JPH0629461B2 - Method for producing silicon steel sheet having good magnetic properties - Google Patents

Method for producing silicon steel sheet having good magnetic properties

Info

Publication number
JPH0629461B2
JPH0629461B2 JP32133487A JP32133487A JPH0629461B2 JP H0629461 B2 JPH0629461 B2 JP H0629461B2 JP 32133487 A JP32133487 A JP 32133487A JP 32133487 A JP32133487 A JP 32133487A JP H0629461 B2 JPH0629461 B2 JP H0629461B2
Authority
JP
Japan
Prior art keywords
slab
thickness
rolling
hot
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32133487A
Other languages
Japanese (ja)
Other versions
JPH01162725A (en
Inventor
康之 早川
橋本  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32133487A priority Critical patent/JPH0629461B2/en
Publication of JPH01162725A publication Critical patent/JPH01162725A/en
Publication of JPH0629461B2 publication Critical patent/JPH0629461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、( 110)< 001>方位を主方位とする方向
性珪素鋼板を製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing a grain-oriented silicon steel sheet having a (110) <001> orientation as a main orientation.

<従来の技術> 方向性珪素鋼板を連続鋳造スラブより製造する技術は公
知である。一般に連鋳スラブ厚が厚くなると、とくに 2
80mm超では鋳込み時の凝固時間が長くなるため、中心偏
析が大きくなり、中心付近のインヒビター( MnS,MnSe
他)が粗大析出してしまい、全体のインヒビターの微細
分散を妨げ、二次再結晶が不安定になるという欠点があ
る。さらにスラブ厚が厚い場合には、熱延前の加熱時に
中心付近まで完全にインヒビターを固溶させようとする
と外側部分は必要以上に加熱され、結晶粒が成長しすぎ
たり表面状態が悪化するという欠点もある。
<Prior Art> A technology for producing a grain-oriented silicon steel sheet from a continuously cast slab is known. Generally, when the continuous cast slab becomes thicker,
If it exceeds 80 mm, the solidification time at the time of casting becomes long, and the center segregation becomes large, and the inhibitor (MnS, MnSe
Others) are coarsely precipitated, which hinders the fine dispersion of the entire inhibitor and makes secondary recrystallization unstable. Furthermore, if the slab thickness is thick, the outer portion will be heated more than necessary if the inhibitor is completely dissolved into the vicinity of the center during heating before hot rolling, and the crystal grains will grow too much or the surface condition will deteriorate. There are also drawbacks.

ところで方向性珪素鋼板の連鋳スラブを分塊圧延し、特
性を向上させようとする技術が特公昭50− 37009号およ
び特公昭53−9694号に開示されており、厚さ 150〜 600
mmの連鋳スラブを1250〜1300の温度で圧下率30〜70%で
分塊圧延している。また特公昭54− 27820号には厚さ 1
00〜 300mmの珪素鋼スラブを 750〜1200℃の温度にて圧
下率5〜50%で熱間圧延し、その後1260〜1400℃に再加
熱して最終の熱間圧延を行っている。
By the way, a technique for improving the characteristics by slab-rolling a continuous cast slab of grain-oriented silicon steel is disclosed in Japanese Examined Patent Publication No. 50-37009 and Japanese Examined Patent Publication No. 53-9694.
mm continuous cast slab is slab-rolled at a temperature of 1250 to 1300 with a reduction rate of 30 to 70%. In addition, the thickness of 1
A 00-300 mm silicon steel slab is hot-rolled at a temperature of 750-1200 ° C with a reduction rate of 5-50%, and then reheated to 1260-1400 ° C for the final hot rolling.

しかしこれら従来技術では、連鋳スラブの分塊圧延を高
圧下で行うと仕上スラブ厚が薄くなり、粗圧延での適当
量の圧下率を確保することができず、組織改善が十分に
行われず、逆に分塊圧延の効果が小さくなるという問題
があった。また連鋳スラブ厚が薄い場合も、粗圧延での
適当量の圧下率を確保できず、粗圧延での組織改善が不
十分であり、特性が悪化するという問題があった。一方
逆にスラブ厚が厚い場合には、分塊圧延を施しても、粗
圧延での圧下率は適当量確保できるが、前述した中心編
析等の欠点があり、特性の悪化は避けられなかった。
However, in these conventional techniques, when the slabbing of the continuous cast slab is performed under high pressure, the finishing slab thickness becomes thin, and it is not possible to secure an appropriate amount of reduction in rough rolling, and the structure is not sufficiently improved. On the contrary, there is a problem that the effect of slabbing is reduced. Further, even when the thickness of the continuous casting slab is small, there is a problem in that an appropriate amount of reduction ratio in rough rolling cannot be secured, the structure improvement in rough rolling is insufficient, and the characteristics deteriorate. On the other hand, when the slab thickness is large, even if slabbing is performed, a suitable reduction ratio in rough rolling can be secured, but there are drawbacks such as central segregation as described above, and deterioration of properties cannot be avoided. It was

<発明が解決しようとする問題点> 本発明は方向性珪素鋼板の素材として連続鋳造スラブを
用いて、インヒビターの固溶を完全にし、かつ粗圧延で
の適当量の圧下率を確保し磁気特性の改善をはかった方
向性珪素鋼板の製造方法を提案するものである。
<Problems to be Solved by the Invention> The present invention uses a continuous casting slab as a raw material of grain-oriented silicon steel sheet to complete solid solution of an inhibitor and to secure an appropriate amount of reduction in rough rolling to obtain magnetic properties. A method for manufacturing a grain-oriented silicon steel sheet is proposed.

<問題解決のための手段> 本発明はC:0.01〜0.08%,Si: 2.0〜 4.0%を含む鋼
を連続呈鋳造よりスラブとなし、該スラブを熱間圧延に
より熱延板とし、次いで1回または中間焼鈍をはさむ2
回の冷間圧延を施して最終板厚とし、その後脱炭焼鈍と
これに続く高温最終仕上焼鈍を施す一連の工程からなる
( 110)< 001>方位を主方位とする方向性珪素鋼板
を製造する方法において、厚み 180〜 280mm範囲のスラ
ブを連続鋳造し、次いで該スラブを1000〜1250℃の温度
範囲に加熱し、5%以上の厚みを増す圧延を行い、次い
で誘導加熱によりスラブ表面温度が1350〜1500の温度範
囲に加熱し、該温度範囲で1〜60分間保持し、引続き熱
間圧延すること、あるいは、厚み 180〜 280mm範囲のス
ラブを連続鋳造し、次いで誘スラブを1000〜1250℃の温
度範囲に加熱し、5%以上の厚みを増す圧延を行い、引
続きスラブ厚みを低減する分塊圧延を行い厚みを 200mm
以上とした後、誘導加熱によりスラブ表面温度が1350〜
1500の温度範囲に加熱し、該温度範囲で1〜60分間保持
し、引続き熱間圧延すること、あるいは厚み 180〜 280
mm範囲のスラブを連続鋳造し、次いで該スラブを誘導加
熱によりスラブ表面温度が1350〜1500の温度範囲に加熱
し、該温度範囲で1〜60分間保持した後、5%以上の厚
みを増す圧延を行い、引続き熱間圧延することを特徴と
する磁気特性の良好な方向性珪素鋼板の製造方法であ
る。
<Means for Solving Problems> In the present invention, steel containing C: 0.01 to 0.08% and Si: 2.0 to 4.0% is formed into a slab by continuous casting, the slab is formed into a hot rolled sheet by hot rolling, and then 1 2 times or intermediate annealing
Manufactured grain oriented silicon steel sheet with (110) <001> orientation as the main orientation consisting of a series of steps in which cold rolling is performed once to obtain the final thickness, and then decarburization annealing and subsequent high temperature final finishing annealing are performed. In the method, a slab having a thickness of 180 to 280 mm is continuously cast, the slab is heated to a temperature range of 1000 to 1250 ° C., rolling is performed to increase the thickness by 5% or more, and then the slab surface temperature is increased by induction heating. Heating to a temperature range of 1350 to 1500, holding in the temperature range for 1 to 60 minutes, and subsequently hot rolling, or continuously casting a slab having a thickness of 180 to 280 mm, and then an induction slab of 1000 to 1250 ° C. The temperature is increased to 5% or more and rolling is performed to increase the thickness, and then slab rolling is performed to reduce the slab thickness to 200 mm.
After the above, slab surface temperature of 1350 ~ by induction heating
Heating to a temperature range of 1500, holding in that temperature range for 1 to 60 minutes, and subsequently hot rolling, or thickness 180 to 280
mm slab is continuously cast, then the slab is heated to a temperature range of 1350 to 1500 by induction heating and held at the temperature range for 1 to 60 minutes, and then rolled to increase the thickness by 5% or more. Is carried out, and then hot rolling is carried out, which is a method for producing a grain-oriented silicon steel sheet having good magnetic properties.

<作 用> 本発明者らは次に示す実験を行った。即ち連鋳スラブの
厚みが 180〜 300mmの間にあるものをいくつか作り、夫
々をガス加熱炉で1150℃まで加熱した後誘導加熱炉に入
れ1400℃まで加熱し10分間保持してから熱間粗圧延で30
mm厚のシートバーとした後、仕上圧延を行い 2.0mm厚の
コイルにして通常の2回冷延法により0.23mm厚の製品厚
とした。また 280mmおよび 250mm厚の連鋳スラブについ
てはまず1050℃に加熱し分塊圧延を圧下率を変えて行
い、以後同様に加熱し熱間粗圧延,仕上圧延後冷延し製
品板とした。
<Operation> The inventors performed the following experiment. That is, several continuous cast slabs with thicknesses between 180 and 300 mm were made, and each was heated to 1150 ° C in a gas heating furnace, then placed in an induction heating furnace and heated to 1400 ° C and held for 10 minutes before hot working. 30 in rough rolling
After making a sheet bar having a thickness of mm, finish rolling was performed to form a coil having a thickness of 2.0 mm and a product thickness of 0.23 mm was obtained by a normal two-time cold rolling method. The continuous cast slabs with thicknesses of 280 mm and 250 mm were first heated to 1050 ° C and slab-rolled at different rolling reductions, and then heated similarly to hot rough rolling, finish rolling, and cold rolling to obtain product sheets.

この実験結果を第1図に示すが、分塊圧延を行わない場
合には 250mm厚のスラブを素材とした製品の鉄損が最小
である。スラブ厚がこれより厚い 280mmおよび 300mmの
場合には中心偏析が大きいために、またスラブ厚が薄い
場合、特に 180mmの場合には粗圧延での十分な圧下率が
確保できないために鉄損は大きくなったと考えられる。
The results of this experiment are shown in Fig. 1. Without slabbing, the iron loss of the product made from a slab with a thickness of 250 mm is minimal. When the slab thickness is thicker than 280 mm and 300 mm, the center segregation is large, and when the slab thickness is thin, especially when it is 180 mm, the iron loss is large because a sufficient rolling reduction cannot be secured in rough rolling. It is thought that it has become.

元スラブ厚 250mmのものに分塊圧延を施し、同じ厚さの
分塊圧延を行わないものと比較すると常に鉄損は低く分
塊圧延の効果はあがっていると言えるが、分塊圧延を行
わない 250mm厚のスラブの鉄損と殆んど同程度か、 180
mmの薄い領域ではむしろ悪化している。これは粗圧延で
の十分な圧下率の確保ができないことによると考えられ
る。
It can be said that the slab thickness of the original slab of 250 mm is slab-rolled, and the iron loss is always low compared to the one without slab-rolling of the same thickness, but the slab-rolling effect is improved, but slab-rolling is performed. No, about the same as the iron loss of a 250 mm thick slab, or 180
It is rather worse in the thin area of mm. It is considered that this is because it is not possible to secure a sufficient reduction ratio in rough rolling.

一方元スラブ厚が 280mmの場合はスラブの中心偏析が大
きいため、 250mm, 230mmまで分塊圧延を行っても、分
塊圧延を行わない同じ厚さのものよりも鉄損が高いとい
う結果になった。 180mmまで分塊圧延を行ったものは、
やはり粗圧延での圧下率が下がるためその分さらに特性
が悪くなった。
On the other hand, when the original slab thickness is 280 mm, the center segregation of the slab is large, so even if slabbing to 250 mm and 230 mm is performed, the iron loss is higher than that of the same thickness without slabbing. It was Those that have been slab-rolled to 180 mm,
After all, the rolling reduction in the rough rolling was reduced, and the characteristics were further deteriorated accordingly.

以下の実験より得られた知見、即ち分塊圧延時の圧下率
を高くした場合、および連鋳スラブ厚が薄い場合には、
粗圧延での十分な圧下率が確保できず組織改善による磁
性向上効果が不十分であること、逆に連鋳スラブ厚い場
合にはスラブの通信偏析が磁性向上効果を損なっている
ことを基礎として本発明を発想したものである。
The knowledge obtained from the following experiments, that is, when the reduction rate at the time of slabbing is increased, and when the continuous casting slab thickness is thin,
Based on the fact that a sufficient reduction ratio in rough rolling cannot be secured and the effect of improving the magnetism by improving the structure is insufficient, and conversely when the continuous casting slab is thick, the communication segregation of the slab impairs the effect of improving the magnetism. It is an idea of the present invention.

次に本発明の構成要件の限定理由について説明する。Next, the reasons for limiting the constituent features of the present invention will be described.

Cの含有量は0.08を超えると脱炭焼鈍で完全に除去する
ことができず磁気特性が悪化し、一方0.01未満ではγ変
態せず熱延での組織改善が不十分であるので0.01〜0.08
%の範囲に限定される。
If the C content exceeds 0.08, it cannot be completely removed by decarburization annealing and the magnetic properties are deteriorated. On the other hand, if the C content is less than 0.01, γ transformation does not occur and the structure improvement in hot rolling is insufficient.
Limited to the range of%.

Siに関しては4%を超えると圧延が不可能であり、 2.0
%未満では電気抵抗が小さく鉄損が大きいので、 2.0〜
4.0%に限定される。
If Si exceeds 4%, rolling is impossible and 2.0
%, The electric resistance is small and the iron loss is large.
Limited to 4.0%.

さらに本発明における他の含有成分についての規制は特
になく、通常の方向性珪素鋼板を製造するにあたって必
要な元素を適宜含有できる。例えば二次再結晶を安定に
生じせしめるに必要な元素であるMn,SeとかAl,N、あ
るいはS,Ni,Zn,Cu,Mo,Sb,Snなどを単独にあるい
は複合して含有できる。
Furthermore, there are no particular restrictions on the other components contained in the present invention, and the elements necessary for producing a normal grain-oriented silicon steel sheet can be appropriately contained. For example, Mn, Se, Al, N, or S, Ni, Zn, Cu, Mo, Sb, Sn, etc., which are elements necessary for stably causing secondary recrystallization, can be contained alone or in combination.

連鋳スラブの厚さは 180〜 280mmに限定される。 280mm
超では連鋳スラブの中心偏析が大きく磁気特性が悪化
し、一方 180mm未満では現在の連続鋳造技術では生産性
が悪いからである。
The thickness of continuous cast slab is limited to 180-280mm. 280 mm
This is because if it exceeds the value, the center segregation of the continuous casting slab will be large and the magnetic properties will deteriorate, while if it is less than 180 mm, the productivity will be poor with the current continuous casting technology.

これらのスラブを厚み出し圧延前に加熱する時の温度を
1000℃〜1250℃に限定した理由は1250℃以上では動的に
歪みが回復してしまい十分な組織改善が行われず、一方
1000℃未満では厚み出し圧延及び分塊圧延が不可能であ
るからである。
The temperature when heating these slabs before thickening and rolling
The reason for limiting the temperature to 1000 ° C to 1250 ° C is that the strain recovers dynamically at 1250 ° C or higher and sufficient microstructure improvement cannot be performed.
This is because if the temperature is less than 1000 ° C, thickening rolling and slab rolling cannot be performed.

厚み出し圧延においては、5%未満では厚み増加分が少
ないため粗圧延の圧下率増加分が少なく磁性改善効果が
不十分となるため、厚み出し圧延の増加厚みは5%以上
とする必要がある。厚みを増す圧延は、スラブの横手方
向に取りつけた圧下荷重の大きな圧延ロールを用いる
か、スラブの両横にプッシャーを取りつけこれにより巾
方向に圧縮するかあるいは両者を併用することにより行
われるが、その際のパス回数およびロールの方向および
スラブの装入方向は特に限定されない。
In thickening rolling, if it is less than 5%, the amount of increase in thickness is small, so the amount of increase in rolling reduction in rough rolling is small and the effect of improving the magnetism is insufficient. Therefore, the increased thickness in thickening rolling must be 5% or more. . Rolling to increase the thickness is carried out by using a large rolling roll with a large reduction load attached in the lateral direction of the slab, by attaching pushers on both sides of the slab and thereby compressing in the width direction, or by using both. At that time, the number of passes, the direction of rolls and the direction of charging slabs are not particularly limited.

分塊圧延したスラブの仕上厚は 200mm以上に限定される
が、 200mm未満では粗圧延時の圧下率が必用量確保でき
ず組織が改善できないためである。
The finished thickness of the slabs subjected to slabbing is limited to 200 mm or more, but if it is less than 200 mm, the necessary reduction rate cannot be secured during rough rolling and the structure cannot be improved.

誘導加熱炉を用いて1350℃〜1500℃に加熱し、該温度に
1〜60分間保持するが、誘導加熱をする理由は、スラブ
厚が厚い場合でも内部まで急速に昇熱できるため、スラ
ブの結晶粒の成長をほとんど起こすことなくインヒビタ
ーを完全に固溶できるからである。加熱温度を1350℃〜
1500℃に限定した理由は1500℃を超えると製品の表面外
観が悪化し、1350℃未満では、 MnS,MnSeなどのインヒ
ビターの完全固溶が達成できないからである。加熱保持
時間の下限を1分間としたのはインヒビターの固溶に要
する最小時間であり、60分間を上限としたのはこれ以上
の時間保持するとスラブの結晶粒の粗大化が生じるため
である。
It is heated to 1350 ° C to 1500 ° C using an induction heating furnace and held at that temperature for 1 to 60 minutes.The reason for induction heating is that even if the slab thickness is large, the temperature can be rapidly raised to the inside, This is because the inhibitor can be completely solid-dissolved with almost no growth of crystal grains. Heating temperature from 1350 ℃
The reason for limiting the temperature to 1500 ° C is that if it exceeds 1500 ° C, the surface appearance of the product deteriorates, and if it is less than 1350 ° C, complete solid solution of inhibitors such as MnS and MnSe cannot be achieved. The lower limit of the heating and holding time is 1 minute, which is the minimum time required for the solid solution of the inhibitor, and the upper limit is 60 minutes, because the holding time is longer than this, coarsening of the crystal grains of the slab occurs.

なお加熱エネルギーコストを低くするために、あらかじ
めスラブをガス燃焼型加熱炉で例えば1250℃以下程度に
加熱しておき、それから誘導加熱炉で1350〜1500℃の範
囲に誘導加熱することは本発明の効果を何ら損なうもの
ではない。
In order to reduce the heating energy cost, the slab is heated in advance in a gas combustion type heating furnace to, for example, about 1250 ° C. or less, and then induction heating is performed in the induction heating furnace in the range of 1350 to 1500 ° C. It does not impair the effect.

この発明の条件で加熱処理したスラブに対する熱延以後
の工程は通常と変ることはなく1回の冷間圧延または中
間焼鈍を含む2回の冷間圧延と脱炭焼鈍およびこれに続
く高温箱焼鈍で最終製品厚の方向性珪素鋼板を製造する
ことができる。
The process after hot rolling for the slab heat-treated under the conditions of the present invention is not different from usual, and is one cold rolling or two cold rolling including intermediate annealing, decarburization annealing and subsequent high temperature box annealing. Thus, a grain-oriented silicon steel sheet having a final product thickness can be manufactured.

<実施例> 実施例1−1 C:0.04%,Si: 3.4%、Mn: 0.072%,Se:0.021
%,Sb: 0.026%、Mo:0.01%を含む 200mm厚のスラブ
を11本製造した。続いて第1表の条件で加熱を行い、次
いで厚み出しの圧延を行った。続いて1,2,4,5,
7,8,9,10,11は誘導加熱炉を用いて加熱した。3
は1100℃までガス燃焼型加熱炉で加熱しその後誘導加熱
炉を用いて加熱した。6はガス燃焼型加熱炉を用い1350
℃まで加熱した後60分間保持した。1〜11ともに粗圧延
後30mmのシートバーとした後仕上圧延を行い2.0mm厚の
熱延コイルとした。そして1次冷延で0.60mm厚とし1000
℃4分間の中間焼鈍を行い2次冷延で0.23mm厚の製品に
仕上げた。次いで 800℃4分間の脱炭焼鈍を湿水素中で
行い MgOを塗布してN2中での 850℃の2次再結晶焼鈍と
H2鋳での純化焼鈍からなる仕上焼鈍を行った。このよう
にして得られた最終製品の電磁特性は第1表のとおりで
ある。
<Example> Example 1-1 C: 0.04%, Si: 3.4%, Mn: 0.072%, Se: 0.021
%, Sb: 0.026%, Mo: 0.01%, 11 slabs with a thickness of 200 mm were manufactured. Subsequently, heating was performed under the conditions shown in Table 1, and then rolling for thickening was performed. Then 1, 2, 4, 5,
7, 8, 9, 10, and 11 were heated using an induction heating furnace. Three
Was heated to 1100 ° C in a gas combustion type heating furnace and then heated using an induction heating furnace. 6 uses a gas combustion type heating furnace 1350
After heating to ℃, it was held for 60 minutes. In all of Nos. 1 to 11, after rough rolling, a 30 mm sheet bar was used and finish rolling was performed to obtain a 2.0 mm thick hot rolled coil. And the primary cold rolling is 0.60mm thick and 1000
Intermediate annealing was performed at 4 ° C for 4 minutes, and the product was 0.23 mm thick by secondary cold rolling. Then, decarburization annealing at 800 ° C for 4 minutes was performed in wet hydrogen, and MgO was applied to perform secondary recrystallization annealing at 850 ° C in N 2.
Finishing annealing consisting of purification annealing in H 2 casting was performed. The electromagnetic characteristics of the final product thus obtained are shown in Table 1.

本発明により厚み出しを行うことにより磁気特性が向上
している。4は厚み出しの量が 2.5%と少なく5は厚み
出しを行っていないため磁気特性は向上していない。6
はガス燃焼型加熱炉を用いたため、厚み出し後の均熱が
不十分になり磁気特性は悪化した。7は厚み出しを行う
圧延の前の加熱温度が1300℃と高くスラブの結晶粒が成
長するため磁気特性は向上しない。8は均熱時間が30秒
と短すぎインヒビターの固溶が不十分であり、9は75分
と長すぎスラブの結晶粒が成長しすぎるため磁気特性が
悪化する。10は均熱温度が1510℃と高過ぎ、スラブの結
晶粒が成長しすぎるため磁気特性が悪く表面外観も悪化
した。11は均熱温度が1300℃と低くインヒビターの固溶
が不十分なため磁気特性は悪化する。
By increasing the thickness according to the present invention, the magnetic characteristics are improved. In No. 4, the amount of thickness increase is as small as 2.5%, and in No. 5, the thickness is not increased, so the magnetic properties are not improved. 6
Since a gas combustion type heating furnace was used, the soaking after thickening was insufficient and the magnetic properties deteriorated. In No. 7, the heating temperature before the rolling for thickening is as high as 1300 ° C. and the crystal grains of the slab grow, so that the magnetic characteristics are not improved. In No. 8, the soaking time was too short as 30 seconds and the solid solution of the inhibitor was insufficient, and in No. 9 it was too long as 75 minutes and the slab crystal grains grew too much, so that the magnetic properties deteriorate. In No. 10, the soaking temperature was too high at 1510 ° C, and crystal grains of the slab grew too much, resulting in poor magnetic properties and poor surface appearance. No. 11 has a low soaking temperature of 1300 ° C and the solid solution of the inhibitor is insufficient, resulting in poor magnetic properties.

次に第2表で表わされる成分を含むスラブについて第1
表の記号2と同じ条件で製造した製品の磁気特性を示
す。
Next, the slab containing the components shown in Table 2
The magnetic characteristics of the product manufactured under the same conditions as the symbol 2 in the table are shown.

以上の成分においても本発明の製造方法により良好な磁
気特性を得ることができた。
Even with the above components, good magnetic properties could be obtained by the manufacturing method of the present invention.

実施例 1−2 C:0.06%,Si: 3.1%、Mn: 0.066%,Se:0.019
%,Al: 0.025%,N:0.0085%を含む 200mm厚のスラ
ブを3本製造した。続いて1100℃まで加熱して厚み出し
の圧延を行った。厚み出し後の厚みは第3表のとおりで
ある。
Example 1-2 C: 0.06%, Si: 3.1%, Mn: 0.066%, Se: 0.019
%, Al: 0.025%, N: 0.0085%, three 200 mm thick slabs were manufactured. Then, it was heated up to 1100 ° C. and rolled for thickening. Table 3 shows the thickness after thickness setting.

続いて誘導加熱炉に入れ1400℃まで加熱しその温度で10
分間保持した。その後粗圧延し30mm厚のシートバーにし
た後仕上圧延により 2.0mm厚の熱延コイルとした。そし
て1100℃3分間の熱延板焼鈍を行った後冷間圧延で0.30
mm厚とし 800℃4分間の脱炭焼鈍を湿水素中で行い MgO
塗布したのちN2中での 850℃の2次再結晶焼鈍とH2中で
1200℃の純化焼鈍からなる仕上焼鈍を行った。このよう
にして得られた最終製品の電磁特性は第3表のと おりであり、厚み出し圧延の効果が冷延1回法の場合に
も表われている。
Then, put it in an induction heating furnace and heat it to 1400 ℃,
Hold for minutes. After that, rough rolling was performed to make a 30 mm thick sheet bar, and finish rolling was performed to obtain a 2.0 mm thick hot rolled coil. Then, the hot rolled sheet was annealed at 1100 ° C for 3 minutes and then cold rolled to 0.30.
mmO, and decarburization annealing at 800 ℃ for 4 minutes in wet hydrogen.
After coating, secondary recrystallization annealing at 850 ℃ in N 2 and H 2
Finishing annealing consisting of refining annealing at 1200 ° C was performed. The electromagnetic characteristics of the final product thus obtained are shown in Table 3 The effect of thickening and rolling is also exhibited in the case of the cold rolling once method.

実施例1−3 C:0.06%,Si: 3.0%、Mn: 0.068%,S:0.018
%,Al: 0.028%,N:0.0010%を含む 200mm厚のスラ
ブを4本製造した。続いて1100℃まで加熱して厚み出し
の圧延を行った。厚み出し後の厚みは第4表の通りであ
る。
Example 1-3 C: 0.06%, Si: 3.0%, Mn: 0.068%, S: 0.018
%, Al: 0.028%, N: 0.0010%, and four 200 mm thick slabs were manufactured. Then, it was heated up to 1100 ° C. and rolled for thickening. Table 4 shows the thickness after thickness setting.

続いて誘導加熱炉に入れ1400℃まで加熱しその温度で10
分間保持した。その後粗圧延し30mm厚のシートバーにし
た後、仕上圧延により 2.4mm厚の熱延コイルとした。そ
して1次冷延で1.80mm厚とし1100℃3分間の中間焼鈍を
行い2次冷延で0.23mm厚の製品厚に仕上げた。次いで 8
00℃4分間の脱炭焼鈍を湿水素中で行い MgO塗布したの
ち1200℃10時間水素中で仕上焼鈍を行った。このように
して得られた最終製品の電磁特性は第4表のとおりであ
る。実施例1同様厚み出し後のスラブ厚が厚く粗圧延で
の圧下率が高いほど良い磁気特性となっている。
Then, put it in an induction heating furnace and heat it to 1400 ℃,
Hold for minutes. After that, it was roughly rolled into a 30 mm thick sheet bar, and then finish rolled to obtain a 2.4 mm thick hot rolled coil. Then, primary cold rolling was performed to a thickness of 1.80 mm, and intermediate annealing was performed at 1100 ° C. for 3 minutes, and secondary cold rolling was performed to a product thickness of 0.23 mm. Then 8
Decarburization annealing was performed at 00 ° C for 4 minutes in wet hydrogen, MgO was applied, and then finish annealing was performed at 1200 ° C for 10 hours in hydrogen. The electromagnetic characteristics of the final product thus obtained are shown in Table 4. As in the case of Example 1, the thicker the slab after being thickened and the higher the reduction ratio in rough rolling, the better the magnetic properties.

次に第5表で表わされる成分について第4表の記号2と
同様な条件で製造した製品の磁気特性を示す。
Next, the magnetic properties of the products produced under the same conditions as the symbol 2 in Table 4 are shown for the components shown in Table 5.

以上の成分においても本発明の製造方法により良好な磁
気特性を得ることができた。
Even with the above components, good magnetic properties could be obtained by the manufacturing method of the present invention.

実施例2 C:0.04%,Si: 3.2%、Mn: 0.070%,Se:0.020
%,Sb: 0.024%、Mo:0.01%を含む連鋳スラブを6本
製造した。続いて1100℃まで加熱して厚み出し圧延の後
に分塊圧延を行った。それらのパススケジュールは第6
表のとおりである。
Example 2 C: 0.04%, Si: 3.2%, Mn: 0.070%, Se: 0.020
%, Sb: 0.024%, Mo: 0.01%, 6 continuous cast slabs were manufactured. Then, it was heated to 1100 ° C., thickened, and then slab-rolled. Their pass schedule is 6th
It is as shown in the table.

続いて1,2,4,5は誘導加熱炉で1400℃まで加熱し
その温度で10分間保持した。3はガス燃焼型加熱炉を用
い1100℃まで加熱した後誘導加熱炉で1400℃まで加熱し
その温度で10分間保持した。6はガス燃焼型加熱炉を用
い1350℃まで加熱した後60分間その温度で保持した。そ
の後1〜6ともに粗圧延し30mmのシートバーとした後仕
上圧延を行い 2.0mm厚の熱延コイルとした。そして1次
冷延で0.60mm厚とし1000℃4分間の中間焼鈍を行い 2次冷延で0.23mmの製品に仕上げた。次いで 800℃4分
間の脱炭焼鈍を湿水素中に行い MgOを塗布してN2中での
850の2次再結晶焼鈍とH2中での純化焼鈍からなる仕上
焼鈍を行った。このようにして得られた最終製品の電磁
特性は第6表のとおりである。
Subsequently, 1, 2, 4, and 5 were heated to 1400 ° C. in an induction heating furnace and kept at that temperature for 10 minutes. In No. 3, a gas combustion type heating furnace was used to heat to 1100 ° C., and then an induction heating furnace was heated to 1400 ° C. and the temperature was maintained for 10 minutes. No. 6 was heated to 1350 ° C. using a gas combustion type heating furnace, and then held at that temperature for 60 minutes. After that, 1 to 6 were roughly rolled into a 30 mm sheet bar and then finish rolled into a 2.0 mm hot rolled coil. Then, primary cold rolling was performed to a thickness of 0.60 mm and intermediate annealing was performed at 1000 ° C for 4 minutes Secondary cold-rolled to 0.23mm product. Then coated with MgO conducted in wet hydrogen decarburization annealing at 800 ° C. 4 minutes in N 2
A finishing annealing consisting of a secondary recrystallization annealing of 850 and a purification annealing in H 2 was performed. The electromagnetic characteristics of the final product thus obtained are shown in Table 6.

比較例5は分塊圧延によりスラブ厚を 180mmに落として
いるため粗圧延での圧下率が下がり特性が悪い。
In Comparative Example 5, the slab thickness is reduced to 180 mm by slabbing, so the rolling reduction in rough rolling is low and the characteristics are poor.

実施例3 C:0.04%,Si: 3.4%、Mn: 0.070%,Se:0.020
%,Sb: 0.026%、Mo:0.01%,を含む 200mm厚の連鋳
スラブを4本製造した。続いて1,3は誘導加熱炉をい
1400℃まで加熱しその温度で10分間保持した。2はガス
燃焼型加熱炉を用い1100℃まで加熱した後、誘導加熱炉
で1400℃まで加熱し、その温度で10分間保持した。4は
ガス燃焼型加熱炉を用い1350℃まで加熱した後60分間そ
の温度に保持した。その後厚み出し圧延を行い続けて粗
圧延し30mmのシートバーとした後、仕上圧 延を行い、 2.0mm厚の熱延コイルとした。そして1次冷
延で0.60mm厚とし1000℃4分間の中間焼鈍を行い2次冷
延で0.23mm厚の製品に仕上げた。次いで 800℃4分間
の脱炭焼鈍を湿水素中で行い MgOを塗布してN2中での 8
50℃の2次再結晶焼鈍とH2中での純化焼鈍からなる仕上
焼鈍を行った。このようにして得られた最終製品の電磁
特性は第7表のとおりである。厚み出し圧延を行い粗圧
延での圧下率が上がることにより磁気特性が向上してい
る。
Example 3 C: 0.04%, Si: 3.4%, Mn: 0.070%, Se: 0.020
%, Sb: 0.026%, Mo: 0.01%, four 200 mm thick continuous cast slabs were manufactured. Next, 1 and 3 are induction heating furnaces.
It was heated to 1400 ° C and held at that temperature for 10 minutes. In No. 2, a gas combustion type heating furnace was used to heat to 1100 ° C., and then an induction heating furnace was heated to 1400 ° C., and the temperature was maintained for 10 minutes. In No. 4, a gas combustion type heating furnace was used to heat to 1350 ° C. and then held at that temperature for 60 minutes. After that, thickening rolling is continued and rough rolling is performed to a 30 mm sheet bar, and then finishing pressure is applied. It was rolled into a hot rolled coil with a thickness of 2.0 mm. Then, primary cold rolling was performed to a thickness of 0.60 mm, and intermediate annealing was performed at 1000 ° C. for 4 minutes, and secondary cold rolling was performed to a product having a thickness of 0.23 mm. Then, decarburization annealing at 800 ° C for 4 minutes is performed in wet hydrogen, and MgO is applied to the substrate for 8 minutes in N 2.
Finishing annealing consisting of secondary recrystallization annealing at 50 ° C and purification annealing in H 2 was performed. The electromagnetic characteristics of the final product thus obtained are shown in Table 7. The magnetic properties are improved by increasing the rolling reduction in rough rolling by performing thickening rolling.

<発明の効果> 以上詳述したように本発明により、スラブ高温加熱前ま
たはスラブ高温加熱後に厚み出しの圧延を行うこと、そ
してスラブの高温加熱を誘導加熱で行うことにより連鋳
スラブ厚を厚くすることなく、分塊圧延時および粗圧延
時の圧下率を高くし組織改善効果が上げられ、磁気特性
の良好な方向性珪素鋼板を得ることができた。
<Effects of the Invention> As described in detail above, according to the present invention, the continuous casting slab thickness is increased by performing thickening rolling before or after high temperature heating of the slab, and performing high temperature heating of the slab by induction heating. Without doing so, the rolling reduction during slab rolling and rough rolling was increased, the effect of improving the structure was enhanced, and a grain-oriented silicon steel sheet with good magnetic properties could be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、熱延前の連鋳スラブの厚みならびに分塊圧延
により連鋳スラブ厚みを低減した場合の熱延前のスラブ
の厚みが鉄損に及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the effect of the thickness of the continuous casting slab before hot rolling and the thickness of the slab before hot rolling on iron loss when the thickness of the continuous casting slab is reduced by slabbing.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.01〜0.08%,Si: 2.0〜 4.0%を含
む鋼を連続鋳造によりスラブとなし、該スラブを熱間圧
延により熱延板とし、次いで1回または中間焼鈍をはさ
む2回の冷間圧延を施して最終板厚とし、その後脱炭焼
鈍とこれに続く高温最終仕上焼鈍を施す一連の工程から
なる( 110)< 001>方位を主方位とする方向性珪素
鋼板を製造する方法において、厚み 180〜 280mm範囲の
スラブを連続鋳造し、次いで該スラブを1000〜1250℃の
温度範囲に加熱し、5%以上の厚みを増す圧延を行い、
次いで誘導加熱によりスラブ表面温度が1350〜1500℃の
温度範囲に加熱し、該温度範囲で1〜60分間保持し、引
続き熱間圧延することを特徴とする磁気特性の良好な方
向性珪素鋼板の製造方法。
1. A steel containing C: 0.01 to 0.08% and Si: 2.0 to 4.0% is formed into a slab by continuous casting, and the slab is hot-rolled to form a hot-rolled sheet, which is then annealed once or 2 Manufactured grain oriented silicon steel sheet with (110) <001> orientation as the main orientation consisting of a series of steps in which cold rolling is performed once to obtain the final thickness, and then decarburization annealing and subsequent high temperature final finishing annealing are performed. In the method, a slab having a thickness of 180 to 280 mm is continuously cast, then the slab is heated to a temperature range of 1000 to 1250 ° C., and rolling is performed to increase the thickness by 5% or more,
Then, the slab surface temperature is heated to a temperature range of 1350 to 1500 ° C. by induction heating, held in the temperature range for 1 to 60 minutes, and continuously hot-rolled. Production method.
【請求項2】C:0.01〜0.08%,Si: 2.0〜 4.0%を含
む鋼を連続鋳造によりスラブとなし、該スラブを熱間圧
延により熱延板とし、次いで1回または中間焼鈍をはさ
む2回の冷間圧延を施して最終板厚とし、その後脱炭焼
鈍とこれに続く高温最終仕上焼鈍を施す一連の工程から
なる( 110)< 001>方位を主方位とする方向性珪素
鋼板を製造する方法において、厚み 180〜 280mm範囲の
スラブを連続鋳造し、次いで該スラブを1000〜1250℃の
温度範囲に加熱し、5%以上の厚みを増す圧延を行い、
引き続きスラブ厚みを低減する分塊圧延を行い厚みを 2
00mm以上とした後、誘導加熱によりスラブ表面温度が13
50〜1500℃の温度範囲に加熱し、該温度範囲で1〜60分
間保持し、引続き熱間圧延することを特徴とする磁気特
性の良好な方向性珪素鋼板の製造方法。
2. A steel containing C: 0.01 to 0.08% and Si: 2.0 to 4.0% is formed into a slab by continuous casting, the slab is hot-rolled into a hot-rolled sheet, which is then annealed once or 2 Manufactured grain oriented silicon steel sheet with (110) <001> orientation as the main orientation consisting of a series of steps in which cold rolling is performed once to obtain the final thickness, and then decarburization annealing and subsequent high temperature final finishing annealing are performed. In the method, a slab having a thickness of 180 to 280 mm is continuously cast, then the slab is heated to a temperature range of 1000 to 1250 ° C., and rolling is performed to increase the thickness by 5% or more,
Then, slab rolling is performed to reduce the slab thickness to reduce the thickness to 2
After making it over 00 mm, the slab surface temperature becomes 13 by induction heating.
A method for producing a grain-oriented silicon steel sheet having good magnetic properties, which comprises heating to a temperature range of 50 to 1500 ° C., maintaining the temperature range for 1 to 60 minutes, and then hot rolling.
【請求項3】C:0.01〜0.08%,Si: 2.0〜 4.0%を含
む鋼を連続鋳造によりスラブとなし、該スラブを熱間圧
延により熱延板とし、次いで1回または中間焼鈍をはさ
む2回の冷間圧延を施して最終板厚とし、その後脱炭焼
鈍とこれに続く高温最終仕上焼鈍を施す一連の工程から
なる( 110)< 001>方位を主方位とする方向性珪素
鋼板を製造する方法において、厚み 180〜 280mm範囲の
スラブを連続鋳造し、次いで該スラブを誘導加熱により
スラブ表面温度が1350〜1500℃の温度範囲に加熱し、該
温度範囲で1〜60分間保持した後、5%以上の厚みを増
す圧延を行い、引続き熱間圧延することを特徴とする磁
気特性の良好な方向性珪素鋼板の製造方法。
3. A steel containing C: 0.01 to 0.08% and Si: 2.0 to 4.0% is formed into a slab by continuous casting, the slab is hot-rolled into a hot-rolled sheet, which is then annealed once or 2 Manufactured grain oriented silicon steel sheet with (110) <001> orientation as the main orientation consisting of a series of steps in which cold rolling is performed once to obtain the final thickness, and then decarburization annealing and subsequent high temperature final finishing annealing are performed. In the method, the slab having a thickness of 180 to 280 mm is continuously cast, and then the slab is heated to a temperature range of 1350 to 1500 ° C. by induction heating, and the temperature is maintained for 1 to 60 minutes in the temperature range. A method for producing a grain-oriented silicon steel sheet having good magnetic properties, which comprises rolling to increase the thickness by 5% or more and then hot rolling.
JP32133487A 1987-12-21 1987-12-21 Method for producing silicon steel sheet having good magnetic properties Expired - Fee Related JPH0629461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32133487A JPH0629461B2 (en) 1987-12-21 1987-12-21 Method for producing silicon steel sheet having good magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32133487A JPH0629461B2 (en) 1987-12-21 1987-12-21 Method for producing silicon steel sheet having good magnetic properties

Publications (2)

Publication Number Publication Date
JPH01162725A JPH01162725A (en) 1989-06-27
JPH0629461B2 true JPH0629461B2 (en) 1994-04-20

Family

ID=18131429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32133487A Expired - Fee Related JPH0629461B2 (en) 1987-12-21 1987-12-21 Method for producing silicon steel sheet having good magnetic properties

Country Status (1)

Country Link
JP (1) JPH0629461B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713268B2 (en) * 1989-07-12 1995-02-15 新日本製鐵株式会社 Hot Rolling Method for Continuously Cast Unidirectional Electrical Steel Slab
JPH0763725B2 (en) * 1991-03-29 1995-07-12 新日本製鐵株式会社 Series of continuous hot rolling equipment for unidirectional electrical steel sheets
JPH075976B2 (en) * 1991-03-29 1995-01-25 新日本製鐵株式会社 Hot Rolling Method for Continuously Cast Slabs for Unidirectional Electrical Steel Sheets
WO2009093492A1 (en) * 2008-01-24 2009-07-30 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics

Also Published As

Publication number Publication date
JPH01162725A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
EP0528419B2 (en) Method of producing grain oriented silicon steel sheet having low iron loss
JP3846064B2 (en) Oriented electrical steel sheet
KR20210137198A (en) Method for manufacturing grain-oriented electrical steel sheet
KR20210138072A (en) Method for manufacturing grain-oriented electrical steel sheet
EP0798392B1 (en) Production method for grain oriented silicon steel sheet having excellent magnetic characteristics
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JPH0629461B2 (en) Method for producing silicon steel sheet having good magnetic properties
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JPH05105955A (en) Hot rolling method for nonoriented silicon steel sheet having extremely superior magnetic property
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
EP0392535B2 (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH09143560A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2000199014A (en) Production of grain oriented silicon steel sheet
CN114616353A (en) Non-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees