JPH05105955A - Hot rolling method for nonoriented silicon steel sheet having extremely superior magnetic property - Google Patents

Hot rolling method for nonoriented silicon steel sheet having extremely superior magnetic property

Info

Publication number
JPH05105955A
JPH05105955A JP9562491A JP9562491A JPH05105955A JP H05105955 A JPH05105955 A JP H05105955A JP 9562491 A JP9562491 A JP 9562491A JP 9562491 A JP9562491 A JP 9562491A JP H05105955 A JPH05105955 A JP H05105955A
Authority
JP
Japan
Prior art keywords
slab
steel sheet
rolling
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9562491A
Other languages
Japanese (ja)
Other versions
JP2536974B2 (en
Inventor
Kishio Mochinaga
季志雄 持永
Kazutaka Tone
和隆 東根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3095624A priority Critical patent/JP2536974B2/en
Publication of JPH05105955A publication Critical patent/JPH05105955A/en
Application granted granted Critical
Publication of JP2536974B2 publication Critical patent/JP2536974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a nonoriented silicon steel sheet having extremely excellent magnetic properties by applying low temp. heating to a slab in order to prevent inclusions, such as MnS and AlN, from entering into solid solution again by using an atmosphere control type electric heating furnace. CONSTITUTION:At the time of hot-rolling a slab for nonoriented silicon steel having a composition consisting of <=0.0080% C, <=4% Si, 0.02-0.6% Mn, <=0.1% P, <=0.0050% S, <=1.0% Al, <=0.0030% N, and the balance essentially Fe, the slab is heated up to <=1150 deg.C by means of an atmosphere control type electric heating furnace provided to the position adjacent to a rougher, roughed directly after extraction from the furnace, and successively subjected to finish rolling. By this method, the nonoriented silicon steel sheet having extremely superior magnetic properties, such as iron loss, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低鉄損、高磁束密度を
有する無方向性電磁鋼板を製造するに際し、雰囲気制御
型電気式加熱炉を用いてスラブ加熱を行って熱間圧延す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of hot rolling with slab heating using an electric furnace of controlled atmosphere when producing a non-oriented electrical steel sheet having low iron loss and high magnetic flux density. It is about.

【0002】[0002]

【従来の技術】通常、無方向性電磁鋼板の高級グレード
(JIS 50A470以上)を熱間圧延する際、11
00℃〜1300℃でスラブ加熱され、2〜6パスの粗
圧延を経て、巻取られて熱延板となる。その操業条件
は、使用する熱間圧延機によって違ってくるが、スラブ
厚は120mm〜250mm、仕上圧延温度は750℃〜9
50℃、巻取り温度は500℃〜700℃、熱延板厚は
1.6mm〜2.9mmが普通である。
2. Description of the Related Art Normally, when hot rolling a high grade non-oriented electrical steel sheet (JIS 50A470 or higher),
Slab heating is performed at 00 ° C to 1300 ° C, rough rolling is performed for 2 to 6 passes, and then rolled to form a hot rolled sheet. The operating conditions vary depending on the hot rolling mill used, but the slab thickness is 120 mm to 250 mm and the finishing rolling temperature is 750 ° C to 9 mm.
It is usual that the temperature is 50 ° C., the winding temperature is 500 ° C. to 700 ° C., and the hot rolled sheet thickness is 1.6 mm to 2.9 mm.

【0003】その後、冷間圧延、焼鈍等の処理を行って
製品となるが、無方向性電磁鋼板は最終焼鈍工程におい
て1次再結晶を行わせることによって磁気特性を出現さ
せる。この際1次再結晶は、鋼板中に微細な(数百〜数
千オングストローム)硫化物、又は窒化物が多いほど起
こりにくく、或いはその成長を抑制することが知られて
いる。即ち、スラブ中に存在する介在物は、熱間圧延前
の高温加熱によって固溶し、これが引続く熱間圧延中で
の1100〜900℃の温度領域で微細に析出してく
る。そのため製鋼段階でS、N等をかなり徹底して除去
する高純化処理を行うことが必要であるが、この処理は
製造コストの上昇が大きくし、またこれらを完全に除去
し得るレベルには達しきれない。
Then, cold rolling, annealing, etc. are performed to obtain a product, and the non-oriented electrical steel sheet exhibits magnetic properties by performing primary recrystallization in the final annealing step. At this time, it is known that primary recrystallization is less likely to occur or the growth thereof is suppressed as the amount of fine (several hundred to several thousand angstroms) sulfides or nitrides increases in the steel sheet. That is, the inclusions present in the slab form a solid solution by high temperature heating before hot rolling, and finely precipitate in the temperature range of 1100 to 900 ° C. during the subsequent hot rolling. For this reason, it is necessary to perform a high-purification treatment that removes S, N, etc. quite thoroughly at the steelmaking stage. However, this treatment greatly increases the manufacturing cost and reaches a level at which these can be completely removed. I can't cut it.

【0004】このような問題点を解消するために、スラ
ブ加熱温度を低温にし、鋼中に存在している上記介在物
の固溶を防ぐ方法が、例えば特開昭60−190521
号公報に開示されている。即ち、該公報には、スラブを
加熱する場合に1150℃を超えないように加熱し、M
nSやAlN等の析出物の再固溶を抑制することが記述
されているが、通常スラブの加熱を行うガス加熱方式で
は、熱間圧延時における被圧延材の幅方向エッジ部の温
度降下が激しく、従って加熱温度の低温化には圧延加重
の増加により圧延困難になるという制約がある。
In order to solve such a problem, there is a method of lowering the slab heating temperature to prevent the inclusion of the inclusions present in the steel from forming a solid solution, for example, in Japanese Patent Laid-Open No. 60-190521.
It is disclosed in the publication. That is, in this publication, when the slab is heated, it is heated so as not to exceed 1150 ° C.
Although it is described that the re-dissolution of precipitates such as nS and AlN is suppressed, in the gas heating method for heating the slab normally, the temperature drop of the width direction edge part of the material to be rolled during hot rolling is reduced. Therefore, there is a restriction that lowering the heating temperature causes difficulty in rolling due to an increase in rolling load.

【0005】[0005]

【発明が解決しようとする課題】前記したように、磁性
に悪影響を及ぼすMnSやAlNの加熱炉内での再固溶
を抑制するためには、スラブの加熱、熟熱温度を低下さ
せるほど良く、再固溶を防止できる900℃以下にする
ことが好ましい。すなわち、再固溶を完全に防止できれ
ば熱間圧延中に微細に析出するものもなくなり、MnS
やAlNの無害化が可能となる。本発明はこのような観
点から、上記した介在物の再固溶を抑制し得るスラブの
低温加熱とともに熱延中の幅方向エッジ部の温度低下を
防止し、これにより極めて優れた磁気特性を有する無方
向性電磁鋼板の熱間圧延方法を提供することを目的とす
るものである。
As described above, in order to suppress re-dissolution of MnS or AlN which adversely affects magnetism in the heating furnace, it is better to lower the heating temperature of the slab and the aging heat temperature. It is preferable to set the temperature to 900 ° C. or lower which can prevent re-dissolution. That is, if the solid solution can be completely prevented, there will be no fine precipitation during hot rolling.
And AlN can be made harmless. From this point of view, the present invention prevents low temperature heating of the slab that can suppress re-dissolution of the inclusions described above and prevents temperature decrease in the width direction edge portion during hot rolling, and thereby has extremely excellent magnetic properties. It is an object of the present invention to provide a hot rolling method for non-oriented electrical steel sheets.

【0006】[0006]

【問題を解決するための手段】上記目的を達成するため
に本発明は以下の構成を要旨とする。即ち、(1) [C]
0.0080%以下、[Si]4%以下、[Mn]0.
02〜0.6%以下、[P]0.1%以下、[S]0.
0050%以下、[Al]1.0%以下、[N]0.0
030%以下、残部実質的にFeよりなる無方向性電磁
鋼用スラブを熱間圧延するに際し、粗圧延機に隣接して
設けた雰囲気制御型電気式加熱炉で1150℃以下に加
熱し、該スラブを炉から抽出後直ちに粗圧延し、引続き
仕上圧延を実施することを特徴とする極めて優れた磁気
特性を有する無方向性電磁鋼板の熱間圧延方法であり、
(2) 上記雰囲気制御型電気式加熱炉は、上下方向に夫々
出力制御可能なコイルを多段に備え、これにより無方向
性電磁鋼用スラブを1150℃以下に加熱することを特
徴とする極めて優れた磁気特性を有する無方向性電磁鋼
板の熱間圧延方法である。
In order to achieve the above object, the present invention has the following structures. That is, (1) [C]
0.0080% or less, [Si] 4% or less, [Mn] 0.
02-0.6% or less, [P] 0.1% or less, [S] 0.
0050% or less, [Al] 1.0% or less, [N] 0.0
In hot-rolling a slab for non-oriented electrical steel consisting of 030% or less and the balance substantially Fe, the slab is heated to 1150 ° C. or less in an atmosphere-controlled electric heating furnace provided adjacent to a rough rolling machine, Rough rolling immediately after extracting the slab from the furnace, is a hot rolling method of non-oriented electrical steel sheet having extremely excellent magnetic properties, characterized by performing subsequent finish rolling,
(2) The atmosphere-controlled electric heating furnace is provided with a multi-stage coil capable of controlling the output in the vertical direction, thereby heating the slab for non-oriented electrical steel to 1150 ° C. or less, which is extremely excellent. It is a method of hot rolling a non-oriented electrical steel sheet having excellent magnetic properties.

【0007】上記発明において、使用する雰囲気制御型
電気式加熱炉には複数の誘導加熱コイルを上下方向に多
段に備え、各誘導加熱コイルの出力を調整して、装入ス
ラブ幅方向エッジ部の温度に加熱することができるよう
に構成することが好ましい。以下本発明を具体的に説明
する。無方向性電磁鋼板の製造方法において、通常スラ
ブは、前述したように、熱間圧延に先立って高温加熱さ
れるが、この際鋼中のMnSやAlNなどの析出物を固
溶し、次いで行われる熱間圧延工程で微細に再析出す
る。この微細な析出物の生成は、後工程での鋼帯の仕上
焼鈍時に再結晶粒の十分な成長を阻止し、磁気特性の劣
化をもたらす。
In the above invention, the atmosphere-controlled electric heating furnace to be used is provided with a plurality of induction heating coils in multiple stages in the vertical direction, and the output of each induction heating coil is adjusted to adjust the edge portion of the charging slab width direction. It is preferable to be configured so that it can be heated to a temperature. The present invention will be specifically described below. In the method for manufacturing a non-oriented electrical steel sheet, the slab is usually heated to a high temperature prior to hot rolling as described above, but at this time, the precipitates such as MnS and AlN in the steel are dissolved, and Fine reprecipitation occurs in the so-called hot rolling process. The formation of these fine precipitates prevents the recrystallized grains from sufficiently growing during the finish annealing of the steel strip in the subsequent step, resulting in deterioration of magnetic properties.

【0008】一方、このような高温加熱の欠陥を防止す
るために比較的低温での加熱を実施するとしても、これ
をガス式加熱炉で行うときには、鋳片の外側より直火式
で焼上げることになり、中心部までの加熱、即ち熟熱の
ために長時間を要することになる。また短時間で焼上げ
ようとすると、スラブ表面近傍は過加熱とならざるを得
ない。また、スラブ一枚ごとに焼上げることはできず、
ほぼ一様に焼上げられたスラブは圧延中に幅方向エッジ
部分の低下が大きい。従って、例えばこのエッジ部温度
が圧延可能な下限温度(通常圧延仕上出口温度でほぼ7
00℃)となる点から、スラブの焼上下限温度を経験的
に設定するのであるが、その下限温度を低く設定するこ
とはできない。また、ガス加熱炉は、通常設備上の問題
から粗圧延機までかなりの距離があり、従って、スラブ
は加熱炉より抽出後粗圧延機まで搬送中の温度降下も大
きく、このことがスラブの加熱炉抽出温度を高くする大
きな要因となる。図1に示したように、ガス加熱炉で加
熱し、熱延可能な圧延仕上出口温度を700℃とした場
合の加熱炉抽出温度はほぼ1000℃であり、従来の加
熱温度はそれ程低温域を拡大許容できない。
On the other hand, even if heating is carried out at a relatively low temperature in order to prevent such a defect of high temperature heating, when this is carried out in a gas type heating furnace, it is baked from the outside of the slab by a direct flame method. Therefore, it takes a long time to heat up to the central portion, that is, to heat the heat. Also, if baking is attempted in a short time, the vicinity of the slab surface must be overheated. Also, it is not possible to bake each slab,
The slab that has been baked almost uniformly has a large decrease in the widthwise edge portion during rolling. Therefore, for example, this edge temperature is the lower limit temperature at which rolling is possible (normal rolling finish outlet temperature is approximately 7
The lower temperature limit for firing the slab is empirically set from the point of (00 ° C.), but the lower limit temperature cannot be set low. In addition, since the gas heating furnace usually has a considerable distance to the rough rolling mill due to equipment problems, the slab also has a large temperature drop during the transportation from the heating furnace to the rough rolling mill after the extraction, which results in the heating of the slab. This is a major factor in raising the furnace extraction temperature. As shown in FIG. 1, the heating furnace extraction temperature is about 1000 ° C. when the rolling finish outlet temperature capable of hot rolling by heating in a gas heating furnace is 700 ° C., and the conventional heating temperature is in such a low temperature range. Expansion is not acceptable.

【0009】本発明は、このようなことから熱間圧延前
のスラブ加熱を、1150℃以下の低温域でしかも短時
間に行うことを特徴の一つとする。この低温短時間加熱
は炉内を非酸化性雰囲気に制御可能な電気式加熱炉を使
用することで達成できる。この電気式加熱炉は、複数の
誘導加熱コイルを上下方向に多段に構成し、各誘導加熱
コイルは、それぞれ出力調整可能にすることが好まし
い。すなわち、誘導加熱を行った場合でも、スラブ全
長、全幅を均一に焼上げると、圧延中でのスラブエッジ
部での温度降下は幅方向中心部よりどうしても大きく、
その結果スラブエッジ部分が圧延可能な下限温度となる
点から、スラブ焼上下限温度を設定しなければならな
い。そこで本発明法では、圧延段階において低温となる
エッジ部分のコイルを出力アップして、中央部以上に加
熱することによって、スラブの焼上下限温度をさらに下
げることが可能となるわけである。
Therefore, one of the features of the present invention is that the slab heating before hot rolling is performed in a low temperature range of 1150 ° C. or less and in a short time. This low-temperature short-time heating can be achieved by using an electric heating furnace capable of controlling the inside of the furnace to a non-oxidizing atmosphere. In this electric heating furnace, it is preferable that a plurality of induction heating coils are vertically arranged in multiple stages, and the output of each induction heating coil can be adjusted. That is, even if induction heating is performed, if the entire length and width of the slab are uniformly baked, the temperature drop at the slab edge during rolling is inevitably larger than at the center in the width direction.
As a result, the slab edge lowering temperature must be set from the point that the slab edge portion reaches the lower limit temperature at which rolling is possible. Therefore, according to the method of the present invention, it is possible to further lower the firing lower limit temperature of the slab by increasing the output of the coil at the edge portion, which has a low temperature in the rolling stage, and heating the coil above the central portion.

【0010】このような誘導加熱したスラブは、炉から
抽出後速やかに粗圧延を実施する。炉から抽出したスラ
ブの温度降下はできるだけ防止しなければならず、とり
わけエッジ部では温度降下しやすいので、粗圧延機に近
接した位置、即ち設備上の取り合い或いは操業上から可
能な限り近くに電気式加熱炉を設置し、粗圧延機までの
搬送時間を短くする。なお、電気式加熱炉内は非酸化性
雰囲気例えば、ArやNガス雰囲気にすることが好まし
く、これはスラブ表面にスケールの発生を防止できるか
らである。
Such induction-heated slab is subjected to rough rolling immediately after extraction from the furnace. The temperature drop of the slab extracted from the furnace should be prevented as much as possible, especially at the edge, because the temperature is likely to drop, so that the electric power should be placed close to the rough rolling mill, that is, as close as possible to the equipment or due to the operation. Install a heating furnace to shorten the transfer time to the rough rolling mill. The electric heating furnace is preferably set in a non-oxidizing atmosphere, for example, an Ar or N gas atmosphere, because this can prevent the generation of scale on the slab surface.

【0011】本発明において、加熱温度を1150℃以
下に限定したのは、雰囲気制御型の電気式加熱炉で短時
間加熱をこの温度以下で行うことによって、MnSやA
lN等の介在物の再固溶を抑制するためであり、その下
限は熱間圧延が可能な範囲であれば良く、したがって特
に限定はしない。好ましくはこの範囲のできるだけ低温
側での加熱をすることが良い。
In the present invention, the heating temperature is limited to 1150 ° C. or lower because MnS and A are heated by heating at a temperature below this temperature in an atmosphere-controlled electric heating furnace for a short time.
This is for suppressing the re-dissolution of inclusions such as 1N and the like, and the lower limit thereof is within the range where hot rolling is possible, and is not particularly limited. It is preferable to heat at the lowest possible temperature in this range.

【0012】次に本発明において、成分組成を上記範囲
に限定した理由について説明する。[C]は多量に含有
されると、熱感圧延中にオーステナイト・フェライト二
相範囲が広がり、更に脱炭焼鈍に長時間を要するだけで
なく磁気特性の面からも不利であるので、0.008%
以下とした。[Si]は通常無方向性電磁鋼板に含有さ
れるSi≦4%とする。低鉄損を得るため、固有抵抗を
上げる必要からはSiを高める方がよいが、4%を超え
ると冷延性が劣化するため、4%以下に制限することが
好ましい。[Mn]は0.02〜0.5%含有させる。
これは、Mn/Sを15以上とし、赤熱脆性を防止する
ために下限を0.02%とした。一方、上限の0.5%
を越えると固溶体硬化をもたらし、打抜き加工性を劣化
させる。
Next, the reason why the component composition is limited to the above range in the present invention will be explained. When [C] is contained in a large amount, the austenite-ferrite two-phase range is widened during hot rolling, and it takes a long time for decarburization annealing and is disadvantageous in terms of magnetic properties. 008%
Below. [Si] is usually set to Si ≦ 4% contained in the non-oriented electrical steel sheet. In order to obtain a low iron loss, it is better to increase Si in order to increase the specific resistance, but if it exceeds 4%, the cold ductility deteriorates, so it is preferable to limit it to 4% or less. [Mn] is contained in an amount of 0.02 to 0.5%.
In this, Mn / S was set to 15 or more, and the lower limit was made 0.02% in order to prevent red heat embrittlement. On the other hand, the upper limit of 0.5%
If it exceeds, solid solution hardening is caused and punching workability is deteriorated.

【0013】次に、本発明において、清浄度を構成する
[S]、[N]については、[S]は微細な硫化物ある
いは、酸硫化物をつくり、1次再結晶温度を高める有害
な作用を演ずるため、極力少ないほうが望ましいが、本
発明で示す低温加熱を実施すれば、これらの析出物によ
る磁性の劣化を防止できる効果が確認できる。よって
[S]の上限は無方向性電磁鋼板を意識して0.005
0%とし、[N]は熱延中でのAlN析出を最小限に
し、[S]と同様に1次再結晶粒のインヒビター効果を
弱めるためには極力少ないほうが望ましく、0.003
0%とした。
Next, in the present invention, regarding [S] and [N] that constitute the cleanliness, [S] forms fine sulfides or oxysulfides and is harmful to increase the primary recrystallization temperature. In order to exert the effect, it is desirable that the amount is as small as possible. However, if the low temperature heating shown in the present invention is carried out, the effect of preventing the deterioration of magnetism due to these precipitates can be confirmed. Therefore, the upper limit of [S] is 0.005 considering the non-oriented electrical steel sheet.
0%, [N] is preferably as small as possible in order to minimize AlN precipitation during hot rolling and weaken the inhibitory effect of primary recrystallized grains as in [S].
It was set to 0%.

【0014】[P]は鋼板の硬度を高め、打抜き性を向
上する作用があるが、反面その含有量が多くなると、鉄
損および磁束密度我劣化するので0.1%以下とする。
[Al]は磁気特性の点からは、Siと同様含有量は多
いほど好ましいが、1%を超えると冷延性が劣化するた
め上限を1%とした。その他成分元素については、特に
限定する理由はないが、しかし、鉄中に残留した微量
[S]を安定化させるために、[Ca]を添加する、磁
束密度のより以上の改善を目的に[Sn]、[Cu]を
入れるといったことも有効である。
[P] has the effect of increasing the hardness of the steel sheet and improving the punching property, but on the other hand, if its content increases, iron loss and magnetic flux density deteriorate, so it is made 0.1% or less.
From the viewpoint of magnetic properties, the higher the content of [Al], the more preferable it is, but if the content exceeds 1%, the cold ductility deteriorates, so the upper limit was made 1%. There is no particular limitation on other elemental elements, but for the purpose of further improving the magnetic flux density by adding [Ca] in order to stabilize the trace amount [S] remaining in iron, [ It is also effective to add Sn] or [Cu].

【0015】[0015]

【実施例1】[C]0.0020%、[Si]3.0
%、[Mn]0.2%、[S]0.0010%、[A
l]0.6%、[TN]0.0015%を含有する無方
向性電磁鋼板用スラブを、粗圧延機に近接設置した電気
式加熱炉(誘導加熱炉)に装入し、炉内を窒素ガス雰囲
気にして900℃に加熱した。このスラブを炉より抽出
後直ちに粗圧延機に噛込ませ、粗−仕上圧延をし2.0
mmの熱延鋼板とした。この際の仕上出口温度は730℃
であった。この鋼板に900℃×30秒の熱延板焼鈍を
実施し、酸洗後、圧下率75%の冷延をし、880℃×
30秒の仕上焼鈍を行った。得られた鋼板の鉄損(W1
5/50)を測定したところ2.00w/kgの非常に良好
な値が得られた。一方同一成分のスラブを直火式ガス加
熱炉で900℃に加熱後、熱間圧延を行ったところ、仕
上圧延入側温度が660℃に降下しており、熱延板厚ゲ
ージが得られず成品にならなかった。
Example 1 [C] 0.0020%, [Si] 3.0
%, [Mn] 0.2%, [S] 0.0010%, [A
1] 0.6%, [TN] 0.0015% containing slab for non-oriented electrical steel sheet is charged into an electric heating furnace (induction heating furnace) installed close to a rough rolling mill, and the inside of the furnace is charged. It was heated to 900 ° C. in a nitrogen gas atmosphere. Immediately after the slab was extracted from the furnace, the slab was bitten into a rough rolling machine to perform rough-finish rolling to 2.0.
mm hot rolled steel sheet. Finishing outlet temperature at this time is 730 ℃
Met. This steel plate is annealed at 900 ° C for 30 seconds, hot-rolled after pickling, and cold-rolled at a reduction rate of 75% to 880 ° C.
Finish annealing was performed for 30 seconds. Iron loss of the obtained steel sheet (W1
5/50), a very good value of 2.00 w / kg was obtained. On the other hand, when slabs with the same composition were heated to 900 ° C in a direct-fire gas heating furnace and then hot-rolled, the finish rolling inlet temperature dropped to 660 ° C, and the hot-rolled sheet thickness gauge could not be obtained. It did not become a product.

【0016】[0016]

【実施例2】[C]0.0030%、[Si]1.0
%、[Mn]0.2%,[S]0.0030%、[A
l]tr.、[TN]0.0015%を含有する無方向
性電磁鋼板用スラブを、粗圧延機に近接設置した電気式
加熱炉(誘導加熱炉)に装入し、炉内を窒素ガス雰囲気
にして900℃に加熱した。このスラブを炉より抽出後
直ちに粗圧延機に噛込ませ、粗−仕上圧延をし、2.3
mmの熱延鋼板とした。この鋼板を酸洗後、圧下率78%
で冷延し、800℃×30秒で仕上焼鈍を行った。
Example 2 [C] 0.0030%, [Si] 1.0
%, [Mn] 0.2%, [S] 0.0030%, [A
l] tr. , [TN] 0.0015% containing slab for non-oriented electrical steel sheet is charged into an electric heating furnace (induction heating furnace) installed in the vicinity of a rough rolling machine, and the inside of the furnace is made to have a nitrogen gas atmosphere. Heated to ° C. Immediately after the slab was extracted from the furnace, the slab was bitten into a rough rolling machine and subjected to rough-finish rolling to obtain 2.3.
mm hot rolled steel sheet. After pickling this steel plate, the reduction rate is 78%
Cold-rolled, and finish annealing was performed at 800 ° C. for 30 seconds.

【0017】一方、比較法として同一成分のスラブを直
火式ガス加熱炉で1000℃に加熱後熱間圧延を行っ
た。下記の如く熱延中の温度降下が大きく、仕上出口温
度は700℃と低温になった。この熱延鋼板を上記と同
様に酸洗後、圧下率78%で冷延し、800℃×30秒
で仕上焼鈍を行った。。
On the other hand, as a comparative method, a slab having the same composition was heated to 1000 ° C. in a direct-fired gas heating furnace and then hot-rolled. As described below, the temperature drop during hot rolling was large, and the finish outlet temperature was as low as 700 ° C. This hot-rolled steel sheet was pickled in the same manner as above, cold-rolled at a reduction rate of 78%, and finish-annealed at 800 ° C. for 30 seconds. .

【0018】図1に、本実施例における、本発明の粗圧
延機に隣接した誘導加熱炉で加熱したスラブと、比較例
のガス加熱炉で加熱したスラブの、炉抽出より巻取まで
の熱間圧延中の温度推移を示した。いずれも圧延可能の
範囲である圧延出口温度700℃を確保出来たが比較例
(直火式ガス加熱)ではスラブの加熱炉抽出温度が本発
明より100℃高くしなければならなかった。このこと
は図から明らかのように、比較例は粗圧延機間での距離
が大きく、粗圧延までに既に80℃程度の温度降下がみ
られるのに対し、本発明例では移動距離(時間)が少な
いため10℃という少ない降下温度で粗圧延が開始でき
ることに因る。また、粗圧延において比較例では160
℃に対し本発明例では130℃の温度降下であり、仕上
圧延についても同様本発明例の温度降下が少ないことに
も因る。即ち、直火式加熱ではスラブの表面からの加熱
であるため、スラブ厚中心までの焼上げが難しく、圧延
が進むに連れて、表面と中心部分の温度が平均化さるた
め温度下がりが大きいのに対し、誘導加熱の場合では、
逆にスラブの厚み方向中心部分から焼上がるために、ス
ラブ表面と中心部の温度差が少なく、直火式に比べ圧延
中の温度降下が著しく小さくなる。
FIG. 1 shows the heat from the furnace extraction to the winding of the slab heated in the induction heating furnace adjacent to the rough rolling mill of the present invention and the slab heated in the gas heating furnace of the comparative example in this embodiment. The temperature transition during hot rolling is shown. In all cases, a rolling outlet temperature of 700 ° C., which is within the rolling range, could be secured, but in the comparative example (direct heating type gas heating), the slab heating furnace extraction temperature had to be 100 ° C. higher than that of the present invention. As is clear from the figure, in the comparative example, the distance between the rough rolling mills is large, and a temperature drop of about 80 ° C. is already observed before the rough rolling, whereas in the inventive example, the moving distance (time) is increased. This is because rough rolling can be started with a low temperature drop of 10 ° C. Further, in the rough rolling, in the comparative example, 160
In the present invention example, the temperature drop is 130 ° C., and similarly in the finish rolling, the temperature drop of the present invention example is small. That is, in direct-fire heating, since heating is from the surface of the slab, it is difficult to bake to the center of the slab thickness, and as the rolling progresses, the temperature of the surface and the central portion averages, so the temperature drop is large. On the other hand, in the case of induction heating,
On the contrary, since the slab is baked from the central portion in the thickness direction, the temperature difference between the slab surface and the central portion is small, and the temperature drop during rolling is remarkably smaller than that of the direct flame type.

【0019】表1に、得られた各鋼板について磁束密度
(B50) 及び鉄損(W15/50)を測定した結果を
示す。
Table 1 shows the results of measuring the magnetic flux density (B50) and iron loss (W15 / 50) of each of the obtained steel sheets.

【0020】[0020]

【表1】 [Table 1]

【0021】表から明らかのように、電気式加熱(誘導
加熱)による本発明法は、直火式ガス加熱による比較例
に比べ、いずれも優れた特性を有している。
As is apparent from the table, the method of the present invention by electric heating (induction heating) has excellent characteristics as compared with the comparative example by direct gas heating.

【0022】[0022]

【発明の効果】以上のように本発明によれば、雰囲気制
御型誘導加熱でスラブを低温加熱して熱間圧延すること
により、硫化物や窒化物の再析出を防止しすると共に無
害化し、高い磁気特性を有する無方向生電磁鋼板を製造
することができる。
As described above, according to the present invention, the slab is heated at a low temperature by the controlled atmosphere induction heating and hot-rolled to prevent the reprecipitation of sulfides and nitrides and render them harmless. It is possible to manufacture a non-oriented raw electrical steel sheet having high magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間圧延中の時間推移におけるスラブ表面(尾
部)温度履歴を示す図である。
FIG. 1 is a diagram showing a slab surface (tail) temperature history in a time transition during hot rolling.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 [C]0.0080%以下、[Si]4
%以下、[Mn]0.02〜0.6%以下、[P]0.
1%以下、[S]0.0050%以下、[Al]1.0
%以下、[N]0.0030%以下、残部実質的にFe
よりなる無方向性電磁鋼用スラブを熱間圧延するに際
し、粗圧延機に隣接して設けた雰囲気制御型電気式加熱
炉で1150℃以下に加熱し、該スラブを炉から抽出後
直ちに粗圧延し、引続き仕上圧延を実施することを特徴
とする極めて優れた磁気特性を有する無方向性電磁鋼板
の熱間圧延方法。
1. [C] 0.0080% or less, [Si] 4
% Or less, [Mn] 0.02 to 0.6% or less, [P] 0.
1% or less, [S] 0.0050% or less, [Al] 1.0
% Or less, [N] 0.0030% or less, balance substantially Fe
At the time of hot rolling the slab for non-oriented electrical steels, the slab is heated to 1150 ° C. or less in an atmosphere-controlled electric heating furnace provided adjacent to the rough rolling mill, and the slab is subjected to rough rolling immediately after extraction from the furnace. A hot rolling method for a non-oriented electrical steel sheet having extremely excellent magnetic properties, which is characterized by carrying out finish rolling.
【請求項2】 無方向性電磁鋼用スラブを上下方向に夫
々出力制御可能なコイルを多段に備えた雰囲気制御型電
気式加熱炉で1150℃以下に加熱することを特徴とす
る請求項1記載の極めて優れた磁気特性を有する無方向
性電磁鋼板の熱間圧延方法。
2. The slab for non-oriented electrical steel is heated to 1150 ° C. or less in an atmosphere-controlled electric heating furnace provided with a multi-stage coil capable of controlling output in the vertical direction. Hot rolling method for non-oriented electrical steel sheet having extremely excellent magnetic properties.
JP3095624A 1991-04-25 1991-04-25 Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties Expired - Lifetime JP2536974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095624A JP2536974B2 (en) 1991-04-25 1991-04-25 Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095624A JP2536974B2 (en) 1991-04-25 1991-04-25 Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH05105955A true JPH05105955A (en) 1993-04-27
JP2536974B2 JP2536974B2 (en) 1996-09-25

Family

ID=14142687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095624A Expired - Lifetime JP2536974B2 (en) 1991-04-25 1991-04-25 Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2536974B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002954A (en) * 2002-04-05 2004-01-08 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor
JP2010001557A (en) * 2008-01-30 2010-01-07 Nippon Steel Corp Method for producing non-oriented electrical steel sheet having high magnetic flux density
JP2010047785A (en) * 2008-08-19 2010-03-04 Nippon Steel Corp Method for producing non-oriented electrical steel sheet high in magnetic-flux density
JP2011111658A (en) * 2009-11-27 2011-06-09 Nippon Steel Corp Method for producing non-oriented magnetic steel sheet having high magnetic flux density
JP2020147842A (en) * 2019-03-05 2020-09-17 住友重機械工業株式会社 Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190521A (en) * 1984-03-08 1985-09-28 Sumitomo Metal Ind Ltd Manufacture of nonoriented electrical steel sheet
JPS6139152U (en) * 1984-08-09 1986-03-12 新日本製鐵株式会社 Multi-purpose heating equipment row for steel materials
JPS63418A (en) * 1986-06-20 1988-01-05 Kawasaki Steel Corp Production of non-oriented electrical steel sheet having decreased surface flaws

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190521A (en) * 1984-03-08 1985-09-28 Sumitomo Metal Ind Ltd Manufacture of nonoriented electrical steel sheet
JPS6139152U (en) * 1984-08-09 1986-03-12 新日本製鐵株式会社 Multi-purpose heating equipment row for steel materials
JPS63418A (en) * 1986-06-20 1988-01-05 Kawasaki Steel Corp Production of non-oriented electrical steel sheet having decreased surface flaws

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002954A (en) * 2002-04-05 2004-01-08 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor
JP2010001557A (en) * 2008-01-30 2010-01-07 Nippon Steel Corp Method for producing non-oriented electrical steel sheet having high magnetic flux density
JP2010047785A (en) * 2008-08-19 2010-03-04 Nippon Steel Corp Method for producing non-oriented electrical steel sheet high in magnetic-flux density
JP2011111658A (en) * 2009-11-27 2011-06-09 Nippon Steel Corp Method for producing non-oriented magnetic steel sheet having high magnetic flux density
JP2020147842A (en) * 2019-03-05 2020-09-17 住友重機械工業株式会社 Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor

Also Published As

Publication number Publication date
JP2536974B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
WO1996000306A1 (en) Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
KR950013287B1 (en) Method of making non-viented magnetic steel strip
EP0357800A1 (en) Process for producing nonoriented silicon steel sheet having excellent magnetic properties
KR950013286B1 (en) Method of making non-oriented magnetic steel strips
JP2536974B2 (en) Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
EP0798392B1 (en) Production method for grain oriented silicon steel sheet having excellent magnetic characteristics
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
EP0357796B1 (en) Process for producing nonoriented electric steel sheet
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP4337146B2 (en) Method for producing non-oriented electrical steel sheet
CN117460851A (en) Method for producing oriented electrical steel sheet
JP2004332031A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties
JP2536976B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent surface properties and magnetic properties
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0580527B2 (en)
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0629461B2 (en) Method for producing silicon steel sheet having good magnetic properties
JP7239077B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3485409B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2671717B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070708

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

EXPY Cancellation because of completion of term