JPH05295438A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH05295438A
JPH05295438A JP4096858A JP9685892A JPH05295438A JP H05295438 A JPH05295438 A JP H05295438A JP 4096858 A JP4096858 A JP 4096858A JP 9685892 A JP9685892 A JP 9685892A JP H05295438 A JPH05295438 A JP H05295438A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
weight
hot
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4096858A
Other languages
Japanese (ja)
Other versions
JP2709549B2 (en
Inventor
Yasunari Yoshitomi
康成 吉冨
Katsuro Kuroki
克郎 黒木
Masao Matsuo
征夫 松尾
Hiroaki Masui
浩昭 増井
Yoshio Nakamura
吉男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4096858A priority Critical patent/JP2709549B2/en
Priority to KR1019930006246A priority patent/KR960010811B1/en
Priority to DE69327884T priority patent/DE69327884T2/en
Priority to EP93106124A priority patent/EP0566986B1/en
Publication of JPH05295438A publication Critical patent/JPH05295438A/en
Priority to US08/466,866 priority patent/US5512110A/en
Application granted granted Critical
Publication of JP2709549B2 publication Critical patent/JP2709549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain the steel sheet for an iron core for electrical equipment by specifying the Al/Si value in a steel with a specific composition, the grain size between decarburizing annealing and the initiation of finish annealing, and nitriding treatment at the initiation of secondary recrystallization at the final finish annealing after hot rolling, respectively. CONSTITUTION:A slab of a steel having a composition consisting of, by weight, 0.025-0.075% C, 3.4-5.0% Si, 0.015-0.080% acid-soluble Al, 0.0030-0.013% N, <=0.014% of (S+0.405Se), 0.05-0.8% Mn, and the balance iron is heated at <1280 deg.C and hot-rolled. Successively, hot rolled plate annealing is done and the resulting plate is subjected to one or more cold rollings including the final cold rolling at >=80% draft and also including, if necessary, process annealing between the cold rolling stages, and the resulting sheet is subjected to decarburizing annealing and final finish annealing, by that the nonoriented silicon steel sheet can be obtained. In this method, the ratio between acid-soluble Al and Si contents is regulated so that it satisfies Al(%)/Si(%)>=0.0080, and also the average grain size of primary recrystallized grains in the course between the completion of decarburizing annealing and the initiation of final finish annealing is regulated to 18-35mu. Further, nitriding treatment for allowing the steel sheet to absorb >=0.0010% nitrogen is done before secondary recrystallization is initiated in the final finish annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8 が通常使用される。また、鉄
損特性を表す数値としては、周波数50Hzで1.7テ
スラー(T)まで磁化したときの1kg当りの鉄損W
17/50 を使用している。磁束密度は、鉄損特性の最大支
配因子であり、一般的にいって磁束密度が高いほど鉄損
特性が良好になる。なお、一般的に磁束密度を高くする
と二次再結晶粒が大きくなり、鉄損特性が不良となる場
合がある。これに対しては、磁区制御により、二次再結
晶粒の粒径に拘らず、鉄損特性を改善することができ
る。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The magnetic field strength is 800A as a numerical value indicating the excitation characteristic.
A magnetic flux density B 8 at / m is usually used. In addition, as a numerical value representing the iron loss characteristic, the iron loss W per 1 kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz.
