JP3271651B2 - Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method - Google Patents

Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method

Info

Publication number
JP3271651B2
JP3271651B2 JP08964696A JP8964696A JP3271651B2 JP 3271651 B2 JP3271651 B2 JP 3271651B2 JP 08964696 A JP08964696 A JP 08964696A JP 8964696 A JP8964696 A JP 8964696A JP 3271651 B2 JP3271651 B2 JP 3271651B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
less
cold
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08964696A
Other languages
Japanese (ja)
Other versions
JPH09157746A (en
Inventor
伸夫 山上
洋一郎 山中
紀隆 高橋
靖 田中
好仁 上元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP08964696A priority Critical patent/JP3271651B2/en
Publication of JPH09157746A publication Critical patent/JPH09157746A/en
Application granted granted Critical
Publication of JP3271651B2 publication Critical patent/JP3271651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気特性にすぐれ
た極薄けい素鋼板の製造方法及び磁気特性に優れた極薄
けい素鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-thin silicon steel sheet having excellent magnetic properties and an ultra-thin silicon steel sheet having excellent magnetic properties.

【0002】[0002]

【従来の技術】変電器の鉄芯などに用いられる方向性け
い素鋼板は、特公昭46-23820号公報等に示されるよう
に、従来、2次再結晶のために、AlNやMnSなどの
析出物をインヒビタとして利用して製造されている。し
かしながらこのような方向性けい素鋼板は、AlNやM
nSなどの多量のインヒビタの固溶のための高温のスラ
ブ加熱工程、最終焼鈍までの脱炭焼鈍工程および2次再
結晶を完全に完了させ、磁気特性に影響をあたえる不純
物を純化するための高温長時間焼鈍工程を必須としてお
り、経済的な観点から問題を有していた。
2. Description of the Related Art Oriented silicon steel sheets used for iron cores of transformers have conventionally been made of AlN or MnS for secondary recrystallization as shown in Japanese Patent Publication No. 46-23820. It is manufactured using the precipitate as an inhibitor. However, such oriented silicon steel sheets are made of AlN or M
A high-temperature slab heating step for solid solution of a large amount of inhibitors such as nS, a decarburizing annealing step until the final annealing and a secondary recrystallization are completely completed, and a high temperature for purifying impurities affecting magnetic properties. The long annealing step is essential, and has a problem from an economic viewpoint.

【0003】また、このような材料に要求される磁気特
性のなかでも特に重要視される鉄損値は、板厚が薄くな
るほど向上すると考えられているものの、従来のけい素
鋼板では、インヒビタの問題で0.2mm 以下の極薄材の製
造が困難であるとされてきた。
[0003] Among the magnetic properties required for such materials, the iron loss value, which is regarded as particularly important, is considered to increase as the sheet thickness becomes thinner. Due to problems, it has been said that it is difficult to produce ultra-thin materials of 0.2 mm or less.

【0004】このような問題に対して、特開昭62-83421
号公報および特開平1-212721号公報に示されるように、
極低炭素系であることを前提として、これにAlを微量
に添加した組成とすることによって問題を回避する手法
が考案されている。また特開平5-186829 号公報に代表
されるような表面エネルギーを用いた極薄方向性けい素
鋼板の製造方法が提案されている。
To solve such a problem, Japanese Patent Application Laid-Open No. 62-83421
As shown in Japanese Unexamined Patent Publication No.
Assuming that the composition is extremely low carbon, a method of avoiding the problem by devising a composition in which Al is added in a trace amount has been devised. Also, a method for producing an ultrathin oriented silicon steel sheet using surface energy as represented by Japanese Patent Application Laid-Open No. 5-186829 has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
62-83421号公報および特開平1-212721号公報に記載され
ている方法によれば、高温のスラブ加熱や高温長時間の
焼鈍プロセスを省略でき経済的効果が得られるものの、
0.2mm 以下の板厚では品質のバラツキが大きく工業的に
安定した2次再結晶挙動を得ることができないという問
題があった。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
According to the method described in 62-83421 JP and JP-A 1-212721, although high-temperature slab heating and high-temperature long-time annealing process can be omitted, economic effects can be obtained,
When the thickness is 0.2 mm or less, there is a problem that the quality remarkably varies so that the industrially stable secondary recrystallization behavior cannot be obtained.

【0006】また、特開平5-186829 号公報の方法は、
インヒビタを用いないため、本発明が対象とする極薄鋼
板の製造に原理的に有利な手法であるが、微量の不純
物、雰囲気の微妙な変化などによって結晶粒成長が左右
されその結果として安定性に欠けるという問題を抱えて
いた。
The method disclosed in Japanese Patent Application Laid-Open No. 5-186829 is
This method is advantageous in principle for the production of ultra-thin steel sheets targeted by the present invention because no inhibitor is used.However, the growth of crystal grains is affected by minute impurities and subtle changes in the atmosphere, resulting in stability. Had the problem of lacking.

【0007】本発明は、そうした問題点を克服し、脱炭
焼鈍および高温長時間の焼鈍を施さずに、0.2mm 以下の
板厚で{110 }<001> 面方位が安定的に2次再結晶し、
これによって磁気特性に優れたけい素鋼板が製造可能と
なるような方法および磁気特性に優れたけい素鋼板を提
供することを目的とする。
[0007] The present invention overcomes such problems, and achieves stable {110} <001> plane orientation in a sheet thickness of 0.2 mm or less without performing decarburizing annealing and annealing at high temperature for a long time. Crystallize,
It is an object of the present invention to provide a method and a silicon steel sheet having excellent magnetic properties by which a silicon steel sheet having excellent magnetic properties can be manufactured.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
の第1の手段は、(a) 重量%で、C:0.01%以下、S
i:2.5 %以上7%以下、Mn:0.005 %以上0.12%以
下、P:0.02%以下、S:0.002 %以上0.005 %以下、
sol.Al:0.0015%以上0.006 %以下、N:0.001 %以
上0.008 %以下を含み、不純物としてのTi+Nbが0.
003 %以下である熱延鋼板を準備する工程、(b) 前記熱
延鋼板を脱スケール後、焼鈍温度700 ℃〜950 ℃、保持
時間30sec 以上の中間焼鈍を含む3回の冷間圧延により
板厚0.20mm以下の冷間圧延鋼板とする工程、(c) 前記冷
間圧延鋼板を、窒素50vol.%以上含む還元性雰囲気にお
いて、1℃/sec以上の昇温速度で700 ℃以上1000℃以下
の所定温度まで加熱し、該温度に30秒以上保持する1段
目の焼鈍工程、(d) 引き続き上記冷間圧延鋼板を、窒素
50vol.%以上含む還元性雰囲気において、700 ℃以上10
00℃以下の所定温度に3時間以上保持する2段目の焼鈍
工程、(e) さらに、窒素を含まない還元性雰囲気もしく
は酸素分圧が0.5Pa 以下で実質的に窒素を含まない非酸
化性雰囲気または酸素分圧が0.5Pa 以下の真空中におい
て、900 ℃以上1300℃以下の範囲の所定温度で30秒以上
の保持を行う3段目の焼鈍工程を含む磁気特性に優れた
極薄けい素鋼板の製造方法である。
The first means for solving the above problems is as follows: (a) C: 0.01% or less by weight%;
i: 2.5% or more and 7% or less, Mn: 0.005% or more and 0.12% or less, P: 0.02% or less, S: 0.002% or more and 0.005% or less,
sol. Al: 0.0015% or more and 0.006% or less, N: 0.001% or more and 0.008% or less, and Ti + Nb as an impurity is 0.1%.
Preparing a hot-rolled steel sheet of 003% or less, (b) after descaling the hot-rolled steel sheet, performing cold rolling three times including intermediate annealing at an annealing temperature of 700 ° C. to 950 ° C. and a holding time of 30 seconds or more. A step of forming a cold-rolled steel sheet having a thickness of 0.20 mm or less, and (c) in a reducing atmosphere containing 50 vol.% Or more of nitrogen at a heating rate of 1 ° C./sec or more and 700 ° C. or more and 1000 ° C. or less. (D) heating to a predetermined temperature and maintaining the temperature for 30 seconds or more;
700 ° C or more in a reducing atmosphere containing 50vol.% Or more
(E) a nitrogen-free reducing atmosphere or a non-oxidizing material containing substantially no nitrogen and having an oxygen partial pressure of 0.5 Pa or less at a predetermined temperature of not more than 00 ° C for 3 hours or more. Ultra-thin silicon with excellent magnetic properties including a third annealing step of holding at a predetermined temperature in the range of 900 ° C to 1300 ° C for 30 seconds or more in an atmosphere or a vacuum with an oxygen partial pressure of 0.5 Pa or less This is a method for manufacturing a steel sheet.

【0009】前記課題を解決するための第2の手段は、
前記第1の手段中における中間焼鈍の内、少なくとも1
回の中間焼鈍の雰囲気を窒素50vol.%以上含む非酸化性
雰囲気とすることを特徴とする磁気特性に優れた極薄け
い素鋼板の製造方法である。
[0009] A second means for solving the above-mentioned problems is as follows.
At least one of the intermediate annealings in the first means is performed.
This is a method for producing an ultra-thin silicon steel sheet having excellent magnetic properties, wherein the atmosphere of the intermediate annealing is a non-oxidizing atmosphere containing 50 vol.% Or more of nitrogen.

【0010】前記課題を解決するための第3の手段は、
前記第1の手段中における(b) に記載の工程を、(b'-1)
前記熱延鋼板を脱スケール後、圧下率70〜90%の一次冷
間圧延を施して冷間圧延鋼板とする工程、(b'-2)前記冷
間圧延鋼板を、窒素50vol.%以上を含む非酸化性雰囲気
下、焼鈍温度700 ℃〜950 ℃、保持時間0.5 〜5分、昇
温速度1℃/sec 以上の条件で一次焼鈍を実施する工
程、(b'-3)前記焼鈍板に圧下率50〜90%の2次冷間圧延
を実施し、板厚0.20mm以下の冷間圧延鋼板とする工程、
に代えた磁気特性に優れた極薄けい素鋼板の製造方法で
ある。
[0010] A third means for solving the above problems is as follows.
The step (b) in the first means is performed by (b′-1)
A step of subjecting the hot-rolled steel sheet to descaling and subjecting the cold-rolled steel sheet to primary cold-rolling at a rolling reduction of 70 to 90% to form a cold-rolled steel sheet; Performing a primary anneal under the conditions of an annealing temperature of 700 ° C. to 950 ° C., a holding time of 0.5 to 5 minutes, and a heating rate of 1 ° C./sec or more in a non-oxidizing atmosphere including (b′-3) A process of performing secondary cold rolling with a reduction ratio of 50 to 90% to produce a cold-rolled steel sheet having a thickness of 0.20 mm or less;
This is a method for manufacturing an ultra-thin silicon steel sheet having excellent magnetic properties.

【0011】前記課題を解決するための第4の手段は、
前記第1の手段中における(b) に記載の工程を、(b''-
1) 前記熱延鋼板を少なくとも50%以上の窒素を含む還
元性雰囲気で焼鈍温度700 ℃〜950 ℃、保持時間2分以
上の熱延板焼鈍を施す工程、(b''-2) 前記熱延焼鈍板
を、冷間圧延率80% 以上の冷間圧延により板厚0.20mm以
下の冷間圧延鋼板とする工程、に代えた磁気特性に優れ
た極薄けい素鋼板の製造方法である。
[0011] A fourth means for solving the above problems is as follows.
The step (b) in the first means, (b ''-
1) subjecting the hot-rolled steel sheet to a hot-rolled sheet annealing in a reducing atmosphere containing at least 50% or more of nitrogen at an annealing temperature of 700 ° C to 950 ° C and a holding time of 2 minutes or more; (b ''-2) This is a method for producing an ultra-thin silicon steel sheet having excellent magnetic properties, instead of the step of turning a rolled annealed sheet into a cold-rolled steel sheet having a sheet thickness of 0.20 mm or less by cold rolling at a cold rolling reduction of 80% or more.

【0012】前記課題を解決するための第5の手段は、
前記第1ないし第4の手段のうち、いずれかの手段にお
ける(c) と(d) の工程の中間に、コロイダルシリカを含
むPH8以上のスラリーを塗布することにより冷間圧延
鋼板の表面に10mg/m2 以上2mg/m2 以下の酸化珪素を付
着させる工程を付加したことを特徴とする磁気特性に優
れた極薄けい素鋼板の製造方法である。
A fifth means for solving the above-mentioned problem is as follows.
A slurry having a pH of 8 or more containing colloidal silica is applied between the steps (c) and (d) in any one of the first to fourth means so that 10 mg of the slurry is applied to the surface of the cold-rolled steel sheet. / is a manufacturing method excellent ultra-thin silicon steel sheet on the magnetic properties, characterized in that m 2 or more 2 mg / m 2 obtained by adding the step of depositing the following silicon oxide.

【0013】前記課題を解決するための第6の手段は、
前記第1ないし第5の手段のうち、いずれかの手段によ
って製造される磁気特性に優れた極薄けい素鋼板であ
る。
A sixth means for solving the above-mentioned problem is as follows.
An ultra-thin silicon steel sheet having excellent magnetic properties manufactured by any of the first to fifth means.

【0014】以下、発明に至った経緯と発明の詳細を述
べる。本発明者らは、脱炭焼鈍および高温長時間の焼鈍
を施さずに、0.2mm 以下の板厚で{110}<001>面方位が
安定的に2次再結晶し、これによって磁気特性の優れた
けい素鋼板が製造可能となるような鋼板の組成およびそ
の製造方法を見出すべく実験・研究を行った。その結
果、下記の様な知見を得たのである。
Hereinafter, the background of the invention and details of the invention will be described. The present inventors have found that the {110} <001> plane orientation can be stably secondary-recrystallized at a plate thickness of 0.2 mm or less without performing decarburizing annealing and annealing at a high temperature for a long time. Experiments and researches were conducted to find out the composition of steel sheets and the method of manufacturing them so that excellent silicon steel sheets can be manufactured. As a result, the following findings were obtained.

【0015】1)特開昭62-83421号公報および特開平1-
212721号公報に示されるような、通常の0.3mm の厚さの
鋼板を2次再結晶させる場合と比べて、本発明が対象と
する板厚0.2mm 以下の極薄鋼板の場合、1次および2次
再結晶を発現させる焼鈍工程における雰囲気からの窒化
の影響が極めて大きく、新たな問題を引き起こすこと。
たとえば特開昭62-83421号公報の実施例中の表2におけ
るY鋼相当の組成では、インヒビタとしてのAlNが多
くなりすぎるうえに、その分布が不適当となり、その結
果、2次再結晶が生じないこと。
1) Japanese Patent Application Laid-Open No. 62-83421 and Japanese Patent Application Laid-Open
Compared with the case of ordinary recrystallization of a steel sheet having a thickness of 0.3 mm as shown in JP-A-212721, the primary and secondary steel sheets having a thickness of 0.2 mm or less which are the object of the present invention are compared with those of the present invention. The effect of nitriding from the atmosphere in the annealing step for developing secondary recrystallization is extremely large, causing a new problem.
For example, with the composition corresponding to steel Y in Table 2 in the examples of JP-A-62-83421, AlN as an inhibitor becomes too large, and its distribution becomes inappropriate. As a result, secondary recrystallization occurs. What does not happen.

【0016】2)このような過剰なAlNの形成を防ぐ
ために、同一の組成で、焼鈍雰囲気の窒素分圧を低減さ
せたり、焼鈍温度を低下させる検討を行ったが、0.2mm
以下の板厚の場合には、表面からの窒素の脱出も同時に
おこるため、鋼中の主要なインヒビタとなるAlNの2
次再結晶を発現させるために有効な量および形態の制御
が極めて困難であること。
2) In order to prevent the formation of such excessive AlN, studies were made to reduce the nitrogen partial pressure of the annealing atmosphere or to lower the annealing temperature with the same composition.
In the case of the following plate thickness, the escape of nitrogen from the surface also occurs at the same time, so that AlN which is the main inhibitor in steel
It is extremely difficult to control the amount and morphology effective for developing secondary recrystallization.

【0017】3)2次再結晶を発現させるために、焼鈍
中のAlNの形態、量の変化をみこした組成の最適化お
よび製造プロセスの検討を行ったところ、特定の成分範
囲に組成を限定した場合にインヒビタとなるAlNが2
次再結晶に有効に働くこと。
3) In order to develop secondary recrystallization, optimization of the composition taking into account changes in the form and amount of AlN during annealing and study of the manufacturing process were performed, and the composition was limited to a specific component range. AlN that becomes an inhibitor when
Work effectively for the next recrystallization.

【0018】4)さらに、特定の成分範囲に調整された
熱延鋼板を冷間圧延し、1次再結晶を生じさせる為の1
段目の焼鈍、また2次再結晶を進展させる為の2段目の
焼鈍を施したところある程度の2次再結晶が生ずるこ
と。冷間圧延は中間焼鈍を含む3回の圧延でも可能であ
るが、冷間圧延を特定の圧下率とし、窒素を特定量含む
特定条件で中間焼鈍すると2回の冷間圧延で済むこと。
さらに、冷間圧延前に特定の条件で熱延板焼鈍を施し、
冷延圧下率を特定の範囲とすることによって、1回の冷
間圧延でも済むこと。
4) Further, a hot-rolled steel sheet adjusted to a specific component range is cold-rolled to obtain a primary recrystallization.
A certain degree of secondary recrystallization occurs when the second-stage annealing is performed to promote the second-stage recrystallization and the second-stage recrystallization. Cold rolling can be performed by three times of rolling including intermediate annealing. However, if cold rolling is performed at a specific rolling reduction rate and intermediate annealing is performed under specific conditions including a specific amount of nitrogen, only two cold rolling operations are required.
In addition, before cold rolling, subjected to hot rolled sheet annealing under specific conditions,
By setting the rolling reduction in a specific range, only one cold rolling is sufficient.

【0019】5)ただし、2段目までの焼鈍では、2次
再結晶粒の被覆率が、最大でも約80%程度であり、残り
の20%程度は、2次再結晶粒に食い残された板厚程度の
粒径の領域となること。このような細粒部は、貫通粒と
なっているため、結晶粒の曲率に反比例する粒界エネル
ギが十分ではなく、長時間焼鈍しても殆ど2次再結晶粒
に蚕食されず、磁気特性的にも不充分であること。
5) However, in the annealing up to the second stage, the coverage of the secondary recrystallized grains is at most about 80%, and the remaining about 20% is left behind by the secondary recrystallized grains. The grain size should be in the range of the sheet thickness. Since such fine grains are penetrating grains, the grain boundary energy, which is inversely proportional to the curvature of the crystal grains, is not sufficient. Inadequately.

【0020】6)このような細粒部を2次再結晶粒に蚕
食させるため、結晶粒径に依存せず、{110}面が優
先的に成長する表面エネルギを2次再結晶粒の進展のた
めの駆動力として用いると2次再結晶の被覆率が90%を
越えること。
6) In order to make such fine-grained portions invaginate the secondary recrystallized grains, the surface energy at which {110} planes grow preferentially does not depend on the crystal grain size, and the secondary recrystallized grains are advanced. The secondary recrystallization coverage must be greater than 90% when used as a driving force.

【0021】7)そうして得られたけい素鋼板は極めて
良好な磁気特性を示すこと。
7) The silicon steel sheet thus obtained has extremely good magnetic properties.

【0022】8)なお、特開平5-186829 号公報に示さ
れている、表面エネルギ法のみでGoss粒を異常粒成長さ
せる方法は、本発明鋼のようにSが0.0020wt%以上含有
されている鋼では、粒成長性がきわめて低下するため、
900 ℃以上1300℃以下、10分間の焼鈍でのGoss粒の被覆
率は最大でも40%程度であり、不満足な結果となるこ
と。
8) The method of abnormally growing Goss grains by only the surface energy method disclosed in Japanese Patent Application Laid-Open No. 5-186829 discloses a method in which S is contained in an amount of 0.0020 wt% or more like the steel of the present invention. In some steels, the grain growth is very poor,
The coverage of Goss grains after annealing at 900 ° C or more and 1300 ° C or less for 10 minutes is about 40% at the maximum, which is unsatisfactory.

【0023】そこで上記知見をもとにさらに検討を進
め、本発明を完成したのである。まず、本発明におい
て、熱延鋼板の化学成分および製造方法を限定した理由
について説明する。
Therefore, the present inventors have further studied based on the above findings and completed the present invention. First, in the present invention, the reasons for limiting the chemical components and the production method of a hot-rolled steel sheet will be described.

【0024】C:インヒビタ法では、Cによる組織およ
び集合組織制御を行なうが、前述した本発明ではそうし
たことを行わないため、積極的なCの添加を行う必要は
ない。むしろ、Cは0.01wt%をこえると磁気特性や加工
性を著しく低下させる。このため、Cは0.01wt%以下、
好ましくは0.005wt %以下とする。
C: In the inhibitor method, the structure and texture are controlled by C. However, in the present invention described above, this is not performed, so that it is not necessary to actively add C. Rather, if C exceeds 0.01% by weight, the magnetic properties and workability are significantly reduced. Therefore, C is 0.01 wt% or less,
Preferably, the content is 0.005% by weight or less.

【0025】Si:Siは、磁気特性や相変態を通じた
組織および集合組織制御を行うために極めて重要であ
る。Siが2.5wt %を下回ると、最終焼鈍の3段目の焼
鈍において、高温における相変態にともなう組織および
集合組織の変化が著しく、所定の特性を有する鋼板を製
造することが困難となる。また、Siが7wt%よりも高
い場合には加工性が著しく低下する。従って、Siは2.
5wt %以上7wt %以下とする。ただし加工性の点からS
iのより好ましい範囲を述べると4wt%以下である。
Si: Si is extremely important for controlling the structure and texture through magnetic properties and phase transformation. If the Si content is less than 2.5 wt%, in the third annealing of the final annealing, the structure and the texture accompanying the phase transformation at a high temperature are remarkably changed, and it becomes difficult to produce a steel sheet having predetermined characteristics. On the other hand, if the content of Si is higher than 7% by weight, the workability is significantly reduced. Therefore, Si is 2.
5 wt% or more and 7 wt% or less. However, in terms of workability, S
The more preferable range of i is 4% by weight or less.

【0026】Mn:Mnは、MnSの形成のために極め
て重要である。このMnSはAlNインヒビタの析出の
核となり、またAlNの固溶を遅らせる働きを有する。
ただし、0.12wt%を越えて過剰に含まれる場合は、その
完全固溶のために1250℃以上の著しい高温でのスラブ加
熱が必要となる。一方、0.005wt %未満では、このよう
な働きは認められず、2次再結晶が不完全となる。この
ため、Mnは0.005wt%以上0.12wt%以下である必要が
ある。
Mn: Mn is extremely important for the formation of MnS. This MnS acts as a nucleus for the precipitation of the AlN inhibitor and has a function of delaying the solid solution of AlN.
However, when it is contained in excess of 0.12 wt%, slab heating at a remarkably high temperature of 1250 ° C. or more is required for complete solid solution. On the other hand, if the content is less than 0.005 wt%, such a function is not recognized and secondary recrystallization is incomplete. For this reason, Mn needs to be 0.005 wt% or more and 0.12 wt% or less.

【0027】P:Pは粒成長速度および、加工性を低下
させるために有害である。このため、0.02wt%以下とす
る。
P: P is harmful because it lowers the grain growth rate and workability. Therefore, the content is set to 0.02 wt% or less.

【0028】S:Sは、MnSの形成のためにMnと同
様に極めて重要である。このためには、Sは0.002wt %
以上含有されなければならない。一方、0.005wt %を越
えて含有された場合には、著しく粒成長速度を低下させ
るため、3段目の焼鈍において所定の時間内で2次再結
晶を完了させることが困難となる。従って、Sは0.002w
t %以上0.005wt %以下とする。
S: S is as important as Mn for the formation of MnS. For this, S is 0.002wt%
Must be contained. On the other hand, when the content exceeds 0.005 wt%, the grain growth rate is remarkably reduced, so that it is difficult to complete the secondary recrystallization within a predetermined time in the third annealing. Therefore, S is 0.002w
t% to 0.005 wt% or less.

【0029】sol.Al:sol.Alは、インヒビタとなる
AlN形成のために極めて重要である。sol.Alが、0.
0015wt%未満の場合は、インヒビタとしてのAlNが不
足しマトリックス粒の粗大化が生じてしまうために、2
次再結晶が困難となる。一方0.006wt %をこえると、焼
鈍中の吸窒のためにインヒビタとしてのAlNが多くな
りすぎるうえに、不適当な分布となり、その結果とし
て、2次再結晶が生じないまたは部分的に2次再結晶粒
が形成されるものの極めて低い被覆率となる。さらに、
このようなAlは、高温での粒成長性を著しく低下させ
るため、3段目の焼鈍において所定の時間内で2次再結
晶を完了させることが困難となる。従って、鋼中のsol.
Alは0.0015wt%以上0.006wt %以下とする。
Sol.Al: sol.Al is extremely important for the formation of AlN which acts as an inhibitor. sol.Al is 0.
If the content is less than 0015 wt%, AlN as an inhibitor becomes insufficient and the matrix grains become coarse.
The next recrystallization becomes difficult. On the other hand, if it exceeds 0.006 wt%, AlN as an inhibitor becomes too large due to nitrogen absorption during annealing, and the distribution becomes unsuitable. As a result, secondary recrystallization does not occur or the secondary recrystallization does not occur. Although recrystallized grains are formed, the coverage is extremely low. further,
Since such Al significantly reduces the grain growth at high temperatures, it becomes difficult to complete the secondary recrystallization within a predetermined time in the third annealing. Therefore, sol.
Al is set to 0.0015 wt% or more and 0.006 wt% or less.

【0030】N:NもインヒビタとなるAlN形成のた
めに極めて重要である。Nが0.001wt %未満では、吸窒
が始まるまでの、インヒビタとしてのAlN量が少なす
ぎるためにマトリックス粒の粗大化し、その結果2次再
結晶が困難となる。一方、0.008wt %をこえるとスラブ
加熱中に析出したAlNが、熱間圧延の再加熱時にも一
部未固溶のまま残留する。これらは熱延中に粗大化し、
その結果、AlNの分布形態が変化し、2次再結晶が生
じにくくなる。このため、Nは0.001wt %以上0.008wt
%以下必要である。
N: N is also very important for the formation of AlN which acts as an inhibitor. If N is less than 0.001 wt%, the amount of AlN as an inhibitor until the onset of nitrogen absorption is too small, so that the matrix grains become coarse, and as a result, secondary recrystallization becomes difficult. On the other hand, when the content exceeds 0.008 wt%, AlN precipitated during slab heating remains partially undissolved even during reheating during hot rolling. These coarsen during hot rolling,
As a result, the distribution form of AlN changes and secondary recrystallization hardly occurs. Therefore, N is 0.001wt% or more and 0.008wt%
% Or less is required.

【0031】Ti、Nb:鋼中に不純物として含まれる
Ti、Nbは、極めて安定な窒化物を形成するため、A
lNによる2次再結晶挙動を阻害する。このような影響
を避けるために、Ti+Nb量を0.003wt %以下とす
る。
Ti, Nb: Ti and Nb contained as impurities in steel form extremely stable nitrides.
Inhibits the secondary recrystallization behavior due to 1N. In order to avoid such effects, the amount of Ti + Nb is set to 0.003 wt% or less.

【0032】続いて製造方法について述べる。 1)熱延板焼鈍及び冷間圧延 (イ)第1の方法では、熱延板焼鈍を行わず、冷間圧延
は中間焼鈍をはさむ3回の冷間圧延とする。冷間圧延は
常法に従って行われるが、後述するように特別な方法を
とらないかぎり、3回未満では最終焼鈍の際の結晶粒の
選択的粒成長による2次再結晶粒の成長に好ましい集合
組織が適切に形成されず、最終焼鈍後に十分成長した2
次再結晶粒が得られない。またおのおのの冷間圧延での
圧延率は20%以上が好ましい。
Next, the manufacturing method will be described. 1) Hot-rolled sheet annealing and cold rolling (a) In the first method, hot-rolled sheet annealing is not performed, and cold rolling is performed three times of cold rolling including intermediate annealing. Cold rolling is carried out according to a conventional method. However, unless a special method is employed as described later, less than three times is preferable for the growth of secondary recrystallized grains by selective grain growth during final annealing. Structure was not formed properly and grew sufficiently after final annealing 2
Secondary recrystallized grains cannot be obtained. The rolling reduction in each cold rolling is preferably 20% or more.

【0033】中間焼鈍の条件として、軟化を完全におこ
させるために、再結晶温度である700 ℃以上、結晶粒の
粗大化による冷間圧延鋼板の形状不良を避けるため1000
℃以下とする。また、保持時間は再結晶を十分に生じさ
せるため0.5 分以上必要である。さらに、これらの中間
焼鈍においては、焼鈍過程における析出物の粗大化を避
けるために、0.5 ℃/sec以上の加熱速度、10分以内の保
持時間とすることが好ましい。
As conditions for the intermediate annealing, in order to completely cause softening, a recrystallization temperature of 700 ° C. or higher, and in order to avoid a shape defect of a cold-rolled steel sheet due to coarsening of crystal grains, 1000 ° C.
It should be below ° C. In addition, the holding time is required to be 0.5 minutes or more to sufficiently generate recrystallization. Furthermore, in these intermediate annealings, it is preferable to set the heating rate to 0.5 ° C./sec or more and the holding time to 10 minutes or less in order to avoid coarsening of precipitates during the annealing process.

【0034】焼鈍雰囲気は常法でよい。ただし極端な酸
化を防止するため非酸化性の雰囲気とする。具体的には
Ar, Heなどの不活性ガスおよび窒素、水素などの単独ま
たは混合雰囲気とする。酸素分圧はとくに規定しない。
極端な酸化が防止されればよい。さらに、少なくとも1
回の中間焼鈍の雰囲気を窒素50vol.%以上含む非酸化性
雰囲気にすると磁気特性が向上する。理由は定かではな
いが、インヒビタの形成現象と関係すると思われる。し
たがって、より好ましくは少なくとも1回の中間焼鈍の
雰囲気を窒素50vol.%以上含む非酸化性雰囲気とする。
The annealing atmosphere may be a conventional method. However, a non-oxidizing atmosphere is used to prevent extreme oxidation. In particular
An inert gas such as Ar or He and a single or mixed atmosphere of nitrogen, hydrogen and the like are used. The oxygen partial pressure is not specified.
It suffices if extreme oxidation is prevented. In addition, at least one
The magnetic characteristics are improved by setting the atmosphere of the intermediate annealing in a non-oxidizing atmosphere containing 50 vol.% Or more of nitrogen. Although the reason is not clear, it seems to be related to the phenomenon of inhibitor formation. Therefore, it is more preferable that the atmosphere of at least one intermediate annealing be a non-oxidizing atmosphere containing 50 vol.% Or more of nitrogen.

【0035】(ロ)第2の方法では、熱延板焼鈍を行わ
ず、中間焼鈍を含む2回の冷間圧延とする。2回の冷間
圧延で済ませる場合には、冷間圧延を特定の圧下率で行
い、かつ窒素を特定量含む特定条件で中間焼鈍を行わな
ければならない。
(B) In the second method, hot rolling is not performed, but cold rolling is performed twice including intermediate annealing. In the case of performing the cold rolling twice, the cold rolling must be performed at a specific rolling reduction and the intermediate annealing must be performed under specific conditions including a specific amount of nitrogen.

【0036】最終焼鈍時に2次再結晶するGoss粒は、元
来熱延鋼板の表層直下にある板厚の約10%の層の熱間圧
延時に形成されたGoss組織が冷間圧延と中間焼鈍の過程
を経て継承されるものである。
The Goss grains that undergo secondary recrystallization during the final annealing are formed from a Goss structure originally formed at the time of hot rolling of a layer having a thickness of about 10% immediately below the surface of a hot-rolled steel sheet by cold rolling and intermediate annealing. It is inherited through the process.

【0037】圧下率が90%を超えると、冷間圧延により
強い変形を受け圧延方向に<110 >方位がそろった組織
が著しく発達する。このような<110 >方位を有する加
工組織は粗大粒1次再結晶粒を形成する。そのため最終
焼鈍の1次再結晶に粗大粒Goss以外の面方位を有する結
晶粒が再結晶し2次再結晶粒のための駆動力が低下す
る。その結果鋼板全面をGoss粒で覆うことが出来なくな
り高い磁気特性を得られない。さらに安定して高い磁気
特性を有する鋼板を得るためには、<110 >方位を有す
る加工組織を発達させないという観点から2次冷間圧延
に関しては圧下率を80%以下とすることが望ましい。
If the rolling reduction exceeds 90%, the structure undergoes strong deformation by cold rolling, and a structure having a <110> orientation in the rolling direction is remarkably developed. A processed structure having such a <110> orientation forms coarse primary recrystallized grains. Therefore, crystal grains having a plane orientation other than coarse grains Goss are recrystallized in the primary recrystallization of the final annealing, and the driving force for the secondary recrystallized grains is reduced. As a result, the entire steel sheet cannot be covered with Goss grains, and high magnetic properties cannot be obtained. In order to further stably obtain a steel sheet having high magnetic properties, it is desirable that the rolling reduction in the secondary cold rolling be 80% or less from the viewpoint of not developing a worked structure having a <110> orientation.

【0038】1次冷間圧延の圧下率が70%未満であると
熱延鋼板の板厚中央部にある、熱間圧延時に形成された
{100 }<011 >を有する伸張した結晶粒が変形される
ことなくそのまま継承される。その結果、圧下率が90%
を超えた時と同様に、最終焼鈍時にGoss粒以外の粗大粒
が形成され、Goss粒の2次再結晶を阻害する。
If the rolling reduction of the first cold rolling is less than 70%, the elongated crystal grains having {100} <011> formed in the hot rolling at the center of the thickness of the hot-rolled steel sheet are deformed. It is inherited without being done. As a result, the rolling reduction is 90%
As in the case of exceeding the value, coarse grains other than Goss grains are formed at the time of final annealing, and hinder secondary recrystallization of Goss grains.

【0039】2次冷間圧延の圧下率が50%未満である
と、歪エネルギーの蓄積が少ないために1次再結晶の核
生成サイトが減少する。その結果、最終焼鈍時の1次再
結晶粒が大きくなり、Goss粒の2次再結晶駆動力となる
粒界エネルギーが減少する。さらに安定して2次再結晶
を発現させるためには、細粒化という観点から圧下率を
60%以上とすることが望ましい。
When the rolling reduction of the secondary cold rolling is less than 50%, the nucleation sites for primary recrystallization decrease because the accumulation of strain energy is small. As a result, the primary recrystallized grains at the time of final annealing become large, and the grain boundary energy, which is the driving force for secondary recrystallization of Goss grains, is reduced. In order to more stably develop the secondary recrystallization, the rolling reduction is required from the viewpoint of grain refinement.
It is desirable to be 60% or more.

【0040】以上の理由から、1次冷間圧延の圧下率を
70〜90%、2次冷間圧延のそれを50〜90%と規定する。
2次冷間圧延の圧下率のより好ましい範囲は60〜80%で
ある。
For the above reasons, the rolling reduction of the first cold rolling is
70-90%, that of secondary cold rolling is defined as 50-90%.
The more preferable range of the rolling reduction in the secondary cold rolling is 60 to 80%.

【0041】中間焼鈍は50vol.%以上の窒素を含む非酸
化性雰囲気で行なう。雰囲気を窒素雰囲気とすることに
よって、鋼板の窒化と脱窒が同時におこり、その結果Al
N が微細化される。窒素が50vol.%未満であると鋼板の
窒化よりも脱窒が進み、AlNが適正量より減少し、十分
な2次再結晶が進展しない。酸素分圧はとくに規定しな
い。著しい酸化が防止されればそれで足りる。
The intermediate annealing is performed in a non-oxidizing atmosphere containing 50 vol.% Or more of nitrogen. By setting the atmosphere to a nitrogen atmosphere, nitriding and denitrification of the steel sheet occur at the same time.
N is refined. If the nitrogen content is less than 50 vol.%, Denitrification proceeds more than nitriding of the steel sheet, AlN decreases from an appropriate amount, and sufficient secondary recrystallization does not progress. The oxygen partial pressure is not specified. That is enough if significant oxidation is prevented.

【0042】また焼鈍過程における析出物の粗大化を避
けるために、1℃/sec以上の昇温速度で5分以内の保
持とする。ただし0.5 分未満の保持では十分な効果が得
られず、2次再結晶の進展にばらつきが生じる。このた
め昇温速度を1℃/sec 、保持時間を0.5 〜5分と規定
する。
In order to avoid coarsening of precipitates during the annealing process, the temperature is maintained at a rate of 1 ° C./sec or more for 5 minutes or less. However, if the holding time is less than 0.5 minutes, a sufficient effect cannot be obtained, and the progress of the secondary recrystallization varies. For this reason, the heating rate is defined as 1 ° C./sec, and the holding time is defined as 0.5 to 5 minutes.

【0043】さらに焼鈍温度を700 〜950 ℃と規定す
る。焼鈍温度が700 ℃未満では再結晶に伴う軟化および
析出物の形態制御、集合組織制御が不十分となる。一方
950 ℃を超えると析出物の粗大化が始まり、正常粒成長
が進展し再結晶粒も板厚に較べ大きくなる。このため最
終焼鈍時の2次再結晶粒成長が抑制される。
Further, the annealing temperature is specified at 700 to 950 ° C. If the annealing temperature is lower than 700 ° C., softening due to recrystallization, morphological control of precipitates, and texture control are insufficient. on the other hand
When the temperature exceeds 950 ° C., coarsening of precipitates starts, normal grain growth progresses, and recrystallized grains become larger than the sheet thickness. For this reason, secondary recrystallized grain growth during final annealing is suppressed.

【0044】(ハ)第3の方法では、熱延板焼鈍を行っ
た後、1回の冷間圧延を行う。熱延板焼鈍は、焼鈍時の
吸窒によってインヒビタ量を適正化するために極めて重
要である。このため、焼鈍雰囲気は、鋼中から窒素が著
しく脱離せず、雰囲気より十分にNが供給されるような
窒素を含む還元性雰囲気とする。ただし、鋼板の酸化を
防ぐため、1vol.%以上の水素を含むことが好ましい。
また、窒素が50vol.%未満では、鋼中からの窒素の脱離
が顕著となる。このため、窒素の比率は50vol.%以上と
する。
(C) In the third method, after performing hot-rolled sheet annealing, one cold rolling is performed. Hot-rolled sheet annealing is extremely important for optimizing the amount of inhibitors by nitriding during annealing. For this reason, the annealing atmosphere is a reducing atmosphere containing nitrogen such that nitrogen is not significantly desorbed from the steel and N is supplied more sufficiently than the atmosphere. However, in order to prevent oxidation of the steel sheet, it is preferable to contain hydrogen of 1 vol.% Or more.
If the nitrogen content is less than 50 vol.%, The desorption of nitrogen from steel becomes remarkable. For this reason, the ratio of nitrogen is set to 50 vol.% Or more.

【0045】さらに、保持温度は、吸N が有効に生じる
ために、700 ℃以上が必要である。ただし、950 ℃をこ
えると、熱延板の組織変化が著しくなり、その結果、望
ましい集合組織を得ることができなくなり、最終焼鈍後
に十分成長した2次再結晶粒が得られない。したがっ
て、700 ℃以上950 ℃以下が望ましい。
Further, the holding temperature needs to be 700 ° C. or higher for effective absorption of N. However, when the temperature exceeds 950 ° C., the structural change of the hot-rolled sheet becomes remarkable, and as a result, a desired texture cannot be obtained, and secondary recrystallized grains sufficiently grown after the final annealing cannot be obtained. Therefore, it is desirable that the temperature be 700 ° C or more and 950 ° C or less.

【0046】さらにまた、保持時間は、2次再結晶を安
定的に発現させる吸Nが生じるために2分以上必要であ
る。このため保持時間を2分以上とする。ただし10時間
超では効果が飽和するため、経済面からは10時間以内と
することが好ましい。
Further, the holding time is required to be 2 minutes or more in order to generate absorption N for stably developing secondary recrystallization. Therefore, the holding time is set to 2 minutes or more. However, if the time exceeds 10 hours, the effect is saturated. Therefore, it is preferable to set the time within 10 hours from the economical point of view.

【0047】冷間圧延は、中間焼鈍をはさまない1回の
冷間圧延とする。冷間圧延は常法に従って行われるが冷
間圧延率が80%未満では最終焼鈍の際の結晶粒の選択的
粒成長による2次再結晶粒の成長に好ましい集合組織が
適切に形成されず、最終焼鈍後に十分成長した2次再結
晶粒が得られない。よって、80%以上の冷間圧下率とす
る。
The cold rolling is a single cold rolling that does not sandwich intermediate annealing. Cold rolling is performed according to a conventional method, but if the cold rolling reduction is less than 80%, a texture preferable for growing secondary recrystallized grains by selective grain growth during final annealing is not appropriately formed, Secondary recrystallized grains that have grown sufficiently after the final annealing cannot be obtained. Therefore, the cold reduction ratio is set to 80% or more.

【0048】2)冷間圧延後の焼鈍 安定した2次再結晶を発現させ、なおかつこの2次再結
晶粒の被覆率が90%以上となるためには、インヒビタと
なるAlNの焼鈍中の最適な形態、分量を制御しなくて
はならない。これを実現するのが、冷間圧延後の3回の
焼鈍である。
2) Annealing after Cold Rolling In order for stable secondary recrystallization to be exhibited and the coverage of the secondary recrystallized grains to be 90% or more, it is necessary to optimize AlN serving as an inhibitor during annealing. The form and quantity must be controlled. This is achieved by annealing three times after cold rolling.

【0049】○1段目の焼鈍:1段目の焼鈍は、材料の
再結晶と、析出物の形態の調整の為に行う。焼鈍温度
が、700℃未満では、材料が完全に再結晶せず、その結
果、引き続く2段焼鈍での2次再結晶が不安定となる。
一方、1000℃超の場合には、正常粒成長している結晶粒
が粗大化し始め、引き続く2段焼鈍での2次再結晶が生
じない。このため焼鈍温度は700 〜1000℃とする。
First annealing: The first annealing is performed for recrystallization of the material and adjustment of the form of the precipitate. If the annealing temperature is lower than 700 ° C., the material does not completely recrystallize, and as a result, secondary recrystallization in the subsequent two-step annealing becomes unstable.
On the other hand, when the temperature is higher than 1000 ° C., the crystal grains that have grown normally begin to coarsen, and no secondary recrystallization occurs in the subsequent two-step annealing. Therefore, the annealing temperature is set to 700 to 1000 ° C.

【0050】また、昇温速度が1℃/sec未満の場合、
{110 }<001> 面方位以外の面方位の粒成長を十分に抑
止することができず、その結果、{110 }<001> 面方位
の2次再結晶を選択的に起こすことが難しくなる。その
ため昇温速度を1℃/sec以上とする。
When the heating rate is less than 1 ° C./sec,
Grain growth in plane orientations other than the {110} <001> plane cannot be sufficiently suppressed, and as a result, it is difficult to selectively cause secondary recrystallization in the {110} <001> plane. . Therefore, the heating rate is set to 1 ° C./sec or more.

【0051】さらに、焼鈍雰囲気は、鋼中から窒素が著
しく脱離せず、雰囲気より十分にNが供給されるような
窒素を含む還元性雰囲気とする。ただし、鋼板の酸化を
防ぐため、1vol.%以上の水素を含むことが好ましい。
また、窒素が50vol.%未満では、鋼中からの窒素の脱離
が顕著となる。このため、窒素の比率は50vol.%以上と
する。
Furthermore, the annealing atmosphere is a reducing atmosphere containing nitrogen such that nitrogen is not significantly desorbed from the steel and N is supplied more sufficiently than the atmosphere. However, in order to prevent oxidation of the steel sheet, it is preferable to contain hydrogen of 1 vol.% Or more.
If the nitrogen content is less than 50 vol.%, The desorption of nitrogen from steel becomes remarkable. For this reason, the ratio of nitrogen is set to 50 vol.% Or more.

【0052】さらにまた、保持時間は、引き続く2段焼
鈍での2次再結晶を安定的に発現させるために30秒以上
必要である。したがって保持時間を30秒以上とする。た
だし30分超では効果が飽和するため、経済面からは30分
以内とすることが好ましい。。
Further, the holding time is required to be 30 seconds or more in order to stably develop secondary recrystallization in the subsequent two-step annealing. Therefore, the holding time is set to 30 seconds or more. However, if the time exceeds 30 minutes, the effect is saturated. Therefore, it is preferable to set the time within 30 minutes from the economical point of view. .

【0053】○2段目の焼鈍:2段目の焼鈍は、2次再
結晶の発現と進展のために重要である。
Second annealing: The second annealing is important for the appearance and progress of secondary recrystallization.

【0054】加熱保持温度が、1000℃をこえると、正常
粒成長している結晶粒が粗大化し、その結果2次再結晶
を生じない。一方、700 ℃未満では、2次再結晶の核と
なる粗大粒の粒成長速度が著しく遅いため、極めて長時
間保持しても2次再結晶が進展しない。そのため加熱保
持温度を700 ℃以上1000℃以下とする。
When the heating and holding temperature exceeds 1000 ° C., the crystal grains that are growing normally become coarse, and as a result, secondary recrystallization does not occur. On the other hand, when the temperature is lower than 700 ° C., the rate of growth of coarse grains serving as nuclei for secondary recrystallization is extremely slow, so that the secondary recrystallization does not progress even if the temperature is kept extremely long. Therefore, the heating and holding temperature is set at 700 ° C or more and 1000 ° C or less.

【0055】昇温速度はとくに規定しない。工業的に可
能な速度で十分である。また、焼鈍雰囲気は、1段目の
焼鈍条件と同様に鋼中から窒素が著しく脱離せず、雰囲
気より十分にNが供給されるような窒素を含む還元性ガ
ス雰囲気とする。ただし、鋼板の酸化を防ぐため、1vo
l.%以上の水素を含むことが好ましい。また、窒素が50
vol.%未満では、鋼中からの窒素の脱離が顕著となる。
このため、窒素の比率を50vol.%以上とする。
The heating rate is not particularly specified. Industrially available speeds are sufficient. Further, the annealing atmosphere is a reducing gas atmosphere containing nitrogen such that nitrogen is not remarkably desorbed from the steel and N is supplied more sufficiently than the atmosphere, similarly to the first annealing condition. However, to prevent oxidation of the steel sheet, 1vo
It preferably contains l.% or more hydrogen. In addition, nitrogen is 50
If the amount is less than vol.%, desorption of nitrogen from steel becomes remarkable.
Therefore, the ratio of nitrogen is set to 50 vol.% Or more.

【0056】保持時間は2次再結晶を行なわせるために
十分な時間が必要であり、3時間以上とする。一方20時
間をこえても、2次再結晶粒の被覆率において殆ど変化
が見られないため、経済面から20時間以内とすることが
好ましい。
The holding time requires a sufficient time for performing the secondary recrystallization, and is set to 3 hours or more. On the other hand, even if it exceeds 20 hours, there is almost no change in the coverage of the secondary recrystallized grains.

【0057】○3段目の焼鈍:3段目の焼鈍は、2次再
結晶粒で鋼板表面を90%以上被覆するために必要な焼鈍
である。
Third annealing: The third annealing is necessary for covering the steel sheet surface by 90% or more with the secondary recrystallized grains.

【0058】2段目までの焼鈍では、2次再結晶粒の被
覆率は、最大でも80%程度であり、残りの20%程度は、
2次再結晶粒に食い残された板厚程度の粒径の領域とな
る。このような、細粒部は、貫通粒となっているため、
結晶粒の曲率に反比例する粒界エネルギが不十分であ
り、長時間焼鈍しても殆ど2次再結晶粒に蚕食されず、
磁気特性的にも不充分である。
In the annealing up to the second stage, the coverage of the secondary recrystallized grains is at most about 80%, and the remaining about 20% is
This is a region having a grain size of about the plate thickness left behind by the secondary recrystallized grains. Since such a fine grain portion is a through grain,
The grain boundary energy, which is inversely proportional to the curvature of the crystal grains, is insufficient, and is hardly consumed by the secondary recrystallized grains even after annealing for a long time.
The magnetic properties are also insufficient.

【0059】このため、3段目においては、非酸化囲気
中で焼鈍を施すことによって{110}面が優先的に成
長する表面エネルギを2次再結晶の駆動力として用い細
粒部を2次再結晶粒に蚕食させることを狙いとする。た
だし、この場合、加熱温度は表面エネルギを働かせるた
めに、900 ℃以上が必要である。また、1300℃以上に加
熱した場合には、鋼板のクリープ等によって安定して鋼
板を焼鈍することが困難である。また、いずれの温度に
おいても保持時間は30秒以上必要であり、一方30分でそ
の効果が飽和する。従って、加熱の温度範囲は900 ℃以
上1300℃以下、保持時間は30秒以上、好ましくは30分以
下とする。また、その雰囲気は、還元性雰囲気もしくは
酸素分圧が0.5Pa 以下で実質的に窒素を含まない非酸化
雰囲気または酸素分圧が0.5Pa以下の真空中とする。窒
素が雰囲気に含まれると、鋼中に窒素が残留して磁気特
性を劣化させるためである。
For this reason, in the third stage, the surface energy in which the {110} plane grows preferentially by annealing in a non-oxidizing atmosphere is used as a driving force for secondary recrystallization, and the fine-grained portion is used for secondary recrystallization. The aim is to feed the recrystallized grains on silkworms. However, in this case, the heating temperature needs to be 900 ° C. or higher to use the surface energy. In addition, when the steel sheet is heated to 1300 ° C. or more, it is difficult to stably anneal the steel sheet due to creep or the like of the steel sheet. At any temperature, the holding time is required to be 30 seconds or more, while the effect is saturated in 30 minutes. Therefore, the heating temperature range is 900 ° C. or more and 1300 ° C. or less, and the holding time is 30 seconds or more, preferably 30 minutes or less. The atmosphere is a reducing atmosphere, a non-oxidizing atmosphere having an oxygen partial pressure of 0.5 Pa or less and containing substantially no nitrogen, or a vacuum having an oxygen partial pressure of 0.5 Pa or less. This is because if nitrogen is contained in the atmosphere, nitrogen remains in the steel and deteriorates magnetic properties.

【0060】3)スラリーの塗布 前記冷間圧延後の焼鈍の内、第2段目の焼鈍は700 〜10
00℃の高温において3時間以上の長時間に亘って行う必
要がある。ところが、当該処理を積層した冷延鋼板に施
すと、鋼板同志が焼き付く恐れがある。そこで、0.2mm
以下の板厚の珪素鋼板において、当該焼鈍条件の下で、
鋼板の窒化を妨げることなく焼き付きが防止でき、さら
に引き続く高温の焼鈍において表面エネルギを駆動力と
した異常粒成長性に影響を与えない経済的な焼鈍分離方
法を検討した。その結果、 (イ)焼鈍分離材として、鋼板表面と反応の少ない酸化
物を付着させるのがよい (ロ)この酸化物は、コイリングで剥離しない程度の鋼
板との密着性を持つ必要がある (ハ)この酸化物は、鋼板の窒化のために通気性の良好
な皮膜を形成する必要がある という知見を得た。
3) Slurry coating Of the annealing after the cold rolling, the second stage annealing is 700 to 10
It is necessary to perform the treatment at a high temperature of 00 ° C. for a long time of 3 hours or more. However, when the treatment is applied to the laminated cold rolled steel sheets, the steel sheets may be burned to each other. So 0.2mm
In the silicon steel sheet of the following thickness, under the annealing conditions,
An economical annealing separation method that can prevent seizure without hindering the nitriding of the steel sheet and that does not affect the abnormal grain growth using the surface energy as a driving force in the subsequent high-temperature annealing was studied. As a result, (a) as an annealing separation material, it is better to attach an oxide that reacts less with the steel sheet surface. (B) This oxide needs to have adhesion to the steel sheet to such an extent that it does not peel off by coiling. C) It has been found that this oxide needs to form a film having good air permeability for nitriding the steel sheet.

【0061】この知見を基に検討を行った結果、第1段
目の焼鈍の後に、コロイダルシリカを含むPH8以上の
スラリーを塗布することにより冷間圧延鋼板の表面に10
mg/m 2 以上2g/m2以下の酸化珪素を付着させる工程を付
加することで、前記目的を達成できることを見出した。
As a result of an examination based on this finding, the first stage
After eye annealing, PH8 or more containing colloidal silica
The slurry is applied to the surface of the cold rolled steel
mg / m TwoMore than 2g / mTwoThe following steps for attaching silicon oxide are added.
It has been found that the above object can be achieved by the addition.

【0062】付着させる酸化珪素の量は10mg/m2 未満で
は不十分であり、焼鈍時に部分的な焼き付きを起こして
しまう。一方、2g/m2を越えると、焼鈍分離性は充分で
あるものの、窒素の通気性が不十分となるために鋼板が
充分に窒化されず、2次結晶粒で全面を被覆することが
できない。従って、付着させる酸化珪素の量は、10mg/m
2 以上2g/m2以下とする。
If the amount of silicon oxide to be adhered is less than 10 mg / m 2, it is insufficient, and partial burning occurs during annealing. On the other hand, when it exceeds 2 g / m 2 , although the annealing separation property is sufficient, the steel sheet is not sufficiently nitrided due to insufficient nitrogen permeability, and the entire surface cannot be covered with the secondary crystal grains. . Therefore, the amount of silicon oxide to be deposited is 10 mg / m
2 to 2 g / m 2 or less.

【0063】また、酸化珪素を付着させる方法として
は、コロイダルシリカを含むスラリーを塗布する方法に
よる必要がある。スラリー塗布方法の例としては、コー
タ、ディップ、スプレー法等の公知の方法を使用するこ
とができる。コロイダルシリカを含むスラリーを塗布す
る方法が何故有効かについては、まだ充分に解明されて
いないが、発明者等は以下のように考えている。
As a method for attaching silicon oxide, it is necessary to apply a method of applying a slurry containing colloidal silica. As an example of the slurry application method, a known method such as a coater, a dip, and a spray method can be used. Although the reason why the method of applying the slurry containing colloidal silica is effective has not yet been sufficiently elucidated, the present inventors consider as follows.

【0064】即ち、このような方法を用いると、シリカ
の凝集力が弱いため、その皮膜は約100 ナノメータ程度
の直径のシリカのクラスタが鋼板表面に散在するような
構造となる。このため、クラスタの存在しない領域を通
して自由に窒素ガスが鋼板と接触できる。また、シリカ
のクラスタがスペーサの役割を果たして鋼板同志の接触
を防ぎ、鋼板の分離性を高めている。
That is, when such a method is used, since the cohesive force of silica is weak, the film has a structure in which silica clusters having a diameter of about 100 nanometers are scattered on the surface of the steel sheet. Therefore, the nitrogen gas can freely contact the steel plate through the region where no cluster exists. In addition, the clusters of silica play the role of spacers to prevent contact between the steel plates, thereby improving the separability of the steel plates.

【0065】スラリーのPHを8以上とするのは、冷間
圧延板が酸化しないようにするためである。
The reason why the pH of the slurry is set to 8 or more is to prevent the cold-rolled sheet from being oxidized.

【0066】[0066]

【実施例】【Example】

(実施例1)表1に示される鋼種を真空溶解し、30mmま
でスラブ圧延を行った後に、1150℃加熱にて2.5mm まで
熱間圧延を施した。つづいて、これを酸洗してから表
2、表3、表4に示される工程、表5、表6、表7に示
される工程、及び表8、表9及び表10に示される工程で
最終焼鈍までを行い、得られた薄鋼板の組織として板厚
の10倍以上の粒径を有する結晶粒の被覆率と圧延方向の
磁束密度B8[T] 、 保持力Hc[A/m] を測定した。この結果
を、表2〜表10に示す。これら表からも明らかなよう
に、本発明の成分範囲でなおかつ本発明の製造方法を施
した場合にのみ、板厚の10倍以上の結晶粒径を有する粗
大粒が90%以上を被覆する磁気特性に優れた極薄けい素
鋼板を得ることができた。
(Example 1) The steel types shown in Table 1 were melted in vacuum, slab-rolled to 30 mm, and then hot-rolled to 2.5 mm by heating at 1150 ° C. Subsequently, after this was pickled, the steps shown in Tables 2, 3 and 4, the steps shown in Tables 5, 6 and 7, and the steps shown in Tables 8, 9 and 10 were carried out. After the final annealing, the obtained thin steel sheet has the following structure: the coverage of crystal grains having a grain size of 10 times or more the sheet thickness, the magnetic flux density B8 [T] in the rolling direction, and the holding force Hc [A / m]. It was measured. The results are shown in Tables 2 to 10. As is clear from these tables, only when the production method according to the present invention is performed in the component range according to the present invention, 90% or more of the coarse grains having a crystal grain size of 10 times or more the plate thickness are covered. An ultra-thin silicon steel sheet with excellent characteristics was obtained.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2】 [Table 2]

【0069】[0069]

【表3】 [Table 3]

【0070】[0070]

【表4】 [Table 4]

【0071】[0071]

【表5】 [Table 5]

【0072】[0072]

【表6】 [Table 6]

【0073】[0073]

【表7】 [Table 7]

【0074】[0074]

【表8】 [Table 8]

【0075】[0075]

【表9】 [Table 9]

【0076】[0076]

【表10】 [Table 10]

【0077】(実施例2)表11に示される鋼種を真空溶
解し、30mmまでスラブ圧延を行った後に、1150℃加熱に
て2.5mm まで熱間圧延を施した。つづいて、これを酸洗
してから以下の工程で冷間圧延板を製造した。
(Example 2) The steel types shown in Table 11 were melted in vacuum, slab-rolled to 30 mm, and then hot-rolled to 2.5 mm by heating at 1150 ° C. Subsequently, this was pickled, and a cold-rolled plate was manufactured in the following steps.

【0078】1回目の冷間圧延: 2.5mm から0.3mm ま
で圧下 中間焼鈍: 昇温速度3℃/sec 、100%N2雰囲気中で、
900 ℃に2分間保持 2回目の冷間圧延: 0.3mm から0.1mm まで圧下 その後、この冷間圧延板に以下の条件で3段の焼鈍を施
した。
First cold rolling: reduction from 2.5 mm to 0.3 mm Intermediate annealing: heating rate: 3 ° C./sec, 100% N 2 atmosphere
Maintained at 900 ° C. for 2 minutes Second cold rolling: reduction from 0.3 mm to 0.1 mm Then, the cold rolled sheet was subjected to three-step annealing under the following conditions.

【0079】1段目の焼鈍: 昇温速度3℃/sec 、95
%N2-5%H2雰囲気中で、900 ℃に2分間保持 2段目の焼鈍: 95%N2-5%H2雰囲気中で、900 ℃に15時
間保持 3段目の焼鈍: 昇温速度3℃/sec 、100%H2雰囲気中
で、1200℃に10分間保持 ここで、1段目の焼鈍後に、表12に示す条件でコロイダ
ルシリカをロールコータ法で鋼板表面に塗布し、乾燥後
に鋼板を積層して2段目の焼鈍を行った。さらに2段目
の焼鈍後に剥離性を調査した。さらに、剥離性の良好な
ものについて、アルカリ洗浄を行った後に3段目の焼鈍
を施し、得られた薄鋼板の組織として板厚の10倍以上の
粒径を有する結晶粒の被覆率と圧延方向の磁束密度B8
[T] 、 保持力Hc[A/m] を測定した。
First Stage Annealing: Heating Rate 3 ° C./sec, 95
Maintain at 900 ° C. for 2 minutes in an atmosphere of% N 2 -5% H 2 Second annealing: Maintain at 900 ° C. for 15 hours in an atmosphere of 95% N 2 -5% H 2 Third annealing: Ascending At a temperature rate of 3 ° C./sec and kept at 1200 ° C. for 10 minutes in an atmosphere of 100% H 2 , colloidal silica was applied to the steel sheet surface by a roll coater under the conditions shown in Table 12 after the first annealing. After drying, the steel sheets were laminated and subjected to a second annealing step. Furthermore, the peelability was investigated after the second stage annealing. Furthermore, for those having good releasability, a third step of annealing is performed after performing alkali cleaning, and as a structure of the obtained thin steel sheet, the coverage of the crystal grains having a grain size of 10 times or more the sheet thickness and the rolling rate are determined. Magnetic flux density in direction B8
[T] and holding power Hc [A / m] were measured.

【0080】この結果を表12に示す。表12から明らかな
ように、酸化珪素の付着量とスラリーのPH値が本発明
の範囲にある場合にのみ、2段目焼鈍後の剥離性が良
く、かつ板厚の10倍以上の粒径を有する粗大粒が90%以
上を被覆する磁気特性に優れた極薄珪素鋼板を得ること
ができた。
Table 12 shows the results. As is clear from Table 12, only when the amount of adhered silicon oxide and the PH value of the slurry are within the range of the present invention, the peelability after the second annealing is good, and the grain size is 10 times or more the sheet thickness. An ultra-thin silicon steel sheet having excellent magnetic properties and covering 90% or more of the coarse grains having the above characteristics was obtained.

【0081】[0081]

【表11】 [Table 11]

【0082】[0082]

【表12】 [Table 12]

【0083】[0083]

【発明の効果】本発明によってインヒビターと表面エネ
ルギーを併用することにより、2次再結晶粒が鋼板表面
の面積率で90%以上の極薄珪素鋼板を、工業的に安定し
て得ることが可能となった。
According to the present invention, by using an inhibitor and a surface energy together, an ultrathin silicon steel sheet whose secondary recrystallized grains have an area ratio of the steel sheet surface of 90% or more can be obtained industrially stably. It became.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平7−256375 (32)優先日 平成7年10月3日(1995.10.3) (33)優先権主張国 日本(JP) (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 上元 好仁 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平10−121137(JP,A) 特開 平7−197126(JP,A) 特開 平6−207219(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 ──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application No. 7-256375 (32) Priority date October 3, 1995 (Oct. 3, 1995) (33) Priority claim country Japan (JP) (72) Inventor Yasushi Tanaka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Yoshihito Uemoto 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56 References JP-A-10-121137 (JP, A) JP-A-7-197126 (JP, A) JP-A-6-207219 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) C21D 8/12 C22C 38/00 303 C22C 38/06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (a) 重量%で、C:0.01%以下、Si:
2.5 %以上7%以下、Mn:0.005 %以上0.12%以下、
P:0.02%以下、S:0.002 %以上0.005 %以下、sol.
Al:0.0015%以上0.006 %以下、N:0.001 %以上0.
008 %以下を含み、不純物としてのTi+Nbが0.003
%以下である熱延鋼板を準備する工程、(b) 前記熱延鋼
板を脱スケール後、焼鈍温度700 ℃〜950 ℃、保持時間
30sec 以上の中間焼鈍を含む3回の冷間圧延により板厚
0.20mm以下の冷間圧延鋼板とする工程、(c) 前記冷間圧
延鋼板を、窒素50vol.%以上含む還元性雰囲気におい
て、1℃/sec以上の昇温速度で700 ℃以上1000℃以下の
所定温度まで加熱し、該温度に30秒以上保持する1段目
の焼鈍工程、(d) 引き続き前記冷間圧延鋼板を、窒素50
vol.%以上含む還元性雰囲気において、700 ℃以上1000
℃以下の所定温度に3時間以上保持する2段目の焼鈍工
程、(e) さらに、窒素を含まない還元性雰囲気もしくは
酸素分圧が0.5Pa 以下で実質的に窒素を含まない非酸化
性雰囲気または酸素分圧が0.5Pa 以下の真空中におい
て、900 ℃以上1300℃以下の範囲の所定温度で30秒以上
の保持を行う3段目の焼鈍工程を含む磁気特性に優れた
極薄けい素鋼板の製造方法。
1. (a) By weight%, C: 0.01% or less, Si:
2.5% or more and 7% or less, Mn: 0.005% or more and 0.12% or less,
P: 0.02% or less, S: 0.002% to 0.005%, sol.
Al: 0.0015% to 0.006%, N: 0.001% to 0.
008% or less, and Ti + Nb as an impurity is 0.003% or less.
% (B) after descaling the hot-rolled steel sheet, annealing temperature 700 ° C. to 950 ° C., holding time
Thickness by cold rolling three times including intermediate annealing for 30sec or more
A step of forming a cold-rolled steel sheet having a diameter of 0.20 mm or less, and (c) a cold-rolled steel sheet having a temperature of 700 ° C. or more and 1000 ° C. or less at a heating rate of 1 ° C./sec or more in a reducing atmosphere containing 50 vol. A first-step annealing step of heating to a predetermined temperature and maintaining the temperature for 30 seconds or more; (d) continuing the cold-rolled steel sheet with nitrogen 50
In a reducing atmosphere containing at least vol.
(E) a reducing atmosphere containing no nitrogen or a non-oxidizing atmosphere containing substantially no nitrogen and having a partial pressure of oxygen of 0.5 Pa or less. Or an ultra-thin silicon steel sheet having excellent magnetic properties including a third annealing step of holding at a predetermined temperature in the range of 900 ° C to 1300 ° C for 30 seconds or more in a vacuum with an oxygen partial pressure of 0.5 Pa or less Manufacturing method.
【請求項2】 中間焼鈍の内、少なくとも1回の中間焼
鈍の雰囲気を窒素50vol.%以上含む非酸化性雰囲気とす
ることを特徴とする請求項1記載の磁気特性に優れた極
薄けい素鋼板の製造方法。
2. The ultra-thin silicon having excellent magnetic properties according to claim 1, wherein the atmosphere of at least one of the intermediate annealings is a non-oxidizing atmosphere containing at least 50 vol.% Of nitrogen. Steel plate manufacturing method.
【請求項3】 請求項1に記載の磁気特性に優れた極薄
けい素鋼板の製造方法のうち、(b) に記載の工程を、
(b'-1)前記熱延鋼板を脱スケール後、圧下率70〜90%の
一次冷間圧延を施して冷間圧延鋼板とする工程、(b'-2)
前記冷間圧延鋼板を、窒素50vol.%以上を含む非酸化性
雰囲気下、焼鈍温度700 ℃〜950 ℃、保持時間0.5 〜5
分、昇温速度1℃/sec 以上の条件で一次焼鈍を実施す
る工程、(b'-3)前記焼鈍板に圧下率50〜90%の2次冷間
圧延を実施し、板厚0.20mm以下の冷間圧延鋼板とする工
程、に代えた磁気特性に優れた極薄けい素鋼板の製造方
法。
3. The method for producing an ultra-thin silicon steel sheet having excellent magnetic properties according to claim 1, wherein the step (b) comprises:
(b'-1) a step of descaling the hot-rolled steel sheet, performing a primary cold rolling of a reduction rate of 70 to 90% to obtain a cold-rolled steel sheet, (b'-2)
The cold-rolled steel sheet is subjected to an annealing temperature of 700 ° C. to 950 ° C. and a holding time of 0.5 to 5 in a non-oxidizing atmosphere containing 50 vol.
Min, a step of performing primary annealing under a condition of a heating rate of 1 ° C./sec or more, (b′-3) performing a secondary cold rolling of the reduction rate of 50 to 90% on the annealed sheet to a sheet thickness of 0.20 mm. A method for producing an ultra-thin silicon steel sheet having excellent magnetic properties, in place of the following step of forming a cold-rolled steel sheet.
【請求項4】 請求項1に記載の磁気特性に優れた極薄
けい素鋼板の製造方法のうち、(b) に記載の工程を、
(b''-1) 前記熱延鋼板を少なくとも50%以上の窒素を含
む還元性雰囲気で焼鈍温度700 ℃〜950 ℃、保持時間2
分以上の熱延板焼鈍を施す工程、(b''-2) 前記熱延焼鈍
板を、冷間圧延率80% 以上の冷間圧延により板厚0.20mm
以下の冷間圧延鋼板とする工程、に代えた磁気特性に優
れた極薄けい素鋼板の製造方法。
4. The method for producing an ultra-thin silicon steel sheet having excellent magnetic properties according to claim 1, wherein the step (b) comprises:
(b ″ -1) annealing the hot-rolled steel sheet in a reducing atmosphere containing at least 50% or more of nitrogen at an annealing temperature of 700 ° C. to 950 ° C. and a holding time of 2
Step of performing hot-rolled sheet annealing for at least a minute, (b ''-2) the hot-rolled annealed sheet, a sheet thickness of 0.20 mm by cold rolling at a cold rolling reduction of 80% or more.
A method for producing an ultra-thin silicon steel sheet having excellent magnetic properties, in place of the following step of forming a cold-rolled steel sheet.
【請求項5】 請求項1ないし請求項4のいずれか1項
に記載の磁気特性に優れた極薄けい素鋼板の製造方法に
おいて、(c) と(d) の工程の中間に、コロイダルシリカ
を含むPH8以上のスラリーを塗布することにより冷間
圧延鋼板の表面に10mg/m2 以上2g/m2以下の酸化珪素を
付着させる工程を付加したことを特徴とする磁気特性に
優れた極薄けい素鋼板の製造方法。
5. The method for producing an ultra-thin silicon steel sheet having excellent magnetic properties according to claim 1, wherein colloidal silica is provided between the steps (c) and (d). Ultra thin with excellent magnetic properties characterized by adding a step of applying 10 mg / m 2 or more and 2 g / m 2 or less silicon oxide to the surface of a cold-rolled steel sheet by applying a slurry of PH 8 or more containing Manufacturing method of silicon steel sheet.
【請求項6】 請求項1ないし請求項5のいずれか1項
に記載の製法によって製造される磁気特性に優れた極薄
けい素鋼板。
6. An ultra-thin silicon steel sheet having excellent magnetic properties manufactured by the method according to claim 1. Description:
JP08964696A 1995-08-04 1996-04-11 Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method Expired - Fee Related JP3271651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08964696A JP3271651B2 (en) 1995-08-04 1996-04-11 Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP19988395 1995-08-04
JP22764995 1995-09-05
JP22765195 1995-09-05
JP7-227649 1995-10-03
JP25637595 1995-10-03
JP7-199883 1995-10-03
JP7-256375 1995-10-03
JP7-227651 1995-10-03
JP08964696A JP3271651B2 (en) 1995-08-04 1996-04-11 Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method

Publications (2)

Publication Number Publication Date
JPH09157746A JPH09157746A (en) 1997-06-17
JP3271651B2 true JP3271651B2 (en) 2002-04-02

Family

ID=27525435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08964696A Expired - Fee Related JP3271651B2 (en) 1995-08-04 1996-04-11 Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method

Country Status (1)

Country Link
JP (1) JP3271651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203791B1 (en) * 2012-03-27 2012-11-21 허남회 Manufacturing method of 100 ovw non-oriented electrical steel sheet with excellent magnetic properties

Also Published As

Publication number Publication date
JPH09157746A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JP2728112B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent iron loss
JP3488181B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
EP0484904B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3846064B2 (en) Oriented electrical steel sheet
JP3271651B2 (en) Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method
JP2002363713A (en) Semiprocess nonoriented silicon steel sheet having extremely excellent core loss and magnetic flux density and production method therefor
JP3271654B2 (en) Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet
JP3483457B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating and magnetic properties
KR940006492B1 (en) Process for producing grain-oriented electrial steel sheet having low watt loss
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH0995739A (en) Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JPH0971818A (en) Production of extra thin silicon steel sheet excellent in magnetic property and extra thin silicon steel sheet excellent in magnetic property
JP2670108B2 (en) Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JP2002356752A (en) Nonoriented silicon steel sheet having excellent core loss and magnetic flux density, and production method therefor
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP2000273550A (en) Glass coating film and production of grain oriented silicon steel sheet excellent in magnetic property
JPH0629461B2 (en) Method for producing silicon steel sheet having good magnetic properties
JPH10102146A (en) Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
EP4317472A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees