KR20020044243A - A method for manufacturing grain oriented electrical steel sheet with superior magnetic property - Google Patents

A method for manufacturing grain oriented electrical steel sheet with superior magnetic property Download PDF

Info

Publication number
KR20020044243A
KR20020044243A KR1020000073233A KR20000073233A KR20020044243A KR 20020044243 A KR20020044243 A KR 20020044243A KR 1020000073233 A KR1020000073233 A KR 1020000073233A KR 20000073233 A KR20000073233 A KR 20000073233A KR 20020044243 A KR20020044243 A KR 20020044243A
Authority
KR
South Korea
Prior art keywords
steel sheet
oriented electrical
annealing
less
rem
Prior art date
Application number
KR1020000073233A
Other languages
Korean (ko)
Inventor
차상윤
한찬희
우종수
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000073233A priority Critical patent/KR20020044243A/en
Publication of KR20020044243A publication Critical patent/KR20020044243A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

PURPOSE: A method for manufacturing grain oriented electrical steel sheet with superior magnetic property is provided, in which with the addition of REM, slab reheating temperature is lowered, and moreover nitriding treatment in sequent processes can be omitted. CONSTITUTION: The method includes the steps of reheating a steel slab comprising C 0.02-0.1 wt.%, Si 1.0-4.8 wt.%, Mn 0.2 wt.% or less, S 0.035 wt.% or less, Al 0.005-0.02 wt.%, N 0.005 wt.% or less, Cu 0.1-0.25 wt.%, 0.04 wt.%<=REM<=0.13 wt.%, a balance of Fe and other inevitable impurities in the temperature range of 1200 to 130 0°C followed by hot rolling; annealing the hot rolled steel sheet in the temperature range of 900 to 1150°C; and then cold rolling, decarburizing annealing, and hot annealing.

Description

자기특성이 우수한 방향성 전기강판의 제조방법{A METHOD FOR MANUFACTURING GRAIN ORIENTED ELECTRICAL STEEL SHEET WITH SUPERIOR MAGNETIC PROPERTY}A method for manufacturing oriented electrical steel sheets with excellent magnetic properties {A METHOD FOR MANUFACTURING GRAIN ORIENTED ELECTRICAL STEEL SHEET WITH SUPERIOR MAGNETIC PROPERTY}

본 발명은 변압기 등 전기기기의 철심재료로 사용되는 방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 소강성분 중 REM(희토류원소)를 첨가하여 용이하게 억제제를 형성시킴으로써, 우수한 자기특성을 제공하는 방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used as an iron core material of an electric device such as a transformer, and more particularly, by adding REM (rare earth element) in a small steel component to easily form an inhibitor, thereby providing excellent magnetic properties. It relates to a method for producing a grain-oriented electrical steel sheet.

방향성 전기강판은 압연방향으로 {110}<001>방위의 집합조직을 발달시킨 것으로, 미국특허 제1,965,559호에 처음으로 그 제조방법이 제시된 이래, 많은 개선과 더불어 새로운 제조방법이 제시되어 왔다. 이러한 방향성 전기강판의 제조에 있어서 공통적인 것은, 억제제라 불리는 1차 재결정된 결정립의 성장을 억제시키는 석출물이나 입계편석원소를 이용하는 것이다. 즉, 이러한 억제제는 1차 재결정된 결정립의 성장을 억제하고, 성장이 억제된 결정립들 중에서 {110}<001>방위의 결정립들이 우선적으로 성장하도록 하는 역할을 하는 것이다. 이를 2차 재결정이라 하며, 이와 같이 적절한 억제제를 사용하여 {110}<001>방위의 2차 재결정립을 압연방향으로 발달시키는 것이 방향성 전기강판 제조기술의 핵심이다.A grain-oriented electrical steel sheet has developed a {110} <001> agglomerate structure in the rolling direction. Since the manufacturing method was first presented in US Patent No. 1,965,559, a new manufacturing method has been proposed with many improvements. Common in the production of such grain-oriented electrical steel sheet is the use of precipitates and grain boundary segregation elements that inhibit the growth of primary recrystallized crystal grains called inhibitors. In other words, such inhibitors inhibit the growth of primary recrystallized grains, and play a role of preferentially growing grains of the {110} <001> orientation among the grains whose growth is suppressed. This is called secondary recrystallization, and the development of secondary recrystallized grains in the {110} <001> orientation in the rolling direction using an appropriate inhibitor is the core of the oriented electrical steel sheet manufacturing technology.

석출물들이 억제제로서의 제기능을 하기 위해서 갖추어야 할 조건은 다음과 같다. 즉, 1차 재결정립의 성장이 2차재결정이 일어나기 직전까지 억제되도록, 석출물들이 충분한 양과 적절한 크기로 고르게 분포되어 있어야 하고, 2차 재결정이 일어나기 직전인 고온까지 열적으로 안정하여 쉽게 분해되지 않도록 해야 한다. 이와 같은 조건을 만족하는 것으로는 MnS, AlN, MnSe 등이 있다.The conditions for the precipitates to function as inhibitors are as follows. That is, the precipitates should be evenly distributed in sufficient quantity and in an appropriate size so that the growth of the primary recrystallization is prevented until just before the secondary recrystallization occurs, and it is thermally stable to the high temperature just before the secondary recrystallization occurs and is not easily decomposed. do. Such conditions include MnS, AlN, MnSe, and the like.

현재 공업적으로 생산되고 있는 방향성 전기강판의 제조에서는, 억제제로서 이들 MnS, AlN, MnSe와 같은 석출물을 단독 또는 조합하여 이용하고 있는데, 대표적인 것으로는, MnS만을 억제제로 이용하는 방법, MnS+AlN을 억제제로 이용하는 방법, MnS(Se)+Sb를 억제제로 이용하는 방법이 있다. 이들 방법은, 이용하는 억제제의 종류에 따라 최종 2차재결정 조직을 얻기 위한 소둔(2차 재결정소둔 또는 고온소둔이라 함) 전까지 1회 압연-1회 소둔하는 것과 2회 압연-2회 소둔하는 것이 있다. 이는 앞서 설명한 억제제의 역할을 극대화하기 위해 적절하게 제조공정을 구성한 것이다.In the production of the grain-oriented electrical steel sheet currently produced industrially, precipitates such as MnS, AlN, and MnSe are used alone or in combination as inhibitors. Representatively, MnS + AlN is a method of using only MnS as an inhibitor. And MnS (Se) + Sb as an inhibitor. These methods include one rolling-1 annealing and two rolling-2 annealing before annealing (called secondary recrystallization annealing or high temperature annealing) to obtain a final secondary recrystallized structure, depending on the type of inhibitor used. . This is to properly configure the manufacturing process in order to maximize the role of the inhibitor described above.

상기 MnS를 억제제로 이용하는 방법의 일례로, M. F. Littmann에 의한 일본특공소30-3651호는, 중간소둔을 포함한 2회 냉간압연을 통해 안정적인 2차 재결정 조직을 얻을 수 있는 기술을 개시하고 있으나, 이 방법으로는 높은 자속밀도를 얻을 수 없고, 또한 2회 냉간압연으로 인해 제조가가 비싸지는 문제가 있다.As an example of the method of using the MnS as an inhibitor, Japanese Patent Application No. 30-3651 by MF Littmann discloses a technique for obtaining a stable secondary recrystallized structure through two cold rolling including intermediate annealing. There is a problem that a high magnetic flux density cannot be obtained by the method, and the manufacturing cost is high due to two cold rolling.

상기 MnS+AlN을 이용하는 방법의 일례로는, 일본특공소40-15644호 개시된 기술이 있는데, 이 방법에서는 80% 이상의 높은 압하율로 1회 냉간압연하여 방향성전기강판을 제조하여 자속밀도가 높은 제품을 얻을 수 있는 장점이 있다. 그러나, 공업적인 생산시 각 공정조건을 엄격히 제어해야 하는 어려움이 있다.As an example of the method using MnS + AlN, there is a technique disclosed in Japanese Unexamined Patent Application Publication No. 40-15644. In this method, cold rolling is performed once at a high reduction ratio of 80% or more to produce a grain-oriented electrical steel sheet, and a product having high magnetic flux density. There is an advantage to get it. However, in industrial production, it is difficult to strictly control each process condition.

상기 MnS(또는 MnSe)+Sb를 이용하여 방향성 전기강판을 제조하는 기술로는, 일본특공소51-13469호의 기술이 있는데. 이 방법은 높은 자속밀도를 얻을 수 있으나 2회 냉간압연을 행해야 하고 유독성이 있으며, 고가인 Sb와 Se과 같은 원소를 사용하는 단점이 있다.As a technique for producing a grain-oriented electrical steel sheet using the MnS (or MnSe) + Sb, there is a technique of Japanese Patent Application No. 51-13469. This method has a high magnetic flux density but has to be cold rolled twice and toxic and has the disadvantage of using expensive elements such as Sb and Se.

그러나, 상기 기술들은 상기한 문제점 보다 더욱 근본적인 문제점을 안고 있다. 즉, 각각의 방법에 있어서, 원하는 크기와 분포를 갖는 석출물을 얻어 억제제로 이용하기 위해서는, 열간압연을 행하기 전에 슬라브를 고온으로 재가열해야 하는 것이다. 이는 열간압연 공정에서 석출물의 크기와 분포를 원하는 대로 제어하기 위해 필요한 것으로, MnS나 AlN이 충분히 고용되는 온도로 가열되어야 한다는 기술적인 사상에 근거한 것이다. 즉, 소강성분에 함유된 MnS나 AlN 등을 고온 장시간 가열에 의해 완전히 고용(이를 '완전용체화'라 함)시킨 후, 열간압연 및 냉각과정에서 적절한 크기와 분포를 갖는 석출물로 만들어 주어야 된다. 이론적으로 MnS를 이용하는 방법에서는 1,300℃, MnS+AlN을 이용하는 방법에서는 1,350℃, MnS(또는 MnSe)+Sb를 이용하는 방법에서는 1,320℃ 이상이 되어야 완전 고용이 된다. 그러나, 실제 공업적으로 생산할 때는 슬라브의 크기 등을 고려해서 내부까지 균일한 온도분포를 얻어야 하므로, 슬라브의 표면부는 1,400℃에 가까운 온도까지 재가열하고 있는 실정이다.However, these techniques have more fundamental problems than those mentioned above. That is, in each method, in order to obtain a precipitate having a desired size and distribution and use it as an inhibitor, the slab must be reheated to a high temperature before hot rolling. This is necessary to control the size and distribution of the precipitates as desired in the hot rolling process, and is based on the technical idea that MnS or AlN should be heated to a sufficiently high temperature. That is, MnS, AlN, etc. contained in the cast steel component must be completely dissolved (highly referred to as 'complete incorporation') by heating for a long time at high temperature, and then made into a precipitate having an appropriate size and distribution during hot rolling and cooling. In theory, 1,300 ° C in the method using MnS, 1,350 ° C in the method using MnS + AlN, and 1,320 ° C or higher in the method using MnS (or MnSe) + Sb to be completely employed. In actual industrial production, however, it is necessary to obtain a uniform temperature distribution to the inside in consideration of the size of the slab, etc., so that the surface portion of the slab is reheated to a temperature close to 1,400 ° C.

그러나, 이와 같이 슬라브를 고온에서 장시간 가열하면, 사용열량이 많아 제조원가가 비싸지고, 슬라브의 표면부가 용융상태에 이르러 흘러 내리게 되어 가열로의 보수비가 많이들며 수명이 단축되고, 슬라브 표면에 발달되어 있는 응고조직인 주상정이 조대하게 성장하여 후속 열간압연 공정에서 판의 폭방향으로 깊은 크랙(crack)을 발생시켜 실수율을 현저하게 저하시키는 문제가 있다. 따라서, 슬라브의 재가열온도를 낮추어 방향성 전기강판을 제조함으로써, 제조원가와 실수율 측면에서 많은 장점을 얻을 수는 있으나, 상기한 바와 같이, 슬라브를 고온에서 완전용체화처리 하지 않으면, 석출물의 제어가 어려워 근본적으로 방향성 전기강판의 제조가 불가능하게 된다.However, when the slab is heated at a high temperature for a long time, it is expensive to manufacture due to a large amount of heat used, and the surface portion of the slab flows down to a molten state, resulting in a high maintenance cost of the furnace, shortening the life span, and being developed on the surface of the slab. There is a problem in that the columnar tablet, which is a coagulation structure, grows coarse and generates a deep crack in the width direction of the plate in a subsequent hot rolling process, thereby significantly lowering the error rate. Therefore, by producing a grain-oriented electrical steel sheet by lowering the reheating temperature of the slab, many advantages can be obtained in terms of manufacturing cost and error rate. However, as described above, if the slab is not completely dissolved at a high temperature, it is difficult to control the precipitate. This makes it impossible to manufacture a grain-oriented electrical steel sheet.

이에, 최근에는 슬라브의 가열온도를 낮추고, 억제제를 열간압연 단계에서 만들지 않는 방법들이 많이 연구되고 있다. 즉, 소강성분에 포함되어 있는 원소들로부터 억제제를 전적으로 얻지 않고, 제조공정 중 적당한 곳에서 석출물을 만들어 주는 것이다. 이것은 일본특공평1-230721, 일본특공평1-283324에 제시된 바와 같이, 불완전 용체화와 질화처리에 의해 가능해 졌다. 즉, 이러한 방법은, 슬라브의 가열온도를 1,200℃이하로 하여 불완전용체화 하고 미반응 Al을 남긴 후, 냉간압연 후 질화소둔에 의해 질소를 강중에 넣어서 석출물로 반응시킨다는 기술적 사상을 갖고 있다. 이와 같이 하여 생성된 (Al,Si)N은, 억제제로서의 기능을 하게 되는 것이다. 상기한 질화처리 방법에는, 질화능이 있는 화합물을 함유하는 소둔분리제를 강판에 도포하는 것, 고온소둔 공정의 승온기간 동안 질화능이 있는 가스를 분위기 가스내에 포함시키는 것, 탈탄공정에서 균열처리 후 질화능이 있는 가스분위기에서 강판을 질화하는 것 등이 있다.Recently, many methods have been studied to lower the heating temperature of the slab and not to make the inhibitor in the hot rolling step. In other words, it does not obtain the inhibitor entirely from the elements contained in the small steel component, it forms a precipitate in a suitable place during the manufacturing process. This was made possible by incomplete solution and nitriding treatment, as shown in Japanese Patent Application No. 1-230721 and Japanese Patent Application No. 1-283324. In other words, this method has the technical idea that the slab is heated to 1,200 ° C. or less, incompletely formed, leaving unreacted Al, and then, after cold rolling, nitrogen is added to the steel and reacted as a precipitate by annealing. Thus produced (Al, Si) N functions as an inhibitor. The above-mentioned nitriding treatment method includes applying an annealing separator containing a compound having nitriding ability to a steel sheet, incorporating a nitriding gas into the atmosphere gas during the elevated temperature of the high temperature annealing process, and nitriding after cracking in the decarburization process. Nitriding steel sheets in a gas atmosphere with high performance.

또한, 질화의 시점에 관한 특허로 일본특공평2-228425호는, 열간압연된 판이나 최종 냉간압연전에 행하는 질화공정에 의해 질소를 강중에 넣어 석출물을 만들어 주는 방법을 개시하고 있고, 일본특공평2-294428호는 냉간압연이 완료된 후 탈탄소둔시 질화와 탈탄을 행하는 기술을 개시하고 있다. 그러나, 이들 방법의 경우에는, 2차 재결정이 불안정하게 되는 문제점이 있다. 이에, 일본특공평3-2324호에서는 탈탄소둔을 우선적으로 행하고 결정립의 크기가 어느 정도 이상으로 성장한 후 암모니아 가스에 의해 질화를 행하는 방법을 개시하고 있다.In addition, Japanese Patent Application Laid-Open No. 2-228425 discloses a method of making nitrogen precipitate in a steel by a nitriding process performed before hot rolling or final cold rolling. 2-294428 discloses a technique for performing nitriding and decarburization during decarbonization after completion of cold rolling. However, in the case of these methods, there is a problem that secondary recrystallization becomes unstable. Therefore, Japanese Patent Application Laid-Open No. 3-2324 discloses a method of preferentially performing decarbonization, growing the crystal grains to a certain extent or more, and nitriding with ammonia gas.

상기한 방법들은 모두, 암모니아 가스에 의한 질화로 암모니아가 약 500℃ 이상에서 분해되어 발생되는 질소를 강판 내부로 넣어주는 방법을 이용하고 있는데, 이 때 강판내부로 들어간 질소는 이미 강중에 존재하고 있는 원소인 Al, Si, Mn등과 반응해서 질화물이 되고, 고온소둔 과정에서 열역학적으로 가장 안정한 (Al,Si)N으로 되어 억제제의 기능을 한다. 이와 같은 방법으로 슬라브의 저온가열에 의해 방향성 전기강판을 제조하는 것이 가능해졌다.All of the above methods use a method in which nitrogen, generated by ammonia decomposition at about 500 ° C. or above, is introduced into the steel sheet by nitriding with ammonia gas, wherein nitrogen that has entered the steel sheet is already present in the steel. Phosphorus reacts with phosphorus Al, Si, Mn, etc. to become nitride, and becomes the most stable (Al, Si) N thermodynamically during the high temperature annealing process. In this way, it is possible to produce a grain-oriented electrical steel sheet by low temperature heating of the slab.

그러나, 상기 방법들은 최종적으로 억제제로 이용되는 (Al,Si)N을 만들어 주기 위해, 다음과 같은 제조공정을 거쳐야 하는 것이 필수적이다. 즉, 질화공정에서 반응할 수 있는 Al의 양을 극대화시키기 위해, 소강성분에 함유되어 있는 Al과 N이 결합하지 않도록 슬라브 가열온도를 1,200℃ 이하로 낮게하여 불완전용체화를 해야 한다. 실제로는 AlN의 고용량을 최소화하기 위하여, 1,150℃ 또는 그 이하의 온도에서 슬라브를 재가열하고 있다. 그러나, 이것은 후속되는 열간압연의 개시온도와 마무리온도가 낮아지는 결과를 초래하여 압연설비에 많은 부하를 주고 있으며, 일반적인 탄소강의 재가열 온도보다 현저히 낮아 방향성 전기강판과 일반강을 동시에 생산할 수 없는 문제점을 여전히 안고 있다.However, in order to make (Al, Si) N finally used as an inhibitor, it is necessary to go through the following manufacturing process. In other words, in order to maximize the amount of Al that can be reacted in the nitriding process, the slab heating temperature should be lowered to 1,200 ° C. or lower so that Al and N contained in the small steel component do not bond, thereby incompleteizing. In practice, the slab is reheated at a temperature of 1,150 ° C. or lower to minimize the high capacity of AlN. However, this results in lower starting and finishing temperatures of subsequent hot rolling, which places a lot of load on the rolling equipment, and is significantly lower than the reheating temperature of general carbon steel, thus preventing the simultaneous production of grain-oriented electrical steel sheet and general steel. I still hold it.

따라서, 슬라브 재가열온도를 1200~1300℃로 하여 열간압연의 부하를 없애면서, 안정적으로 방향성 전기강판을 생산할 수 있는 제조방법의 개발이 요구되고 있는 실정이다.Therefore, there is a demand for development of a manufacturing method capable of stably producing oriented electrical steel sheet while removing the load of hot rolling by setting the slab reheating temperature to 1200 to 1300 ° C.

이에, 본 발명자들은 상기한 종래 방법들의 제반 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 소강성분 중 REM을 첨가함으로써 슬라브 재가열온도를 낮추고 이후 질화공정까지도 생략할 수 있는 방향성 전기강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted research and experiments to solve the above-mentioned problems of the conventional methods, and based on the results, the present invention proposes the present invention, and the present invention lowers the slab reheating temperature by adding REM in the steel component. Since it is to provide a method for producing a grain-oriented electrical steel sheet can be omitted even nitriding process, the purpose is.

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, C:0.02~0.1%, Si:1.0~4.8%, Mn:0.2%이하, S:0.035%이하, Al: 0.005~0.02%, N:0.005%이하, Cu:0.1~0.25%, 0.04% ≤REM≤0.13%, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 1200~1300℃에서 재가열하고 열간압연한 후 900~1150℃에서 열연판소둔하고, 냉간압연, 탈탄소둔, 및 고온소둔하는 것을 포함하여 이루어지는 자기특성이 우수한 방향성 전기강판의 제조방법에 관한 것이다.By weight%, C: 0.02 to 0.1%, Si: 1.0 to 4.8%, Mn: 0.2% or less, S: 0.035% or less, Al: 0.005 to 0.02%, N: 0.005% or less, Cu: 0.1 to 0.25%, Steel slab consisting of 0.04% ≤ REM ≤ 0.13%, balance Fe and other unavoidable impurities is reheated and hot rolled at 1200 ~ 1300 ° C, hot rolled annealed at 900 ~ 1150 ° C, cold rolled, decarbonized and hot annealed. It relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties comprising the.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

일반적으로 방향성 전기강판은 억제제의 종류와 이를 형성시키는 방법에 의해 그 제조법이 달라지는데, 지금까지 방향성 전기강판의 제조방법에 대한 연구는 고온가열에서 저온가열로 진행되어 왔다. 즉, 소강성분에 포함된 성분을 슬라브 고온가열을 통해 완전 용체화하고 열간압연에서 석출물을 제어하여 억제제로 이용하는 방법에서, 슬라브 저온가열을 통해 불완전 용체화한 후 질화소둔에서 석출물을 형성시켜 이용하는 방법으로 발달한 것이다.In general, the method of manufacturing the grain-oriented electrical steel sheet varies depending on the type of inhibitor and the method of forming the same. Until now, the research on the method of manufacturing the grain-oriented electrical steel sheet has been conducted from high temperature heating to low temperature heating. That is, a method of completely solidifying the components contained in the small steel component through slab high temperature heating and controlling the precipitates in hot rolling as an inhibitor, and using a method of forming precipitates in annealing after incomplete solution through slab low temperature heating. It is developed.

그러나, 본 발명의 발명자들은, REM을 이용하여 석출물을 형성시켜 이를 억제제로서 이용하면, 슬라브 가열온도를 일반강과 동일하게 하면서도 고온소둔시 2차 재결정을 안정적으로 발달시켜, 우수한 자속밀도를 얻을 수 있다는 것을 발견하고, 본 발명을 완성시킨 것이다.However, the inventors of the present invention, by forming a precipitate using REM and using it as an inhibitor, it is possible to stably develop secondary recrystallization at high temperature annealing and obtain excellent magnetic flux density while maintaining slab heating temperature the same as that of ordinary steel. It was found that the present invention was completed.

이하, 강 성분 및 제조공정에 대하여 설명한다.Hereinafter, a steel component and a manufacturing process are demonstrated.

C는 열간압연조직을 미세화시키기 위해 첨가하는 원소로, 열간압연시 제기능을 수행한 후에는 불순물로 되어 자기적 특성에 악영향을 미치므로 제거되어야 한다. 3%의 Si이 함유된 경우 약 0.018%의 C을 함유시키면 열간압연시 α-γ변태가 일어나 열간압연조직을 미세화시킬 수 있는데, 본 발명의 경우 Si의 함량이 1.0~4.8중량%이므로, 상기 C의 함량은 0.020%이상 첨가되는 것이 바람직하다. 그러나, C가 최종제품에 남아있게 되면 자기시효를 일으켜 변압기 등 전기기기의 특성을 열화시키므로, 탈탄공정을 통해 최종제품에서는 0.003% 이하로 엄격히 관리되고 있다. 또한, 상기 C의 함량이 너무 많아 조대한 탄화물이 석출되면, 제거가 어려워지므로, 상한은 0.1%로 설정하는 것이 바람직하다.C is an element added to refine the hot rolled structure. After performing the function of hot rolling, C is an impurity and should be removed because it adversely affects the magnetic properties. When 3% of Si is contained, when about 0.018% of C is contained, α-γ transformation occurs during hot rolling, thereby miniaturizing the hot rolled structure. In the present invention, since the content of Si is 1.0 to 4.8% by weight, The content of C is preferably added at least 0.020%. However, if C remains in the final product, it causes self-aging and deteriorates the characteristics of electrical equipment such as transformers. Therefore, the final product is strictly controlled to be 0.003% or less through the decarburization process. In addition, if the content of C is so great that coarse carbides are precipitated, the removal becomes difficult, so the upper limit is preferably set to 0.1%.

Si은 강의 비저항을 높여서 철손을 현저히 개선하는 원소로, 방향성 전기강판의 제조에서는 필수 원소이다. 그 첨가량은 여러가지 제한 요소에 의해 결정되는데, 실제로는 2.95~3.5% 정도가 함유되는 것이 일반적이다. 이는 공업적으로 냉간압연을 안정적으로 할 수 있는 것에 의해 정해진 범위이다. 본 발명에서는, 1.0~4.8%로 설정하는 것이 바람직한데, 그 이유는 1.0% 이하인 경우에는 그 첨가효과가 미미하여 큰 의미가 없고, 4.8%보다 많으면 압연이 불가능하기 때문이다.Si is an element that significantly improves iron loss by increasing the specific resistance of steel, and is an essential element in the production of grain-oriented electrical steel sheet. The amount of addition is determined by various limiting factors, and in practice, the content is generally about 2.95 to 3.5%. This is a range determined by being able to stably cold roll industrially. In the present invention, it is preferable to set it at 1.0 to 4.8%, because when it is 1.0% or less, the addition effect is insignificant and there is no significant meaning, and when it is more than 4.8%, rolling is impossible.

Mn은 전기저항을 높이고 철손을 낮추는 효과가 있는 성분으로서, 이와 같은 효과를 얻기 위해서는 0.05% 이상 첨가해야 하지만, 그 함량이 너무 많은 경우에는 자속밀도의 저하를 초래하므로, 0.05~0.2%로 설정하는 것이 바람직하다.Mn is an ingredient that increases the electrical resistance and lowers the iron loss. In order to obtain such an effect, Mn should be added at 0.05% or more, but if the content is too high, the magnetic flux density will be reduced. It is preferable.

S는 강중 Mn 및 REM과 반응해 MnS 또는 REM-S로 되어 1차 재결정립 억제제로서 이용되는 원소로서, 그 함량이 많으면 슬라브 가열시 중심부에 편석되어 미세조직에 악영향을 미치므로, 0.035% 이하로 관리하는 것이 바람직하다.S reacts with Mn and REM in steel to form MnS or REM-S, which is used as a primary recrystallization inhibitor. If the content is high, S is segregated in the center of slab heating and adversely affects the microstructure. It is desirable to manage.

Al은 소강단계에서 함유되어 질화소둔시 강중에 첨가된 N와 결합하여 AlN으로 되어 억제제의 역할을 하는 원소이다. 일반적으로 산가용성 Al은 0.03% 정도에서 가장 적절한 AlN을 형성하는 것으로 알려져 있는데, 본 발명에서는 N의 함량이 적기 때문에, 상기 Al의 함량범위를 0.02%로 설정하는 것이 바람직하다.Al is an element that acts as an inhibitor by binding to N added in the steel during annealing to form AlN. In general, acid-soluble Al is known to form the most appropriate AlN at about 0.03%. In the present invention, since the content of N is small, it is preferable to set the content range of Al to 0.02%.

N는 소강중에 포함되지 않는 것이 바람직하나, 실제로 불순물로 함유되는 질소의 양을 완전히 제거할 수는 없으므로, 제강에서 쉽게 제어할 수 있는 양인 0.005% 이하로 관리하는 것이 바람직하다.It is preferable that N is not included in the steel, but in practice, the amount of nitrogen contained as an impurity cannot be completely removed. Therefore, N is preferably controlled at 0.005% or less, which can be easily controlled in steelmaking.

Cu는 Mn과 같은 오스테나이트 형성원소로서, AlN이 고용과 미세석출에 기여하여 2차 재결정을 안정화시킨다. 또한, S과 결합하여 Cu2S라는 석출물을 형성하여 결정립성장을 억제하는 효과가 있다. 상기 Cu의 함량은 0.1~0.25%로 설정하는 것이 바람직한데, 그 이유는 그 함량이 0.1% 미만이면 상기한 효과가 미미하고, 0.25% 이상이면 절연피막과 2차 재결정립형성에 나쁜 영향을 주기 때문이다.Cu is an austenite forming element such as Mn, and AlN contributes to solid solution and fine precipitation to stabilize secondary recrystallization. In addition, by forming a precipitate called Cu 2 S in combination with S has the effect of suppressing grain growth. The content of Cu is preferably set to 0.1 to 0.25%. The reason is that if the content is less than 0.1%, the above effect is insignificant. Because.

REM은 본 발명의 특징적인 원소로서, REM 단독 또는, 소강성분에 불순물로 함유되어 있는 질소 또는 황과 결합하여 REM-S, REM-N의 형태를 띤 석출물 또는 개재물을 형성함으로써, 강판의 2차 재결정을 성공적으로 일으키는 역할을 한다. 상기 REM은 희토류 금속원소들을 지칭하는 것으로서, Ce(세륨), La(란타늄), Nd(네오디뮴), Pr(프라시듐) 등으로 이루어지는, 본 발명에서는 이들의 1종 또는 2종 이상을 사용할 수 있다. 그 함량은, 0.04~0.13%로 첨가하는 것이 바람직하고, 보다 바람직하게는 0.08~0.12%이다. 그 이유는 상기 REM의 함량이 0.04% 미만이면 그 효과가 미미하고, 0.13% 이상이면 REM의 개재물들이 많이 존재하여 자성을 열화시키기 때문이다. 또한, 상기 REM의 함량이 0.08~0.12%이면, 전기저항을 높이고 철손을 낮추는 효과가 있는 Mn의 함량을 0.01% 이하로 낮출 수 있고, 이로 인해 MnS로 되어 1차 재결정립 억제제로서 이용되는 S의 함량도 0.008% 이하로 낮출 수 있다.REM is a characteristic element of the present invention. The secondary steel sheet is formed by forming REM-S or REM-N-shaped precipitates or inclusions by combining with REM alone or with nitrogen or sulfur contained as impurities in the small steel component. It is responsible for successfully recrystallization. The REM refers to rare earth metal elements, and includes one or two or more thereof in the present invention, which is composed of Ce (cerium), La (lanthanum), Nd (neodymium), Pr (pracidium), or the like. have. It is preferable to add the content in 0.04 to 0.13%, More preferably, it is 0.08 to 0.12%. The reason is that if the content of the REM is less than 0.04%, the effect is insignificant, and if more than 0.13%, the inclusions of the REM are present to deteriorate the magnetic properties. In addition, when the content of the REM is 0.08 ~ 0.12%, it is possible to lower the content of Mn having an effect of increasing the electrical resistance and lowering the iron loss to 0.01% or less, thereby the MnS of S used as the primary recrystallization inhibitor The content can also be lowered to 0.008% or less.

상기와 같이 조성된 강 슬라브는, 일반강의 재가열온도인 1200~1300℃의 온도범위로 재가열할 수 있다. 이 때, 상기 가열온도가 1200℃ 미만이면 슬라브의 온도가 너무 낮아서 열간압연 작업이 어려워지고, 다른 종류의 일반강과 같이 재가열을 할 수 없어 생산성도 저하된다. 1300℃ 이상인 경우에는 자기적 특성에는 크게 영향이 없으나, 슬라브의 저온가열에서 오는 잇점이 크게 감소되기 때문에 바람직하지 않다.The steel slab formed as described above may be reheated in a temperature range of 1200 to 1300 ° C. which is a reheating temperature of general steel. At this time, when the heating temperature is less than 1200 ° C., the slab temperature is too low, making it difficult to hot roll, and reheating cannot be performed like other types of ordinary steel, and productivity is also lowered. If it is 1300 ℃ or more does not significantly affect the magnetic properties, it is not preferable because the benefits from the low temperature heating of the slab is greatly reduced.

한편, 슬라브 가열과정에서는, 강내에 존재하는 S, N가 REM과 반응하여 황화물로 되고, Mn은 황화물로 되지 못하고 남아있게 된다.On the other hand, in the slab heating process, S and N present in the steel react with REM to form sulfides, and Mn remains as sulfides.

상기 슬라브가열후 열간압연된 열연판은, 열연조직의 균일화 및 산세성 향상을 위해서 900~1150℃에서 소둔하는 것이 바람직하다. 기존의 방법에서는 열연판소둔시 석출물의 부분고용과 재석출이 일어나서 안정한 석출물 분포를 얻기 위하여 1100~1150℃에서 유지한 후 약 900℃에 도달하면 급냉하는 방법을 사용하였으나,본 발명은 석출물의 관점을 고려하지 않아도 되므로 상기와 같은 제어냉각은 필요치 않다.The hot rolled hot rolled plate after the slab heating is preferably annealed at 900 ~ 1150 ℃ to improve the uniformity and pickling properties of the hot rolled structure. In the conventional method, partial employment and reprecipitation of precipitates during hot-rolled sheet annealing have occurred, and thus, a method of quenching is maintained when the temperature reaches about 900 ° C. after maintaining at 1100 to 1150 ° C. to obtain a stable distribution of precipitates. It is not necessary to consider such control cooling is not necessary.

그 후, 상기 열연판을 최종제품두께로 냉간압연한 후, 탈탄을 위한 소둔을 실시하는데, 이 때 소둔로내의 분위기는 습한 수소+질소의 혼합가스분위기로 한다. 이 과정에서 강판의 C가 제거되고, 1차 재결정의 입도가 조절된다.Thereafter, the hot rolled sheet is cold rolled to the final product thickness and then subjected to annealing for decarburization, wherein the atmosphere in the annealing furnace is a mixed gas atmosphere of wet hydrogen + nitrogen. In this process, C of the steel sheet is removed and the particle size of the primary recrystallization is controlled.

한편, 종래에는, 상기 탈탄소둔공정에서 강 내부로 N를 침투시키는 처리를 하지만, 본 발명에서는 슬라브 가열과정에서부터 기형성된 REM 단독 또는 REM과 화합된 질화물 또는 황화물이 억제제로서 형성되어 있기 때문에, 침질처리는 불필요하게 된다.On the other hand, conventionally, in the decarbonization annealing process, N is impregnated into the steel, but in the present invention, since the preformed REM alone or the nitride or sulfide compounded with the REM is formed as an inhibitor from the slab heating process, the immersion treatment is performed. Becomes unnecessary.

상기와 같은 탈탄소둔후, 강판의 표면에 MgO를 주성분으로 하는 소둔분리제를 도포하여 코일상으로 고온소둔을 행한다. 상기 고온소둔은 2차 재결정 조직을 발달시키는 승온구간과 불순물을 제거하는 순화소둔 구간으로 이루어지는데, 승온구간의 승온속도는 석출물의 성장거동에 영향을 미치므로 매우 중요하다. 상기 승온속도가 너무 빠르면 2차 재결정이 불안정해지고, 너무 느리면 소둔시간이 길어져 비경제적이므로, 10~40℃/hr로 설정하는 것이 바람직하다. 상기 순화소둔은 환원분위기에서 유지하여 강중의 유해원소를 제거하는 과정이므로 100% 수소를 사용하는 것이 바람직하다.After decarbonization annealing as described above, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet and subjected to high temperature annealing in the form of a coil. The high temperature annealing is composed of a temperature rising section for developing a secondary recrystallization structure and a pure annealing section for removing impurities, and the temperature rising rate of the temperature rising section affects the growth behavior of the precipitate. If the temperature increase rate is too fast, the secondary recrystallization becomes unstable, and if it is too slow, the annealing time is long and uneconomical, so it is preferable to set it at 10 to 40 ° C / hr. Since the pure annealing is a process of removing harmful elements in the steel by maintaining in a reducing atmosphere, it is preferable to use 100% hydrogen.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 1과 같이 조성되는 강 슬라브를 1250℃에서 2시간 재가열한 후 열간압연하여 판 두께가 2.3mm인 열연판을 얻었다. 이 열연판을 950℃에서 5분간 소둔한 후 냉각한 다음, 0.3mm 두께로 냉간압연하였다. 냉간압연된 판에 대하여, 850℃로 유지된 로에 노점 51℃인 25%수소+75%질소의 혼합가스분위기에서 5분 동안 탈탄을 행하였다. 이 강판에 소둔분리제인 MgO를 도포하여 2차 재결정을 일으키키 위하여 고온소둔을 행하였다. 고온소둔은 25%수소+75%질소분위기에서 15℃/hr의 승온속도로 1,200℃까지 가열한 후, 100%수소분위기에서 10시간 유지한 다음 로냉하였다.The steel slab formed as shown in Table 1 was reheated at 1250 ° C. for 2 hours, and then hot rolled to obtain a hot rolled plate having a thickness of 2.3 mm. The hot rolled sheet was annealed at 950 ° C. for 5 minutes, cooled, and then cold rolled to a thickness of 0.3 mm. The cold rolled plates were decarburized for 5 minutes in a mixed gas atmosphere of 25% hydrogen + 75% nitrogen with a dew point of 51 ° C in a furnace maintained at 850 ° C. MgO, an annealing separator, was applied to this steel sheet to perform high temperature annealing to cause secondary recrystallization. The high temperature annealing was heated to 1,200 ° C. at a rate of 15 ° C./hr in a 25% hydrogen + 75% nitrogen atmosphere, and then maintained in a 100% hydrogen atmosphere for 10 hours, followed by quenching.

다음, 자기특성은 1000A/m의 자장하에서 유도되는 자속밀도(B10)를 측정하였고, 그 결과는 하기 표 1에 나타내었다.Next, the magnetic properties were measured magnetic flux density (B 10 ) induced under a magnetic field of 1000A / m, the results are shown in Table 1 below.

구분division 화학성분(중량%)Chemical composition (% by weight) 자속밀도(Tesla)Magnetic flux density (Tesla) CC SiSi CuCu MnMn SS Sol.AlSol.Al NN REMREM 비교강1Comparative Steel 1 0.0470.047 3.153.15 0.170.17 0.0720.072 0.0240.024 0.0260.026 0.00920.0092 1.781.78 비교강2Comparative Steel 2 0.0690.069 0.0280.028 0.0140.014 0.00100.0010 0.030.03 1.841.84 발명강1Inventive Steel 1 0.0680.068 0.0270.027 0.0140.014 0.00070.0007 0.050.05 1.871.87 발명강2Inventive Steel 2 0.0660.066 0.0280.028 0.0150.015 0.00090.0009 0.100.10 1.881.88 발명강3Invention Steel 3 0.00630.0063 0.00500.0050 0.0150.015 0.00080.0008 0.100.10 1.931.93 발명강4Inventive Steel 4 0.00110.0011 0.00140.0014 0.0100.010 0.00060.0006 0.100.10 1.941.94 비교강3Comparative Steel 3 0.00130.0013 0.00200.0020 0.0100.010 0.00080.0008 0.150.15 1.831.83

상기 표 1에 나타난 바와 같이, REM이 첨가된 본 발명의 발명강(1)~(4)는, 고온소둔시 2차 재결정의 형성이 점차 좋아져, 자속밀도가 비교강(1)~(3) 대비 높은 것을 알 수 있다. 또한, REM의 첨가량이 0.1%이고 Mn의 함량이 0.01% 이하이며, S의 함량이 0.008% 이하인 발명강(3),(4)의 경우에는, 자속밀도가 보다 개선되어 우수한 자기특성을 나타내는 것을 알 수 있다.As shown in Table 1, the inventive steels (1) to (4) of the present invention to which REM was added, the formation of secondary recrystallization gradually improved at high temperature annealing, and the magnetic flux density of the comparative steels (1) to (3). It can be seen that the contrast is high. In addition, in the case of the inventive steels (3) and (4) in which the amount of REM added is 0.1%, the content of Mn is 0.01% or less, and the content of S is 0.008% or less, the magnetic flux density is further improved to show excellent magnetic properties. Able to know.

상기한 바와 같은 본 발명에 의하면, 열연재가열 온도를 제어하지 않고도 우수한 자기특성을 갖는 방향성 전기강판을 제조할 수 있어서, 생산성 및 작업성을 개선할 수 있는 효과가 있는 것이다.According to the present invention as described above, it is possible to manufacture a grain-oriented electrical steel sheet having excellent magnetic properties without controlling the hot rolled material heating temperature, there is an effect that can improve productivity and workability.

Claims (2)

중량%로, C:0.02~0.1%, Si:1.0~4.8%, Mn:0.2%이하, S:0.035%이하, Al: 0.005~0.02%, N:0.005%이하, Cu:0.1~0.25%, 0.04% ≤REM≤0.13%, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 1200~1300℃에서 재가열하고 열간압연한 후 900~1150℃에서 열연판소둔하고, 냉간압연, 탈탄소둔, 및 고온소둔하는 것을 포함하여 이루어지는 자기특성이 우수한 방향성 전기강판의 제조방법.By weight%, C: 0.02 to 0.1%, Si: 1.0 to 4.8%, Mn: 0.2% or less, S: 0.035% or less, Al: 0.005 to 0.02%, N: 0.005% or less, Cu: 0.1 to 0.25%, Steel slab consisting of 0.04% ≦ REM ≦ 0.13%, balance Fe and other unavoidable impurities is reheated and hot rolled at 1200 ~ 1300 ° C, hot rolled annealed at 900 ~ 1150 ° C, cold rolled, decarbonized and hot-annealed. Method for producing a grain-oriented electrical steel sheet having excellent magnetic properties comprising a. 제 1항에 있어서, 상기 Mn은 0.01%이하이고 S은 0.008% 이하이고, REM은 0.08~0.12%인 것을 특징으로 하는 자기특성이 우수한 방향성 전기강판의 제조방법The method of manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein Mn is 0.01% or less, S is 0.008% or less, and REM is 0.08 to 0.12%.
KR1020000073233A 2000-12-05 2000-12-05 A method for manufacturing grain oriented electrical steel sheet with superior magnetic property KR20020044243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000073233A KR20020044243A (en) 2000-12-05 2000-12-05 A method for manufacturing grain oriented electrical steel sheet with superior magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000073233A KR20020044243A (en) 2000-12-05 2000-12-05 A method for manufacturing grain oriented electrical steel sheet with superior magnetic property

Publications (1)

Publication Number Publication Date
KR20020044243A true KR20020044243A (en) 2002-06-15

Family

ID=27679559

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000073233A KR20020044243A (en) 2000-12-05 2000-12-05 A method for manufacturing grain oriented electrical steel sheet with superior magnetic property

Country Status (1)

Country Link
KR (1) KR20020044243A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825306B1 (en) * 2006-12-28 2008-04-28 주식회사 포스코 Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
WO2012087016A3 (en) * 2010-12-23 2012-10-04 주식회사 포스코 Grain-oriented electric steel sheet having superior magnetic property and method for manufacturing same
KR101223117B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and Method for manufacturing the same
WO2014104444A1 (en) * 2012-12-27 2014-07-03 주식회사 포스코 Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
KR20170074478A (en) * 2015-12-22 2017-06-30 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825306B1 (en) * 2006-12-28 2008-04-28 주식회사 포스코 Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
WO2012087016A3 (en) * 2010-12-23 2012-10-04 주식회사 포스코 Grain-oriented electric steel sheet having superior magnetic property and method for manufacturing same
KR101223117B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and Method for manufacturing the same
KR101223115B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
US9997283B2 (en) 2010-12-23 2018-06-12 Posco Grain-oriented electric steel sheet having superior magnetic property
US9240265B2 (en) 2010-12-23 2016-01-19 Posco Method for manufacturing grain-oriented electrical steel sheet having superior magnetic property
CN104937123A (en) * 2012-12-27 2015-09-23 Posco公司 Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
KR101482354B1 (en) * 2012-12-27 2015-01-13 주식회사 포스코 Grain-oriented electrical steel having excellent magnetic properties
JP2016509625A (en) * 2012-12-27 2016-03-31 ポスコ Oriented electrical steel sheet with excellent iron loss and method for producing the same
US9847158B2 (en) 2012-12-27 2017-12-19 Posco Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
WO2014104444A1 (en) * 2012-12-27 2014-07-03 주식회사 포스코 Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
US10109405B2 (en) 2012-12-27 2018-10-23 Posco Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
KR20170074478A (en) * 2015-12-22 2017-06-30 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
US10907231B2 (en) 2015-12-22 2021-02-02 Posco Grain-oriented electrical steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR100721822B1 (en) The grain-oriented electrical steel sheet manufacturing method with low iron core loss, high magnetic induction
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR100470641B1 (en) Method For Manufacturing Unidirectional Electrical Steel Sheet With High Magnetic Flux Density
KR20020044243A (en) A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
KR100817168B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR100359239B1 (en) Method for producing a directional electric steel plate having a high flux density
KR101263842B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR20020044244A (en) A method for manufacturing grain-oriented electrical steel sheet
KR100479996B1 (en) The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same
KR101059213B1 (en) Stable manufacturing method of oriented electrical steel sheet with excellent magnetic properties
KR100359242B1 (en) Low temperature heating method of high magnetic flux density oriented electrical steel sheet
KR100501004B1 (en) A method for manufacturing high magnetic flux density grain-oriented electrical steel sheet
KR20190077964A (en) Oriented electrical steel sheet and manufacturing method of the same
KR100530064B1 (en) A Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100345696B1 (en) A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR100721819B1 (en) Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
KR100435455B1 (en) Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating
KR100431608B1 (en) Manufacturing of high magnetic density grain oriented silicon steel
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR100256336B1 (en) The manufacturing method for oriented electric steel sheet with excellent magnetic property
KR100479995B1 (en) A method for producing high permeability grain-oriented silicon steel sheet
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR100270393B1 (en) The manufacturing method for low hysterisis oriented electric steel sheet
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
KR101263851B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination