JPH10102145A - Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet - Google Patents

Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet

Info

Publication number
JPH10102145A
JPH10102145A JP26089796A JP26089796A JPH10102145A JP H10102145 A JPH10102145 A JP H10102145A JP 26089796 A JP26089796 A JP 26089796A JP 26089796 A JP26089796 A JP 26089796A JP H10102145 A JPH10102145 A JP H10102145A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
less
temperature
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26089796A
Other languages
Japanese (ja)
Other versions
JP3271654B2 (en
Inventor
Noritaka Takahashi
紀隆 高橋
Nobuo Yamagami
伸夫 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26089796A priority Critical patent/JP3271654B2/en
Publication of JPH10102145A publication Critical patent/JPH10102145A/en
Application granted granted Critical
Publication of JP3271654B2 publication Critical patent/JP3271654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an extra thin silicon steel sheet with high magnetic flux density by executing specific cold rolling and multistage annealing after specific annealing on a hot rolled steel plate with specific composition containing C, Si, Mn, P, S, Al, N and impurities. SOLUTION: A hot rolled steel plate containing, by weight, <=0.01% C, 2.5-7.0% Si, 0.005-0.12% Mn, <=0.02% P, 0.002-0.005% S, 0.0015-0.006% sol. Al, 0.001-0.008% N and <=0.003% Ti + Nb as impurities is annealed on condition indicated by a relation (T: annealing temp. in deg.C, t: holding time in min, R: temp. rising rate in deg.C/min). This steel plate is, after descaling, made into <=0.20mm thickness through two or three times cold rolling including intermediate annealing with >=0.1 deg.C/sec heating/cooling velocity and 0.5-10min holding time. This cold rolled steel sheet goes through primary and secondary annealing including heating and holding at 700-1000 deg.C under a reducing atmosphere of >=50vol.% N2 , and then tertiary annealing including heating and holding at 900-1300 deg.C under a reducing or nonoxidizing atmosphere without N2 or under vacuum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気特性にすぐれ
た極薄けい素鋼板の製造方法及び磁気特性に優れた極薄
けい素鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-thin silicon steel sheet having excellent magnetic properties and an ultra-thin silicon steel sheet having excellent magnetic properties.

【0002】[0002]

【従来の技術】変電器の鉄芯などに用いられる方向性け
い素鋼板は、特公昭46−23820号公報等に示され
るように、従来、2次再結晶のために、AlNやMnS
などの析出物をインヒビタとして利用して製造されてい
る。しかしながらこのような方向性けい素鋼板は、Al
NやMnSなどの多量のインヒビタの固溶のための高温
のスラブ加熱工程、最終焼鈍までの脱炭焼鈍工程および
2次再結晶を完全に完了させ、磁気特性に影響をあたえ
る不純物を純化するための高温長時間焼鈍工程を必須と
しており、経済的な観点から問題を有していた。
2. Description of the Related Art Oriented silicon steel sheets used for iron cores of transformers and the like have conventionally been made of AlN or MnS for secondary recrystallization as shown in JP-B-46-23820.
It is manufactured using precipitates such as these as inhibitors. However, such a grain-oriented silicon steel sheet is made of Al
To completely complete the high-temperature slab heating step for solid solution of a large amount of inhibitors such as N and MnS, the decarburizing annealing step until the final annealing, and the secondary recrystallization, and to purify impurities affecting magnetic properties. The high temperature and long time annealing step is indispensable, and there is a problem from an economic viewpoint.

【0003】また、このような材料に要求される磁気特
性のなかでも特に重要視される鉄損値は、板厚が薄くな
るほど向上すると考えられているものの、従来のけい素
鋼板では、インヒビタの問題で0.2mm 以下の極薄材の製
造が困難であるとされてきた。
[0003] Among the magnetic properties required for such materials, the iron loss value, which is regarded as particularly important, is considered to increase as the sheet thickness becomes thinner. Due to problems, it has been said that it is difficult to produce ultra-thin materials of 0.2 mm or less.

【0004】このような問題に対して、特開昭62ー8
3421号公報および特開平1ー212721号公報に
示されるように、極低炭素系であることを前提として、
これにAlを微量に添加した組成とすることによって問
題を回避する手法が考案されている。また特開平5ー1
86829号公報に代表されるような表面エネルギーを
用いた極薄方向性けい素鋼板の製造方法が提案されてい
る。
To solve such a problem, Japanese Patent Application Laid-Open No. 62-8 / 1987
As disclosed in Japanese Patent No. 3421 and Japanese Patent Application Laid-Open No. 1-221721, on the assumption that it is a very low carbon system,
A method of avoiding the problem by devising a composition in which Al is added in a trace amount has been devised. Japanese Patent Laid-Open No. 5-1
A method for manufacturing an ultrathin oriented silicon steel sheet using surface energy as represented by JP 86829 is proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
62ー83421号公報および特開平1ー212721
号公報に記載されている方法によれば、高温のスラブ加
熱や高温長時間の焼鈍プロセスを省略でき経済的効果が
得られるものの、0.2mm 以下の板厚では品質のバラツキ
が大きく工業的に安定した2次再結晶挙動を得ることが
できないという問題があった。
However, Japanese Patent Application Laid-Open No. 62-83421 and Japanese Patent Application Laid-Open No. 1-221721 are disclosed.
According to the method described in Japanese Patent Application Publication No. 2000-214, high-temperature slab heating and high-temperature long-time annealing process can be omitted, and economical effects can be obtained. There is a problem that the secondary recrystallization behavior cannot be obtained.

【0006】また、特開平5ー186829号公報の方
法は、インヒビタを用いないため、本発明が対象とする
極薄鋼板の製造に原理的に有利な手法であるが、微量の
不純物、雰囲気の微妙な変化などによって結晶粒成長が
左右されその結果として安定性に欠けるという問題を抱
えていた。
Further, the method disclosed in Japanese Patent Application Laid-Open No. 5-186829 is advantageous in principle for the production of ultra-thin steel sheets targeted by the present invention because no inhibitor is used. There has been a problem that crystal growth is affected by subtle changes and the like, and as a result, stability is lacking.

【0007】本発明者等は、こうした問題点を克服し、
脱炭焼鈍および高温長時間の焼鈍を施さずに、0.2mm 以
下の板厚で{110 }<001> 面方位の結晶粒(以下Goss粒
と呼ぶ)が安定的に2次再結晶し、これによって従来で
は困難であると考えられていた磁気特性に優れた極薄け
い素鋼板が製造可能となるような方法および磁気特性に
優れた極薄けい素鋼板を発明し、特願平8ー08964
6号等として先に特許出願した。
[0007] The present inventors have overcome these problems,
Without decarburizing annealing and annealing at high temperature for a long time, crystal grains having a {110} <001> plane orientation (hereinafter referred to as Goss grains) are stably secondary recrystallized at a plate thickness of 0.2 mm or less. Thus, a method for producing an ultra-thin silicon steel sheet having excellent magnetic properties, which was considered to be difficult in the past, and an ultra-thin silicon steel sheet having excellent magnetic properties were invented.
A patent application was previously filed as No. 6.

【0008】この方法は、熱延板に冷間圧延と中間焼鈍
を組み合わせて板厚0.2mm 以下の極薄冷間圧延材を製造
し、再結晶と微量のAlN・MnSの析出物の形態の調
整とGoss粒を発現・進展させるための1段又は2段の焼
鈍と、表面エネルギーを働かせて食い残されたGoss粒以
外の結晶粒を蚕食させる焼鈍を施すものである。この方
法により、磁束密度B8 が1.85Tを超える極薄けい素鋼
板を得ることができた。
In this method, a cold rolled material having a thickness of 0.2 mm or less is produced by combining cold rolling and intermediate annealing on a hot rolled sheet, and recrystallization and a small amount of AlN.MnS precipitates are formed. One-stage or two-stage annealing for adjusting and developing and evolving the Goss grains, and annealing for causing the crystal grains other than the remaining Goss grains to be eaten by using the surface energy are performed. According to this method, an ultra-thin silicon steel sheet having a magnetic flux density B 8 of more than 1.85 T could be obtained.

【0009】しかしながら、省エネルギー化といった見
地から、さらに良好な磁気特性、即ち高磁束密度の製品
を製造することが望まれている。
However, from the viewpoint of energy saving, it is desired to produce a product having better magnetic properties, that is, a product having a higher magnetic flux density.

【0010】本発明は、このような要望に応えるために
なされたもので、前記特願平8ー089646号に係る
発明に改良を加えて、磁束密度が更に高い極薄けい素鋼
板を製造する方法、及び極薄けい素鋼板を提供すること
を目的とする。
The present invention has been made in order to meet such a demand, and an improvement is made to the invention of Japanese Patent Application No. 08-089646 to manufacture an ultra-thin silicon steel sheet having a higher magnetic flux density. It is an object to provide a method and an ultra-thin silicon steel sheet.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
の第1の手段は、(a) 重量%で、C:0.01%以下、S
i:2.5 %以上7%以下、Mn:0.005 %以上0.12%以
下、P:0.02%以下、S:0.002 %以上0.005 %以下、
sol.Al:0.0015%以上0.006 %以下、N:0.001 %以
上0.008 %以下を含み、不純物としてのTi+Nbが0.
003 %以下である熱延鋼板を準備する工程、(b) 前記熱
延鋼板に、焼鈍温度T(℃)、保持時間t(分)、昇温
速度R(℃/分)が下記の(1) 式を満たす条件で焼鈍を
施す工程、 830+1000/R≦T+4.2t+3000/R ≦1040-1000/R … (1) (但し、T≧500 ) (c) 前記熱延鋼板を脱スケール後、加熱・冷却速度が0.
1 ℃/sec 以上、保持時間が0.5 分以上10分以内である
中間焼鈍を含む2回又は3回の冷間圧延により板厚0.20
mm以下の冷間圧延鋼板とする工程、(d) 前記冷間圧延鋼
板を、窒素50vol.%以上含む還元性雰囲気において、1
℃/sec以上の昇温速度で700 ℃以上1000℃以下の所定温
度まで加熱し、当該温度に30秒以上保持する1段目の焼
鈍工程、(e) 引き続き前記冷間圧延鋼板を、窒素50vol.
%以上含む還元性雰囲気において、700 ℃以上1000℃以
下の所定温度に3時間以上保持する2段目の焼鈍工程、
(f) さらに、窒素を含まない還元性雰囲気もしくは酸素
分圧が0.5Pa 以下で実質的に窒素を含まない非酸化性雰
囲気または酸素分圧が0.5Pa 以下の真空中において、90
0 ℃以上1300℃以下の範囲の所定温度で30秒以上の保持
を行う3段目の焼鈍工程を含む極薄けい素鋼板の製造方
法である。
The first means for solving the above problems is as follows: (a) C: 0.01% or less by weight%;
i: 2.5% or more and 7% or less, Mn: 0.005% or more and 0.12% or less, P: 0.02% or less, S: 0.002% or more and 0.005% or less,
sol. Al: 0.0015% or more and 0.006% or less, N: 0.001% or more and 0.008% or less, and Ti + Nb as an impurity is 0.1%.
(B) annealing temperature T (° C.), holding time t (min), and heating rate R (° C./min) of the following hot rolled steel sheet: ) Step of annealing under the condition satisfying the formula, 830 + 1000 / R ≦ T + 4.2t + 3000 / R ≦ 1040-1000 / R… (1) (However, T ≧ 500) (c) After descaling, the heating / cooling rate becomes 0.
2 or 3 times cold rolling including intermediate annealing with 1 ° C / sec or more and holding time of 0.5 to 10 minutes
(d) forming the cold-rolled steel sheet in a reducing atmosphere containing 50% by volume or more of nitrogen;
A first annealing step of heating to a predetermined temperature of 700 ° C. or more and 1000 ° C. or less at a temperature rising rate of at least 70 ° C./sec and maintaining the temperature at that temperature for 30 seconds or more; .
% In a reducing atmosphere containing at least 700% and not more than 1000 ° C for at least 3 hours in a reducing atmosphere containing at least
(f) Further, in a reducing atmosphere containing no nitrogen or a non-oxidizing atmosphere having an oxygen partial pressure of not more than 0.5 Pa and substantially no nitrogen or a vacuum having an oxygen partial pressure of not more than 0.5 Pa,
This is a method for producing an ultra-thin silicon steel sheet including a third annealing step of holding at a predetermined temperature in a range of 0 ° C. or more and 1300 ° C. or less for 30 seconds or more.

【0012】前記課題を解決するための第2の手段は、
前記第1の手段の製法によって製造される極薄けい素鋼
板である。
A second means for solving the above-mentioned problem is as follows.
An ultra-thin silicon steel sheet manufactured by the method of the first means.

【0013】(発明に至る経緯)本発明者らは、前記目
的の達成のために詳細な実験、検討を行った結果、熱延
板に焼鈍を施すことにより極薄けい素鋼板の高磁束密度
化が達成できることを見出し、以下のような知見を得
た。
(Circumstances leading to the invention) The present inventors have conducted detailed experiments and studies to achieve the above-mentioned object, and as a result, the inventors have found that a high magnetic flux density of an ultra-thin silicon steel sheet is obtained by annealing a hot-rolled sheet. And found the following findings.

【0014】(1) 0.2mm 以下の板厚を有する極薄鋼板で
は、AlN・MnSをインヒビタとして2次結晶をさせ
る場合、Goss方位以外の方位を持った結晶粒の粒成長を
充分抑制しておくことが極めて重要であるために、イン
ヒビタを有効な量、適正な形態に制御する必要がある。
特に、熱延板中の析出物の形態を制御することは、最終
焼鈍時の初期の析出物の状態を制御することにつながる
ので極めて重要である。しかしながら、熱間圧延後の熱
延板中のインヒビタの析出状況は熱延状態により異な
り、熱間圧延により組織の適切な制御を行おうとする
と、必ずしもインヒビタは十分に微細析出しないため、
高い磁気特性を有する極薄方向性けい素鋼板を製造する
ことは困難である。このような考えに基づいて、析出物
状態を変化させるために種々の熱延板焼鈍を施したとこ
ろ、その条件により2次再結晶挙動がそれぞれ異なるこ
とが分かった。
(1) In an ultra-thin steel sheet having a thickness of 0.2 mm or less, when secondary crystals are formed using AlN · MnS as an inhibitor, the grain growth of crystal grains having an orientation other than the Goss orientation is sufficiently suppressed. It is very important that the inhibitor be controlled in an effective amount and in an appropriate form.
In particular, controlling the form of the precipitate in the hot-rolled sheet is extremely important because it leads to control of the state of the precipitate at the time of final annealing. However, the state of precipitation of the inhibitor in the hot-rolled sheet after hot rolling differs depending on the hot-rolled state, and if an appropriate control of the structure is performed by hot rolling, the inhibitor does not necessarily precipitate sufficiently finely.
It is difficult to produce ultra-thin oriented silicon steel sheets having high magnetic properties. Based on this idea, various hot-rolled sheet annealing was performed to change the state of the precipitates, and it was found that the secondary recrystallization behavior was different depending on the conditions.

【0015】(2) そこで、さらに熱延板焼鈍について詳
細な検討を加えたところ、焼鈍温度、保持時間、昇温速
度及びこれらの関係を適正に保つことにより、高い磁気
特性を有する極薄けい素鋼板を製造できることを見出
し、本発明を完成させた。
(2) In consideration of the above, further detailed examination was conducted on the hot-rolled sheet annealing, and by maintaining the annealing temperature, the holding time, the heating rate and the relationship between them, an ultra-thin silicon having high magnetic properties was obtained. The present inventors have found that a raw steel sheet can be manufactured, and have completed the present invention.

【0016】(化学成分の限定理由)まず、本発明にお
いて、熱延鋼板の化学成分を限定した理由について説明
する。
(Reasons for Limiting Chemical Components) First, the reasons for limiting the chemical components of the hot-rolled steel sheet in the present invention will be described.

【0017】C:インヒビタ法では、Cによる組織およ
び集合組織制御を行なうが、前述した本発明ではそうし
たことを行わないため、積極的なCの添加を行う必要は
ない。むしろ、Cは0.01wt%をこえると磁気特性や加工
性を著しく低下させる。このため、Cは0.01wt%以下、
好ましくは0.005wt %以下とする。
C: In the inhibitor method, the structure and texture are controlled by C. However, in the present invention described above, since such a control is not performed, it is not necessary to actively add C. Rather, if C exceeds 0.01% by weight, the magnetic properties and workability are significantly reduced. Therefore, C is 0.01 wt% or less,
Preferably, the content is 0.005% by weight or less.

【0018】Si:Siは、磁気特性や相変態を通じた
組織および集合組織制御を行うために極めて重要であ
る。Siが2.5wt %を下回ると、最終焼鈍の3段目の焼
鈍において、高温における相変態にともなう組織および
集合組織の変化が著しく、所定の特性を有する鋼板を製
造することが困難となる。また、Siが7wt%よりも高
い場合には加工性が著しく低下する。従って、Siは2.
5wt %以上7wt %以下とする。ただし加工性の点からS
iのより好ましい範囲を述べると4wt%以下である。
Si: Si is extremely important for controlling the structure and texture through magnetic properties and phase transformation. If the Si content is less than 2.5 wt%, in the third annealing of the final annealing, the structure and the texture accompanying the phase transformation at a high temperature are remarkably changed, and it becomes difficult to produce a steel sheet having predetermined characteristics. On the other hand, if the content of Si is higher than 7% by weight, the workability is significantly reduced. Therefore, Si is 2.
5 wt% or more and 7 wt% or less. However, in terms of workability, S
The more preferable range of i is 4% by weight or less.

【0019】Mn:Mnは、MnSの形成のために極め
て重要である。このMnSはAlNインヒビタの析出の
核となり、またAlNの固溶を遅らせる働きを有する。
ただし、0.12wt%を越えて過剰に含まれる場合は、その
完全固溶のために1250℃以上の著しい高温でのスラブ加
熱が必要となる。一方、0.005wt %未満では、このよう
な働きは認められず、2次再結晶が不完全となる。この
ため、Mnは0.005wt%以上0.12wt%以下である必要が
ある。
Mn: Mn is extremely important for the formation of MnS. This MnS acts as a nucleus for the precipitation of the AlN inhibitor and has a function of delaying the solid solution of AlN.
However, when it is contained in excess of 0.12 wt%, slab heating at a remarkably high temperature of 1250 ° C. or more is required for complete solid solution. On the other hand, if the content is less than 0.005 wt%, such a function is not recognized and secondary recrystallization is incomplete. For this reason, Mn needs to be 0.005 wt% or more and 0.12 wt% or less.

【0020】P:Pは粒成長速度および、加工性を低下
させるために有害である。このため、0.02wt%以下とす
る。
P: P is harmful because it lowers the grain growth rate and workability. Therefore, the content is set to 0.02 wt% or less.

【0021】S:Sは、MnSの形成のためにMnと同
様に極めて重要である。このためには、Sは0.002wt %
以上含有されなければならない。一方、0.005wt %を越
えて含有された場合には、著しく粒成長速度を低下させ
るため、3段目の焼鈍において所定の時間内で2次再結
晶を完了させることが困難となる。従って、Sは0.002w
t %以上0.005wt %以下とする。
S: S is as important as Mn for the formation of MnS. For this, S is 0.002wt%
Must be contained. On the other hand, when the content exceeds 0.005 wt%, the grain growth rate is remarkably reduced, so that it is difficult to complete the secondary recrystallization within a predetermined time in the third annealing. Therefore, S is 0.002w
t% to 0.005 wt% or less.

【0022】sol.Al:sol.Alは、インヒビタとなる
AlN形成のために極めて重要である。sol.Alが、0.
0015wt%未満の場合は、高磁気特性の極薄けい素鋼板を
製造するのに必要なインヒビタとしてのAlNが不足し
マトリックス粒の粗大化が生じてしまうために、2次再
結晶が困難となる。一方0.006wt %をこえると、焼鈍中
の吸窒のためにインヒビタとしてのAlNが多くなりす
ぎるうえに、不適当な分布となり、その結果として、2
次再結晶が生じないか又は部分的に2次再結晶粒が形成
されるものの極めて低い被覆率となる。さらに、このよ
うなAlは、高温での粒成長性を著しく低下させるた
め、3段目の焼鈍において所定の時間内で2次再結晶を
完了させることが困難となる。従って、鋼中のsol.Al
は0.0015wt%以上0.006wt %以下とする。
Sol.Al: sol.Al is extremely important for the formation of AlN which acts as an inhibitor. sol.Al is 0.
If the content is less than 0015% by weight, AlN as an inhibitor required for producing an ultra-thin silicon steel sheet having high magnetic properties is insufficient, and the matrix grains become coarse, so that secondary recrystallization becomes difficult. . On the other hand, when the content exceeds 0.006 wt%, AlN as an inhibitor becomes too large due to nitrogen absorption during annealing, and an inappropriate distribution is caused.
Although the secondary recrystallization does not occur or secondary recrystallized grains are partially formed, the coverage is extremely low. Furthermore, since such Al significantly reduces the grain growth at high temperatures, it becomes difficult to complete the secondary recrystallization within a predetermined time in the third annealing. Therefore, sol.Al in steel
Should be 0.0015 wt% or more and 0.006 wt% or less.

【0023】N:NもインヒビタとなるAlN形成のた
めに極めて重要である。Nが0.001wt %未満では、吸窒
が始まるまでの、インヒビタとしてのAlN量が少なす
ぎるためにマトリックス粒の粗大化し、その結果2次再
結晶が困難となる。一方、0.008wt %をこえるとスラブ
加熱中に析出したAlNが、熱間圧延の再加熱時にも一
部未固溶のまま残留する。これらは熱延中に粗大化し、
その結果、AlNの分布形態が変化し、2次再結晶が生
じにくくなる。このため、Nは0.001wt %以上0.008wt
%以下とすることが必要である。
N: N is also very important for the formation of AlN which acts as an inhibitor. If N is less than 0.001 wt%, the amount of AlN as an inhibitor until the onset of nitrogen absorption is too small, so that the matrix grains become coarse, and as a result, secondary recrystallization becomes difficult. On the other hand, when the content exceeds 0.008 wt%, AlN precipitated during slab heating remains partially undissolved even during reheating during hot rolling. These coarsen during hot rolling,
As a result, the distribution form of AlN changes and secondary recrystallization hardly occurs. Therefore, N is 0.001wt% or more and 0.008wt%
% Or less.

【0024】Ti、Nb:鋼中に不純物として含まれる
Ti、Nbは、極めて安定な窒化物を形成するため、A
lNによる2次再結晶挙動を阻害する。このような影響
を避けるために、Ti+Nb量を0.003wt %以下とす
る。
Ti, Nb: Ti and Nb contained as impurities in steel form extremely stable nitrides.
Inhibits the secondary recrystallization behavior due to 1N. In order to avoid such effects, the amount of Ti + Nb is set to 0.003 wt% or less.

【0025】(製造方法)続いて製造方法について述べ
る。
(Manufacturing Method) Next, a manufacturing method will be described.

【0026】(1) 熱延板焼鈍 熱延板焼鈍の条件が本発明を特徴づけるものであり、熱
延板中のインヒビタを十分に微細析出させるために必要
であり、焼鈍温度、保持時間、昇温速度及びこれらの関
係を制御することが重要である。
(1) Hot Rolled Sheet Annealing The conditions of the hot rolled sheet annealing characterize the present invention, and are necessary for sufficiently precipitating the inhibitor in the hot rolled sheet. It is important to control the rate of temperature rise and their relationship.

【0027】焼鈍温度が低いと、インヒビタが析出しな
いために熱延板焼鈍の効果が現れず、熱延板焼鈍を施さ
ないものと比べて磁気特性が改善されない。焼鈍温度が
高いとインヒビタが粗大化する。
If the annealing temperature is low, the inhibitor does not precipitate, so that the effect of hot-rolled sheet annealing does not appear, and the magnetic properties are not improved as compared with those without hot-rolled sheet annealing. If the annealing temperature is high, the inhibitor coarsens.

【0028】保持時間が短いと、インヒビタが十分に析
出しないために、焼鈍温度の低いときと同様に熱延板焼
鈍の効果が薄れる。保持時間が長いとインヒビタが粗大
化する。
If the holding time is short, the inhibitor is not sufficiently precipitated, so that the effect of the hot-rolled sheet annealing is weakened as in the case where the annealing temperature is low. If the retention time is long, the inhibitor becomes coarse.

【0029】同じ焼鈍温度、保持時間の焼鈍をしても、
昇温速度によってインヒビタの析出状態は異なり、昇温
速度に応じて最適な焼鈍温度、保持時間が変わる。例え
ば昇温速度が速い場合にインヒビタが十分に微細析出す
るような焼鈍温度、保持時間であっても、昇温速度が遅
くなると、昇温中のインヒビタの析出形態の変化、オス
トワルド成長による粗大化のために、インヒビタが十分
に微細析出しなくなることもある。
Even if annealing is performed at the same annealing temperature and holding time,
The precipitation state of the inhibitor varies depending on the heating rate, and the optimal annealing temperature and the holding time vary depending on the heating rate. For example, even if the annealing temperature and the holding time are such that the inhibitor is sufficiently finely precipitated when the heating rate is high, if the heating rate is slow, the change in the precipitation form of the inhibitor during the heating and coarsening due to Ostwald ripening will occur. For this reason, the inhibitor may not be sufficiently finely precipitated.

【0030】このような知見に基づき、焼鈍温度T
(℃)、保持時間t(分)、昇温速度R(℃/分)を様
々に変化させて実験を行った。その結果、これらが下記
の(1) 式を満たす条件で熱延焼鈍を施すと、熱延板中の
インヒビタが十分に微細析出し、その結果、高い磁気特
性を有する極薄方向性けい素鋼板を製造できることが分
かった。
Based on such knowledge, the annealing temperature T
(° C.), holding time t (minutes), and heating rate R (° C./minute) were variously changed, and the experiment was performed. As a result, when these are subjected to hot rolling annealing under the conditions satisfying the following formula (1), the inhibitor in the hot rolled sheet is sufficiently finely precipitated, and as a result, an ultrathin grain oriented silicon steel sheet having high magnetic properties is obtained. Can be manufactured.

【0031】 830+1000/R≦T+4.2t+3000/R ≦1040-1000/R … (1) (但し、T≧500 ) (1) 式中の(T+4.2t+3000/R )が(830+1000/R)未満の
場合には、インヒビタが十分に析出せず、従って、熱延
板焼鈍の効果が十分でなく、磁気特性の向上は得られな
い。(T+4.2t+3000/R )が(1040-1000/R )超の場合に
は、析出物が粗大化するため、最終焼鈍時に2次再結晶
が完全に進行しなくなって、磁気特性の向上は得られな
い。
830 + 1000 / R ≦ T + 4.2t + 3000 / R ≦ 1040-1000 / R (1) (However, T ≧ 500) (1) (T + 4.2t + 3000 / R) in the equation Is less than (830 + 1000 / R), the inhibitor is not sufficiently precipitated, and therefore, the effect of hot-rolled sheet annealing is not sufficient, and improvement in magnetic properties cannot be obtained. When (T + 4.2t + 3000 / R) is more than (1040-1000 / R), the precipitates become coarse, so that secondary recrystallization does not completely proceed during the final annealing, and the magnetic properties No improvement is obtained.

【0032】また、焼鈍温度Tが500 ℃未満ではインヒ
ビタが析出しないため、熱延板焼鈍の効果を得ることが
できない。よって、T≧500 ℃とする。
If the annealing temperature T is less than 500 ° C., no inhibitor is precipitated, and the effect of hot-rolled sheet annealing cannot be obtained. Therefore, T ≧ 500 ° C.

【0033】(2) 冷間圧延 冷間圧延は中間焼鈍をはさむ2回又は3回の冷間圧延と
する。冷間圧延は常法に従って行われるが、2回未満で
は最終焼鈍の際の結晶粒の選択的粒成長による2次再結
晶粒の成長に好ましい集合組織が適切に形成されず、最
終焼鈍後に十分成長した2次再結晶粒が得られない。ま
たおのおのの冷間圧延での圧延率は20%以上が好まし
い。
(2) Cold Rolling Cold rolling is cold rolling twice or three times with intermediate annealing. Cold rolling is performed according to a conventional method, but if less than two times, a favorable texture for growth of secondary recrystallized grains by selective grain growth of crystal grains during final annealing is not appropriately formed, and sufficient rolling after final annealing is not performed. The grown secondary recrystallized grains cannot be obtained. The rolling reduction in each cold rolling is preferably 20% or more.

【0034】中間焼鈍の条件として、軟化を完全におこ
させるために、再結晶温度である700 ℃以上、結晶粒の
粗大化による冷間圧延鋼板の形状不良を避けるため1000
℃以下とする。また、これらの中間焼鈍においては、焼
鈍過程における析出物の粗大化を避けるために、0.1 ℃
/sec 以上の加熱速度で0.5 分以上10分以内の焼鈍を行
う必要がある。
As conditions for the intermediate annealing, in order to completely cause softening, a recrystallization temperature of 700 ° C. or higher is used, and in order to avoid a shape defect of a cold-rolled steel sheet due to coarsening of crystal grains, 1000 ° C.
It should be below ° C. In addition, in these intermediate annealings, in order to avoid coarsening of precipitates during the annealing process, 0.1 ° C.
It is necessary to perform annealing for 0.5 to 10 minutes at a heating rate of / sec or more.

【0035】(3) 冷間圧延後の焼鈍 安定した2次再結晶を発現させ、なおかつこの2次再結
晶粒の被覆率が90%以上となるためには、インヒビタと
なるAlNの焼鈍中の最適な形態、分量を制御しなくて
はならない。これを実現するのが、冷間圧延後の3回の
焼鈍である。
(3) Annealing after Cold Rolling In order for stable secondary recrystallization to be exhibited and the coverage of the secondary recrystallized grains to be 90% or more, the annealing during the annealing of AlN serving as an inhibitor is required. The optimal form and quantity must be controlled. This is achieved by annealing three times after cold rolling.

【0036】○1段目の焼鈍:1段目の焼鈍は、材料の
再結晶と、析出物の形態の調整の為に行う。焼鈍温度
が、700℃未満では、材料が完全に再結晶せず、その結
果、引き続く2段焼鈍での2次再結晶が不安定となる。
一方、1000℃超の場合には、正常粒成長している結晶粒
が粗大化し始め、引き続く2段焼鈍での2次再結晶が生
じない。このため焼鈍温度は700 〜1000℃とする。
First annealing: The first annealing is performed for recrystallization of the material and adjustment of the form of the precipitate. If the annealing temperature is lower than 700 ° C., the material does not completely recrystallize, and as a result, secondary recrystallization in the subsequent two-step annealing becomes unstable.
On the other hand, when the temperature is higher than 1000 ° C., the crystal grains that have grown normally begin to coarsen, and no secondary recrystallization occurs in the subsequent two-step annealing. Therefore, the annealing temperature is set to 700 to 1000 ° C.

【0037】また、昇温速度が1℃/sec未満の場合、
{110 }<001> 面方位以外の面方位の粒成長を十分に抑
止することができず、その結果、{110 }<001> 面方位
の2次再結晶を選択的に起こすことが難しくなる。その
ため昇温速度を1℃/sec以上とする。
When the heating rate is less than 1 ° C./sec,
Grain growth in plane orientations other than the {110} <001> plane cannot be sufficiently suppressed, and as a result, it is difficult to selectively cause secondary recrystallization in the {110} <001> plane. . Therefore, the heating rate is set to 1 ° C./sec or more.

【0038】さらに、焼鈍雰囲気は、鋼中から窒素が著
しく脱離せず、雰囲気より十分に窒素が供給されるよう
な窒素を含む還元性雰囲気とする。ただし、鋼板の酸化
を防ぐため、1vol.%以上の水素を含むことが好まし
い。また、窒素が50vol.%未満では、鋼中からの窒素の
脱離が顕著となる。このため、窒素の比率は50vol.%以
上とする。
Furthermore, the annealing atmosphere is a reducing atmosphere containing nitrogen such that nitrogen is not significantly desorbed from the steel and nitrogen is supplied more sufficiently than the atmosphere. However, in order to prevent oxidation of the steel sheet, it is preferable to contain hydrogen of 1 vol.% Or more. If the nitrogen content is less than 50 vol.%, The desorption of nitrogen from steel becomes remarkable. For this reason, the ratio of nitrogen is set to 50 vol.% Or more.

【0039】さらにまた、保持時間は、引き続く2段焼
鈍での2次再結晶を安定的に発現させるために30秒以上
必要である。したがって保持時間を30秒以上とする。た
だし30分超では効果が飽和するため、経済面からは30分
以内とすることが好ましい。
Further, the holding time is required to be 30 seconds or more in order to stably develop secondary recrystallization in the subsequent two-step annealing. Therefore, the holding time is set to 30 seconds or more. However, if the time exceeds 30 minutes, the effect is saturated. Therefore, it is preferable to set the time within 30 minutes from the economical point of view.

【0040】○2段目の焼鈍:2段目の焼鈍は、2次再
結晶の発現と進展のために重要である。
Second annealing: The second annealing is important for the appearance and progress of secondary recrystallization.

【0041】加熱保持温度が、1000℃をこえると、正常
粒成長している結晶粒が粗大化し、その結果2次再結晶
を生じない。一方、700 ℃未満では、2次再結晶の核と
なる粗大粒の粒成長速度が著しく遅いため、極めて長時
間保持しても2次再結晶が進展しない。そのため加熱保
持温度を700 ℃以上1000℃以下とする。
If the heating and holding temperature exceeds 1000 ° C., the crystal grains that are growing normally become coarse, and as a result, secondary recrystallization does not occur. On the other hand, when the temperature is lower than 700 ° C., the rate of growth of coarse grains serving as nuclei for secondary recrystallization is extremely slow, so that the secondary recrystallization does not progress even if the temperature is kept extremely long. Therefore, the heating and holding temperature is set to 700 ° C. or more and 1000 ° C. or less.

【0042】昇温速度はとくに規定しない。工業的に可
能な速度で十分である。また、焼鈍雰囲気は、1段目の
焼鈍条件と同様に鋼中から窒素が著しく脱離せず、雰囲
気より十分にNが供給されるような窒素を含む還元性ガ
ス雰囲気とする。ただし、鋼板の酸化を防ぐため、1vo
l.%以上の水素を含むことが好ましい。また、窒素が50
vol.%未満では、鋼中からの窒素の脱離が顕著となる。
このため、窒素の比率を50vol.%以上とする。
The heating rate is not particularly defined. Industrially available speeds are sufficient. Further, the annealing atmosphere is a reducing gas atmosphere containing nitrogen such that nitrogen is not remarkably desorbed from the steel and N is supplied more sufficiently than the atmosphere, similarly to the first annealing condition. However, to prevent oxidation of the steel sheet, 1vo
It preferably contains l.% or more hydrogen. In addition, nitrogen is 50
If the amount is less than vol.%, desorption of nitrogen from steel becomes remarkable.
Therefore, the ratio of nitrogen is set to 50 vol.% Or more.

【0043】保持時間は2次再結晶を行なわせるために
十分な時間が必要であり、3時間以上とする。一方10時
間をこえても、2次再結晶粒の被覆率において殆ど変化
が見られないため、経済面から10時間以内とすることが
好ましい。
The holding time requires a sufficient time for performing the secondary recrystallization, and is set to 3 hours or more. On the other hand, even if the time exceeds 10 hours, there is almost no change in the coverage of the secondary recrystallized grains.

【0044】○3段目の焼鈍:3段目の焼鈍は、2次再
結晶粒で鋼板表面を90%以上被覆するために必要な焼鈍
である。
Third annealing: The third annealing is necessary for covering the steel sheet surface by 90% or more with the secondary recrystallized grains.

【0045】2段目までの焼鈍では、2次再結晶粒の被
覆率は、最大でも80%程度であり、残りの20%程度は、
2次再結晶粒に食い残された板厚程度の粒径の領域とな
る。このような、細粒部は、貫通粒となっているため、
結晶粒の曲率に反比例する粒界エネルギが不十分であ
り、長時間焼鈍しても殆ど2次再結晶粒に蚕食されず、
磁気特性的にも不充分である。
In the annealing up to the second stage, the coverage of the secondary recrystallized grains is at most about 80%, and the remaining about 20% is
This is a region having a grain size of about the plate thickness left behind by the secondary recrystallized grains. Since such a fine grain portion is a through grain,
The grain boundary energy, which is inversely proportional to the curvature of the crystal grains, is insufficient, and is hardly consumed by the secondary recrystallized grains even after annealing for a long time.
The magnetic properties are also insufficient.

【0046】このため、3段目においては、非酸化囲気
中で焼鈍を施すことによって{110}面が優先的に成
長する表面エネルギを2次再結晶の駆動力として用い細
粒部を2次再結晶粒に蚕食させることを狙いとする。た
だし、この場合、加熱温度は表面エネルギを働かせるた
めに、900 ℃以上が必要である。また、1300℃以上に加
熱した場合には、鋼板のクリープ等によって安定して鋼
板を焼鈍することが困難である。また、いずれの温度に
おいても保持時間は30秒以上必要であり、一方30分でそ
の効果が飽和する。従って、加熱の温度範囲は900 ℃以
上1300℃以下、保持時間は30秒以上、好ましくは30分以
下とする。また、その雰囲気は、還元性雰囲気もしくは
酸素分圧が0.5Pa 以下で実質的に窒素を含まない非酸化
雰囲気または酸素分圧が0.5Pa 以下の真空中とする。窒
素が雰囲気に含まれると、鋼中に窒素が残留して磁気特
性を劣化させるためである。
For this reason, in the third stage, the surface energy in which the {110} plane grows preferentially by annealing in a non-oxidizing atmosphere is used as a driving force for the secondary recrystallization, and the fine-grained portion is formed in the secondary stage. The aim is to feed the recrystallized grains on silkworms. However, in this case, the heating temperature needs to be 900 ° C. or higher to use the surface energy. In addition, when the steel sheet is heated to 1300 ° C. or more, it is difficult to stably anneal the steel sheet due to creep or the like of the steel sheet. At any temperature, the holding time is required to be 30 seconds or more, while the effect is saturated in 30 minutes. Therefore, the heating temperature range is 900 ° C. or more and 1300 ° C. or less, and the holding time is 30 seconds or more, preferably 30 minutes or less. The atmosphere is a reducing atmosphere, a non-oxidizing atmosphere having an oxygen partial pressure of 0.5 Pa or less and containing substantially no nitrogen, or a vacuum having an oxygen partial pressure of 0.5 Pa or less. This is because if nitrogen is contained in the atmosphere, nitrogen remains in the steel and deteriorates magnetic properties.

【0047】[0047]

【実施例】【Example】

(実施例1)表1に示される鋼種を真空溶解し、30mmま
でスラブ圧延を行った後に、1150℃加熱にて2.5mm まで
熱間圧延を施した。つづいて、表2に示す条件で熱延板
焼鈍を行い、その後酸洗、冷間圧延、最終焼鈍を行っ
た。
(Example 1) The steel types shown in Table 1 were melted in vacuum, slab-rolled to 30 mm, and then hot-rolled to 2.5 mm by heating at 1150 ° C. Subsequently, hot-rolled sheet annealing was performed under the conditions shown in Table 2, followed by pickling, cold rolling, and final annealing.

【0048】冷間圧延は、第1回目の冷間圧延で2.5mm
から0.5mm まで圧延し、第2回目の冷間圧延で0.5mm か
ら0.3mm まで圧延し、第3回目の冷間圧延で0.3mm から
0.1mm まで圧延した。各々の冷間圧延の間で、100 %N
2 雰囲気中において、焼鈍温度900 ℃、保持時間2分の
中間焼鈍を施した。
The cold rolling was performed in the first cold rolling at 2.5 mm.
From 0.5mm to 0.3mm in the second cold rolling, from 0.5mm to 0.3mm in the second cold rolling, and from 0.3mm in the third cold rolling.
Rolled to 0.1 mm. 100% N between each cold rolling
In two atmospheres, intermediate annealing was performed at an annealing temperature of 900 ° C. for a holding time of 2 minutes.

【0049】最終焼鈍は、3段にわたって実施した。第
1段目の焼鈍では、昇温速度を600℃/分とし、95%N
2 −5%H2 の雰囲気中で900 ℃に5分間保持した。第
2段目の焼鈍では、95%N2 −5%H2 の雰囲気中で90
0 ℃に10時間保持した。第3段目の焼鈍では、100 %H
2 の雰囲気中で1200℃に10分間保持した。
The final annealing was performed over three stages. In the first annealing step, the temperature was raised at a rate of 600 ° C./min and 95% N
It was kept at 900 ° C. for 5 minutes in an atmosphere of 2-5% H 2 . In the second stage annealing, 90% N 2 -5% H 2 atmosphere is used.
It was kept at 0 ° C. for 10 hours. In the third annealing, 100% H
It was kept at 1200 ° C. for 10 minutes in the atmosphere of 2 .

【0050】得られた薄鋼板の組織として板厚の10倍以
上の粒径を有する結晶粒の被覆率と圧延方向の磁束密度
8 (T)、保持力HC (A/m)を測定した。この結
果を、表2に示す。表2から明らかなように、本発明の
成分範囲でなおかつ本発明の製造方法を施した場合にの
み、磁束密度B8 が1.90T以上の、磁気特性に優れた極
薄けい素鋼板を得ることができた。
As the structure of the obtained thin steel sheet, the coverage of crystal grains having a grain size of 10 times or more the sheet thickness, the magnetic flux density B 8 (T) in the rolling direction, and the holding force H C (A / m) were measured. did. Table 2 shows the results. As it is clear from Table 2, when subjected to the manufacturing method of yet present invention in composition range of the present invention only, the magnetic flux density B 8 is not less than 1.90T, to obtain a very thin silicon steel sheet having excellent magnetic properties Was completed.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】(実施例2)表1の鋼番1の鋼種を真空溶
解し、30mmまでスラブ圧延を行った後に、1150℃加熱に
て2.5mm まで熱間圧延を施した。つづいて、表3に示す
条件で熱延板焼鈍を行い、その後酸洗、冷間圧延、最終
焼鈍を行った。
(Example 2) Steel type No. 1 in Table 1 was melted in a vacuum, slab-rolled to 30 mm, and then hot-rolled to 2.5 mm by heating at 1150 ° C. Subsequently, hot-rolled sheet annealing was performed under the conditions shown in Table 3, and then pickling, cold rolling, and final annealing were performed.

【0054】冷間圧延は、表3において3回圧延と書か
れているものについては、実施例1と同じ条件で行っ
た。表3において2回圧延と書かれているものについて
は、第1回目の冷間圧延で板厚2.5mm から0.3mm まで圧
延し、第2回目の冷間圧延で板厚0.3mm から0.1mm まで
圧延した。そして、これらの冷間圧延の間で、100 %N
2 雰囲気中において、焼鈍温度900 ℃、保持時間2分の
中間焼鈍を施した。
The cold rolling is described in Table 3 as rolling three times.
Are performed under the same conditions as in Example 1.
Was. About what is described as double rolling in Table 3
Is pressed from 2.5mm to 0.3mm in the first cold rolling.
From 0.3mm to 0.1mm in the second cold rolling
Rolled. And between these cold rollings, 100% N
TwoIn the atmosphere, annealing temperature 900 ° C, holding time 2 minutes
Intermediate annealing was performed.

【0055】最終焼鈍は、3段にわたって実施した。第
1段目の焼鈍では、昇温速度を600℃/分とし、95%N
2 −5%H2 の雰囲気中で900 ℃に5分間保持した。第
2段目の焼鈍では、95%N2 −5%H2 の雰囲気中で90
0 ℃に10時間保持した。第3段目の焼鈍では、100 %H
2 の雰囲気中で1200℃に10分間保持した。
The final annealing was performed over three stages. In the first annealing step, the temperature was raised at a rate of 600 ° C./min and 95% N
It was kept at 900 ° C. for 5 minutes in an atmosphere of 2-5% H 2 . In the second stage annealing, 90% N 2 -5% H 2 atmosphere is used.
It was kept at 0 ° C. for 10 hours. In the third annealing, 100% H
It was kept at 1200 ° C. for 10 minutes in the atmosphere of 2 .

【0056】得られた薄鋼板の圧延方向の磁束密度B8
(T)、保持力HC (A/m)を測定した。この結果
を、表3に示す。表3から明らかなように、熱延板焼鈍
条件が本発明の製造方法をの範囲にある場合にのみ、磁
束密度B8 が1.90T以上の極薄けい素鋼板を得ることが
できた。
The magnetic flux density B 8 in the rolling direction of the obtained thin steel sheet
(T), the holding force H C (A / m) was measured. Table 3 shows the results. As apparent from Table 3, the hot-rolled sheet annealing condition only if the range of the manufacturing method of the present invention, the magnetic flux density B 8 it was possible to obtain a very thin silicon steel sheets of more than 1.90T.

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【発明の効果】以上説明したように、本発明において
は、熱延鋼板の化学成分、熱延焼鈍条件、冷間圧延・中
間焼鈍条件、最終焼鈍条件を特定のものにすることによ
り、インヒビターと表面エネルギーを活用することがで
き、磁気特性に優れた極薄けい素鋼板を得ることが可能
となる。
As described above, according to the present invention, the inhibitor, the chemical composition of the hot-rolled steel sheet, the hot-rolling annealing conditions, the cold-rolling / intermediate annealing conditions, and the final annealing conditions are made specific. The surface energy can be utilized, and an ultra-thin silicon steel sheet having excellent magnetic properties can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a) 重量%で、C:0.01%以下、Si:
2.5 %以上7%以下、Mn:0.005 %以上0.12%以下、
P:0.02%以下、S:0.002 %以上0.005 %以下、sol.
Al:0.0015%以上0.006 %以下、N:0.001 %以上0.
008 %以下を含み、不純物としてのTi+Nbが0.003
%以下である熱延鋼板を準備する工程、(b) 前記熱延鋼
板に、焼鈍温度T(℃)、保持時間t(分)、昇温速度
R(℃/分)が下記の(1) 式を満たす条件で焼鈍を施す
工程、 830+1000/R≦T+4.2t+3000/R ≦1040-1000/R … (1) (但し、T≧500 ) (c) 前記熱延鋼板を脱スケール後、加熱・冷却速度が0.
1 ℃/sec 以上、保持時間が0.5 分以上10分以内である
中間焼鈍を含む2回又は3回の冷間圧延により板厚0.20
mm以下の冷間圧延鋼板とする工程、(d) 前記冷間圧延鋼
板を、窒素50vol.%以上含む還元性雰囲気において、1
℃/sec以上の昇温速度で700 ℃以上1000℃以下の所定温
度まで加熱し、当該温度に30秒以上保持する1段目の焼
鈍工程、(e) 引き続き前記冷間圧延鋼板を、窒素50vol.
%以上含む還元性雰囲気において、700 ℃以上1000℃以
下の所定温度に3時間以上保持する2段目の焼鈍工程、
(f) さらに、窒素を含まない還元性雰囲気もしくは酸素
分圧が0.5Pa 以下で実質的に窒素を含まない非酸化性雰
囲気または酸素分圧が0.5Pa 以下の真空中において、90
0 ℃以上1300℃以下の範囲の所定温度で30秒以上の保持
を行う3段目の焼鈍工程を含む極薄けい素鋼板の製造方
法。
1. (a) By weight%, C: 0.01% or less, Si:
2.5% or more and 7% or less, Mn: 0.005% or more and 0.12% or less,
P: 0.02% or less, S: 0.002% to 0.005%, sol.
Al: 0.0015% to 0.006%, N: 0.001% to 0.
008% or less, and Ti + Nb as an impurity is 0.003% or less.
% (B) an annealing temperature T (° C.), a holding time t (minutes), and a heating rate R (° C./minute) are as follows: Annealing process under the condition satisfying the formula, 830 + 1000 / R ≦ T + 4.2t + 3000 / R ≦ 1040-1000 / R… (1) (However, T ≧ 500) (c) Remove the hot-rolled steel sheet After scaling, the heating / cooling rate is 0.
2 or 3 times cold rolling including intermediate annealing with 1 ° C / sec or more and holding time of 0.5 to 10 minutes
(d) forming the cold-rolled steel sheet in a reducing atmosphere containing 50% by volume or more of nitrogen;
A first annealing step of heating to a predetermined temperature of 700 ° C. or more and 1000 ° C. or less at a temperature rising rate of at least 70 ° C./sec and maintaining the temperature at that temperature for 30 seconds or more; .
% In a reducing atmosphere containing at least 700% and not more than 1000 ° C for at least 3 hours in a reducing atmosphere containing at least
(f) Further, in a reducing atmosphere containing no nitrogen or a non-oxidizing atmosphere having an oxygen partial pressure of not more than 0.5 Pa and substantially no nitrogen or a vacuum having an oxygen partial pressure of not more than 0.5 Pa,
A method for producing an ultra-thin silicon steel sheet including a third annealing step of holding at a predetermined temperature in a range of 0 ° C. or more and 1300 ° C. or less for 30 seconds or more.
【請求項2】 請求項1に記載の製法によって製造され
る極薄けい素鋼板。
2. An ultra-thin silicon steel sheet produced by the method according to claim 1.
JP26089796A 1996-10-01 1996-10-01 Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet Expired - Fee Related JP3271654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26089796A JP3271654B2 (en) 1996-10-01 1996-10-01 Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26089796A JP3271654B2 (en) 1996-10-01 1996-10-01 Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH10102145A true JPH10102145A (en) 1998-04-21
JP3271654B2 JP3271654B2 (en) 2002-04-02

Family

ID=17354284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26089796A Expired - Fee Related JP3271654B2 (en) 1996-10-01 1996-10-01 Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3271654B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276325B2 (en) 2003-02-14 2007-10-02 E.I. Dupont De Nemours And Company Electrode-forming composition for field emission type of display device, and method using such a composition
KR101435704B1 (en) * 2011-11-21 2014-09-01 주식회사 포스코 Continuous manufacturing method of ferritic stainless steel and ferritic stainless steel manufactured using the same
CN104831038A (en) * 2015-05-12 2015-08-12 苏州巨磁功能材料有限公司 Manufacturing process of ultra-thin oriented silicon steel strip
CN108699621A (en) * 2016-03-09 2018-10-23 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276325B2 (en) 2003-02-14 2007-10-02 E.I. Dupont De Nemours And Company Electrode-forming composition for field emission type of display device, and method using such a composition
KR101435704B1 (en) * 2011-11-21 2014-09-01 주식회사 포스코 Continuous manufacturing method of ferritic stainless steel and ferritic stainless steel manufactured using the same
CN104831038A (en) * 2015-05-12 2015-08-12 苏州巨磁功能材料有限公司 Manufacturing process of ultra-thin oriented silicon steel strip
CN108699621A (en) * 2016-03-09 2018-10-23 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate
EP3428294A4 (en) * 2016-03-09 2019-01-16 JFE Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
US11332801B2 (en) 2016-03-09 2022-05-17 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3271654B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3271654B2 (en) Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet
JPH10130729A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH0121851B2 (en)
JP3390109B2 (en) Low iron loss high magnetic flux density
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4259025B2 (en) Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JPH0995739A (en) Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production
JPH0625381B2 (en) Method for producing grain-oriented electrical steel sheet
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP3271651B2 (en) Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method
JPH10102146A (en) Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet
JPH0971818A (en) Production of extra thin silicon steel sheet excellent in magnetic property and extra thin silicon steel sheet excellent in magnetic property
JPH05295438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH0617201A (en) Grain-oriented magnetic steel sheet and its manufacture
JPH05186829A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JP3443150B2 (en) Method for producing grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees