JPH06179918A - Production of grain oriented silicon steel sheet with high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet with high magnetic flux density

Info

Publication number
JPH06179918A
JPH06179918A JP4334462A JP33446292A JPH06179918A JP H06179918 A JPH06179918 A JP H06179918A JP 4334462 A JP4334462 A JP 4334462A JP 33446292 A JP33446292 A JP 33446292A JP H06179918 A JPH06179918 A JP H06179918A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
magnetic flux
rolling
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4334462A
Other languages
Japanese (ja)
Inventor
Isao Iwanaga
功 岩永
Hiroaki Masui
浩昭 増井
Katsuro Kuroki
克郎 黒木
Kunihide Takashima
邦秀 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4334462A priority Critical patent/JPH06179918A/en
Publication of JPH06179918A publication Critical patent/JPH06179918A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a superior grain oriented silicon steel sheet with high magnetic flux density by incorporating specific amounts of Bi and S into a slab material of specific composition and applying roughing and finish rolling under respectively specified conditions. CONSTITUTION:The slab material has a composition consisting of, by weight, 0.025-0.10% C, 2.5-4.5% Si, 0.05-0.45% Mn, 0.01-0.06% acid soluble Al, 0.0005-0.013% N, and the balance Fe with inevitable impurities. This material is heated, hot-rolled, and cold-rolled at >=50% draft. Further, decarburizing annealing and finish annealing are done, and nitriding treatment is applied in the course of the above. At this time, 0.002-0.05% Bi and <=0.014% S are incorporated into the slab material. At the time of hot rolling after heating to <=1280 deg.C, plate thickness after roughing is regulated to 25-50mm, and further, finish rolling inlet temp. and outlet temp. are regulated to 900-1150 deg.C and 800-1100 deg.C, respectively. By this method, the grain oriented silicon steel sheet reduced in edge crack of hot rolled plate can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜4.5%のS
iを含む高い磁束密度を有する一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION The present invention has an S content of 2.5 to 4.5%.
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density including i.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、トランス等の電気
機器の鉄心材料として使用されており、磁気特性として
励磁特性と鉄損特性が良好でなくてはならない。しかも
近年特にエネルギーロスの少ない低鉄損素材への市場要
求が強まっている。磁束密度の高い鋼板は、鉄損が低
く、また鉄心が小さく出来るので、極めて重要な開発目
標である。この高い磁束密度を有する一方向性電磁鋼板
は、適切な冷延と焼鈍とにより熱延板から最終板厚にし
た鋼板を仕上焼鈍して{110}<001>方位を有す
る一次再結晶粒を選択成長させる、いわゆる二次再結晶
によって得られる。
2. Description of the Related Art Unidirectional electrical steel sheets are used as iron core materials for electrical equipment such as transformers, and must have good magnetic excitation characteristics and iron loss characteristics. Moreover, in recent years, the market demand for low iron loss materials with particularly low energy loss has been increasing. A steel sheet with a high magnetic flux density has a low iron loss and a small iron core, which is an extremely important development target. This unidirectional electrical steel sheet having a high magnetic flux density is obtained by finish-annealing a steel sheet having a final thickness from a hot-rolled sheet by appropriate cold rolling and annealing to produce primary recrystallized grains having a {110} <001> orientation. It is obtained by so-called secondary recrystallization in which selective growth is performed.

【0003】二次再結晶は、二次再結晶前の鋼板中に微
細な析出物、例えばMnS、AlN、MnSe、Cu2
S、BN、(Al、Si)N等が存在すること、あるい
はSn、Sb等の粒界偏析型の元素が存在することによ
って達成される。これら析出物、粒界偏析型の元素は
J.B.May and Turnbull(Tran
s.Met.Soc.AIME212(1958)P7
69/781)によって説明されているように、仕上焼
鈍工程で{110}<001>方位以外の一次再結晶粒
の成長を抑え、{110}<001>方位粒を選択的に
成長させる機能を持つ。このような粒成長の抑制効果は
一般にはインヒビター効果と呼ばれている。従って当該
分野の研究開発の重点課題はいかなる種類の析出物、あ
るいは粒界偏析型の元素を用いて二次再結晶を安定させ
るか、そして正確な{110}<001>方位粒の存在
割合を高めるために、それらの適切な存在状態をいかに
達成するかにある。特に最近では1種類の析出物による
方法では{110}<001>方位の高度の制御に限界
があるため、各析出物について長所、短所を深く解明す
ることにより、いくつかの析出物を有機的に組み合わせ
て、より磁束密度の高い製品を安定に、且つコストを安
く製造できる技術の開発が進められている。
The secondary recrystallization is carried out by fine precipitates such as MnS, AlN, MnSe and Cu 2 in the steel sheet before the secondary recrystallization.
This is achieved by the presence of S, BN, (Al, Si) N, etc., or the presence of grain boundary segregation type elements such as Sn, Sb. These precipitates and grain boundary segregation type elements are described in J. B. May and Turnbull (Tran
s. Met. Soc. AIM E212 (1958) P7
69/781), the function of suppressing the growth of primary recrystallized grains other than the {110} <001> orientation and selectively growing the {110} <001> oriented grains in the finish annealing step. To have. Such a grain growth suppressing effect is generally called an inhibitor effect. Therefore, the priority issue of research and development in this field is to determine what kind of precipitate or grain boundary segregation type element is used to stabilize the secondary recrystallization, and to determine the exact proportion of {110} <001> oriented grains. How to achieve their proper state of presence to enhance. In particular, recently, the method using one kind of precipitate has a limitation in controlling the altitude of the {110} <001> orientation. Therefore, by clarifying the advantages and disadvantages of each precipitate, some precipitates can be organically separated. In combination with the above, development of a technology capable of producing a product having a higher magnetic flux density in a stable manner and at a low cost is in progress.

【0004】現在、工業生産されている代表的な一方向
性電磁鋼板の製造方法としては3種類あるが、各々につ
いては長所、短所がある。第一の技術はM.F.Lit
tmannによる特公昭30−3651号公報に示され
たMnSを用いた二回冷延工程によるプロセスであり、
得られる二次再結晶粒は安定して発達するが、高い磁束
密度が得られない。第二の技術は田口等による特公昭4
0−15644号公報に示されたAlN+MnSを用い
た最終冷延を80%以上の高圧下率とするプロセスであ
り、高い磁束密度は得られるが、工業生産に際しては製
造条件の厳密なコントロールが要求される。第三の技術
は今中等による特公昭51−13469号公報に示され
たMnS(及び/またはMnSe)+Sbを含有する珪
素鋼を二回冷延工程によって製造するプロセスであり、
比較的高い磁束密度は得られるが、Sb、Seのような
有害で且つ高価な元素を使用し、しかも二回冷延法であ
ることから製造コストが高くなる。
At present, there are three kinds of typical industrially produced grain-oriented electrical steel sheets, each of which has advantages and disadvantages. The first technology is M. F. Lit
It is a process by a two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. 30-3651 by Tmann,
The obtained secondary recrystallized grains grow stably, but a high magnetic flux density cannot be obtained. The second technique is Taguchi et al.
This is a process in which the final cold rolling using AlN + MnS disclosed in 0-15644 is performed at a high pressure reduction rate of 80% or more, and a high magnetic flux density can be obtained, but strict control of manufacturing conditions is required in industrial production. To be done. The third technique is a process for producing silicon steel containing MnS (and / or MnSe) + Sb, which is disclosed in Japanese Patent Publication No. 51-13469, by two cold-rolling steps.
Although a relatively high magnetic flux density can be obtained, the production cost is high because harmful and expensive elements such as Sb and Se are used and the double cold rolling method is used.

【0005】また上記3種類の技術においては、共通し
て次のような問題がある。即ち、上記技術はいずれも析
出物を微細、均一に制御する技術として熱延に先立つス
ラブ加熱温度を、第一の技術では1260℃以上、第二
の技術では特開昭48−51852号公報に示すように
素材Si量にもよるが3%Siの場合で1350℃、第
三の技術では特開昭51−20716号公報に示すよう
に1230℃以上、高い磁束密度の得られた実施例では
1320℃といった極めて高い温度にすることによって
粗大に存在する析出物をいったん固溶させ、その後の熱
延中、あるいは熱処理中に析出させている。スラブ加熱
温度を上げることは、加熱時の使用エネルギーの増大や
ノロの発生による歩留り低下及び加熱炉の補修頻度の増
大に起因する設備稼働率の低下、さらには特公昭57−
41526号公報に示されるように線状二次再結晶不良
が発生するため連続鋳造スラブが使用できないという問
題がある。しかしこのようなコスト上の問題以上に重要
なことは、鉄損向上のためにSiを多く、製品板厚を薄
くといった手段を取ると、この線状二次再結晶不良の発
生が増大し、高温スラブ加熱法を前提にした技術では将
来の鉄損向上に希望を持てない。
Further, the above three types of technology have the following problems in common. That is, in any of the above techniques, the slab heating temperature prior to hot rolling as a technique for finely and uniformly controlling precipitates is 1260 ° C. or higher in the first technique, and JP-A-48-51852 in the second technique. As shown, it depends on the amount of Si in the material, but it is 1350 ° C. in the case of 3% Si, and 1230 ° C. or higher in the third technique as shown in JP-A-51-20716. Coarsely existing precipitates are once solid-dissolved by making the temperature extremely high such as 1320 ° C., and then precipitated during the subsequent hot rolling or heat treatment. Raising the slab heating temperature lowers the production efficiency due to the increase in energy used during heating, the decrease in yield due to the generation of slag, and the increase in the repair frequency of the heating furnace.
As disclosed in Japanese Patent No. 41526, there is a problem that a continuous casting slab cannot be used because a linear secondary recrystallization defect occurs. However, what is more important than such a problem in terms of cost is that if a large amount of Si and a thin product plate are taken to improve iron loss, the occurrence of this linear secondary recrystallization defect increases, Technology based on the high-temperature slab heating method has no hope for improving iron loss in the future.

【0006】これに対し特公昭61−60896号公報
に開示されている技術では鋼中のSを少なくすることに
よって二次再結晶が極めて安定し、高Si薄手製品を可
能にした。しかしこの技術は量産規模で工場生産する上
で、磁束密度の安定性に問題があり、例えば特開昭62
−40315号公報に開示されているような改良技術が
提案されているが、今まで完全に解決するに至っていな
い。
On the other hand, in the technique disclosed in Japanese Patent Publication No. 61-60896, by reducing S in the steel, secondary recrystallization is extremely stable, and a high Si thin product is made possible. However, this technique has a problem in the stability of the magnetic flux density in factory production on a mass production scale.
Although an improved technique disclosed in Japanese Patent Publication No.-40315 has been proposed, it has not been solved completely until now.

【0007】[0007]

【発明が解決しようとする課題】以上述べてきたように
現在工業化されている製造方法は二次再結晶に必要なイ
ンヒビターを冷間圧延以前の工程で造り込むものであ
る。これに対し本発明は特開昭62−40315号公報
と同一技術思想に基づく製造方法である。即ち二次再結
晶に必要なインヒビターは、脱炭焼鈍(一次再結晶)完
了以降から仕上焼鈍における二次再結晶発現以前までに
造り込むもので、その手段として、鋼中にNを侵入させ
ることによって、インヒビターとして機能する(Al、
Si)Nを形成させる。鋼中にNを侵入させる手段とし
ては、従来技術で提案されているように仕上焼鈍昇温過
程での雰囲気ガスからのNの侵入を利用するか、脱炭焼
鈍後段領域あるいは脱炭焼鈍完了後のストリップを連続
ラインでNH3 等の窒化源となる雰囲気ガスを用いて行
う。
As described above, the manufacturing method currently industrialized is to incorporate the inhibitor required for secondary recrystallization in the step before cold rolling. On the other hand, the present invention is a manufacturing method based on the same technical idea as JP-A-62-40315. In other words, the inhibitor required for secondary recrystallization is built in after the completion of decarburization annealing (primary recrystallization) to before the appearance of secondary recrystallization in finish annealing. Functions as an inhibitor (Al,
Si) N is formed. As the means for injecting N into the steel, the invasion of N from the atmospheric gas in the finish annealing temperature rising process is used as proposed in the prior art, or after the decarburization annealing or after the decarburization annealing is completed. Stripping is performed on a continuous line using an atmosphere gas such as NH 3 which serves as a nitriding source.

【0008】ところで以上のような方法で適正なインヒ
ビターを造り込んでも、窒化時の一次再結晶組織の状態
が適当でなければ高磁束密度を有する良好な二次再結晶
は得られない。しかしながら従来方式の溶鋼成分では、
この方式の特徴である1280℃以下の温度に加熱した
後に熱延したのでは析出物が粗大化し過ぎてインヒビタ
ーとしての機能はほとんどなく、結晶組織制御のため脱
炭焼鈍条件を厳密にコントロールする必要がある。そこ
で本発明者らは、特願平4−240701号に開示した
ように、スラブ素材にBiを添加することでより二次再
結晶が安定し、高磁束密度が得られることを見出した
が、一方熱延板の耳割れが増加する傾向にあった。従っ
て磁気特性のみでなく熱延板の耳割れも少ない、優れた
一方向性電磁鋼板の製造方法を検討した。
By the way, even if a suitable inhibitor is formed by the above method, good secondary recrystallization having a high magnetic flux density cannot be obtained unless the state of the primary recrystallization structure during nitriding is appropriate. However, in the conventional molten steel composition,
If hot rolling is performed after heating to a temperature of 1280 ° C or less, which is a feature of this method, the precipitates become too coarse and hardly function as an inhibitor. It is necessary to strictly control the decarburization annealing conditions to control the crystal structure. There is. Therefore, the present inventors have found that, as disclosed in Japanese Patent Application No. 4-240701, by adding Bi to the slab material, secondary recrystallization becomes more stable and a high magnetic flux density can be obtained. On the other hand, there was a tendency that ear cracks in the hot rolled sheet increased. Therefore, a method for producing an excellent grain-oriented electrical steel sheet having not only magnetic properties but also less edge cracking of the hot rolled sheet was studied.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記問題
を解決すべく検討を重ねた結果、スラブ素材にBi:
0.002〜0.05%、S≦0.014%を含有し、
且つ熱延の加熱及び圧延条件を適正な範囲にすること
で、熱延板の平均耳割れ深さが15mm以下と良好で且
つ二次再結晶が安定し、高磁束密度の一方向性電磁鋼板
が得られることを見出した。
As a result of repeated studies to solve the above problems, the present inventors have found that Bi:
0.002-0.05%, S ≦ 0.014%,
In addition, by setting the heating and rolling conditions for hot rolling to be in appropriate ranges, the average edge crack depth of the hot rolled sheet is good at 15 mm or less, secondary recrystallization is stable, and a high magnetic flux density unidirectional electrical steel sheet It was found that

【0010】本発明の要旨は、重量でC:0.025〜
0.10%、Si:2.5〜4.5%、Mn:0.05
〜0.45%、酸可溶性Al:0.01〜0.06%、
N:0.0005〜0.013%を含み、残部Fe及び
不可避的不純物からなるスラブを素材とし、加熱した
後、熱延し、最終冷延圧下率50%以上の1回ないし中
間焼鈍を含む2回以上の冷間圧延を施し、さらに脱炭焼
鈍と仕上焼鈍を行い、また脱炭焼鈍後から最終仕上焼鈍
の二次再結晶開始までの間に鋼板に窒化処理を施す一方
向性電磁鋼板の製造方法において、前記スラブ素材がB
i:0.002〜0.05%、S≦0.014%を含有
せしめ、且つ1280℃以下の温度に加熱した後の熱延
に際し、粗圧延後の板厚を25〜50mm、仕上圧延入
口温度を900〜1150℃及び仕上圧延出口温度を8
00〜1100℃とすることを特徴とする下記定義によ
る熱延板の平均耳割れ深さが15mm以下である高磁束
密度一方向性電磁鋼板の製造方法にある。
The gist of the present invention is C: 0.025 by weight.
0.10%, Si: 2.5-4.5%, Mn: 0.05
~ 0.45%, acid-soluble Al: 0.01-0.06%,
N: 0.0005 to 0.013% is included, and a slab composed of the balance Fe and unavoidable impurities is used as a raw material, and after heating, hot rolling is performed, and one or more intermediate cold annealing at a final cold rolling reduction of 50% or more is included. A unidirectional electrical steel sheet that has been subjected to cold rolling two or more times, further subjected to decarburization annealing and finish annealing, and has undergone nitriding treatment between the decarburization annealing and the start of secondary recrystallization of the final finish annealing. In the manufacturing method of B, the slab material is B
i: 0.002 to 0.05%, S ≦ 0.014%, and at the time of hot rolling after heating to a temperature of 1280 ° C. or less, the plate thickness after rough rolling is 25 to 50 mm, finish rolling inlet The temperature is 900 to 1150 ° C and the finish rolling outlet temperature is 8
The hot-rolled sheet according to the following definition has an average edge crack depth of 15 mm or less, and is a method for producing a high magnetic flux density unidirectional electrical steel sheet.

【0011】記 熱延板の平均耳割れ深さ:1m長さ当たりの、板幅中心
への耳割れ深さが深い順から10個までの平均値 以下に本発明を詳細に説明する。まず本発明の特徴であ
るBi添加の効果について述べる。本発明者らは一方向
性電磁鋼板の製造における前記課題を解決すべく、種々
検討を行った。その結果上記成分のスラブ素材にBi:
0.002〜0.05%を含有させると、脱炭焼鈍前の
微細析出物が増加することがわかった。従ってBi添加
によってこの時点でインヒビターが強まり、脱炭焼鈍温
度の広い領域で一次再結晶粒径の変化が小さく且つ均一
化し、従って二次再結晶が安定すると推定される。また
Bi添加材は脱炭焼鈍後に窒化処理しても相対的にイン
ヒビター、即ち{110}<001>方位粒が成長する
まで他方位粒の成長を抑制する力は強く、このことが高
磁束密度が得られる原因と考えられる。以上のことから
このBi添加は、二次再結晶が不安定なためより強力な
インヒビターを必要とする薄手・極低鉄損材ほど有効と
考えられる。Bi量の限定理由は、0.002%未満で
はインヒビター強化、即ち二次再結晶が安定化する効果
がない。一方、0.05%を超えると熱延板の耳割れが
ひどくなり、コスト高につながる。
Average Ear Crack Depth of Hot Rolled Sheet: Average value of ten ear crack depths from the deepest to the center of the sheet width per 1 m length The present invention will be described in detail below. First, the effect of adding Bi, which is a feature of the present invention, will be described. The present inventors have made various studies in order to solve the above problems in the production of grain-oriented electrical steel sheets. As a result, Bi:
It was found that when 0.002 to 0.05% was contained, fine precipitates before decarburization annealing increased. Therefore, it is presumed that the addition of Bi strengthens the inhibitor at this point, makes the change in the primary recrystallization grain size small and uniform in a wide range of the decarburization annealing temperature, and thus stabilizes the secondary recrystallization. Further, the Bi-added material has a relatively strong inhibitory force, that is, the ability to suppress the growth of the other grains until the {110} <001> oriented grains grow, even if the nitriding treatment is performed after the decarburization annealing. Is considered to be the cause. From the above, it is considered that the addition of Bi is more effective for a thin / extra-low iron loss material that requires a stronger inhibitor because secondary recrystallization is unstable. The reason for limiting the amount of Bi is that when it is less than 0.002%, the effect of strengthening the inhibitor, that is, stabilizing secondary recrystallization is not achieved. On the other hand, if it exceeds 0.05%, the edge cracks of the hot-rolled sheet become severe, leading to an increase in cost.

【0012】一方Bi添加材では製品の磁束密度は高く
なるが、一般にBiの量が多いと熱延板の耳割れが増加
する傾向にある。しかしBiの量が多い場合でも、図1
に示すようにSの量を少なくし且つスラブ加熱温度を1
280℃以下にし、またその後の熱延で、粗圧延後の板
厚を25〜50mm、仕上圧延入口温度を900〜11
50℃及び仕上圧延出口温度を800〜1100℃に限
定すると、熱延板の耳割れ発生を抑制できることがわか
った。これはBiが地鉄への固溶や、化合物の形成が極
めて困難で、且つ融点が300℃未満であるため、結晶
粒界や析出物界面に凝集し易く、強度を低くし、従って
低温での熱延や、S量を低くして析出物に付随した結晶
粒界へのBi凝集を減らすことで熱延板の耳割れ発生が
抑制されると考えられる。一方、粗圧延後の板厚、仕上
圧延入口温度及び仕上圧延出口温度の下限設定の理由
は、圧延時の温度低下に伴う変形能減少による耳割れ発
生の抑制のためであり、また仕上圧延入口温度及び仕上
圧延出口温度の上限設定の理由は、スラブ過熱に伴う結
晶粗大化やBiの影響による耳割れ発生の抑制のため、
及び粗圧延後の板厚の上限設定の理由は圧延能力の制約
のためである。
On the other hand, although the magnetic flux density of the product increases with the Bi-added material, in general, when the amount of Bi is large, the edge cracks of the hot-rolled sheet tend to increase. However, even if the amount of Bi is large,
As shown in, the amount of S is reduced and the slab heating temperature is set to 1
The plate thickness after rough rolling is set to 25 to 50 mm and the finish rolling inlet temperature is set to 900 to 11 at 280 ° C. or lower and then hot rolling.
It was found that the occurrence of edge cracks in the hot-rolled sheet can be suppressed by limiting the temperature of 50 ° C and the finish rolling outlet temperature to 800 to 1100 ° C. This is because it is extremely difficult for Bi to form a solid solution in the base iron or to form a compound, and the melting point is less than 300 ° C., so Bi easily aggregates at the grain boundaries and precipitate interfaces, resulting in low strength, and thus at low temperatures. It is considered that the occurrence of edge cracking of the hot-rolled sheet is suppressed by hot-rolling of No. 2 and by reducing the amount of S to reduce Bi agglomeration at the crystal grain boundaries accompanying the precipitate. On the other hand, the reason for setting the lower limit of the plate thickness after rough rolling, the finish rolling inlet temperature and the finish rolling outlet temperature is to suppress the occurrence of edge cracks due to the decrease in deformability accompanying the temperature decrease during rolling, and the finish rolling inlet. The reason for setting the upper limit of the temperature and the finish rolling outlet temperature is to suppress the occurrence of edge cracking due to crystal coarsening and Bi influence due to slab overheating,
Also, the reason for setting the upper limit of the plate thickness after rough rolling is due to the restriction of rolling ability.

【0013】[0013]

【作用】次に本発明において鋼組成及び製造条件を上述
のように限定した理由を詳細に説明する。Cは、その含
有量が0.025%未満になると二次再結晶が不安定と
なり、且つ二次再結晶した場合でも製品の磁束密度(B
8 値)が1.80Tに満たない低いものとなる。一方C
の含有量が0.10%を超えて多くなり過ぎると、脱炭
焼鈍時間が長大なものとなり、生産性を著しく損なう。
The reason why the steel composition and manufacturing conditions are limited as described above in the present invention will be described in detail. When the content of C is less than 0.025%, the secondary recrystallization becomes unstable, and the magnetic flux density (B
8 value) is low, less than 1.80T. On the other hand, C
If the content of Al exceeds 0.10% and becomes too large, the decarburization annealing time becomes long and the productivity is significantly impaired.

【0014】Siは、その含有量が2.5%未満になる
と低鉄損の製品を得難く、一方Siの含有量が4.5%
を超えて多くなり過ぎると、冷間圧延等の製造時に割
れ、破断が発生して安定した工業生産が不可能となる。
本発明の出発材料の成分系における特徴の一つは、Sを
0.014%以下、好ましくは0.010%以下とする
点にある。従来公知の技術、例えば特公昭40−156
44号公報、あるいは特公昭47−25250号公報に
開示されている技術においては、Sは二次再結晶を生起
させるのに必要な析出物の一つであるMnSの形成元素
として必須であった。前記公知技術において、Sが最も
効果を発揮する含有量範囲があり、それは熱間圧延に先
立って行われるスラブの加熱段階でMnSを固溶できる
量として規定されていた。しかしながらインヒビターと
して(Al、Si)Nを用いる本発明においては、Mn
Sを特に必要とはしない。むしろMnSが増加すること
は磁気特性上好ましくない。また本発明であるBi添加
材では、前述のようにSが多いと熱延板の耳割れが増加
する。従って本発明においては、Sの含有量は0.01
4%以下、好ましくは0.010%以下とする。
When the Si content is less than 2.5%, it is difficult to obtain a product having a low iron loss, while the Si content is 4.5%.
If the amount exceeds the above range, cracks and fractures occur during manufacturing such as cold rolling, and stable industrial production becomes impossible.
One of the characteristics of the component system of the starting material of the present invention is that S is 0.014% or less, preferably 0.010% or less. A conventionally known technique, for example, Japanese Patent Publication No. 40-156
In the technique disclosed in Japanese Patent Publication No. 44-44 or Japanese Patent Publication No. 47-25250, S was essential as an element for forming MnS, which is one of the precipitates necessary for causing secondary recrystallization. . In the above-mentioned known technology, there is a content range in which S exerts the most effect, and it has been defined as an amount capable of forming a solid solution of MnS in the heating step of the slab performed prior to hot rolling. However, in the present invention using (Al, Si) N as the inhibitor, Mn
S is not particularly required. Rather, increasing MnS is not preferable in terms of magnetic properties. Further, in the Bi-added material of the present invention, as described above, when the amount of S is large, the edge cracking of the hot rolled sheet increases. Therefore, in the present invention, the S content is 0.01
4% or less, preferably 0.010% or less.

【0015】Seは、Sと同様にMnと化合物を形成し
二次再結晶に影響するため、その含有量はSe≦0.0
4%とする。Alは、Nと結合してAlNを形成する
が、本発明においては、後工程、即ち一次再結晶完了後
に鋼を窒化することにより(Al、Si)Nを形成せし
めることを必須としているから、フリーのAlが一定量
以上必要である。そのためsol.Alとして0.01
〜0.06%添加する。
Like Se, Se forms a compound with Mn and affects secondary recrystallization, so its content is Se ≦ 0.0.
4%. Al combines with N to form AlN, but in the present invention, it is essential to form (Al, Si) N by nitriding the steel in a subsequent step, that is, after completion of primary recrystallization. A certain amount of free Al is required. Therefore, sol. 0.01 as Al
Add ~ 0.06%.

【0016】Mnは、その含有量が少な過ぎると二次再
結晶が不安定となり、一方多過ぎると高い磁束密度を有
する製品を得難くなる。適正な含有量は0.05〜0.
45%である。Nは、0.0005%未満では二次再結
晶粒の発達が悪くなる。一方0.013%を超えるとブ
リスターと呼ばれる鋼板のふくれが発生する。
If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The proper content is 0.05-0.
45%. If N is less than 0.0005%, the development of secondary recrystallized grains becomes poor. On the other hand, if it exceeds 0.013%, blister of the steel sheet called blister occurs.

【0017】Snは、0.01%未満では磁気特性改善
の上で効果がなく、一方0.10%超では窒化を抑制し
二次再結晶粒の発達を悪くする。Sbは、インヒビター
効果として、0.01〜0.15%が適当である。同様
にCuは、インヒビター効果として、0.05〜1.0
%が適当である。熱延以降の工程においては、最も高い
磁束密度を得るために、短時間の焼鈍後に80%以上の
高圧下率の冷間圧延によって最終板厚にする方法が望ま
しい。しかし磁気特性はやや劣るが低コストとするため
に熱延板焼鈍を省略してもよい。また最終製品の結晶粒
を小さくするため、中間焼鈍を含む工程でも可能であ
る。
If Sn is less than 0.01%, it has no effect on the improvement of magnetic properties. On the other hand, if it exceeds 0.10%, it suppresses nitriding and deteriorates the development of secondary recrystallized grains. As Sb, 0.01 to 0.15% is suitable as an inhibitor effect. Similarly, Cu has an inhibitor effect of 0.05 to 1.0.
% Is appropriate. In the steps after hot rolling, in order to obtain the highest magnetic flux density, it is desirable to use a method of cold rolling at a high pressure reduction rate of 80% or more to obtain the final plate thickness after annealing for a short time. However, the hot rolled sheet annealing may be omitted in order to reduce the cost although the magnetic properties are slightly inferior. In addition, in order to reduce the crystal grains of the final product, it is possible to perform the process including intermediate annealing.

【0018】次に湿水素あるいは湿水素、窒素混合雰囲
気ガス中で脱炭焼鈍をする。この時の温度は、スラブ成
分及び前工程条件によって最適値が若干変わるが、80
0〜900℃が好ましい。次に焼鈍分離剤を塗布し、高
温(通常1100〜1200℃)長時間の仕上焼鈍を行
う。本発明の窒化における最も好ましい実施態様は、仕
上焼鈍の昇温過程において窒化することであり、これに
より二次再結晶に必要なインヒビターを造り込むことが
出来る。これを達成するために焼鈍分離剤中に窒化能の
ある化合物、例えばMnN、CrN等を適当量添加する
か、あるいはNH3 等の窒化能のある気体を雰囲気ガス
中に添加する。なお本発明における窒化の他の実施態様
として、脱炭焼鈍時に均熱以降で窒化能のある気体の雰
囲気で窒化するか、または脱炭焼鈍後に別途設けたNH
3 等の雰囲気を有する熱処理炉を通過せしめて窒化して
もよく、以上の手段の組み合わせでもよい。
Next, decarburization annealing is performed in wet hydrogen or a mixed atmosphere gas of wet hydrogen and nitrogen. The temperature at this time is slightly different from the optimum value depending on the slab composition and the previous process conditions.
0-900 degreeC is preferable. Next, an annealing separator is applied and finish annealing is performed at high temperature (normally 1100 to 1200 ° C.) for a long time. The most preferable embodiment of the nitriding of the present invention is nitriding in the temperature rising process of finish annealing, which makes it possible to build an inhibitor necessary for secondary recrystallization. To achieve this, an appropriate amount of a compound having a nitriding ability, such as MnN or CrN, is added to the annealing separator, or a gas having a nitriding ability such as NH 3 is added to the atmosphere gas. As another embodiment of nitriding in the present invention, nitriding is performed in a gas atmosphere having a nitriding ability after soaking during decarburization annealing, or NH provided separately after decarburization annealing.
Nitriding may be performed by passing through a heat treatment furnace having an atmosphere of 3 or the like, or a combination of the above means may be used.

【0019】二次再結晶完了後は、水素雰囲気中におい
て純化焼鈍を行う。次に本発明の実施例を挙げて説明す
る。
After the completion of secondary recrystallization, purification annealing is performed in a hydrogen atmosphere. Next, examples of the present invention will be described.

【0020】[0020]

【実施例】【Example】

実施例1 表1に示す鋼の成分組成を含む溶鋼を鋳造したスラブ
を、表2に示す熱延を行い、2.0mm厚みの熱延板と
した。次いでこれらの熱延板を1050℃×2.5分+
900℃×2分間焼鈍を行った後、100℃の湯中に冷
却し、さらに酸洗した後、冷間圧延を行い、0.23m
m厚にした。次にこの冷延板を830℃×90秒間湿潤
水素、窒素雰囲気中で脱炭焼鈍した。次いでアンモニア
1%を含む水素、窒素雰囲気中で750℃×30秒窒化
処理を行い、鋼板中の窒素量を200ppmとした。さ
らにMgO粉を塗布した後、1200℃×20時間水素
ガス雰囲気中で高温焼鈍を行った。
Example 1 A slab obtained by casting molten steel containing the steel composition shown in Table 1 was hot-rolled as shown in Table 2 to obtain a hot-rolled sheet having a thickness of 2.0 mm. Next, these hot-rolled sheets were heated at 1050 ° C for 2.5 minutes +
After annealing at 900 ° C for 2 minutes, cooling in hot water at 100 ° C, further pickling, and cold rolling, 0.23 m
It was made m thick. Next, this cold rolled sheet was decarburized and annealed in an atmosphere of wet hydrogen and nitrogen for 90 seconds at 830 ° C. Then, nitriding treatment was performed at 750 ° C. for 30 seconds in an atmosphere of hydrogen and nitrogen containing 1% of ammonia so that the amount of nitrogen in the steel sheet was 200 ppm. After applying MgO powder, high temperature annealing was performed in a hydrogen gas atmosphere at 1200 ° C. for 20 hours.

【0021】得られた製品は、表2に示すように、本発
明の範囲であるBi添加、低S材で、且つ所定の熱延条
件にした方が、熱延板の耳割れが小さく、しかも磁束密
度の高い製品が得られた。
As shown in Table 2, the obtained product had a small amount of Bi added within the scope of the present invention, a low S material, and a predetermined hot rolling condition, in which the edge crack of the hot rolled sheet was small, Moreover, a product with a high magnetic flux density was obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】実施例2 表3に示す鋼の成分組成を含む溶鋼を鋳造したスラブ
を、表4に示す熱延を行い、2.0mm厚みの熱延板と
した。次いでこれらの熱延板を1050℃×2.5分+
900℃×2分間焼鈍を行った後、100℃の湯中に冷
却し、さらに酸洗した後、冷間圧延を行い、0.23m
m厚にした。次にこの冷延板を830℃×90秒間湿潤
水素、窒素雰囲気中で脱炭焼鈍した。次いでアンモニア
1%を含む水素、窒素雰囲気中で750℃×30秒窒化
処理を行い、鋼板中の窒素量を200ppmとした。さ
らにMgO粉を塗布した後、1200℃×20時間水素
ガス雰囲気中で高温焼鈍を行った。
Example 2 A slab obtained by casting molten steel containing the steel composition shown in Table 3 was hot-rolled as shown in Table 4 to obtain a hot-rolled sheet having a thickness of 2.0 mm. Next, these hot-rolled sheets were heated at 1050 ° C for 2.5 minutes +
After annealing at 900 ° C for 2 minutes, cooling in hot water at 100 ° C, further pickling, and cold rolling, 0.23 m
It was made m thick. Next, this cold rolled sheet was decarburized and annealed in an atmosphere of wet hydrogen and nitrogen for 90 seconds at 830 ° C. Then, nitriding treatment was performed at 750 ° C. for 30 seconds in an atmosphere of hydrogen and nitrogen containing 1% of ammonia so that the amount of nitrogen in the steel sheet was 200 ppm. After applying MgO powder, high temperature annealing was performed in a hydrogen gas atmosphere at 1200 ° C. for 20 hours.

【0025】得られた製品は、表4に示すように、本発
明の範囲であるBi添加、低S材で、且つ所定の熱延条
件にした方が、熱延板の耳割れが小さく、しかも磁束密
度の高い製品が得られた。
As shown in Table 4, the obtained product had a small amount of Bi addition within the scope of the present invention, a low S material, and a predetermined hot rolling condition, in which the edge crack of the hot rolled sheet was small, Moreover, a product with a high magnetic flux density was obtained.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】本発明によれば、Bi添加、低S材で、
且つ所定の熱延条件にすることで、熱延板の耳割れが小
さく、しかも磁束密度の高い良好な一方向性電磁鋼板を
製造することができる。
According to the present invention, Bi added, low S material,
Moreover, by setting a predetermined hot rolling condition, it is possible to manufacture a good unidirectional electrical steel sheet with a small edge crack of the hot rolled sheet and a high magnetic flux density.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱延板耳割れ平均深さとスラブ加熱温度の関係
を示したグラフである。
FIG. 1 is a graph showing the relationship between the average depth of edge cracks in a hot-rolled sheet and the slab heating temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高嶋 邦秀 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihide Takashima 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.025〜0.10%、S
i:2.5〜4.5%、Mn:0.05〜0.45%、
酸可溶性Al:0.01〜0.06%、N:0.000
5〜0.013%を含み、残部Fe及び不可避的不純物
からなるスラブを素材とし、加熱した後、熱延し、最終
冷延圧下率50%以上の1回ないし中間焼鈍を含む2回
以上の冷間圧延を施し、さらに脱炭焼鈍と仕上焼鈍を行
い、また脱炭焼鈍後から最終仕上焼鈍の二次再結晶開始
までの間に鋼板に窒化処理を施す一方向性電磁鋼板の製
造方法において、前記スラブ素材にBi:0.002〜
0.05%、S≦0.014%を含有せしめ、且つ12
80℃以下の温度に加熱した後の熱延に際し、粗圧延後
の板厚を25〜50mm、仕上圧延入口温度を900〜
1150℃及び仕上圧延出口温度を800〜1100℃
とすることを特徴とする下記定義による熱延板の平均耳
割れ深さが15mm以下である高磁束密度一方向性電磁
鋼板の製造方法。 記 熱延板の平均耳割れ深さ:1m長さ当たりの、板幅中心
への耳割れ深さが深い順から10個までの平均値
1. C: 0.025 to 0.10% by weight, S
i: 2.5 to 4.5%, Mn: 0.05 to 0.45%,
Acid-soluble Al: 0.01 to 0.06%, N: 0.000
A slab containing 5 to 0.013% and the balance Fe and unavoidable impurities is used as a raw material, and after heating, hot rolling is performed once at a final cold rolling reduction of 50% or more, or at least twice including intermediate annealing. In the manufacturing method of unidirectional electrical steel sheet, cold rolling is performed, decarburization annealing and finish annealing are further performed, and nitriding treatment is performed on the steel sheet after decarburization annealing to the start of secondary recrystallization of final finish annealing. , Bi: 0.002 to the slab material
0.05%, S ≦ 0.014%, and 12
Upon hot rolling after heating to a temperature of 80 ° C. or less, the plate thickness after rough rolling is 25 to 50 mm, the finish rolling inlet temperature is 900 to
1150 ℃ and finish rolling outlet temperature 800 ~ 1100 ℃
The method for producing a high magnetic flux density unidirectional electrical steel sheet according to the following definition, wherein the average edge crack depth of the hot-rolled sheet is 15 mm or less. Average depth of edge cracking of hot-rolled sheet: average value from ten deepest depths of edge cracking to the center of sheet width per 1 m length
【請求項2】 前記素材の最終冷延圧下率が80%以上
である請求項1記載の高磁束密度一方向性電磁鋼板の製
造方法。
2. The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein the final cold rolling reduction of the material is 80% or more.
【請求項3】 溶鋼成分を、重量でC:0.025〜
0.10%、Si:2.5〜4.5%、Mn:0.05
〜0.45%、酸可溶性Al:0.01〜0.06%、
N:0.0005〜0.013%、Bi:0.002〜
0.05%、S:≦0.014%とし、さらにSn:
0.01〜0.10%、Sb:0.01〜0.15%、
Se≦0.04%及びCu:0.05〜1.0%の少な
くとも1種を含有せしめる請求項1記載の高磁束密度一
方向性電磁鋼板の製造方法。
3. A molten steel component, by weight, C: 0.025 to.
0.10%, Si: 2.5-4.5%, Mn: 0.05
~ 0.45%, acid-soluble Al: 0.01-0.06%,
N: 0.0005 to 0.013%, Bi: 0.002
0.05%, S: ≤ 0.014%, and Sn:
0.01 to 0.10%, Sb: 0.01 to 0.15%,
The method for producing a high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein Se ≦ 0.04% and Cu: 0.05 to 1.0% are contained at least one kind.
JP4334462A 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density Withdrawn JPH06179918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4334462A JPH06179918A (en) 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334462A JPH06179918A (en) 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH06179918A true JPH06179918A (en) 1994-06-28

Family

ID=18277664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334462A Withdrawn JPH06179918A (en) 1992-12-15 1992-12-15 Production of grain oriented silicon steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH06179918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063655A (en) * 2006-08-07 2008-03-21 Nippon Steel Corp Method for producing grain oriented silicon steel sheet capable of stably obtaining magnetic property in sheet width direction
CN113145646A (en) * 2021-04-23 2021-07-23 无锡普天铁心股份有限公司 Process for improving edge cracking of silicon steel edge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063655A (en) * 2006-08-07 2008-03-21 Nippon Steel Corp Method for producing grain oriented silicon steel sheet capable of stably obtaining magnetic property in sheet width direction
CN113145646A (en) * 2021-04-23 2021-07-23 无锡普天铁心股份有限公司 Process for improving edge cracking of silicon steel edge
CN113145646B (en) * 2021-04-23 2021-12-10 无锡普天铁心股份有限公司 Process for improving edge cracking of silicon steel edge

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
KR101676630B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH06179918A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH06179915A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JPH0625747A (en) Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet
KR101538777B1 (en) Oriented electrical steel sheets and method for manufacturing the same
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JP3324616B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR20190077964A (en) Oriented electrical steel sheet and manufacturing method of the same
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH06172862A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH01301820A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08232019A (en) Production of grain oriented silicon steel sheet with high magnetic flux density, having excellent glass film
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH10102145A (en) Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307