KR20000008646A - Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating - Google Patents

Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating Download PDF

Info

Publication number
KR20000008646A
KR20000008646A KR1019980028560A KR19980028560A KR20000008646A KR 20000008646 A KR20000008646 A KR 20000008646A KR 1019980028560 A KR1019980028560 A KR 1019980028560A KR 19980028560 A KR19980028560 A KR 19980028560A KR 20000008646 A KR20000008646 A KR 20000008646A
Authority
KR
South Korea
Prior art keywords
temperature
annealing
reheating
rolling
slab
Prior art date
Application number
KR1019980028560A
Other languages
Korean (ko)
Inventor
김창수
오재훈
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980028560A priority Critical patent/KR20000008646A/en
Publication of KR20000008646A publication Critical patent/KR20000008646A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

PURPOSE: A directional electrical sheet is prepared which has an improved magnetic property, decarbonization and productivity. CONSTITUTION: A silicon steel comprises 2.9-3.3 wt.% of silica, 0.035-0.055 wt.% of carbon, less than 0.015 wt.% of phosphor, 0.010-0.027 wt.% of acid-soluble aluminum, 0.0080-0.012 wt.% of nitrogen, less than 0.007 wt.% of sulfur, 0.10- 0.45 wt.% of manganese, 0.10-0.60 wt.% of copper, remainder of feruum and impurities. The slab is hot-rolled at 1,250-1,330°C, annealed at 1,50-1,150°C and pickled. Obtained slab is decarbonized and annealed at 750-830°C, coated by MgO antiseize compound and annealed to give the directional electrical sheet.

Description

자성 및 생산성이 우수한 스라브저온 재가열 방향성전기강판의 제조방법Manufacturing method of slab low temperature reheat oriented electrical steel with excellent magnetic and productivity

본 발명은 전자기기 등의 철심재료로 사용되는 방향성 전기강판의 제조방법에 관한 것으로, 보다 상세히는 중간 탈탄소둔이 낀 2차냉간압연공정을 1차냉간압연-탈탄소둔공정으로 변경하면서도 우수한 자성을 갖는 저온재가열 방향성 전기강판을 제조할 수 있는 방법에 속한다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as an iron core material such as an electronic device, and more particularly, to change the secondary cold rolling process with intermediate decarbonization annealing to primary cold rolling-decarbonation annealing process, and to provide excellent magnetic properties. It belongs to the method which can manufacture the low-temperature reheating oriented electrical steel sheet which has.

방향성 전기강판이란 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있는 것으로, 압연방향으로 극히 우수한 자기적특성을 갖고 있어 변압기, 발전기 및 기타 전기기기 등의 철심재료로 사용되고 있다. 방향성전기강판은, 입성장억제제인 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시키기 위하여 약 1400 ℃ 정도의 고온에서 4시간정도 고온재가열하여 생산하였다. 이때, 고온의 스라브 표면에서는 공기와의 산화반응으로 파이어라이트(Fe2SiO4)라는 산화물이 생기는데, 이산화물은 융점이 약 1340℃ 정도로 낮아 재가열시 표면에서 부터 녹아서 로(furnace) 내부로 흘리기 때문에 로내부수리 등의 문제를 일으켰다.A grain-oriented electrical steel sheet has an aggregate structure in which the orientation of grains is aligned in the direction of (110) [001]. It has very excellent magnetic properties in the rolling direction and is used as a core material for transformers, generators, and other electrical equipment. . The grain-oriented electrical steel sheet was produced by reheating the high temperature material for about 4 hours at a high temperature of about 1400 ° C. in order to completely disperse the precipitates which are grain growth inhibitors and then finely deposit them. At this time, on the surface of the hot slab, an oxide called Pyrite (Fe 2 SiO 4 ) is formed by oxidation with air, and since the melting point is about 1340 ° C., the dioxide melts from the surface and flows into the furnace when reheated. It caused problems such as internal repairs.

이러한 고온재가열에 따른 문제를 극복하기 위해 재가열온도를 파이어라이트 산화물이 녹지 않는 약 1350℃이하의 온도에서 가열하는 다양한 저온재가열법 기술들이 제안되고 있다. 이 기술들은 기본적으로 슬라브를 저온에서 재가열하고, 이를 기준으로 기본 성분계의 조정을 행하고, 이 성분설계에 부가하여 제조공정중의 석출물 관리기법 등에 관한 기술이다. 상기 저온재가열기술의 하나로서, 재래식 방향성전기강을 1250-1330℃의 부근에서 열처리하여 열간압연을 행하도록 하는 성분계가 개발되어 기존의 제조공정에서 추가적인 설비보완이나 신설이 없이도 작업이 가능한 새로운 제조방법이 확립되어 대한민국 특허출원 93-23751호에, 부가적인 요소기술들이 94-21388, 21389, 21390 및 21391호 등에 제안된 바 있다.In order to overcome the problems caused by the high temperature reheating, various low temperature reheating techniques have been proposed to heat the reheating temperature at a temperature of about 1350 ° C. or less where the pyrite oxide is not dissolved. These techniques basically reheat the slab at low temperature, adjust the basic component system on the basis of this, and in addition to this component design, it is a technique related to the precipitation management technique during the manufacturing process. As one of the low-temperature reheating technology, a component system was developed to heat the conventional directional electrical steel in the vicinity of 1250-1330 ° C. to perform hot rolling, and thus a new manufacturing method capable of working without additional equipment supplementation or new construction in the existing manufacturing process. In this case, additional element technologies have been proposed in Korean Patent Application No. 93-23751, 94-21388, 21389, 21390, and 21391.

이러한 저온재가열방향성 전기강판의 제조 공정은, 일반적으로 약 2-4%의 규소와 입성장억제제로 대부분 AlN이나 Si3N4를 함유하고 있는 성분계를 용해하여 스라브를 만든 후, 「재가열 및 열간압연→열연판소둔→1차냉간압연→탈탄소둔→2차냉간압연→회복소둔→용착방지제 도포→최종 마무리 고온소둔」등의 복잡한 공정으로 제품을 생산하고 있다.In the manufacturing process of such low-temperature reoriented electrical steel sheet, generally, about 2-4% of silicon and grain growth inhibitor are dissolved in a component system containing mostly AlN or Si 3 N 4 to make slab, and then reheating and hot rolling. → Hot Rolled Sheet Annealing → Primary Cold Rolling → Decarbonized Annealing → Secondary Cold Rolling → Recovery Annealing → Coating Anti-Adhesive → Final High Temperature Annealing.

그러나, 이 저온재가열법의 특징이 1차 냉간압연한 후 통상 0.60~0.70mm의 중간두께에서 탈탄소둔을 실시하여야 하므로 최종제품에서 잔류탄소량 관리를 위해서는 장시간의 탈탄을 필요로 하여 생산성이 저하되고, 또 이때 형성된 산화물층에 의한 표면경도 상승은 2차 압연시 꼬임현상 및 급속한 압연롤의 피로현상으로 압연생산성이 저하되고, 2회압연-2회소둔법이라는 공정부담에 의한 원가상승의 요인이 되고 있다.However, the characteristics of this low temperature reheating method should be decarbonized annealing at the intermediate thickness of 0.60 ~ 0.70mm after the first cold rolling. In addition, the increase in surface hardness due to the oxide layer formed at this time causes the reduction of rolling productivity due to the twisting phenomenon during the second rolling and the rapid fatigue of the rolling roll, and the increase of the cost due to the process burden such as the two rolling-twist annealing method. It is becoming.

결국, 2회압연을 1회압연으로 변경하고 후속하여 탈탄소둔을 실시하면, 기존의 탈탄생산성, 2차압연에 따르는 문제 모두를 해결할 수 있지만, 이를 위해서는 1차압연으로 수반되는 자성의 저하를 극복할 수 있어야 한다.As a result, if the second rolling is changed to one rolling and subsequently decarbonized annealing can solve all the problems of the existing decarburization productivity and the secondary rolling, but it overcomes the deterioration of the magnetic accompanying the first rolling. You should be able to.

따라서, 본 발명은 기존의 2차압연을 1차압연으로 변경하여 탈탄성과 압연생산성의 문제를 해결하면서도, 자기적특성을 보다 개선시킬 수 있는 저온 재가열 방향성 전기강판의 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention is to provide a method for manufacturing a low-temperature reheat oriented electrical steel sheet that can improve the magnetic properties while solving the problem of de-elasticity and rolling productivity by changing the existing secondary rolling to primary rolling. have.

상기 목적을 달성하기 위한 본 발명은, 중량%로 Si:2.9~3.3%, C:0.035~0.055%, P:0.015%이하, 산가용성Al:0.010~0.027%, N:0.0080~0.012%, S:0.007%이하, Mn:0.10-0.45%, Cu:0.10-0.60% 및 Fe와 기타 불가피하게 함유되는 되는 불순물로 이루어지는 규소강 스라브를 1250-1330℃의 온도에서 저온재가열하여 열간압연하고, 1050-1150℃의 온도에서 열연판소둔한 후 , 산세하고 이어 1회냉간압연으로 최종두께로 만든 다음, 습윤분위기에서 750-830℃의 온도로 탈탄소둔하고, 이어서 MgO를 주성분으로 하는 융착방지제를 도포한 다음, 600-700℃에서 1차균열하고 이어 15℃/hr이상의 승온율로 930-1000℃까지 승온하여 15-25시간 중간균열한 후 15℃/hr이상의 승온율 1190±20℃까지 승온하여 10시간이상 최종균열처리하는 최종마무리소둔공정을 포함하여 구성된다.The present invention for achieving the above object, Si: 2.9 ~ 3.3%, C: 0.035 ~ 0.055%, P: 0.015% or less, acid solubility Al: 0.010 ~ 0.027%, N: 0.0080 ~ 0.012%, S : 0.007% or less, Mn: 0.10-0.45%, Cu: 0.10-0.60%, and silicon steel slab made of Fe and other unavoidable impurities, by reheating at a temperature of 1250-1330 ° C. at low temperature, and hot rolling. After hot-rolled sheet annealing at a temperature of 1150 ℃, pickled and then made into a final thickness by one cold rolling, and then decarbonized annealing at a temperature of 750-830 ℃ in a wet atmosphere, and then applied with a fusion inhibitor containing MgO as a main component Next, the first crack at 600-700 ℃ and then the temperature increase rate of 15 ℃ / hr or more to 930-1000 ℃ 15 to 25 hours of intermediate cracking and then the temperature rising rate of 15 ℃ / hr or more to 1190 ± 20 ℃ 10 It consists of a final finishing annealing process that final cracks over time.

이하 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described.

본 발명이 속하는 저온재가열 방향성 전기강판의 제조분야에서는, 1차냉간압연으로 최종두께로 압연하게되면, 최종두께까지의 압하율이 커져서 가공에너지가 커지게 되고, 이에 따라 1차재결정립이 커져서 자성이 열악해지므로 생산성(탈탄생산성, 압연생산성)이 떨어지더라도 2차압연을 사용해왔다.In the manufacturing field of low-temperature reheating oriented electrical steel sheet to which the present invention belongs, when rolling to the final thickness by primary cold rolling, the reduction ratio to the final thickness is increased, the processing energy is increased, and thus the primary recrystallized grain is large and magnetic. Because of this deterioration, secondary rolling has been used even if the productivity (decarburization productivity, rolling productivity) decreases.

그런데, 본 발명자들은, 1차냉간압연을 실시하여도, 1차재결정립의 성장과 관계있는 열연판소둔공정, 탈탄소둔공정을 적절히 제어하여 1차재결정립의 성장을 가능한 억제하면서, 최종마무리소둔공정에서 2차재결정립을 크게 성장시키도록 중간균열을 행하는 3단계소둔을 채용하면 1차냉간압연으로 생산성을 크게 개선되고 자성이 더욱 향상되는 것을 발견하였다.By the way, the inventors of the present invention can control the hot-rolled sheet annealing process and the decarbonization annealing process related to the growth of the primary recrystallized grains even when the primary cold rolling is carried out, while suppressing the growth of the primary recrystallized grains, and finally finishing annealing. It was found that adopting three-stage annealing with intermediate cracking to greatly grow secondary recrystallized grains in the process greatly improves productivity and further improves magnetism by primary cold rolling.

이러한 본 발명에 적용되는 강종은, 기존에 저온재가열방향성 전기강판으로 널리 알려진 강종으로 그 성분한정이유를 설명하면 다음과 같다.The steel species to be applied to the present invention will be described as a steel grade, which is widely known as a low-temperature reheat oriented electrical steel sheet, as follows.

C는 AlN석출물의 미세 고용 분산에 유리하게 작용하고, 적정한 압연조직을 형성하게 하여 자기적특성이 우수한 집합조직을 유지시키는 역할을 한다. 이를 위해 0.035%이상 첨가하나 0.55%를 넘으면 탈탄공정에서의 생산성을 저해하므로 탄소는 0.035-0.55%로 첨가한다.C acts advantageously on the fine solid dispersion of AlN precipitates, and forms an appropriate rolled structure to maintain the aggregate structure having excellent magnetic properties. To this end, more than 0.035% is added, but more than 0.55% inhibits productivity in the decarburization process, so carbon is added at 0.035-0.55%.

Si는 전기강판의 기본 성분으로 소재의 비저항치를 증가시켜 철심손실 즉, 철손을 낮추는 역할을 하므로 이를 위해 2.9%이상 첨가하나, 첨가 함량이 3.3%를 넘는 경우에는 강이 취약해져 냉간압연성이 극히 나빠지므로 첨가함량은 2.9-3.3%로 한정한다.Si is a basic component of electrical steel sheet, which increases the resistivity of the material, thereby lowering the core loss, that is, iron loss. Therefore, more than 2.9% is added for this purpose. As it worsens, the amount of addition is limited to 2.9-3.3%.

Mn은 재가열시 석출물의 고용온도를 낮추며 열간압연시 소재 양끝 부분에 생성되는 크랙을 방지하는 역할을 하므로 0.10%이상 첨가하나 0.45%를 넘으면 탈탄소둔시 형성되는 Mn산화물에 의해 고온소둔시 형성되는 포스테라이트피막의 밀착성이 악화되므로 0.10-0.45%로 한정한다.Mn lowers the solid solution temperature of the precipitate during reheating and prevents cracks formed at both ends of the material during hot rolling. Therefore, when Mn is added above 0.10%, when Mn oxide is formed during de-carbon annealing, The adhesion of the ferrite film is deteriorated, so it is limited to 0.10-0.45%.

S은 열간압연시 판의 단부에 크랙을 유발하는 원소로 가능한 0.007%이하로 제한한다.S is limited to less than 0.007% of the elements that cause cracks at the end of the plate during hot rolling.

Al은 N과 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중심원소로 총량적인 Al관리가 아닌 산에서 녹을 수 있는 산가용성 Al량이 중요하다. 특히, 본 발명의 1회냉간압연법에서 0.010%미만에서는 2차재결정에 필요한 충분한 1차재결정 억제력을 갖지 못하기 때문에 결정립크기가 작고 불완전 미립자가 나타나 자속밀도가 낮고 철손이 나빠진다. 0.027%이상에서는 본 발명의 기본 요건중의 하나인 스라브 저가열시 AlN으로 충분히 고용되지 않아 이후 공정에서 필요한 석출물을 얻을 수 없어 2차재결정 형성을 매우 불안정하게 하여 자기적특성을 급격히 열화시키므로 0.027%이하로 제한한다.Al, together with N, forms the precipitate of AlN to secure grain growth inhibition. The amount of acid-soluble Al that can be dissolved in an acid is important, not the total amount of Al management. In particular, in the one-time cold rolling method of the present invention, the crystal grain size is small and incomplete fine particles appear due to insufficient primary recrystallization inhibitory force necessary for secondary recrystallization, resulting in low magnetic flux density and poor iron loss. At 0.027% or more, the slab low heat, which is one of the basic requirements of the present invention, is not sufficiently employed as AlN, so it is not possible to obtain a precipitate required in a subsequent process, which makes the secondary recrystallization very unstable and rapidly deteriorates the magnetic properties. Limited to

N는 산가용성 Al과 반응하여 석출물을 형성하여 1차재결정의 입성장억제제로 작용하므로 2차재결정에 있어서 필수적인 성분이며, 0.0080%이하에서는 석출물의 형성이 부족하게 되고, 0.012%이상 첨가하면 강판표면에 브리스터라는 결함이 생겨 제품이 표면특성을 열화시키므로 과잉 함유를 억제한다.N is an essential component in secondary recrystallization because it forms precipitates by reacting with acid-soluble Al and is an essential ingredient for secondary recrystallization. Below 0.0080%, the formation of precipitates is insufficient. The defect, called an aster, causes the product to deteriorate its surface properties, thus suppressing excess content.

Cu는 고온소둔중 집합조직을 조정하여 방향성을 얻게 하는 원소로서 0.10%미만에서는 그런 효과가 없어 자기적특성을 나쁘게 하고 0.60%를 초과하게 되면 탈탄소둔시 형성되는 산화물이 절연피막 형성에 악 영향을 줄 뿐만 아니라 2차재결정립의 크기를 거대하게 하여 방향성은 좋으나 철손값이 열화되므로 총 Cu량은 0.60%까지로 한정한다.Cu is an element that obtains the direction by adjusting the texture during high temperature annealing. If it is less than 0.10%, it does not have such an effect, and the magnetic property deteriorates. When Cu exceeds 0.60%, the oxide formed during decarbonization annealing adversely affects the formation of the insulating film. In addition to the size, the secondary recrystallized grains have a large size and good orientation, but the iron loss value is deteriorated, so the total amount of Cu is limited to 0.60%.

이상의 성분계는 스라브 재가열온도를 낮게하면서 1차압연으로 방향성 전기강판을 생산할 수 있는 기본 성분조건이다. 이 성분계를 사용하면 스라브 가열온도를 통상 일반 탄소강의 재가열온도인 1250℃ 정도에서 조업을 행하여도 자기적특성의 확보가 가능하나, 재가열온도가 1330℃를 넘으면 전기강판 스라브의 표면 스케일이 용융하여 가열로 작업성을 크게 해치므로 제철소에서 가장 경제적이고 용이한 1250-1330℃로 한정한다.The above component system is a basic component condition capable of producing a grain-oriented electrical steel sheet by primary rolling while lowering the slab reheating temperature. Using this component system, the magnetic properties can be secured even when the slab heating temperature is operated at about 1250 ℃, which is the reheating temperature of ordinary carbon steel, but when the reheating temperature exceeds 1330 ℃, the surface scale of the electrical steel slab is melted and heated. As it greatly impairs workability, it is limited to 1250-1330 ℃ which is the most economical and easy in steel mill.

이와 같이 저온재가열한 후 스라브를 열간압연하는데, 이때 열연판의 두께는 1회냉간압연시 적정 압하율을 확보하기 위해서 예를들어 1.5-2.0mm의 두께로 하는 것이 바람직하다.The slab is hot rolled after the low temperature reheating. In this case, the thickness of the hot rolled sheet is preferably 1.5-2.0 mm, for example, in order to secure an appropriate reduction ratio during cold rolling.

상기 열연판을 소둔하는데, 이는 2차재결정에 필요한 억제제인 석출물들을 미세화시켜 1차재결정립성장을 억제하도록 하여야 한다. 이를 위해 열연판소둔은 1050-1150℃의 온도에서 행하는 것이 바람직하다. 그 이유는 열연판소둔온도가 1050℃미만의 경우 석출물미세화 효과가 없고 1150℃를 넘으면 집합조직을 해쳐 자기적특성을 악화시킨다.The hot rolled sheet is annealed, which should be made to refine the precipitates, which are inhibitors necessary for secondary recrystallization, to inhibit primary recrystallized grain growth. For this purpose, hot-rolled sheet annealing is preferably carried out at a temperature of 1050-1150 ℃. The reason is that if the hot-rolled sheet annealing temperature is less than 1050 ℃, the precipitate fineness effect is not effective, and if it exceeds 1150 ℃, it damages the texture and worsens the magnetic properties.

상기와 같이 열연판소둔한 다음, 산세후 1차냉간압연하여 최종두께로 한다. 이때의 1차냉간압연은, 통상의 방법대로 냉간압연에 따라 판에 발생하는 열을 제어(注水에 의해)하여 행하는데, 이때의 판온도는 방향성이 우수한 집합조직을 얻기 위해 150℃이상이 되도록 하여 냉간압연하는 것이 바람직하다.After hot-rolled sheet annealing as described above, the primary cold rolling after pickling to obtain the final thickness. At this time, the primary cold rolling is performed by controlling the heat generated in the plate according to the cold rolling in a usual manner (by water). At this time, the plate temperature is set to 150 ° C or higher in order to obtain an excellent directional texture. Cold rolling is preferable.

상기와 같이 1차냉간압연을 행하여 냉연판을 얻은 다음, 탈탄소둔을 하는데, 이때의 탈탄소둔은 기존에 비해 저온화하여 1차재결정립의 성장을 억제한다. 즉, 750-830℃의 습윤분위기에서 탈탄소둔을 하는데, 이는 750℃미만에서는 탈탄이 미흡하여 자기시효 현상이 발생하고, 830℃ 초과하면 1차재결정립이 적정 크기 보다 커져 2차재결정 구동력을 약화시켜 좋은 자성을 확보하기 어렵기 때문이다.As described above, the first cold rolling is performed to obtain a cold rolled plate, followed by decarbonization annealing. At this time, decarbonization annealing is lowered than before to inhibit growth of primary recrystallized grains. That is, decarbonization annealing is carried out in a humid atmosphere of 750-830 ℃. In case of less than 750 ℃, decarburization is insufficient and self-aging occurs.If it exceeds 830 ℃, the primary recrystallized grain becomes larger than the appropriate size, weakening the secondary recrystallization driving force. Because it is difficult to secure good magnetism.

상기와 같이 탈탄소둔후 MgO를 주성분으로 하는 융착방지제를 도포한후 권취하여 대형코일로 만든다음, 최종마무리소둔을 행하는데, 본 발명의 최종마무리소둔은 기존의 2단계소둔을 중간균열을 추가한 3단계소둔으로 행하는데 특징이 있다. 이는 1차냉간압연에 따라 1차재결정립의 성장으로 2차재결정립의 성장구동력이 저하되는 것을 막기 위한 것이다.After decarbonization annealing as described above, after applying the anti-fusion agent containing MgO as a main component, it is wound to make a large coil, and then subjected to final finishing annealing, the final finishing annealing of the present invention is to add an intermediate crack to the existing two-stage annealing It is characterized by three stages of annealing. This is to prevent the growth driving force of the secondary recrystallized grains from lowering due to the growth of the primary recrystallized grains according to the primary cold rolling.

구체적으로 본 발명의 3단계 최종마무리소둔을 설명하면, 다음과 같다.Specifically, the third stage of final annealing of the present invention will be described.

먼저, 1단계로, 8-30%의 질소가 함유된 수소분위기에서 표면품질을 확보하기 위해 통상의 방법대로 600-700℃로 가열한 후 15-25시간정도 균열처리한다. 이어 2단계로, 15℃/hr이상의 승온속도로 930-1000℃까지 승온하여 15-25시간 정도 균열처리한다. 이때, 승온속도가 15℃/hr미만이거나 또는 균열시간이 15시간 미만이면 2차재결정이 작게되어 자기적특성을 나쁘게 하며 균열온도가 1000℃이상이거나 균열시간이 25시간 초과하면 2차재결정이 일어나도 방향성이 나빠져서 우수한 자기적특성을 얻을 수 없으므로 위와 같이 한정한다. 이어 3단계로, 승온속도를 15℃/hr이상 유지하여 1190±20℃의 온도로 가열하여 강을 순화처리하기 위한 통상의 조건인 100% 수소분위기로 10시간 이상 균열한 후 냉각하는 고온소둔을 한다.First, in the first step, in order to secure the surface quality in a hydrogen atmosphere containing 8-30% of nitrogen, after heating to 600-700 ℃ according to the conventional method and cracking for about 15-25 hours. Subsequently, in two steps, the temperature is raised to 930-1000 ° C. at a temperature rising rate of 15 ° C./hr or more, and cracked for about 15-25 hours. At this time, if the temperature rising rate is less than 15 ° C / hr or the cracking time is less than 15 hours, the secondary recrystallization becomes small and the magnetic properties are deteriorated. If the cracking temperature is more than 1000 ° C or the cracking time is more than 25 hours, the secondary recrystallization occurs. It is limited to the above because the directionality is deteriorated and excellent magnetic properties cannot be obtained. In the third step, maintaining the temperature rise rate of 15 ℃ / hr or more, and heated to a temperature of 1190 ± 20 ℃ by heating at 100% hydrogen atmosphere, which is a normal condition for purifying the steel for more than 10 hours after the high temperature annealing do.

본 발명의 구성에 있어서 1차냉간압연을 행하고, 이에 수반되는 1차재결정립성장을 억제하여 자기적특성을 개선하고자 행하는 열연판소둔온도, 탈탄소둔온도, 최종마무리소둔의 조건들을 제외한 기타공정조건은, 당업자라면 통상의 조건으로 그 변경이 가능하며, 그러한 변경이 본 발명의 사상 및 범위를 벗어나는 것이 아니라 해석되는 것이 당연하다.In the configuration of the present invention, the primary cold rolling is carried out, and other process conditions except for the conditions of hot-rolled sheet annealing temperature, decarbonization annealing, and final finishing annealing are performed to improve the magnetic properties by inhibiting primary recrystallized grain growth. The changes can be made by those skilled in the art under ordinary conditions, and it is natural that such changes are interpreted without departing from the spirit and scope of the present invention.

이하 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

중량비로 Si:3.05%, C:0.041%, P:0.015%, 산가용성Al:0.020%, N:0.0098%, S:0.005%, Mn:0.37%, Cu:0.44%이고 나머지 Fe로 조성되는 220mm두께의 스라브를 만들었다. 이것을 표면용융이 없는 1290℃의 온도에서 3.5시간 저온재가열한후 열간압연하여 2.0mm 두께로 열연판을 얻었다. 이어 900-1200℃에서 열연판소둔을 시행하고 산세후 최종두께인 0.30mm로 50-250℃의 온도에서 냉간압연을 행하고, 이 압연판을 이용하여 습한 25%H2+75%N2분위기가스에서 850℃의 온도로 3분간 탈탄소둔을 하였다. 이러한 탈탄소둔판에 MgO를 주성분으로 하는 융착방지제를 도포하고 건조한 다음 각각 권취하여 대형코일로 만든다음 최종 고온소둔을 행하였다. 이때, 최종마무리소둔은 8-30%의 질소가 함유된 수소분위기에서 시간당 120℃의 승온율로 600℃까지 가열한 후 20시간 균열처리하고, 이어 18℃/hr의 승온율로 950℃까지 승온하여 20시간 균열처리한 다음, 18℃/hr의 승온율로 1200℃까지 가열한 다음 100%수소분위기로 15시간 균열한 후 냉각하는 열사이클을 거쳐 최종제품을 만들었다. 이때, 열연판 소둔온도와 냉간압연온도에 따른 마무리소둔후 자기적특성을 조사하여 아래 표 1에 나타내었다.Si: 3.05%, C: 0.041%, P: 0.015%, Acid Soluble Al: 0.020%, N: 0.0098%, S: 0.005% by weight, Mn: 0.37%, Cu: 0.44% A thick slab was made. This was reheated at a temperature of 1290 ° C. without surface melting for 3.5 hours, followed by hot rolling to obtain a hot rolled sheet having a thickness of 2.0 mm. Then hot-rolled sheet annealing at 900-1200 ℃ and cold rolling at a temperature of 50-250 ℃ to 0.30mm, the final thickness after pickling, using this rolled plate wet 25% H 2 + 75% N 2 atmosphere gas Decarbonization annealing was carried out at a temperature of 850 ° C. for 3 minutes. The decarbonized annealing plate was coated with a fusion inhibitor containing MgO as a main component, dried, and then wound up to make a large coil, followed by final high temperature annealing. At this time, the final finishing annealing is heated to 600 ℃ at a heating rate of 120 ℃ per hour in a hydrogen atmosphere containing 8-30% of nitrogen and then cracked for 20 hours, and then heated up to 950 ℃ at a heating rate of 18 ℃ / hr After 20 hours of cracking, the resulting product was heated to 1200 ° C. at a heating rate of 18 ° C./hr, and then cracked for 15 hours in a 100% hydrogen atmosphere, followed by a thermal cycle of cooling. At this time, the magnetic properties after the finish annealing according to the hot rolled sheet annealing temperature and cold rolling temperature are shown in Table 1 below.

구분division 열연판 소둔온도(℃)Hot Rolled Annealing Temperature (℃) 냉간압연온도(℃)Cold rolling temperature (℃) 철손,W17/50(w/kg) Iron loss, W 17/50 (w / kg) 종래재aConventional material a 900900 5050 1.761.76 비교재bComparative material b 950950 150150 1.741.74 비교재cComparative material c 10501050 100100 1.391.39 발명재dInvention 10501050 150150 1.251.25 발명재eInvention 11501150 250250 1.221.22 비교재fComparative material f 12001200 200200 1.471.47

상기 표 1에 나타난 바와 같이, 열연판소둔온도가 1050-1150℃의 온도에서 양호한 철손특성을 나타내나, 냉간압연 온도가 150℃이상에서 더욱 우수한 철손특성을 나타내고 있다. 그러나, 이 범위를 벗어난 비교재 및 종래재 경우에는 자기적특성이 급속히 불량해지는 것으로 나타나 본 발명의 범위에서 제외하였다.As shown in Table 1, the hot rolled sheet annealing temperature shows good iron loss characteristics at a temperature of 1050-1150 ℃, cold rolling temperature is more excellent than the iron loss characteristics at 150 ℃ or more. However, in the case of the comparative material and the conventional material outside this range, the magnetic properties were rapidly deteriorated, and thus were excluded from the scope of the present invention.

[실시예 2]Example 2

실시예 1의 두께 0.30mm의 압연판을 이용하여 이슬점온도 50-58℃정도의 습수소분위기에서 700-850℃의 소둔온도범위에서 탈탄소둔을 실시한 다음, MgO를 주성분으로 하는 융착방지제를 도포하고 건조한 후 각각 권취하여 대형코일로 만든 다음, 실시예 1과 같이 최종 마무리소둔공정을 행한다. 이때 탈탄소둔후의 잔류탄소아 마무리소둔후의 자기적특성을 조사하여 아래 표 2에 나타내었다.Decarbonization annealing was carried out in an annealing temperature range of 700-850 ° C. in a wet hydrogen atmosphere at a dew point temperature of 50-58 ° C. using a rolled plate having a thickness of 0.30 mm of Example 1, followed by coating a fusion inhibitor containing MgO as a main component. After drying, each was wound up to form a large coil, followed by a final finishing annealing process as in Example 1. At this time, the magnetic properties after finishing carbon annealing after decarbonization annealing were investigated and are shown in Table 2 below.

구분division 탈탄온도(℃)Decarburization Temperature (℃) 탈탄시간(분)Decarburization time (min) 잔류탄소(%)Residual carbon (%) 철손,W17/50(w/kg) Iron loss, W 17/50 (w / kg) 비교재1Comparative Material 1 700700 33 0.00850.0085 1.351.35 비교재2Comparative Material 2 720720 55 0.00640.0064 1.321.32 발명재3Invention 3 750750 1One 0.00550.0055 1.301.30 발명재4Invention 4 750750 33 0.00420.0042 1.271.27 발명재5Invention 5 800800 33 0.00290.0029 1.221.22 비교재6Comparative Material 6 830830 77 0.00220.0022 1.471.47 비교재7Comparative Material7 850850 33 0.00180.0018 1.651.65

상기 표 2에 나타난 바와 같이, 본 발명에서 제안한 탈탄소둔조건에서는 우수한 자기적특성을 나타내었으나 탈탄소둔온도가 너무 낮은 경우 잔류탄소가 많이 존재하여 자기시효현상이 나타날 수 있으며, 소둔온도를 830℃이상 상향시에는 자기적특성중의 하나인 철손이 나빠져 본 발명의 범위에서 제외하였다.As shown in Table 2, the decarbonization annealing conditions proposed by the present invention showed excellent magnetic properties, but when the decarbonization annealing temperature is too low, a large amount of residual carbon may be present, resulting in a self aging phenomenon. In the upward direction, iron loss, which is one of magnetic properties, is worsened and excluded from the scope of the present invention.

[실시예 3]Example 3

실시예 1의 두께 0.30mm의 압연판을 이용하여 이슬점온도 50-58℃정도의 습한 수소분위기에서 800℃에서 탈탄소둔을 3분간 실시한 다음, MgO를 주성분으로 하는 융착방지제를 도포하고 건조한 다음 각각 권취하여 대형코일로 만든 다음, 최종마무리소둔을 8-30%의 질소가 함유된 수소분위기에서 시간당 120℃의 승온율로 600℃까지 가열한 후 25시간 1차 균열처리하고, 이어서 15℃/hr이상의 승온율로 850-1150℃까지 승온하여 15-30시간 중간균열처리한 다음, 승온율을 15℃/hr이상 유지하여 1180℃까지 가열한 다음, 100%수소분위기로 1180℃의 온도에서 20시간 균열한 후 냉각하는 열사이클을 거치는 마무리소둔을 행함으로서 중간균열조건에 따른 자기적특성을 조사하여 아래 표 3과 표 4에 나타내었다.Using a rolled plate of 0.30 mm thickness in Example 1, decarbonization annealing was carried out at 800 ° C. for 3 minutes in a humid hydrogen atmosphere with a dew point temperature of 50-58 ° C., followed by applying and drying MgO-based fusion inhibitor. After making it into a large coil, the final finishing annealing was heated to 600 ° C. at an elevated temperature of 120 ° C. per hour in a hydrogen atmosphere containing 8-30% nitrogen, followed by primary cracking for 25 hours, and then 15 ° C./hr or more. After heating up to 850-1150 ℃ for 15-30 hours by intermediate temperature cracking, the temperature was maintained at 15 ℃ / hr or more and heated to 1180 ℃, and then cracked for 20 hours at 1180 ℃ with 100% hydrogen atmosphere. After performing the annealing through the heat cycle to cool after cooling to investigate the magnetic properties according to the intermediate cracking conditions are shown in Table 3 and Table 4 below.

구분division 중간균열온도(℃)Medium cracking temperature (℃) 중간균열시간(분)Intermediate Crack Time (min) 철손,W17/50(w/kg) Iron loss, W 17/50 (w / kg) 표면품질Surface quality 비교재1Comparative Material 1 없음none 없음none 2.012.01 양호Good 비교재2Comparative Material 2 850850 2525 1.751.75 양호Good 비교재3Comparative Material 3 930930 1515 1.451.45 양호Good 발명재4Invention 4 930930 2020 1.251.25 양호Good 발명재5Invention 5 980980 2525 1.221.22 양호Good 발명재6Invention 6 10001000 1515 1.231.23 양호Good 비교재7Comparative Material7 980980 3030 1.221.22 불량Bad 비교재8Comparative Material 8 10501050 2020 1.531.53 양호Good 비교재9Comparative Material 9 11501150 2020 1.791.79 불량Bad

구분division 승온율(℃/hr )Temperature rise rate (℃ / hr) 철손,W17/50(w/kg) Iron loss, W 17/50 (w / kg) 표면품질Surface quality 600-930℃600-930 ℃ 930-1200℃930-1200 ℃ 비교재1Comparative Material 1 1010 1010 1.691.69 양호Good 발명재2Invention 2 1515 1515 1.241.24 양호Good 발명재3Invention 3 2525 2525 1.221.22 양호Good

상기 표 3에 나타난 바와 같이, 중간균열온도 930-1000℃에서 15-25시간 정도 균열처리시 자기적특성을 안정적으로 확보할 수 있었으며, 재로시간이 너무 짧을 경우는 자성을 확보할 수 없으며, 반대로 너무 길경우는 외관품질이 나빠지는 것을 알 수 있었다.As shown in Table 3 above, when the cracking process was performed for 15-25 hours at the intermediate crack temperature of 930-1000 ° C., the magnetic properties were stably secured. If the time was too short, the magnetic properties could not be secured. If too long, the appearance quality was found to be poor.

특히, 중간균열소둔을 처리하지 않거나 또는 중간균열온도가 낮거나 높은 경우에도 자성이 매우 불량하였다.In particular, even when the intermediate crack annealing is not treated or the middle crack temperature is low or high, the magnetism was very poor.

또한, 표 4에서는 승온율에 따른 자성변화를 나타내었는데, 15℃이상에서는 모두 자성을 확보할 수 있었으나 승온율이 15℃/hr미만의 낮은 승온조건에서는 자성이 불량하였다.In addition, the magnetic change according to the temperature increase rate is shown in Table 4, but all of the magnetic properties could be secured at 15 ° C. or higher, but the magnetic properties were poor at low temperature rising conditions of less than 15 ° C./hr.

상술한 바와 같이, 본 발명은 기존의 저온재가열하여 방향성 전기강판의 제조방법에 있어서 1차냉간법을 이용하므로 산화물이 없는 상태에서 압연을 행함으로써 압연생산성을 높일 수 있으며, 또한 최종두께에서 탈탄소둔을 행함으로써 탈탄성이 향상되고 부가적으로 공정단축의 효과도 얻어지는등 경제적으로 자기적특성이 우수한 방향성 전기강판을 제조하는데 효과가 있다.As described above, the present invention uses the primary cold method in the conventional method for producing a grain-oriented electrical steel sheet by heating the low temperature material, so that rolling productivity can be increased by rolling in the absence of oxide, and decarbonized annealing at the final thickness. It is effective in producing a grain-oriented electrical steel sheet having excellent magnetic properties economically, such as improved decarburization and additionally shortening the process.

Claims (1)

중량%로 Si:2.9~3.3%, C:0.035~0.055%, P:0.015%이하, 산가용성Al:0.010~0.027%, N:0.0080~0.012%, S:0.007%이하, Mn:0.10-0.45%, Cu:0.10-0.60% 및 Fe와 기타 불가피하게 함유되는 되는 불순물로 이루어지는 규소강 스라브를 1250-1330℃의 온도에서 저온재가열하는 공정을 포함한 저온재가열 방향성 전기강판의 제조방법에 있어서, 상기와 같이 저온재가열하여 열간압연하고, 1050-1150℃의 온도에서 열연판소둔한 후 , 산세하고 이어 1차냉간압연으로 최종두께로 만든 다음, 습윤분위기에서 750-830℃의 온도로 탈탄소둔하고, 이어서 MgO를 주성분으로 하는 융착방지제를 도포한 다음, 600-700℃에서 1차균열하고 이어 15℃/hr이상의 승온율로 930-1000℃까지 승온하여 15-25시간 중간균열한 후 15℃/hr이상의 승온율로 1190±20℃까지 승온하여 10시간이상 최종균열처리하는 최종마무리소둔공정을 포함하여 이루어짐을 특징으로 하는 자성 및 생산성이 우수한 스라브저온 재가열 방향성 전기기강판의 제조방법.Si: 2.9 ~ 3.3%, C: 0.035 ~ 0.055%, P: 0.015% or less, acid soluble Al: 0.010 ~ 0.027%, N: 0.0080 ~ 0.012%, S: 0.007% or less, Mn: 0.10-0.45 In the method for producing a low-temperature reheat oriented electrical steel sheet comprising a step of reheating a silicon steel slab composed of%, Cu: 0.10-0.60% and Fe and other inevitable impurities at a temperature of 1250-1330 ° C, Like the low-temperature reheating and hot rolling, hot-rolled sheet annealing at a temperature of 1050-1150 ℃, then pickled and then made the final thickness by primary cold rolling, and then decarbonized to a temperature of 750-830 ℃ in a wet atmosphere After applying MgO-based fusion preventive agent, first crack at 600-700 ℃, and then increase the temperature to 930-1000 ℃ with a temperature increase rate of 15 ℃ / hr or more, and after 15-25 hours intermediate crack, It includes the final finishing annealing process of raising the temperature to 1190 ± 20 ℃ at the temperature raising rate and performing final cracking treatment for 10 hours or more. The method as claimed in the W yirueojim magnetic and has excellent low-temperature slab reheating oriented electrical steel sheet production group.
KR1019980028560A 1998-07-15 1998-07-15 Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating KR20000008646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980028560A KR20000008646A (en) 1998-07-15 1998-07-15 Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980028560A KR20000008646A (en) 1998-07-15 1998-07-15 Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating

Publications (1)

Publication Number Publication Date
KR20000008646A true KR20000008646A (en) 2000-02-07

Family

ID=19544258

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980028560A KR20000008646A (en) 1998-07-15 1998-07-15 Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating

Country Status (1)

Country Link
KR (1) KR20000008646A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342400B2 (en) 2016-05-20 2019-07-09 Lg Electronics Inc. Autonomous cleaner
US10342405B2 (en) 2016-05-20 2019-07-09 Lg Electronics Inc. Autonomous cleaner
US10398276B2 (en) 2016-05-20 2019-09-03 Lg Electronics Inc. Autonomous cleaner
US10524628B2 (en) 2016-05-20 2020-01-07 Lg Electronics Inc. Autonomous cleaner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342400B2 (en) 2016-05-20 2019-07-09 Lg Electronics Inc. Autonomous cleaner
US10342405B2 (en) 2016-05-20 2019-07-09 Lg Electronics Inc. Autonomous cleaner
US10398276B2 (en) 2016-05-20 2019-09-03 Lg Electronics Inc. Autonomous cleaner
US10524628B2 (en) 2016-05-20 2020-01-07 Lg Electronics Inc. Autonomous cleaner

Similar Documents

Publication Publication Date Title
US8333846B2 (en) Manufacturing method of oriented SI steel with high electric-magnetic property
KR950013286B1 (en) Method of making non-oriented magnetic steel strips
KR101353550B1 (en) Grain-oriented electrical steel sheet and manufacturing method for the same
KR20000008646A (en) Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating
KR100940718B1 (en) A method for manufacturing grain-oriented electrical steel sheet without hot band annealing
KR20010060645A (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
KR100268855B1 (en) The manufacturing method of oriented steelsheet with low reheat treatment
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR101633629B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR100256342B1 (en) The manufacturing method for oriented electric steel sheet with magnetic and decarburing property
KR100276305B1 (en) The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity
KR100340506B1 (en) A Method of spraying MgO agent on Oriented Electrical Steel Sheet for Preventing Sticking of its edge parts
KR100276283B1 (en) The manufacturing method for low reheated orient electric steel sheet with excellent magnetic and decarburizing property
KR101539752B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR100340565B1 (en) A method of preventing sticking in the edge part of grain oriented electrical steel sheet
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
KR100360096B1 (en) The method of manufacturing grain oriented silicon steel by low heating
KR101621056B1 (en) Method for manufacturing oriented electrical steel sheet
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR100340500B1 (en) A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time
KR100501004B1 (en) A method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
KR100501005B1 (en) A method for manufacturing grain oriented electrical steel sheet
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
KR20230095261A (en) Grain-oriented electrical steel sheet and method of manufacturing thereof

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination