again at a temperature of reheating temperature of more than 800 ℃ and then subjected to 3-15% skin pass to increase the size of the recrystallized grain to improve the magnetic properties. However, this method is disadvantageous in that the reheating annealing and skin pass process are imposed compared to the existing manufacturing process, resulting in higher production cost, and only applied to silicon steel having a Si content of less than 2.0%.

또한, 일본 특허공보 소58-34531에서는 열간압연판을 900-1000℃에서 1-7분간 소둔한 다음 산세 후, 냉간압연한다. 그후 950-1100℃온도에서 1-5분간 소둔하여 강중의 불순물 특히 탄소, 질소, 황의 함량을 낮추어 자기적 특성을 향상시키는 방법이 제시되어 있다. 그러나 이 방법도 소둔 공정이 부과됨에 따라 제조단가가 높아지는 단점이 있다.Further, in Japanese Patent Publication No. 58-34531, the hot rolled plate is annealed at 900-1000 ° C. for 1-7 minutes, followed by pickling and cold rolling. Thereafter, annealing at 950-1100 ° C. for 1-5 minutes has been suggested to improve the magnetic properties by lowering the contents of impurities, particularly carbon, nitrogen and sulfur, in the steel. However, this method also has a disadvantage in that the manufacturing cost increases as the annealing process is imposed.

또한, 일본 공개특허공보 평5-299261에는 규소강판의 두께를 20-50㎛로 얇게하여 자기적 특성을 향상시키는 방법이 제시되어 있다. 즉 기존의 방향성 및 무방향성 규소강판을 출발 재료로하여 표면의 절연질 피막을 제거한 후 압연, 재결정 소둔, 절연피막 도포의 공정으로 두께 20-50㎛의 자기적 특성이 우수한 극박 무방향성 규소강을 제조하였다. 그러나 이 방법으로 제조된 극박 무방향성 규소강판은 자기적 특성은 우수한 반면 고가의 기존에 완성된 방향성 및 무방향성 규소강판을 출발 재료로하고 절연질 피막을 제거한 후 다시 도포하는 공정을 반복하여 제조단가가 높다는 단점이 있다.In addition, Japanese Patent Laid-Open No. 5-299261 discloses a method of improving the magnetic properties by thinning the thickness of a silicon steel sheet to 20-50 µm. In other words, the existing oriented and non-oriented silicon steel sheet is used as a starting material, and after removing the insulating film on the surface, ultra-thin non-oriented silicon steel having excellent magnetic properties with a thickness of 20-50 μm by the process of rolling, recrystallization annealing, and coating the insulating film. Prepared. However, the ultra-thin non-oriented silicon steel sheet manufactured by this method has excellent magnetic properties, but it is manufactured by repeating the process of removing the insulating film and applying it again as a starting material using expensive finished oriented and non-oriented silicon steel sheet. Has the disadvantage of being high.

또한, 용해주조법으로 만든 스라브를 출발재료로 하여 이를 열간압연, 냉간압연 및중간소둔, 최종소둔의 순차공정을 거쳐 두께 150㎛이하의 극박 규소강판을 제조하는 방법으로 일본 특개평5-186829호 및 특개평 5-186830호가 있다. 상기 특개평 5-186829호에서는 열간압연판을 30-85% 압연율로 1차 냉간압연, 중간소둔, 40-80% 압연율로 2차 냉간압연, 중간소둔 후 50-75% 압연율로 3차 냉간압연하는 3단 냉간 압연법을 적용하고, 상기 특개평 5-186830 호에서는 열간압연판을 40% 이상의 압연율로 1차 냉간압연, 중간소둔 후 50-80% 압연율로 2차 냉간압연하는 2단 냉간 압연법을 적용하고 있으나 이들 두방법은 방향성 극박 규소강판의 제조방법으로 무방향성 극박규소강판에는 적용할 수 없었다.In addition, Japanese Laid-Open Patent Application No. 5-186829 and the method for producing ultra-thin silicon steel sheets having a thickness of 150 µm or less through a sequential process of hot rolling, cold rolling, intermediate annealing, and final annealing using slabs made of the melt casting method as starting materials. Japanese Patent Application Laid-Open No. 5-186830. In Japanese Patent Laid-Open No. 5-186829, the hot rolled sheet is first cold rolled at 30-85% rolling rate, intermediately annealed, second cold rolled at 40-80% rolling rate, and 50-75% rolled rate after intermediate annealed 3 Three-stage cold rolling method for cold rolling is applied, and in Japanese Patent Laid-Open No. 5-186830, the first hot rolling of the hot rolled sheet at a rolling rate of 40% or more, and the second cold rolling at 50-80% rolling rate after the intermediate annealing. The two-stage cold rolling method is applied. However, these two methods cannot be applied to non-oriented ultra-thin silicon steel as a method for producing oriented ultra-thin silicon steel sheet.

본 발명은 무방향성 규소강판을 제조함에 있어, 방향성 극박 규소강판을 제조하는 3차 냉연법 또는 2차 냉연법을 적용하고, 이때 3차 냉연법 또는 2차 냉연법 중의 모든 냉간압연 조건을 적절히 제어함으로써, 자기적 특성이 우수하고, 두께 150㎛ 이하의 극박인 무방향성 규소강판을 얻을 수 있는 제조방법을 제공하고자 하는데, 그 목적이 있다.In the present invention, in manufacturing non-oriented silicon steel sheet, the third cold rolling method or the second cold rolling method for producing the oriented ultra-thin silicon steel sheet is applied, and in this case, all cold rolling conditions in the third cold rolling method or the second cold rolling method are appropriately controlled. It is an object of the present invention to provide a method for producing a non-oriented silicon steel sheet having excellent magnetic properties and having an ultra-thin thickness of 150 μm or less.

본 발명자들은 용해주조법으로 스라브를 만든 다음 이를 열간압연, 냉간압연 및 중간소둔, 최종 냉간압연, 최종소둔의 순차공정을 거쳐 두께 150㎛이하의 극박 무방향성 규소강판을 제조하는 것이 공정단가 면에서 유리하다는 것을 확인하였고, 또한, 상기 방향성 극박규소강판의 제조방법인 3단 냉간압연법 및 2단 냉간압연법에 있어, 냉간압연시 패스당 압연율(이하 "압연속도"라고도 칭함)을 적절히 조절함으로서 우수한 자기적 특성을 갖는 무방향성 규소강판을 제조할 수 있음을 알아냈다.The present inventors made the slab by melt casting method, followed by the hot rolling, cold rolling and intermediate annealing, the final cold rolling, and the final annealing to manufacture the ultrathin non-oriented silicon steel sheet having a thickness of 150 μm or less in terms of process cost. In addition, in the three-stage cold rolling method and the two-stage cold rolling method, which are methods for manufacturing the grain-oriented ultra-thin silicon steel sheet, by appropriately adjusting the rolling rate per pass (hereinafter referred to as "rolling speed") during cold rolling It has been found that non-oriented silicon steel sheet having excellent magnetic properties can be produced.

상기한 바와같은 관점으로부터 출발한 본 발명은 중량%로 Si: 0.5-3.0%, C: 0.010% 이하, Mn: 0.002% 이하, S: 0.005-0.03% 이하, N: 0.01% 이하, Al: 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 규소강 잉곳(ingot)을 열간압연, 산세, 1차 냉간압연, 1차 중간소둔, 2차 냉간압연, 2차 중간소둔, 3차 냉간압연 및 최종소둔으로 이어지는 3차 냉연법, 또는, 열간압연, 산세, 1차 냉간압연, 1차 중간소둔, 2차 냉간압연 및 최종소둔으로 이어지는 2차 냉연법에 의한 연속공정을 수행하여 극박 규소강판을 제조하는 방법에 있어서, 상기 1차, 2차 및 3차 냉간압연시 1패스당 압연율(압연속도)을 20-40%의 범위로 하는 무방향성 극박 규소강판의 제조방법에 관한 것이다.Starting from the above point of view, the present invention is Si: 0.5-3.0% by weight, C: 0.010% or less, Mn: 0.002% or less, S: 0.005-0.03% or less, N: 0.01% or less, Al: 0.01 Silicon steel ingots consisting of% or less, balance Fe and other unavoidable impurities are hot rolled, pickled, primary cold rolled, primary intermediate annealing, secondary cold rolling, secondary intermediate annealing, tertiary cold rolling and final annealing. To produce ultra-thin silicon steel sheet by performing the continuous process by the secondary cold rolling method followed by the third cold rolling method followed by hot rolling, pickling, the first cold rolling, the first intermediate annealing, the second cold rolling and the final annealing. The method relates to a method for producing a non-oriented ultrathin silicon steel sheet having a rolling ratio (rolling speed) per pass during the first, second and third cold rolling in the range of 20-40%.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 중량%로 Si: 0.5-3.0%, C: 0.010% 이하, Mn: 0.002% 이하, S: 0.005- 0.03%, N: 0.01% 이하, Al: 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 규소강을 열간압연, 산세, 1차 냉간압연, 1차 중간소둔, 2차 냉간압연, 2차 중간소둔, 3차 냉간압연 및 최종소둔하는 3차냉연법 또는 상기 강을 열간압연, 산세, 1차 냉간압연, 1차 중간소둔, 2차 냉간압연 및 최종소둔하는 2차냉연법을 적용하는 것이다.The present invention in terms of weight percent Si: 0.5-3.0%, C: 0.010% or less, Mn: 0.002% or less, S: 0.005- 0.03%, N: 0.01% or less, Al: 0.01% or less, residual Fe and other unavoidable impurities Hot-rolled, pickled silicon steel consisting of hot rolling, primary cold rolling, primary intermediate annealing, secondary cold rolling, secondary intermediate annealing, tertiary cold rolling and final annealing The primary cold rolling, primary intermediate annealing, secondary cold rolling and final annealing are applied.

이때 상기 냉간압연은 모두 1패스당 압연율(압연속도)를 20-40%로 행하여, 우수한 자기적특성을 얻는다. 상기 압연속도가 낮은 시편에서는 자성이 나빠지며, 너무 높은 압연속도로 강압연하는 것은 특수한 압연기가 필요하여 오히려 생산단가가 높아지게 된다. 이러한 현상은 다음과 같이 설명할 수 있다. 즉 냉간압연은 냉간압연 방향으로는 인장응력이 가해지고 이에 수직되는 방향 즉 시편의 표면에 수직되는 방향으로는 압축응력이 인가되는 것으로 볼 수 있다. 따라서 압연속도가 20%보다 낮은 것은 시편의 표면에 수직되는 방향으로는 압축응력이 낮아지는 것으로 볼 수 있다. 그런데 체심입방 구조를 갖는 규소강은 냉간압연하면 (100)면이 압연면에 평행하고 [011] 방향이 압연방향에 평행한 계열과 그 면을 [011] 축을 중심으로 회전하는 계열로 집합조직이 발달하게 되는데 이것은 냉간압연에 따라 기존에 있던 (110)[001] 조직이 점차 없어지게 된다는 것을 의미한다. 즉, 압연속도가 20%보다 낮으면 압축응력 성분이 작아지며 이에따라 강 중에 있던 (110)[001] 핵이 남아있게 되어 최종소둔시 (110)[001]이 발달하여 무방향 규소강의 특성은 오히려 나빠지는 것으로 판단된다. 따라서, 본 발명에서는 냉간압연시 20-40%의 압연속도로 압연하므로써, 무방향성 규소강판의 면에서 우수한 자성을 얻는다.At this time, all the cold rolling is carried out at a rolling rate (rolling speed) per pass of 20-40% to obtain excellent magnetic properties. In the specimen with a low rolling speed, the magnetic properties deteriorate, and rolling at too high a rolling speed requires a special rolling machine, which increases production costs. This phenomenon can be explained as follows. In other words, in the cold rolling, the tensile stress is applied in the cold rolling direction, and the compressive stress is applied in the direction perpendicular to the surface of the specimen. Therefore, if the rolling speed is lower than 20%, it can be seen that the compressive stress is lowered in the direction perpendicular to the surface of the specimen. By the way, the silicon steel having a body-centered cubic structure has a series structure in which the (100) surface is parallel to the rolling surface and the direction is parallel to the rolling direction when the cold rolling is performed, and the surface is rotated about an axis. This means that cold rolling will gradually eliminate the existing (110) [001] tissue. In other words, if the rolling speed is lower than 20%, the compressive stress component becomes smaller, and accordingly, the (110) [001] nucleus remains in the steel, so that the characteristics of the non-oriented silicon steel are rather developed due to the development of the final annealing (110) [001]. It seems to be worse. Therefore, in the present invention, by rolling at a rolling speed of 20-40% during cold rolling, excellent magnetic properties are obtained in terms of non-oriented silicon steel sheet.

이하, 본 발명을 실시예를 들어 자세히 설명한다.Hereinafter, an Example is given and this invention is demonstrated in detail.

실시예Example

(발명예1)Invention Example 1

중량%로 Si: 2.93%, C: 0.007%, Mn: 0.001%, S: 0.001%, N: 0.001%, Al: 0.001%, 잔부 Fe 의 조성을 갖는 규소강 잉곳을 1200℃에서 1시간 유지 후 열간압연하여 2.5mm 두께의 열연판을 만든 후 표면 산화물을 제거하기 위하여 산세처리하였다. 그후 압연율 75%, 1패스당 압연율(압연속도) 20%로 1차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 1차 중간소둔처리하였다. 압연율 60%, 1패스당압연율(압연속도) 20%로 2차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 2차 중간소둔처리하였다. 그후 압연율 60%, 1패스당 압연율(압연속도) 20%로 3차 냉간압연하였다. 3차 냉간압연판은 5 x 104torr의 진공분위기, 1200℃에서 1시간동안 최종소둔 처리하여 두께 100㎛인 극박 규소강판을 준비하였다. 단편자기 측정기를 사용하여 이 극박 규소강판의 B50과 W15/50을 측정하고, 압연방향과 압연수직방향의 B50의 비(B50⊥/B50∥)를 구하여, 그 결과를 하기 표1에 나타냈다.Si: 2.93% by weight, C: 0.007%, Mn: 0.001%, S: 0.001%, N: 0.001%, Al: 0.001% After rolling, a hot rolled sheet having a thickness of 2.5 mm was made, followed by pickling to remove surface oxides. Thereafter, primary cold rolling was performed at a rolling rate of 75% and a rolling rate (rolling speed) of 20% per pass, followed by a first intermediate annealing treatment at 800 ° C. for 30 minutes at a vacuum atmosphere of 5 × 10 4 torr. Secondary cold rolling was performed at a rolling rate of 60% and a rolling rate per roll (rolling speed) of 20%, followed by secondary intermediate annealing for 30 minutes at 800 ° C. in a vacuum atmosphere of 5 × 10 4 torr. Thereafter, cold rolling was performed at a rolling rate of 60% and a rolling rate (rolling speed) of 20% per third pass. The third cold rolled sheet was subjected to a final annealing treatment at 1200 ° C. for 1 hour in a vacuum atmosphere of 5 × 10 4 torr to prepare an ultrathin silicon steel sheet having a thickness of 100 μm. Fragment to a magnetic measurement using a measuring instrument 50 and the B W 15/50 of a very thin silicon steel plate, and obtaining a ratio (B 50⊥ / B 50∥) in the rolling direction and rolling in the vertical direction B 50, a result table 1 is shown.

(발명예2)Invention Example 2

중량%로 Si: 2.04%, C: 0.007%, Mn: 0.001%, S: 0.001%, N2: 0.001%, Al: 0.001%, 잔부 Fe 의 조성을 갖는 규소강 잉곳을 1200℃에서 1시간 유지 후 열간압연하여 2.4mm 두께의 열연판을 만든 후 표면 산화물을 제거하기 위하여 산세처리하였다. 그후 압연율 50%, 1패스당 압연율(압연속도) 30%로 1차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 1차 중간소둔처리하였다. 압연율 60%, 1패스당 압연율(압연속도) 30%로 2차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 2차 중간소둔처리하였다. 그후 압연율 79%, 1패스당 압연율(압연속도) 30%로 3차 냉간압연한 후, 5 x 104torr의 진공분위기, 1200℃에서 1시간동안 최종소둔 처리하여 두께 100㎛인 극박 규소강판을 준비하였다. 단편자기 측정기를 사용하여 이 극박 규소강판의 B50과 W15/50을 측정하고, 압연방향과 압연수직방향의 B50의비(B50⊥/B50∥)를 구하여, 그 결과를 하기 표1에 나타냈다.Si: 2.04% by weight, C: 0.007%, Mn: 0.001%, S: 0.001%, N 2 : 0.001%, Al: 0.001%, after the silicon steel ingot having the balance of Fe was maintained at 1200 ° C for 1 hour. After hot rolling, a hot rolled sheet having a thickness of 2.4 mm was made and then pickled to remove surface oxides. Thereafter, primary cold rolling was performed at a rolling rate of 50% and a rolling rate (rolling speed) of 30% per pass, followed by a first intermediate annealing treatment at 800 ° C. for 30 minutes at a vacuum atmosphere of 5 × 10 4 torr. After cold rolling at 60% of rolling rate and 30% of rolling rate (rolling speed) per pass, secondary intermediate annealing was performed for 30 minutes at 800 ° C. in a vacuum atmosphere of 5 × 10 4 torr. After the third cold rolling at 79% of rolling rate and 30% of rolling rate per pass (rolling speed), ultra-thin silicon having a thickness of 100 μm by vacuum annealing at 5 × 10 4 torr and final annealing at 1200 ° C. for 1 hour. Steel sheet was prepared. Measure the B 50 and W 15/50 of this ultra-thin silicon steel sheet using a fragment magnetometer , calculate the ratio of B 50 (B 50 / B 50 ) between the rolling direction and the rolling vertical direction. Indicated.

(발명예3)Invention Example 3

중량%로 Si: 0.52%, C: 0.007%, Mn: 0.001%, S: 0.001%, N: 0.001%, Al: 0.001%, 잔부 Fe 의 조성을 갖는 규소강 잉곳을 1200℃에서 1시간 유지 후 열간압연하여 1.5mm 두께의 열연판을 만든 후 표면 산화물을 제거하기 위하여 산세처리하였다. 그후 압연율 80%, 1패스당 압연율(압연속도) 30%로 1차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 1차 중간소둔처리하였다. 그후 압연율 67%, 1패스당 압연율(압연속도) 30%로 2차 냉간압연한 후 5 x 10-4torr의 진공분위기, 1200℃에서 1시간동안 최종소둔 처리하여 두께 100㎛인 극박 규소강판을 준비하였다. 단편자기 측정기를 사용하여 이 극박 규소강판의 B50과 W15/50을 측정하고, 압연방향과 압연수직방향의 B50의 비를 구하여, 그 결과를 하기 표1에 나타냈다.Si: 0.52%, C: 0.007%, Mn: 0.001%, S: 0.001%, N: 0.001%, Al: 0.001% by weight in a silicon steel ingot having a composition of the balance Fe held at 1200 ° C. for 1 hour and then hot After rolling, a 1.5 mm thick hot rolled sheet was made, followed by pickling to remove surface oxides. Thereafter, primary cold rolling was performed at a rolling rate of 80% and a rolling rate (rolling speed) of 30% per pass, followed by a first intermediate annealing treatment at 800 ° C. for 30 minutes at a vacuum atmosphere of 5 × 10 4 torr. After the second cold rolling at 67% of rolling rate and 30% of rolling rate per pass (rolling speed), ultra-thin silicon having a thickness of 100 μm by vacuum annealing at 5 × 10 -4 torr and final annealing at 1200 ° C. for 1 hour. Steel sheet was prepared. Using short magnetic measuring devices measure the B 50 and W 15/50 of the ultra-thin silicon steel plate, and obtaining a ratio of a rolling direction and rolling in the vertical direction B 50, it is shown in Table 1. The results.

(발명예4)Invention Example 4

중량%로 Si: 2.93%, C: 0.007%, Mn: 0.001%, S: 0.001%, N: 0.001%, Al: 0.001%, 잔부 Fe의 조성을 갖는 규소강 잉곳을 1200℃에서 1시간 유지 후 열간압연하여 1.5mm 두께의 열연판을 만든 후 표면 산화물을 제거하기 위하여 산세처리하였다. 그후 압연율 80%, 1패스당 압연율(압연속도) 40%로 1차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 1차 중간소둔처리하였다. 그후 압연율 67%, 1패스당 압연율(압연속도) 40%로 2차 냉간압연한 후 5 x 104torr의 진공분위기, 1200℃에서 1시간동안 최종소둔 처리하여 두께 100㎛인 극박 규소강판을 준비하였다. 단편자기 측정기를 사용하여 이 극박 규소강판의 B50과 W15/50을 측정하고, 압연방향과 압연수직방향의 B50의 비를 구하여, 그 결과를 하기 표1에 나타냈다.Si: 2.93% by weight, C: 0.007%, Mn: 0.001%, S: 0.001%, N: 0.001%, Al: 0.001% After rolling, a 1.5 mm thick hot rolled sheet was made, followed by pickling to remove surface oxides. Thereafter, primary cold rolling was performed at a rolling rate of 80% and a rolling rate (rolling speed) of 40% per pass, followed by a primary intermediate annealing treatment at 5 × 10 4 torr in a vacuum atmosphere at 800 ° C. for 30 minutes. After the second cold rolling at 67% of rolling rate and 40% of rolling rate per roll (rolling speed), ultra-thin silicon steel sheet having a thickness of 100 μm by vacuum annealing at 5 × 10 4 torr and final annealing at 1200 ° C. for 1 hour Was prepared. Using short magnetic measuring devices measure the B 50 and W 15/50 of the ultra-thin silicon steel plate, and obtaining a ratio of a rolling direction and rolling in the vertical direction B 50, it is shown in Table 1. The results.

(비교예)(Comparative Example)

중량%로 Si: 2.93%, C: 0.007% 이하, Mn: 0.001% 이하, S: 0.001%, N: 0.001%, Al: 0.001% 이하, 잔부 Fe 의 조성을 갖는 규소강 잉곳을 1200℃에서 1시간 유지 후 열간압연하여 2.5mm 두께의 열연판을 만든 후 표면 산화물을 제거하기 위하여 산세처리하였다. 그후 압연율 75%, 1패스당 압연율(압연속도) 10%로 1차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 1차 중간소둔처리하였다. 그후 압연율 60%, 1패스당 압연율(압연속도) 10%로 2차 냉간압연한 후 5 x 104torr의 진공분위기, 800℃에서 30분간 2차 중간소둔처리하였다. 그후 압연율 60%, 1패스당 압연율(압연속도) 10%로 3차 냉간압연하였다. 3차 냉간압연판은 5 x 104torr의 진공 분위기, 1200℃에서 1시간동안 최종소둔 처리하여 두께 100㎛인 극박 규소강판을 준비하였다. 단편자기 측정기를 사용하여 이 극박 규소강판의 B50과 W15/50을 측정하고, 압연방향과 압연수직방향의 B50의 비를 구하여, 그 결과를 하기 표1에 나타냈다.Si: 2.93% by weight, C: 0.007% or less, Mn: 0.001% or less, S: 0.001%, N: 0.001%, Al: 0.001% or less, silicon steel ingot having a composition of the balance Fe at 1 hour at 1200 ° C After holding, hot rolling was performed to make a hot rolled sheet having a thickness of 2.5 mm, followed by pickling to remove surface oxides. Thereafter, primary cold rolling was performed at a rolling rate of 75% and a rolling rate (rolling speed) of 10% per pass, followed by a first intermediate annealing treatment at 800 ° C. for 30 minutes at a vacuum atmosphere of 5 × 10 4 torr. Thereafter, secondary cold rolling was performed at a rolling rate of 60% and a rolling rate per roll (rolling speed) of 10%, followed by a secondary intermediate annealing treatment at 5 ° C 10 4 torr in a vacuum atmosphere at 800 ° C for 30 minutes. Thereafter, cold rolling was performed at a rolling rate of 60% and a rolling rate (rolling speed) of 10% per third pass. The third cold rolled sheet was subjected to a final annealing treatment at 1200 ° C. for 1 hour in a vacuum atmosphere of 5 × 10 4 torr to prepare an ultra-thin silicon steel sheet having a thickness of 100 μm. Using short magnetic measuring devices measure the B 50 and W 15/50 of the ultra-thin silicon steel plate, and obtaining a ratio of a rolling direction and rolling in the vertical direction B 50, it is shown in Table 1. The results.

자 기 특 성Self-characteristics B50(T)B 50 (T) W15/50(W/kg)W 15/50 (W / kg) B50⊥/B50∥ B 50⊥ / B 50∥ 발명예 1발명예 2발명예 3발명예 4비교예Inventive Example 1 invention example 2 invention example 3 invention example 4 Comparative Example 1.831.801.911.791.931.831.801.911.791.93 2.352.522.742.623.532.352.522.742.623.53 0.980.950.960.930.750.980.950.960.930.75

상기표 1에서 알 수 있는 바와같이, 본 발명의 조건을 만족하는 발명예(1-4)의 경우에는 우수한 자기적 특성을 보였고, 이에 반하여 본 발명의 조건을 벗어난 비교예의 경우에는 그 자기적 특성이 발명예(1-4)에 미치지 못하였다.As can be seen in Table 1, in the case of Inventive Example (1-4) that satisfies the conditions of the present invention showed excellent magnetic properties, on the contrary, in the case of Comparative Examples outside the conditions of the present invention, the magnetic properties. It fell short of this invention example (1-4).

상술한 바와같이, 본 발명에 의하면 방향성규소강판의 제조방법인 3차 냉연법 또는 2차 냉연법을 적용하고, 냉간압연시 1패스당 압연율을 제어함으로써, 자기적 특성이 우수한 무방향성 극박 규소강판을 얻을 수 있는 효과가 제공된다.As described above, according to the present invention, by applying a third cold rolling method or a second cold rolling method, which is a method for producing a grain-oriented silicon steel sheet, by controlling the rolling rate per pass during cold rolling, non-oriented ultra-thin silicon having excellent magnetic properties The effect of obtaining a steel sheet is provided.

Claims (2)

중량%로 Si: 0.5-3.0%, C: 0.010% 이하, Mn: 0.002% 이하, S: 0.005-0.03%, N: 0.01% 이하, Al: 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 규소강 잉곳(ingot)을 열간압연, 산세, 1차 냉간압연, 1차 중간소둔, 2차 냉간압연, 2차 중간소둔, 3차 냉간압연 및 최종소둔으로 이어지는 3차 냉연법에 의한 연속공정을 수행하여 극박 규소강판을 제조하는 방법에 있어서,Silicon by weight: Si: 0.5-3.0%, C: 0.010% or less, Mn: 0.002% or less, S: 0.005-0.03%, N: 0.01% or less, Al: 0.01% or less, balance Fe and other unavoidable impurities The steel ingot is subjected to a continuous process by the third cold rolling method followed by hot rolling, pickling, first cold rolling, first intermediate annealing, second cold rolling, second intermediate annealing, third cold rolling and final annealing. In the method for producing ultra-thin silicon steel sheet, 상기 1차, 2차 및 3차 냉간압연시 1패스당 압연율을 20-40%의 범위로 하는 것을 특징으로 하는 무방향성 극박 규소강판의 제조방법.Method for producing a non-oriented ultra-thin silicon steel sheet, characterized in that the rolling rate per pass during the first, second and third cold rolling range of 20-40%. 중량%로 Si: 0.5-3.0%, C: 0.010% 이하, Mn: 0.002% 이하, S: 0.005-0.03%, N: 0.01% 이하, Al: 0.01% 이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 규소강 잉곳(ingot)을 열간압연, 산세, 1차 냉간압연, 1차 중간소둔, 2차 냉간압연 및 최종소둔으로 이어지는 2차 냉연법에 의한 연속공정을 수행하여 극박 규소강판을 제조하는 방법에 있어서,Silicon by weight: Si: 0.5-3.0%, C: 0.010% or less, Mn: 0.002% or less, S: 0.005-0.03%, N: 0.01% or less, Al: 0.01% or less, balance Fe and other unavoidable impurities In the method for producing ultra-thin silicon steel sheet by performing a continuous process by the secondary cold rolling method leading to the hot ingot, pickling, primary cold rolling, primary intermediate annealing, secondary cold rolling and final annealing , 상기 1차 및 2차 냉간압연시 1패스당 압연율을 20-40%의 범위로 하는 것을 특징으로 하는 무방향성 극박 규소강판의 제조방법.Method for producing a non-oriented ultra-thin silicon steel sheet, characterized in that the rolling rate per pass during the first and second cold rolling is in the range of 20-40%.
KR1019970050772A 1997-10-01 1997-10-01 A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet KR100328032B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970050772A KR100328032B1 (en) 1997-10-01 1997-10-01 A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970050772A KR100328032B1 (en) 1997-10-01 1997-10-01 A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet

Publications (2)

Publication Number Publication Date
KR19990030536A KR19990030536A (en) 1999-05-06
KR100328032B1 true KR100328032B1 (en) 2002-05-10

Family

ID=37478468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970050772A KR100328032B1 (en) 1997-10-01 1997-10-01 A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet

Country Status (1)

Country Link
KR (1) KR100328032B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102139649B1 (en) * 2018-09-27 2020-07-30 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910012292A (en) * 1989-12-29 1991-08-07 정명식 Method of manufacturing non-oriented electrical steel sheet with excellent magnetic properties
JPH03219020A (en) * 1990-01-23 1991-09-26 Nkk Corp Production of nonoriented silicon steel sheet
KR930002526A (en) * 1991-07-29 1993-02-23 미요시 슌기찌 Manufacturing method of grain-oriented silicon steel sheet with crystal orientation integrated in Goss orientation
JPH06293922A (en) * 1993-04-08 1994-10-21 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet reduced in iron loss

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910012292A (en) * 1989-12-29 1991-08-07 정명식 Method of manufacturing non-oriented electrical steel sheet with excellent magnetic properties
JPH03219020A (en) * 1990-01-23 1991-09-26 Nkk Corp Production of nonoriented silicon steel sheet
KR930002526A (en) * 1991-07-29 1993-02-23 미요시 슌기찌 Manufacturing method of grain-oriented silicon steel sheet with crystal orientation integrated in Goss orientation
JPH06293922A (en) * 1993-04-08 1994-10-21 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet reduced in iron loss

Also Published As

Publication number Publication date
KR19990030536A (en) 1999-05-06

Similar Documents

Publication Publication Date Title
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
WO2018221126A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
US20230257860A1 (en) Method of producing a non-oriented electrical steel sheet
TWI732507B (en) Method for manufacturing non-oriented electrical steel sheet
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
HU177279B (en) Process for producing boron-doped silicon steel having goss-texture
JP2708682B2 (en) Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same
KR101536465B1 (en) Soft silicon steel and manufacturing method thereof
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR100328032B1 (en) A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet
KR101675318B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR102176346B1 (en) Electrical steel sheet and manufacturing method of the same
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JPS6253571B2 (en)
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JPH10251754A (en) Manufacture of nonoriented silicon steel sheet
KR100273095B1 (en) The manufacturing method of oriented electric steelsheet with low temperature slab heating
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
JP3358138B2 (en) Method for producing semi-process non-oriented electrical steel sheet with excellent isotropic magnetic properties
JPH08193220A (en) Production of semiprocessed nonoriented silicon steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130225

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160229

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee