JPH06179917A - Production of grain oriented silicon steel sheet with high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet with high magnetic flux density

Info

Publication number
JPH06179917A
JPH06179917A JP4334461A JP33446192A JPH06179917A JP H06179917 A JPH06179917 A JP H06179917A JP 4334461 A JP4334461 A JP 4334461A JP 33446192 A JP33446192 A JP 33446192A JP H06179917 A JPH06179917 A JP H06179917A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
magnetic flux
flux density
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4334461A
Other languages
Japanese (ja)
Inventor
Isao Iwanaga
功 岩永
Hiroaki Masui
浩昭 増井
Katsuro Kuroki
克郎 黒木
Kunihide Takashima
邦秀 高嶋
Yoshio Nakamura
吉男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4334461A priority Critical patent/JPH06179917A/en
Publication of JPH06179917A publication Critical patent/JPH06179917A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet with high magnetic flux density by incorporating specific percentage of Bi into a slab material of specific composition, applying cooling from a specific soaking temp. at hot rolled plate annealing at specific cooling velocity, and specifying average crystalline grain size after decarburizing annealing. CONSTITUTION:The slab material has a composition consisting of, by weight, 0.025-0.10% C, 2.5-4.5% Si, 0.05-0.45% Mn, <=0.014% (S+0.4O5Se), 0.01-0.06% acid soluble Al, 0.0005-0.013% N, and the balance Fe with inevitable impurities. This slab is heated to <=1280 deg.C, hot-rolled, and cold-rolled at >=50% final cold rolling draft. Further, decarburizing annealing and finish annealing are executed, and nitriding treatment is applied in the interime. At this time, Bi is incorporated into the slab material by 0.002-0.05%, and further, cooling velocity through the region between the soaking temp. at hot rolled plate annealing, 900-1200 deg.C, and 750-900 deg.C is regulated to (0.3 to 50) deg.C/sec and also average crystalline grain size after decarburizing annealing is regulated to 13-28mum. By this method, secondary recrystallization can be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜4.5%のS
iを含む高い磁束密度を有する一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION The present invention has an S content of 2.5 to 4.5%.
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density including i.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、トランス等の電気
機器の鉄心材料として使用されており、磁気特性として
励磁特性と鉄損特性が良好でなくてはならない。しかも
近年特にエネルギーロスの少ない低鉄損素材への市場要
求が強まっている。磁束密度の高い鋼板は、鉄損が低
く、また鉄心が小さく出来るので、極めて重要な開発目
標である。この高い磁束密度を有する一方向性電磁鋼板
は、適切な冷延と焼鈍とにより熱延板から最終板厚にし
た鋼板を仕上焼鈍して{110}<001>方位を有す
る一次再結晶粒を選択成長させる、いわゆる二次再結晶
によって得られる。
2. Description of the Related Art Unidirectional electrical steel sheets are used as iron core materials for electrical equipment such as transformers, and must have good magnetic excitation characteristics and iron loss characteristics. Moreover, in recent years, the market demand for low iron loss materials with particularly low energy loss has been increasing. A steel sheet with a high magnetic flux density has a low iron loss and a small iron core, which is an extremely important development target. This unidirectional electrical steel sheet having a high magnetic flux density is obtained by finish-annealing a steel sheet having a final thickness from a hot-rolled sheet by appropriate cold rolling and annealing to produce primary recrystallized grains having a {110} <001> orientation. It is obtained by so-called secondary recrystallization in which selective growth is performed.

【0003】二次再結晶は、二次再結晶前の鋼板中に微
細な析出物、例えばMnS、AlN、MnSe、Cu2
S、BN、(Al、Si)N等が存在すること、あるい
はSn、Sb等の粒界偏析型の元素が存在することによ
って達成させる。これら析出物、粒界偏析型の元素は
J.B.May and Turnbull(Tran
s.Met.Soc.AIME 212(1958) P
769/781) によって説明されているように、仕上
焼鈍工程で{110}<001>方位以外の一次再結晶
粒の成長を抑え、{110}<001>方位粒を選択的
に成長させる機能を持つ。このような粒成長の抑制効果
は一般にはインヒビター効果と呼ばれている。従って当
該分野の研究開発の重点課題はいかなる種類の析出物、
あるいは粒界偏析型の元素を用いて二次再結晶を安定さ
せるか、そして正確な{110}<001>方位粒の存
在割合を高めるために、それらの適切な存在状態をいか
に達成するかにある。特に最近では1種類の析出物によ
る方法では{110}<001>方位の高度の制御に限
界があるため、各析出物について長所、短所を深く解明
することにより、いくつかの析出物を有機的に組み合わ
せて、より磁束密度の高い製品を安定に、且つコストを
安く製造できる技術の開発が進められている。
The secondary recrystallization is carried out by fine precipitates such as MnS, AlN, MnSe and Cu 2 in the steel sheet before the secondary recrystallization.
This is achieved by the presence of S, BN, (Al, Si) N, etc., or the presence of grain boundary segregation type elements such as Sn, Sb. These precipitates and grain boundary segregation type elements are described in J. B. May and Turnbull (Tran
s. Met. Soc. Aime 212 (1958) P
769/781), the function of suppressing the growth of primary recrystallized grains other than the {110} <001> orientation and selectively growing the {110} <001> oriented grains in the finish annealing step. To have. Such a grain growth suppressing effect is generally called an inhibitor effect. Therefore, the priority issue of research and development in this field is any kind of precipitate,
Or to stabilize secondary recrystallization by using grain boundary segregation type elements, and how to achieve the proper existence state of accurate {110} <001> oriented grains in order to increase their existence rate. is there. In particular, recently, the method using one kind of precipitate has a limitation in controlling the altitude of the {110} <001> orientation. Therefore, by clarifying the advantages and disadvantages of each precipitate, some precipitates can be organically separated. In combination with the above, development of a technology capable of producing a product having a higher magnetic flux density in a stable manner and at a low cost is in progress.

【0004】現在、工業生産されている代表的な一方向
性電磁鋼板の製造方法としては3種類あるが、各々につ
いては長所、短所がある。第一の技術はM.F.Lit
tmannによる特公昭30−3651号公報に示され
たMnSを用いた二回冷延工程によるプロセスであり、
得られる二次再結晶粒は安定して発達するが、高い磁束
密度が得られない。第二の技術は田口等による特公昭4
0−15644号公報に示されたAlN+MnSを用い
た最終冷延を80%以上の高圧下率とするプロセスであ
り、高い磁束密度は得られるが、工業生産に際しては製
造条件の厳密なコントロールが要求される。第三の技術
は今中等による特公昭51−13469号公報に示され
たMnS(及び/またはMnSe) +Sbを含有する珪
素鋼を二回冷延工程によって製造するプロセスであり、
比較的高い磁束密度は得られるが、Sb、Seのような
有害で且つ高価な元素を使用し、しかも二回冷延法であ
ることから製造コストが高くなる。
At present, there are three kinds of typical industrially produced grain-oriented electrical steel sheets, each of which has advantages and disadvantages. The first technology is M. F. Lit
It is a process by a two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. 30-3651 by Tmann,
The obtained secondary recrystallized grains grow stably, but a high magnetic flux density cannot be obtained. The second technique is Taguchi et al.
This is a process in which the final cold rolling using AlN + MnS disclosed in 0-15644 is performed at a high pressure reduction rate of 80% or more, and a high magnetic flux density can be obtained, but strict control of manufacturing conditions is required in industrial production. To be done. The third technique is a process for producing silicon steel containing MnS (and / or MnSe) + Sb, which is disclosed in Japanese Patent Publication No. 51-13469, by a double cold rolling process.
Although a relatively high magnetic flux density can be obtained, the production cost is high because harmful and expensive elements such as Sb and Se are used and the double cold rolling method is used.

【0005】また上記3種類の技術においては、共通し
て次のような問題がある。即ち、上記技術はいずれも析
出物を微細、均一に制御する技術として熱延に先立つス
ラブ加熱温度を、第一の技術では1260℃以上、第二
の技術では特開昭48−51852号公報に示すように
素材Si量にもよるが3%Siの場合で1350℃、第
三の技術では特開昭51−20716号公報に示すよう
に1230℃以上、高い磁束密度の得られた実施例では
1320℃といった極めて高い温度にすることによって
粗大に存在する析出物をいったん固溶させ、その後の熱
延中、あるいは熱処理中に析出させている。スラブ加熱
温度を上げることは、加熱時の使用エネルギーの増大や
ノロの発生による歩留り低下及び加熱炉の補修頻度の増
大に起因する設備稼働率の低下、さらには特公昭57−
41526号公報に示されるように線状二次再結晶不良
が発生するため連続鋳造スラブが使用できないという問
題がある。しかしこのようなコスト上の問題以上に重要
なことは、鉄損向上のためにSiを多く、製品板厚を薄
くといった手段をとると、この線状二次再結晶不良の発
生が増大し、高温スラブ加熱法を前提にした技術では将
来の鉄損向上に希望を持てない。
Further, the above three types of technology have the following problems in common. That is, in any of the above techniques, the slab heating temperature prior to hot rolling as a technique for finely and uniformly controlling precipitates is 1260 ° C. or higher in the first technique, and JP-A-48-51852 in the second technique. As shown, it depends on the amount of Si in the material, but it is 1350 ° C. in the case of 3% Si, and 1230 ° C. or higher in the third technique as shown in JP-A-51-20716. Coarsely existing precipitates are once solid-dissolved by making the temperature extremely high such as 1320 ° C., and then precipitated during the subsequent hot rolling or heat treatment. Raising the slab heating temperature lowers the production efficiency due to the increase in energy used during heating, the decrease in yield due to the generation of slag, and the increase in the repair frequency of the heating furnace.
As disclosed in Japanese Patent No. 41526, there is a problem that a continuous casting slab cannot be used because a linear secondary recrystallization defect occurs. However, what is more important than such a problem in terms of cost is that if a large amount of Si is used to improve iron loss and a product plate thickness is thinned, the occurrence of this linear secondary recrystallization defect increases, Technology based on the high-temperature slab heating method has no hope for improving iron loss in the future.

【0006】これに対し特公昭61−60896号公報
に開示されている技術では鋼中のSを少なくすることに
よって二次再結晶が極めて安定し、高Si薄手製品を可
能にした。しかしこの技術は量産規模で工場生産する上
で、磁束密度の安定性に問題があり、例えば特開昭62
−40315号公報に開示されているような改良技術が
提案されているが、今まで完全に解決するに至っていな
い。
On the other hand, in the technique disclosed in Japanese Patent Publication No. 61-60896, by reducing S in the steel, secondary recrystallization is extremely stable, and a high Si thin product is made possible. However, this technique has a problem in the stability of the magnetic flux density in factory production on a mass production scale.
Although an improved technique disclosed in Japanese Patent Publication No.-40315 has been proposed, it has not been solved completely until now.

【0007】[0007]

【発明が解決しようとする課題】以上述べてきたように
現在工業化されている製造方法は二次再結晶に必要なイ
ンヒビターを冷間圧延以前の工程で造り込むものであ
る。これに対し本発明は特開昭62−40315号公報
と同一技術思想に基づく製造方法である。即ち二次再結
晶に必要なインヒビターは、脱炭焼鈍(一次再結晶) 完
了以降から仕上焼鈍における二次再結晶発現以前までに
造り込むもので、その手段として、鋼中にNを侵入させ
ることによって、インヒビターとして機能する(Al、
Si) Nを形成させる。鋼中にNを侵入させる手段とし
ては、従来技術で提案されているように仕上焼鈍昇温過
程での雰囲気ガスからのNの侵入を利用するか、脱炭焼
鈍後段領域あるいは脱炭焼鈍完了後のストリップを連続
ラインでNH3 等の窒化源となる雰囲気ガスを用いて行
う。
As described above, the manufacturing method currently industrialized is to incorporate the inhibitor required for secondary recrystallization in the step before cold rolling. On the other hand, the present invention is a manufacturing method based on the same technical idea as JP-A-62-40315. That is, the inhibitor required for secondary recrystallization is built in after the completion of decarburization annealing (primary recrystallization) to before the manifestation of secondary recrystallization in finish annealing. Functions as an inhibitor (Al,
Si) N is formed. As the means for injecting N into the steel, the invasion of N from the atmospheric gas in the finish annealing temperature rising process is used as proposed in the prior art, or after the decarburization annealing or after the decarburization annealing is completed. Stripping is performed on a continuous line using an atmosphere gas such as NH 3 which serves as a nitriding source.

【0008】ところで以上のような方法で適正なインヒ
ビターを造り込んでも、窒化時の一次再結晶組織の状態
が適当でなければ高磁束密度を有する良好な二次再結晶
は得られない。しかしながら従来方式の溶鋼成分では、
この方式の特徴である1280℃以下の温度に加熱した
後に熱延したのでは析出物が粗大化し過ぎてインヒビタ
ーとしての機能はほとんどなく、結晶組織制御のため脱
炭焼鈍条件を厳密にコントロールする必要がある。そこ
で本発明者らは、特願平4−240701号に開示した
ように、スラブ素材にBiを添加することで、より二次
再結晶が安定し、高磁束密度が得られることを見出した
が、さらに安定した高磁束密度特性が得られる優れた一
方向性電磁鋼板の製造方法を検討した。
By the way, even if a suitable inhibitor is formed by the above method, good secondary recrystallization having a high magnetic flux density cannot be obtained unless the state of the primary recrystallization structure during nitriding is appropriate. However, in the conventional molten steel composition,
If hot rolling is performed after heating to a temperature of 1280 ° C or less, which is a feature of this method, the precipitates become too coarse and hardly function as an inhibitor. It is necessary to strictly control the decarburization annealing conditions to control the crystal structure. There is. Therefore, as disclosed in Japanese Patent Application No. 4-240701, the present inventors have found that by adding Bi to the slab material, secondary recrystallization is more stable and a high magnetic flux density can be obtained. Then, a method for manufacturing an excellent grain-oriented electrical steel sheet, which can obtain more stable high magnetic flux density characteristics, was examined.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記問題
を解決すべく検討を重ねた結果、スラブ素材にBi:
0.002〜0.05%を含有せしめ、且つ熱延板焼鈍
の冷却速度と脱炭焼鈍後の結晶粒径を適正な範囲にする
ことで、脱炭焼鈍後から最終仕上焼鈍の二次再結晶開始
までの間に鋼板に窒化処理を施す方式で二次再結晶がさ
らに安定し、且つ高磁束密度の一方向性電磁鋼板が得ら
れることを見出した。
As a result of repeated studies to solve the above problems, the present inventors have found that Bi:
By containing 0.002 to 0.05% and adjusting the cooling rate of hot-rolled sheet annealing and the crystal grain size after decarburization annealing within an appropriate range, the secondary re-annealing of the final finish annealing is performed after decarburization annealing. It has been found that secondary recrystallization is more stable and a high magnetic flux density unidirectional electrical steel sheet can be obtained by nitriding the steel sheet before the start of crystallization.

【0010】本発明の要旨は、重量でC:0.025〜
0.10%、Si:2.5〜4.5%、Mn:0.05
〜0.45%、S+0.405Se≦0.014%、酸
可溶性Al:0.01〜0.06%、N:0.0005
〜0.013%を含み、残部Fe及び不可避的不純物か
らなるスラブを素材とし、1280℃以下の温度に加熱
した後、熱延し、最終冷延圧下率50%以上の1回ない
し中間焼鈍を含む2回以上の冷間圧延を施し、さらに脱
炭焼鈍と仕上焼鈍を行い、また脱炭焼鈍後から最終仕上
焼鈍の二次再結晶開始までの間に鋼板に窒化処理を施す
一方向性電磁鋼板の製造方法において、前記スラブ素材
にBi:0.002〜0.05%を含有せしめ、且つ熱
延板焼鈍の均熱温度:900〜1200℃から750〜
900℃までの冷却速度を0.3〜50℃/secと
し、脱炭焼鈍後の平均結晶粒径を13〜28μmとする
ことを特徴とする高磁束密度一方向性電磁鋼板の製造方
法にある。
The gist of the present invention is C: 0.025 by weight.
0.10%, Si: 2.5-4.5%, Mn: 0.05
~ 0.45%, S + 0.405Se≤0.014%, acid-soluble Al: 0.01-0.06%, N: 0.0005
A slab containing 0.013% to 0.013% of balance Fe and unavoidable impurities is used as a raw material, heated to a temperature of 1280 ° C. or lower, then hot-rolled, and subjected to one-time or intermediate annealing with a final cold rolling reduction of 50% or more. Includes two or more cold rollings, including decarburization annealing and finish annealing, and performs nitriding treatment on the steel sheet between the decarburization annealing and the start of secondary recrystallization in the final finishing annealing. In the method for producing a steel sheet, the slab material is made to contain Bi: 0.002 to 0.05%, and the soaking temperature of hot-rolled sheet annealing: 900 to 1200 ° C to 750 to 750.
A method for producing a high magnetic flux density unidirectional electrical steel sheet, characterized in that the cooling rate up to 900 ° C. is 0.3 to 50 ° C./sec, and the average grain size after decarburization annealing is 13 to 28 μm. .

【0011】以下に本発明を詳細に説明する。まず本発
明の特徴であるBi添加の効果について述べる。本発明
者らは、一方向性電磁鋼板の製造における前記課題を解
決すべく、種々検討を行った。その結果上記成分のスラ
ブ素材にBi:0.002〜0.05%を含有させる
と、脱炭焼鈍前の微細析出物が増加することがわかっ
た。従ってBi添加によってこの時点でインヒビターが
強まり、脱炭焼鈍後の一次再結晶粒径の平均が13〜2
8μmと微細化し、且つ下記定義による同標準偏差σN
が0.6〜0.2になると推定される。
The present invention will be described in detail below. First, the effect of adding Bi, which is a feature of the present invention, will be described. The present inventors have made various studies in order to solve the above problems in the production of grain-oriented electrical steel sheets. As a result, it was found that when Bi: 0.002 to 0.05% was contained in the slab material having the above components, fine precipitates before decarburization annealing increased. Therefore, the addition of Bi strengthens the inhibitor at this point, and the average primary recrystallized grain size after decarburization annealing is 13 to 2
Minimized to 8 μm and the standard deviation σ N according to the following definition
Is estimated to be 0.6 to 0.2.

【0012】[0012]

【数1】 [Equation 1]

【0013】この整粒化によって{110}<001>
方位粒は成長し易く、さらにBi添加材は脱炭焼鈍後に
窒化処理しても相対的にインヒビター、即ち{110}
<001>方位粒が成長するまで他方位粒の成長を抑制
する力は強く、このことが二次再結晶が良好で高磁束密
度が得られる原因の一つと考えられる。そこで断面粒径
を画像解析法で測定したが、Bi添加材では脱炭焼鈍後
の一次再結晶平均粒径と製品磁束密度との関係は図1の
ようになった。以上のことからこのBi添加は、二次再
結晶が不安定なためより強力なインヒビターを必要とす
る薄手・極低鉄損材ほど有効と考えられる。Bi量の限
定理由は、0.002%未満ではインヒビター強化、即
ち二次再結晶が安定化する効果がない。一方、0.05
%を超えると熱延板の耳割れがひどくなり、コスト高に
つながる。また図2に示すように、Bi添加材は熱延板
焼鈍の均熱温度:900〜1200℃から750〜90
0℃までの冷却速度が0.3〜50℃/sec、好まし
くは1〜20℃/secで高磁束密度材が得られる。こ
れは冷却速度が上記範囲にある時、良好な二次再結晶を
得るための適正な析出分散相、即ちインヒビター強度に
なるためと推定される。
By this sizing, {110} <001>
The oriented grains easily grow, and the Bi-added material is relatively an inhibitor, that is, {110} even if it is nitrided after decarburization annealing.
The force that suppresses the growth of grains in the other position until the <001> oriented grains grow is strong, and this is considered to be one of the reasons for good secondary recrystallization and obtaining a high magnetic flux density. Therefore, the cross-sectional grain size was measured by an image analysis method. With the Bi-added material, the relationship between the average primary recrystallization grain size after decarburization annealing and the product magnetic flux density was as shown in FIG. From the above, it is considered that the addition of Bi is more effective for a thin / extra-low iron loss material that requires a stronger inhibitor because secondary recrystallization is unstable. The reason for limiting the amount of Bi is that when it is less than 0.002%, the effect of strengthening the inhibitor, that is, stabilizing secondary recrystallization is not achieved. On the other hand, 0.05
If it exceeds%, the ear cracks of the hot-rolled sheet become severe, leading to higher costs. In addition, as shown in FIG. 2, the Bi-added material has a soaking temperature for hot-rolled sheet annealing: 900 to 1200 ° C. to 750 to 90 ° C.
A high magnetic flux density material can be obtained at a cooling rate up to 0 ° C of 0.3 to 50 ° C / sec, preferably 1 to 20 ° C / sec. It is presumed that this is because when the cooling rate is in the above range, the precipitation-dispersed phase is proper for obtaining good secondary recrystallization, that is, the inhibitor strength.

【0014】[0014]

【作用】次に本発明において鋼組成及び製造条件を上述
のように限定した理由を詳細に説明する。Cは、その含
有量が0.025%未満になると二次再結晶が不安定と
なり、且つ二次再結晶した場合でも製品の磁束密度(B
8値) が1.80Tに満たない低いものとなる。一方C
の含有量が0.10%を超えて多くなり過ぎると、脱炭
焼鈍時間が長大なものとなり、生産性を著しく損なう。
The reason why the steel composition and manufacturing conditions are limited as described above in the present invention will be described in detail. When the content of C is less than 0.025%, the secondary recrystallization becomes unstable, and the magnetic flux density (B
(8 values) is low, less than 1.80T. On the other hand, C
If the content of Al exceeds 0.10% and becomes too large, the decarburization annealing time becomes long and the productivity is significantly impaired.

【0015】Siは、その含有量が2.5%未満になる
と低鉄損の製品を得難く、一方Siの含有量が4.5%
を超えて多くなり過ぎると、冷間圧延等の製造時に割
れ、破断が発生して安定した工業生産が不可能となる。
本発明の出発材料の成分系における特徴の一つは、Sを
0.014%以下、好ましくは0.010%以下とする
点にある。従来公知の技術、例えば特公昭40−156
44号公報、あるいは特公昭47−25250号公報に
開示されている技術においては、Sは二次再結晶を生起
させるのに必要な析出物の一つであるMnSの形成元素
として必須であった。前記公知技術において、Sが最も
効果を発揮する含有量範囲があり、それは熱間圧延に先
立って行われるスラブの加熱段階でMnSを固溶できる
量として規定されていた。しかしながらインヒビターと
して(Al、Si) Nを用いる本発明においては、Mn
Sを特に必要とはしない。むしろMnSが増加すること
は磁気特性上好ましくない。従って本発明においては、
Sの含有量は0.014%以下、好ましくは0.010
%以下とする。
When Si content is less than 2.5%, it is difficult to obtain a product with low iron loss, while Si content is 4.5%.
If the amount exceeds the above range, cracks and fractures occur during manufacturing such as cold rolling, and stable industrial production becomes impossible.
One of the characteristics of the component system of the starting material of the present invention is that S is 0.014% or less, preferably 0.010% or less. A conventionally known technique, for example, Japanese Patent Publication No. 40-156
In the technique disclosed in Japanese Patent Publication No. 44-44 or Japanese Patent Publication No. 47-25250, S was essential as an element for forming MnS, which is one of the precipitates necessary for causing secondary recrystallization. . In the above-mentioned known technology, there is a content range in which S exerts the most effect, and it has been defined as an amount capable of forming a solid solution of MnS in the heating step of the slab performed prior to hot rolling. However, in the present invention using (Al, Si) N as the inhibitor, Mn
S is not particularly required. Rather, increasing MnS is not preferable in terms of magnetic properties. Therefore, in the present invention,
S content is 0.014% or less, preferably 0.010
% Or less.

【0016】Seは、Sと同様にMnと化合物を形成
し、二次再結晶に影響するため、その含有量はS+0.
405Se≦0.014%とする。Alは、Nと結合し
てAlNを形成するが、本発明においては、後工程、即
ち一次再結晶完了後に鋼を窒化することにより(Al、
Si) Nを形成せしめることを必須としているから、フ
リーのAlが一定量以上必要である。そのためsol.
Alとして0.01〜0.06%添加する。
Like Se, Se forms a compound with Mn and affects secondary recrystallization, so its content is S + 0.
405Se ≦ 0.014%. Al combines with N to form AlN, but in the present invention, by nitriding the steel in a later step, that is, after completion of primary recrystallization (Al,
Since it is essential to form Si) N, free Al is required to have a certain amount or more. Therefore, sol.
0.01-0.06% is added as Al.

【0017】Mnは、その含有量が少な過ぎると二次再
結晶が不安定となり、一方多過ぎると高い磁束密度を有
する製品を得難くなる。適正な含有量は0.05〜0.
45%である。Nは、0.0005%未満では二次再結
晶粒の発達が悪くなる。一方0.013%を超えるとブ
リスターと呼ばれる鋼板のふくれが発生する。
If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The proper content is 0.05-0.
45%. If N is less than 0.0005%, the development of secondary recrystallized grains becomes poor. On the other hand, if it exceeds 0.013%, blister of the steel sheet called blister occurs.

【0018】Snは、0.01%未満では磁気特性改善
の上で効果がなく、一方0.10%超では窒化を抑制し
二次再結晶粒の発達を悪くする。Sbは、インヒビター
効果として、0.01〜0.15%が適当である。同様
にCuは、インヒビター効果として、0.05〜1.0
%が適当である。スラブ加熱温度については、インヒビ
ターを固溶する高温スラブ加熱でも、また普通鋼並の低
温スラブ加熱でも、二次再結晶は行われる。しかし熱延
板の耳割れを抑制できること、また当然のこととして熱
エネルギーが少ない低温スラブ加熱が有利であることか
ら、ノロの発生しない1280℃以下が望ましい。
If Sn is less than 0.01%, it has no effect on improving the magnetic properties, while if over 0.10%, it suppresses nitriding and deteriorates the development of secondary recrystallized grains. As Sb, 0.01 to 0.15% is suitable as an inhibitor effect. Similarly, Cu has an inhibitor effect of 0.05 to 1.0.
% Is appropriate. Regarding the slab heating temperature, the secondary recrystallization is carried out even in the high temperature slab heating in which the inhibitor is dissolved, and in the low temperature slab heating similar to that of ordinary steel. However, since the edge cracking of the hot-rolled sheet can be suppressed and naturally the low-temperature slab heating with a small amount of heat energy is advantageous, 1280 ° C. or less at which no slag is generated is desirable.

【0019】熱延以降の工程においては、最も高い磁束
密度を得るために、短時間の焼鈍後に80%以上の高圧
下率の冷間圧延によって最終板厚にする方法が望まし
い。また最終製品の結晶粒を小さくするため、中間焼鈍
を含む工程でも可能である。次に湿水素あるいは湿水
素、窒素混合雰囲気ガス中で、上記結晶組織が得られる
ように800〜900℃で適正な時間脱炭焼鈍をする。
In the steps after hot rolling, in order to obtain the highest magnetic flux density, it is desirable that the final sheet thickness is obtained by cold rolling at a high pressure reduction rate of 80% or more after short-time annealing. In addition, in order to reduce the crystal grains of the final product, it is possible to perform the process including intermediate annealing. Next, decarburization annealing is performed at 800 to 900 ° C. for an appropriate time in wet hydrogen or a mixed atmosphere gas of wet hydrogen and nitrogen so as to obtain the crystal structure.

【0020】次に焼鈍分離剤を塗布し、高温(通常11
00〜1200℃) 長時間の仕上焼鈍を行う。本発明の
窒化における最も好ましい実施態様は、仕上焼鈍の昇温
過程において窒化することであり、これにより二次再結
晶に必要なインヒビターを造り込むことが出来る。これ
を達成するために焼鈍分離剤中に窒化能のある化合物、
例えばMnN、CrN等を適当量添加するか、あるいは
NH3 等の窒化能のある気体を雰囲気ガス中に添加す
る。なお本発明における窒化の他の実施態様として、脱
炭焼鈍時均熱以降で窒化能のある気体の雰囲気で窒化す
るか、または脱炭焼鈍後に別途設けたNH3 等の雰囲気
を有する熱処理炉を通過せしめて窒化しても良く、以上
の手段の組み合わせでも良い。
Next, an annealing separator is applied, and the high temperature (usually 11
(00 to 1200 ° C.) Finish annealing is performed for a long time. The most preferable embodiment of the nitriding of the present invention is nitriding in the temperature rising process of finish annealing, which makes it possible to build an inhibitor necessary for secondary recrystallization. To achieve this, a compound with nitriding capacity in the annealing separator,
For example, MnN, CrN or the like is added in an appropriate amount, or a gas having a nitriding ability such as NH 3 is added to the atmosphere gas. Note that, as another embodiment of nitriding in the present invention, a nitriding is performed in a gas atmosphere having a nitriding ability after soaking during decarburization annealing, or a heat treatment furnace having an atmosphere such as NH 3 separately provided after decarburization annealing is used. Nitrogen may be passed and passed, or a combination of the above means may be used.

【0021】二次再結晶完了後は、水素雰囲気中におい
て純化焼鈍を行う。次に本発明の実施例を挙げて説明す
る。 実施例1 表1に示す鋼の成分組成を含む溶鋼を鋳造したスラブ
を、1150℃で加熱した後、熱延し、2.0mm厚み
の熱延板とした。
After the completion of secondary recrystallization, purification annealing is performed in a hydrogen atmosphere. Next, examples of the present invention will be described. Example 1 A slab obtained by casting molten steel containing the component composition of steel shown in Table 1 was heated at 1150 ° C. and then hot rolled to obtain a hot rolled sheet having a thickness of 2.0 mm.

【0022】次いでこれらの熱延板を1050℃×2.
5分+900℃×2分間焼鈍を行った後、100℃の湯
中に冷却し、さらに酸洗した後、冷間圧延を行い、0.
23mm厚にした。次にこの冷延板を温度と時間を変え
て湿潤水素、窒素雰囲気中で脱炭焼鈍し、表2のような
結晶粒径を有する鋼板を得た。次いでアンモニア1%を
含む水素、窒素雰囲気中で750℃×30秒窒化処理を
行い、鋼板中の窒素量を200ppmとした。さらにM
gO粉を塗布した後、1200℃×20時間水素ガス雰
囲気中で高温焼鈍を行った。
Next, these hot-rolled sheets were heated at 1050 ° C. × 2.
After annealing for 5 minutes + 900 ° C. × 2 minutes, it was cooled in 100 ° C. hot water, further pickled, and then cold-rolled.
It was 23 mm thick. Next, this cold rolled sheet was decarburized and annealed in a wet hydrogen and nitrogen atmosphere at different temperatures and times to obtain a steel sheet having a crystal grain size as shown in Table 2. Then, nitriding treatment was performed at 750 ° C. for 30 seconds in an atmosphere of hydrogen and nitrogen containing 1% of ammonia so that the amount of nitrogen in the steel sheet was 200 ppm. Furthermore M
After applying the gO powder, high temperature annealing was performed in a hydrogen gas atmosphere at 1200 ° C. for 20 hours.

【0023】得られた製品は、表2に示すように、Bi
添加材で、且つ脱炭焼鈍後の平均結晶粒径が本発明の範
囲で二次再結晶が安定し、良好な磁気特性が得られた。
The product thus obtained was, as shown in Table 2, Bi
Secondary recrystallization was stable with the additive material and the average grain size after decarburization annealing was within the range of the present invention, and good magnetic characteristics were obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】実施例2 表3に示す鋼の成分組成を含む溶鋼を鋳造したスラブ
を、1150℃で加熱した後、熱延し、2.0mm厚み
の熱延板とした。次いでこれらの熱延板を1050℃×
2.5分+900℃×2分間焼鈍を行い、且つ1050
℃から900℃間の冷却速度を表4に示すように変化さ
せた後、100℃の湯中に冷却し、さらに酸洗した後、
冷間圧延を行い、0.23mm厚にした。次にこの冷延
板を830℃×90秒間湿潤水素、窒素雰囲気中で脱炭
焼鈍した。次いでアンモニア1%を含む水素、窒素雰囲
気中で750℃×30秒窒化処理を行い、鋼板中の窒素
量を200ppmとした。さらにMgO粉を塗布した
後、1200℃×20時間水素ガス雰囲気中で高温焼鈍
を行った。
Example 2 A slab obtained by casting molten steel containing the steel composition shown in Table 3 was heated at 1150 ° C. and then hot rolled to obtain a hot rolled sheet having a thickness of 2.0 mm. Then these hot-rolled sheets were heated at 1050 ° C ×
2.5 minutes + 900 ℃ × 2 minutes annealing, and 1050
After changing the cooling rate between 0 ° C and 900 ° C as shown in Table 4, after cooling in hot water at 100 ° C and further pickling,
Cold rolling was performed to a thickness of 0.23 mm. Next, this cold rolled sheet was decarburized and annealed in an atmosphere of wet hydrogen and nitrogen for 90 seconds at 830 ° C. Then, nitriding treatment was performed at 750 ° C. for 30 seconds in an atmosphere of hydrogen and nitrogen containing 1% of ammonia so that the amount of nitrogen in the steel sheet was 200 ppm. After applying MgO powder, high temperature annealing was performed in a hydrogen gas atmosphere at 1200 ° C. for 20 hours.

【0027】得られた製品は、表4に示すように、Bi
添加材で、且つ熱延板焼鈍の冷却速度条件が本発明の範
囲で二次再結晶が安定し、良好な磁気特性が得られた。
The product thus obtained was, as shown in Table 4, Bi
The secondary recrystallization was stable and good magnetic properties were obtained when the additive was used and the cooling rate condition of the hot-rolled sheet annealing was within the range of the present invention.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【発明の効果】本発明によれば、Bi添加材で熱延板焼
鈍の冷却速度と脱炭焼鈍後の結晶粒径を適正な範囲にす
ることで、二次再結晶が安定し、磁束密度の高い一方向
性電磁鋼板を製造することができる。
According to the present invention, the secondary recrystallization is stabilized and the magnetic flux density is stabilized by adjusting the cooling rate of hot-rolled sheet annealing and the crystal grain size after decarburization annealing with the Bi-added material. It is possible to manufacture a high-oriented electrical steel sheet.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気特性B10と脱炭焼鈍後の平均結晶粒径との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between magnetic property B 10 and average grain size after decarburization annealing.

【図2】磁気特性B10と熱延板焼鈍の冷却速度との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the magnetic property B 10 and the cooling rate of hot-rolled sheet annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高嶋 邦秀 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 中村 吉男 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihide Takashima 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Yoshio Nakamura 20-1 Shintomi, Futtsu-shi, Chiba Made by Shinnihon Iron & Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.025〜0.10%、S
i:2.5〜4.5%、Mn:0.05〜0.45%、
S+0.405Se≦0.014%、酸可溶性Al:
0.01〜0.06%、N:0.0005〜0.013
%を含み、残部Fe及び不可避的不純物からなるスラブ
を素材とし、1280℃以下の温度に加熱した後、熱延
し、最終冷延圧下率50%以上の1回ないし中間焼鈍を
含む2回以上の冷間圧延を施し、さらに脱炭焼鈍と仕上
焼鈍を行い、また脱炭焼鈍後から最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施す一方向性電磁
鋼板の製造方法において、前記スラブ素材にBi:0.
002〜0.05%を含有せしめ、且つ熱延板焼鈍の均
熱温度:900〜1200℃から750〜900℃まで
の冷却速度を0.3〜50℃/secとし、脱炭焼鈍後
の平均結晶粒径を13〜28μmとすることを特徴とす
る高磁束密度一方向性電磁鋼板の製造方法。
1. C: 0.025 to 0.10% by weight, S
i: 2.5 to 4.5%, Mn: 0.05 to 0.45%,
S + 0.405Se ≦ 0.014%, acid-soluble Al:
0.01-0.06%, N: 0.0005-0.013
%, With the balance Fe and unavoidable impurities as the raw material, heated to a temperature of 1280 ° C. or lower, then hot-rolled, once at a final cold rolling reduction of 50% or more, or twice at least including intermediate annealing. Cold rolling of steel sheet, decarburization annealing and finish annealing, and nitriding treatment of steel sheet between decarburization annealing and start of secondary recrystallization of final finishing annealing. In the slab material, Bi: 0.
002-0.05%, and the soaking temperature of hot-rolled sheet annealing: The cooling rate from 900-1200 ° C to 750-900 ° C was 0.3-50 ° C / sec, and the average after decarburization annealing A method for producing a high magnetic flux density unidirectional electrical steel sheet, which has a crystal grain size of 13 to 28 μm.
【請求項2】 最終冷延圧下率を80%以上とすること
を特徴とする請求項1記載の高磁束密度一方向性電磁鋼
板の製造方法。
2. The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein the final cold rolling reduction is 80% or more.
【請求項3】 溶鋼成分を、重量でC:0.025〜
0.10%、Si:2.5〜4.5%、Mn:0.05
〜0.45%、S+0.405Se≦0.014%、酸
可溶性Al:0.01〜0.06%、N:0.0005
〜0.013%Bi:0.002〜0.05%とし、さ
らにSn:0.01〜0.10%、Sb:0.01〜
0.15%及びCu:0.05〜1.0%の少なくとも
1種を含有せしめることを特徴とする請求項1記載の高
磁束密度一方向性電磁鋼板の製造方法。
3. A molten steel component, by weight, C: 0.025 to.
0.10%, Si: 2.5-4.5%, Mn: 0.05
~ 0.45%, S + 0.405Se≤0.014%, acid-soluble Al: 0.01-0.06%, N: 0.0005
-0.013% Bi: 0.002-0.05%, Sn: 0.01-0.10%, Sb: 0.01-
0.15% and Cu: 0.05-1.0% of at least 1 sort (s) are contained, The manufacturing method of the high magnetic flux density grain-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned.
JP4334461A 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density Withdrawn JPH06179917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4334461A JPH06179917A (en) 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334461A JPH06179917A (en) 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH06179917A true JPH06179917A (en) 1994-06-28

Family

ID=18277652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334461A Withdrawn JPH06179917A (en) 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH06179917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809240A1 (en) * 1987-03-23 1988-10-06 Westinghouse Electric Corp METHOD FOR REDUCING NO (ARROW DOWN) X (ARROW DOWN) EMISSIONS FROM COMBUSTION TURBINES
WO1999046416A1 (en) * 1998-03-11 1999-09-16 Nippon Steel Corporation Unidirectional magnetic steel sheet and method of its manufacture
JP2001506702A (en) * 1996-12-24 2001-05-22 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for manufacturing oriented grain electrical steel sheet with high magnetic properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809240A1 (en) * 1987-03-23 1988-10-06 Westinghouse Electric Corp METHOD FOR REDUCING NO (ARROW DOWN) X (ARROW DOWN) EMISSIONS FROM COMBUSTION TURBINES
JP2001506702A (en) * 1996-12-24 2001-05-22 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for manufacturing oriented grain electrical steel sheet with high magnetic properties
JP4651755B2 (en) * 1996-12-24 2011-03-16 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for producing oriented grain electrical steel sheet with high magnetic properties
WO1999046416A1 (en) * 1998-03-11 1999-09-16 Nippon Steel Corporation Unidirectional magnetic steel sheet and method of its manufacture
US6159309A (en) * 1998-03-11 2000-12-12 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing same
CN1078624C (en) * 1998-03-11 2002-01-30 新日本制铁株式会社 unidirectional magnetic steel sheet and method of its manufacture

Similar Documents

Publication Publication Date Title
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
KR100359239B1 (en) Method for producing a directional electric steel plate having a high flux density
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH06179915A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH0949022A (en) Production of grain oriented silicon steel sheet with low iron loss and high magnetic flux density
JPH06179918A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JPH01301820A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JP3324616B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH06172862A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06179916A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08232019A (en) Production of grain oriented silicon steel sheet with high magnetic flux density, having excellent glass film
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH09157748A (en) Production of grain oriented silicon steel sheet having low iron loss and high magnetic flux density
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307