I am using 17/50 . The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に<001>軸を持ったいわゆるゴス組織を発達さ
せることにより製造されている。良好な磁気特性を得る
ためには、磁化容易軸である<001>を圧延方向に高
度に揃えることが必要である。このような高磁束密度一
方向性電磁鋼板の製造技術として代表的なものに田口悟
等による特公昭40−15644号公報及び今中拓一等
による特公昭51−13469号公報記載の方法があ
る。前者においてはMnS及びAlNを、後者ではMn
S、MnSe、Sb等を主なインヒビターとして用いて
いる。従って現在の技術においてはこれらインヒビター
として機能する析出物の大きさ、形態及び分散状態を適
正制御することが不可欠である。MnSに関して言え
ば、現在の工程では熱延前のスラブ加熱時にMnSをい
ったん完全固溶させた後、熱延時に析出させる方法がと
られている。二次再結晶に必要な量のMnSを完全固溶
させるためには1400℃程度の温度が必要である。こ
れは普通鋼のスラブ加熱温度に比べて200℃以上も高
く、この高温スラブ加熱処理には以下に述べるような不
利な点がある。
This unidirectional electrical steel sheet is manufactured by causing secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} axis on the steel sheet surface and <001> axis in the rolling direction. Has been done. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction. Typical methods for producing such a high magnetic flux density unidirectional electrical steel sheet are methods described in Japanese Patent Publication No. 40-15644 by Satoru Taguchi et al. And Japanese Patent Publication No. 51-13469 by Takuichi Imanaka. . MnS and AlN are used in the former and Mn are used in the latter.
S, MnSe, Sb, etc. are used as main inhibitors. Therefore, in the present technology, it is indispensable to appropriately control the size, morphology and dispersion state of precipitates that function as these inhibitors. Regarding MnS, in the present process, a method is used in which MnS is once completely solid-soluted during slab heating before hot rolling and then precipitated during hot rolling. A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high temperature slab heating treatment has the following disadvantages.

【0004】1)方向性電磁鋼専用の高温スラブ加熱炉
が必要。 2)加熱炉のエネルギー原単位が高い。 3)溶融スケール量が増大し、いわゆるノロかき出し等
にみられるように操業上の悪影響が大きい。 このような問題点を回避するためにはスラブ加熱温度を
普通鋼並みに下げればよいわけであるが、このことは同
時にインヒビターとして有効なMnSの量を少なくする
か、あるいはまったく用いないことを意味し、必然的に
二次再結晶の不安定化をもたらす。このため低温スラブ
加熱化を実現するためには何らかの形でMnS以外の析
出物などによりインヒビターを強化し、仕上焼鈍時の正
常粒成長の抑制を充分にする必要がある。このようなイ
ンヒビターとしては硫化物の他、窒化物、酸化物及び粒
界析出元素等が考えられ、公知の技術として、例えば次
のようなものがあげられる。
1) A high temperature slab heating furnace dedicated to grain-oriented electrical steel is required. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as can be seen in so-called shaving. In order to avoid such problems, the slab heating temperature should be lowered to the level of ordinary steel, but this means that the amount of MnS effective as an inhibitor should be reduced at the same time, or no MnS should be used at all. However, this inevitably causes destabilization of secondary recrystallization. Therefore, in order to realize low temperature slab heating, it is necessary to strengthen the inhibitor in some form by a precipitate other than MnS to sufficiently suppress normal grain growth during finish annealing. As such inhibitors, sulfides, nitrides, oxides, grain boundary precipitation elements, and the like are conceivable. Known techniques include, for example, the following.

【0005】特公昭54−24685号公報では、A
s、Bi、Sn、Sb等の粒界偏析元素を鋼中に含有さ
せることによりスラブ加熱温度を1050〜1350℃
の範囲にする方法を開示し、特開昭52−24116号
公報では、Alの他、Zr、Ti、B、Nb、Ta、
V、Cr、Mo等の窒化物生成元素を含有させることに
よりスラブ加熱温度を1100〜1260℃の範囲にす
る方法を開示し、また特開昭57−158322号公報
では、Mn含有量を下げ、Mn/Sの比率を2.5以下
にすることにより低温スラブ加熱化を行い、さらにCu
の添加により二次再結晶を安定化する技術を開示してい
る。一方、これらインヒビターの補強と組み合わせて金
属組織の側から改良を加えた技術も開示されている。す
なわち、特開昭57−89433号公報では、Mnに加
えS、Se、Sb、Bi、Pb、Sn、B等の元素を加
え、これにスラブの柱状晶率と二次冷延圧下率を組み合
わせることにより1100〜1250℃の低温スラブ加
熱化を実現している。さらに特開昭59−190324
号公報では、SあるいはSeに加え、Al及びBと窒素
を主体としてインヒビターを構成し、これに冷延後の一
次再結晶焼鈍時にパルス焼鈍を施すことにより二次再結
晶を安定化する技術を開示している。このように方向性
電磁鋼板製造における低温スラブ加熱化実現のために
は、これまでに多大な努力が続けられてきている。
In Japanese Patent Publication No. 54-24685, A
The slab heating temperature is adjusted to 1050 to 1350 ° C. by including grain boundary segregation elements such as s, Bi, Sn and Sb in the steel.
In Japanese Patent Laid-Open No. 52-24116, in addition to Al, Zr, Ti, B, Nb, Ta,
A method of controlling the slab heating temperature in the range of 1100 to 1260 ° C. by containing a nitride-forming element such as V, Cr, or Mo is disclosed, and in JP-A-57-158322, the Mn content is lowered, Low temperature slab heating is performed by setting the Mn / S ratio to 2.5 or less, and further Cu
Discloses a technique for stabilizing the secondary recrystallization by adding. On the other hand, a technique in which improvement is added from the metal structure side in combination with reinforcement of these inhibitors is also disclosed. That is, in JP-A-57-89433, elements such as S, Se, Sb, Bi, Pb, Sn, and B are added in addition to Mn, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined with this. As a result, low temperature slab heating of 1100 to 1250 ° C is realized. Further, JP-A-59-190324
Japanese Patent Laid-Open Publication No. 2003-242242 discloses a technique in which an inhibitor is mainly composed of Al and B and nitrogen in addition to S or Se, and pulse annealing is performed during primary recrystallization annealing after cold rolling to stabilize secondary recrystallization. Disclosure. Thus, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far.

【0006】さて、先に特開昭59−56522号公報
において、Mnを0.08〜0.45%、Sを0.00
7%以下にすることにより低温スラブ加熱化を可能にす
る技術が開示された。この方法により高温スラブ加熱時
のスラブ結晶粒粗大化に起因する製品の線状二次再結晶
不良発生の問題が解消された。
[0006] First, in JP-A-59-56522, Mn is 0.08 to 0.45% and S is 0.00.
A technique has been disclosed that enables low temperature slab heating by making the content 7% or less. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0007】[0007]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来製造コストの低減を目的としているものの、
当然のことながら、良好な磁気特性を安定して得る技術
でなければ、工業化はできない。そこで、本発明者らは
Si量を増加させることにより鉄損特性を向上させるべ
く研究を進めてきたが、二次再結晶方位制御が困難なた
め目標特性が得られなかった。
Although the method by low temperature slab heating is originally intended to reduce the manufacturing cost,
As a matter of course, unless it is a technique that stably obtains good magnetic characteristics, industrialization cannot be achieved. Therefore, the present inventors have conducted research to improve the iron loss characteristics by increasing the amount of Si, but the target characteristics could not be obtained because the secondary recrystallization orientation control is difficult.

【0008】かかる状況を打開すべく広範にわたって研
究した結果、二次再結晶時の析出物制御が重要であると
いう認識に達した。
As a result of extensive research aimed at overcoming such a situation, it has been recognized that control of precipitates during secondary recrystallization is important.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) 重量でC:0.025〜0.075%、Si:
3.4〜5.0%、酸可溶性Al:0.015〜0.0
80%、N:0.0030〜0.0130%、S+0.
405Se:0.014%以下、Mn:0.05〜0.
8%を含有し、残部がFe及び不可避不純物からなるス
ラブを1280℃未満の温度で加熱し、熱延を行い、引
き続き必要に応じて熱延板焼鈍を行い、次いで圧下率8
0%以上の最終冷延を含み必要に応じて中間焼鈍をはさ
む1回以上の冷延を行い、次いで脱炭焼鈍、最終仕上焼
鈍を施して一方向性電磁鋼板を製造する方法において、
酸可溶性Al、Siの含有量を重量%を単位としてAl
(%)、Si(%)とした時、このAl、Siを下記の
範囲に制御し、 Al(%)/Si(%)≧0.0080 脱炭焼鈍完了後、最終仕上焼鈍開始までの一次再結晶粒
の平均粒径を18〜35μmとし、熱延後、最終仕上焼
鈍の二次再結晶開始までの間に鋼板に0.0010重量
%以上の窒素吸収を行わせる窒化処理を施すことを特徴
とする磁気特性の優れた一方向性電磁鋼板の製造方法。
The subject matter of the present invention is as follows. (1) C: 0.025 to 0.075% by weight, Si:
3.4-5.0%, acid-soluble Al: 0.015-0.0
80%, N: 0.0030 to 0.0130%, S + 0.
405 Se: 0.014% or less, Mn: 0.05-0.
A slab containing 8% and the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot-rolled, and if necessary, hot-rolled sheet is annealed, and then rolled at a reduction ratio of 8
In a method for producing a unidirectional electrical steel sheet, which comprises 0% or more of final cold rolling, performs one or more cold rollings with intermediate annealing if necessary, and then performs decarburization annealing and final finishing annealing.
Content of acid-soluble Al and Si in units of weight% Al
(%) And Si (%), Al and Si are controlled within the following ranges, and Al (%) / Si (%) ≥ 0.0080 Primary after completion of decarburization annealing until start of final finishing annealing The average grain size of the recrystallized grains is set to 18 to 35 μm, and the steel sheet is subjected to a nitriding treatment for absorbing 0.0010% by weight or more of nitrogen between the hot rolling and the start of secondary recrystallization in the final finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.

【0010】(2) 重量で0.01〜0.15%のS
nをスラブに含有することを特徴とする前項1記載の磁
気特性の優れた一方向性電磁鋼板の製造方法。 (3) 最終仕上焼鈍の昇温過程における鋼板の温度が
900〜1150℃の範囲において、焼鈍雰囲気の窒素
分圧を30%以上とすることを特徴とする前項1または
2記載の磁気特性の優れた一方向性電磁鋼板の製造方
法。
(2) 0.01 to 0.15% by weight of S
The method for producing a grain-oriented electrical steel sheet with excellent magnetic properties according to item 1, wherein n is contained in the slab. (3) Excellent magnetic properties according to the above 1 or 2, wherein the nitrogen partial pressure in the annealing atmosphere is 30% or more in the range of 900 to 1150 ° C. in the temperature of the steel sheet in the temperature rising process of final finish annealing. Method for manufacturing unidirectional electrical steel sheet.

【0011】[0011]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
或いは造塊法で鋳造し、必要に応じて分塊工程を挟んで
スラブとし、引き続き熱間圧延して熱延板とし、次いで
この熱延板に必要に応じて焼鈍を施し、次いで圧下率8
0%以上の最終冷延を含み、必要に応じて中間焼鈍をは
さむ1回以上の冷延、脱炭焼鈍、最終仕上焼鈍を順次行
うことによって製造される。
The function of the grain-oriented electrical steel sheet of the present invention is
Molten steel obtained by a conventional steelmaking method is cast by a continuous casting method or an ingot making method, and if necessary, a slab may be sandwiched between slabs, followed by hot rolling to a hot rolled sheet, and then this The hot-rolled sheet is annealed if necessary, and then the rolling reduction is 8
A final cold rolling of 0% or more is included, and if necessary, one or more cold rollings with intermediate annealing, decarburization annealing, and final finishing annealing are sequentially performed.

【0012】本発明者らは、Si量を増加した場合の二
次再結晶方位制御について種々の観点から広範にわたっ
て研究したところ、Al量とSi量の比が重要な因子で
あることを発見した。以下実験結果を基に詳細に説明す
る。図1にSi量とAl量の比(Al/Si)と磁気特
性の関係を示す。ここでは酸可溶性Alの量をAl
(%)と表記している。この場合、C:0.045〜
0.067重量%、Si:3.4〜4.7重量%、酸可
溶性Al:0.018〜0.061重量%、N:0.0
073〜0.0092重量%、Mn:0.14重量%、
S:0.006〜0.008重量%を含有し、残余Fe
及び不可避的不純物からなる40mm厚のスラブを11
50℃で1時間加熱後、2.3mm厚まで熱延した。か
かる熱延板に、1100℃に30秒保持に引き続き90
0℃に30秒保持して急冷する熱延板焼鈍を施した後、
0.22mmまで冷延し、次いで810〜850℃に9
0秒保持する脱炭焼鈍(焼鈍雰囲気 N2 :25%、H
2 :75%、D.P.=60℃)を施した後、750℃
に30秒保持する焼鈍(焼鈍雰囲気 N2 :25%、H
2 :75%、D.P.<0℃)中に焼鈍雰囲気中にNH
3 ガスを混入し、鋼板に窒素吸収を行わせた。この際の
窒化量(増窒素量)は0.0081〜0.0127重量
%であった。そして、かかる鋼板の平均結晶粒径を光学
顕微鏡と画像解析機を用いて測定したところ、21〜2
9μm(円相当直径)であった。かかる鋼板にMgOを
主成分とする焼鈍分離剤を塗布し、N2 :25%、
2 :75%の焼鈍雰囲気中で15℃/hrで1200
℃まで昇温し、1200℃で20時間H2 中で保持する
最終仕上焼鈍を施した。図1から明らかなように、Al
/Si≧0.0080の領域で良好な磁束密度(B8
S ≧0.95)(BS :飽和磁束密度)が得られてい
る。
The present inventors have found two problems in the case of increasing the amount of Si.
A wide range of secondary recrystallization orientation control from various viewpoints
Research showed that the ratio of the amount of Al to the amount of Si is an important factor.
I found that. Below is a detailed description based on the experimental results.
It Figure 1 shows the ratio of the amount of Si to the amount of Al (Al / Si) and the magnetic characteristics.
Indicates a sexual relationship. Here, the amount of acid-soluble Al is
It is written as (%). In this case, C: 0.045 ~
0.067% by weight, Si: 3.4 to 4.7% by weight, acid
Soluble Al: 0.018 to 0.061% by weight, N: 0.0
073-0.0092% by weight, Mn: 0.14% by weight,
S: 0.006 to 0.008 wt%, balance Fe
And a 40 mm thick slab consisting of inevitable impurities 11
After heating at 50 ° C. for 1 hour, it was hot rolled to a thickness of 2.3 mm. Or
Keep the hot-rolled sheet at 1100 ° C for 30 seconds and then 90
After performing hot-rolled sheet annealing in which it is held at 0 ° C for 30 seconds and rapidly cooled,
Cold rolled to 0.22 mm, then 9 to 810-850 ° C
Decarburization annealing for 0 seconds (annealing atmosphere N2: 25%, H
2: 75%, D.I. P. = 60 ° C), then 750 ° C
Annealing for 30 seconds (annealing atmosphere N2: 25%, H
2: 75%, D.I. P. NH in an annealing atmosphere at <0 ° C)
3Gas was mixed in and the steel sheet was made to absorb nitrogen. At this time
The amount of nitriding (the amount of nitrogen increase) is 0.0081 to 0.0127 weight
%Met. Then, the average crystal grain size of such a steel plate is
When measured using a microscope and an image analyzer, 21 to 2
It was 9 μm (equivalent circle diameter). MgO on such steel
Applying the annealing separator as the main component, N2: 25%,
H2: 1200 at 15 ° C / hr in 75% annealing atmosphere
Temperature is raised to ℃, H at 1200 ℃ for 20 hours2Hold in
Final finish annealing was performed. As is clear from FIG.
Good magnetic flux density (B8/
BS≧ 0.95) (BS: Saturation magnetic flux density)
It

【0013】本発明者らは、図1の結果を受け、さらに
磁気特性を向上する手段を検討した。図2に、最終仕上
焼鈍の昇温過程の900〜1150℃の間の焼鈍雰囲気
の窒素分圧(PN2(%))と磁気特性の関係を示す。こ
の場合、C:0.054重量%、Si:3.51重量
%、酸可溶性Al:0.034重量%、N:0.008
6重量%、Mn:0.14重量%、S:0.007重量
%を含有し、残部Fe及び不可避的不純物からなる40
mm厚スラブに、熱延から窒化処理に至る工程を図1で
説明した条件で施した。この場合、窒化量は0.011
5重量%であり、この窒化処理後の鋼板の平均結晶粒径
は23μm(円相当直径)であった。かかる鋼板にMg
Oを主成分とする焼鈍分離剤を塗布し、1200℃まで
15℃/hrで昇温し、1200℃に20時間H2 中で
保持する最終仕上焼鈍を施した。この最終仕上焼鈍の昇
温過程の900℃まではN2 :25%、H2 :75%の
焼鈍雰囲気中で処理し、900℃から1200℃までは
2 とH2 の種々の分圧比の条件下で処理した。図2か
ら明らかなように、900〜1150℃の間のP
N2(%)が30%以上の場合に、B8 ≧1.94Tなる
良好な磁気特性が得られている。
Based on the results shown in FIG. 1, the present inventors have examined means for further improving the magnetic characteristics. FIG. 2 shows the relationship between the nitrogen partial pressure (P N2 (%)) in the annealing atmosphere and the magnetic properties between 900 and 1150 ° C. in the temperature rising process of the final finish annealing. In this case, C: 0.054 wt%, Si: 3.51 wt%, acid-soluble Al: 0.034 wt%, N: 0.008
40% by weight, containing 6% by weight, Mn: 0.14% by weight, S: 0.007% by weight, the balance being Fe and inevitable impurities.
The mm-thick slab was subjected to steps from hot rolling to nitriding under the conditions described in FIG. In this case, the nitriding amount is 0.011
It was 5% by weight, and the average grain size of the steel sheet after this nitriding treatment was 23 μm (equivalent circle diameter). Mg on such steel sheet
An annealing separator containing O as a main component was applied, the temperature was raised to 1200 ° C. at 15 ° C./hr, and a final finish annealing was carried out at 1200 ° C. for 20 hours in H 2 . During the temperature rising process of this final finish annealing, it was treated in an annealing atmosphere of N 2 : 25% and H 2 : 75% up to 900 ° C., and various partial pressure ratios of N 2 and H 2 were varied from 900 ° C. to 1200 ° C. Treated under conditions. As is clear from FIG. 2, P between 900 and 1150 ° C.
If N2 (%) is more than 30%, good magnetic properties comprising B 8 ≧ 1.94T is obtained.

【0014】図1、図2で示された磁束密度向上効果の
メカニズムについては、必ずしも明らかではないが、本
発明者らは以下のように推察している。本発明の材料の
場合、二次再結晶を生ぜしめるための主インヒビター
は、AlNであるが、鋼中のSi量が増すとAlNが不
安定化し、(Al、Si)NやSi3 4 が安定化して
くることが考えられる。本発明の様に、熱延後最終仕上
焼鈍の二次再結晶開始までの間に鋼板に窒化処理を施す
場合、窒化後に鋼板表面近傍に窒素が濃化し、その部分
にSi3 4 等Si基の窒化物が析出する。そして、最
終仕上焼鈍の昇温中に、このSi3 4 等の窒化物が分
解し、板厚全厚での窒素量が均一化するのと並行して、
安定なAlNの析出が生じる。本発明の如く、Si量を
増加させると、このような窒化物の変化に影響が生じ
る。つまり、Si量の増加に伴い、Si3 4 等のSi
基窒化物が安定化し、上記の如き板厚方向の窒素量の均
一化、窒化物の均一化が生じにくくなり、AlNの析出
も生じにくくなる。このように板厚方向に不均一な析出
物で、かつSi3 4 等の窒化物の割合が多い状態で二
次再結晶が開始すると、Si3 4 等Si基窒化物は
高温で分解しやすい、板厚中心部では窒化物が不足す
る、等の理由で、インヒビター強度が低い状態で二次再
結晶が進行することとなる。インヒビター強度が低い状
態では、粒界移動の粒界性格依存性が低く、Σ9対応粒
界密度の低いGoss方位から分散した方位粒も二次再
結晶しやすくなる。その結果、二次再結晶方位のGos
s集積度が低下し、磁束密度が低くなってしまう。この
現象は、窒化物に対するSi量の影響に起因するもので
あるので、Si量増加に伴いAl量を増加させ、Al
Nを安定化させるアクション(図1)、最終仕上焼鈍
の昇温中の二次再結晶温度域でのPN2を増加させ、窒化
物の分解を抑制するアクション(図2)が、このような
高Si化に伴う二次再結晶方位制御の課題を解決する手
段となったものと推定される。
The mechanism of the effect of improving the magnetic flux density shown in FIGS. 1 and 2 is not necessarily clear, but the present inventors speculate as follows. In the case of the material of the present invention, the main inhibitor for causing the secondary recrystallization is AlN, but when the amount of Si in the steel increases, AlN becomes unstable and (Al, Si) N or Si 3 N 4 Is likely to stabilize. As in the present invention, when the steel sheet is subjected to nitriding treatment after the hot rolling and before the start of secondary recrystallization in the final finish annealing, nitrogen is concentrated near the surface of the steel sheet after nitriding, and Si 3 N 4 etc. The base nitride precipitates. Then, during the temperature increase of the final finish annealing, the nitride such as Si 3 N 4 is decomposed and the nitrogen amount in the entire plate thickness is made uniform,
Stable AlN precipitation occurs. Increasing the amount of Si as in the present invention affects such changes in the nitride. That is, as the amount of Si increases, Si such as Si 3 N 4
The base nitride is stabilized, and it becomes difficult for the nitrogen content in the plate thickness direction and the nitride to become uniform as described above, and AlN hardly precipitates. When secondary recrystallization starts in such a state that the precipitates are non-uniform in the plate thickness direction and the proportion of nitrides such as Si 3 N 4 is large, Si-based nitrides such as Si 3 N 4 decompose at high temperature. The secondary recrystallization progresses in a state where the inhibitor strength is low due to reasons such as being easy to do and lacking nitride in the central portion of the plate thickness. In the state where the inhibitor strength is low, the dependence of the grain boundary movement on the grain boundary character is low, and the oriented grains dispersed from the Goss orientation with a low grain boundary density corresponding to Σ9 are likely to undergo secondary recrystallization. As a result, the secondary recrystallization orientation Gos
s The degree of integration is reduced and the magnetic flux density is reduced. Since this phenomenon is caused by the influence of the Si amount on the nitride, the Al amount increases as the Si amount increases.
The action to stabilize N (Fig. 1) and the action to increase P N2 in the secondary recrystallization temperature region during the temperature rise of final finish annealing to suppress the decomposition of nitride (Fig. 2) are as follows. It is presumed that it has become a means for solving the problem of secondary recrystallization orientation control associated with higher Si.

【0015】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分とスラブ加熱温度に関して
限定理由を詳細に説明する。Cは0.025重量%(以
下単に%と略述)未満になると二次再結晶が不安定にな
り、かつ二次再結晶した場合でもB8 >1.80(T)
が得がたいので0.025%以上とした。一方、Cが多
くなり過ぎると脱炭焼鈍時間が長くなり経済的でないの
で0.075%以下とした。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. When C is less than 0.025% by weight (hereinafter simply referred to as%), the secondary recrystallization becomes unstable, and even when the secondary recrystallization is performed, B 8 > 1.80 (T)
Since it is difficult to obtain, it was set to 0.025% or more. On the other hand, if C is too much, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less.

【0016】Siは5.0%を超えると冷延時の割れが
著しくなるので5.0%以下とした。また、3.4%未
満では素材の固有抵抗が低すぎ、本発明の目的であるト
ランス鉄心材料として必要な低鉄損が得られないので
3.4%以上とした。Alは二次再結晶の安定化に必要
なAlNを確保するため、酸可溶性Alとして0.01
5%以上が必要である。酸可溶性Alが0.080%を
超えると熱延板のAlNが不適切となり、二次再結晶が
不安定になるので0.080%以下とした。
If Si exceeds 5.0%, cracking during cold rolling becomes significant, so the content of Si is set to 5.0% or less. If it is less than 3.4%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material, which is the object of the present invention, cannot be obtained. Al is 0.01% as acid-soluble Al so as to secure AlN necessary for stabilizing the secondary recrystallization.
5% or more is required. If the acid-soluble Al exceeds 0.080%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.080% or less.

【0017】そして、良好な磁気特性を得るためには、
Al(%)/Si(%)を0.0080以上にする必要
がある。この範囲にすることにより図1に示した如く優
れた磁気特性が得られるので、上記範囲に規定した。こ
の値の上限は特に規定するものではないが、Al(%)
の上限値とSi(%)の下限値より、Al(%)/Si
(%)の上限値は必然的に0.0235となる。
In order to obtain good magnetic characteristics,
Al (%) / Si (%) needs to be 0.0080 or more. By setting this range, excellent magnetic characteristics as shown in FIG. 1 can be obtained, so the above range was defined. The upper limit of this value is not particularly specified, but Al (%)
From the upper limit of Si and the lower limit of Si (%), Al (%) / Si
The upper limit of (%) is necessarily 0.0235.

【0018】Nについては通常の製鋼作業では0.00
30%未満にすることが困難であり、かつ経済的に好ま
しくないので0.0030%以上とし、一方、0.01
30%を超えるとブリスターと呼ばれる“鋼板表面のふ
くれ”が発生するので0.0130%以下とした。Mn
S、MnSeが鋼中に存在しても、製造工程の条件を適
正に選ぶことによって磁気特性を良好にすることが可能
である。しかしながら、SやSeが高いと線状細粒と呼
ばれる二次再結晶不良部が発生する傾向があり、この二
次再結晶不良部の発生を予防するためには(S+0.4
05Se)≦0.014%であることが望ましい。Sあ
るいはSeが上記値を超える場合には製造条件をいかに
変更しても二次再結晶不良部が発生する確率が高くなり
好ましくない。また最終仕上焼鈍で純化するのに要する
時間が長くなりすぎて好ましくなく、このような観点か
らSあるいはSeを不必要に増すことは意味がない。
N is 0.00 in the ordinary steelmaking work.
Since it is difficult to make it less than 30% and it is not economically preferable, it is set to 0.0030% or more, while 0.01
When it exceeds 30%, "blister on the steel plate surface" called blister occurs, so the content was made 0.0130% or less. Mn
Even if S and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, if S and Se are high, secondary recrystallization defective portions called linear fine grains tend to occur, and in order to prevent the generation of this secondary recrystallization defective portion, (S + 0.4
05Se) ≦ 0.014% is desirable. If S or Se exceeds the above value, the probability of occurrence of defective secondary recrystallization is increased no matter how the manufacturing conditions are changed, which is not preferable. Further, the time required for purification in the final finish annealing is too long, which is not preferable, and it is meaningless to increase S or Se unnecessarily from such a viewpoint.

【0019】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、就中ストリップの側縁部は波形状となり、
歩留りを低下させるので、Mnは0.05%以上と規定
した。一方、Mn量が0.8%を超えると製品の磁束密
度を低下せしめるので好ましくない。従って、Mn量の
上限値を0.8%とした。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, especially the side edge of the strip becomes corrugated,
Since Mn decreases the yield, Mn is defined as 0.05% or more. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product will be reduced, which is not preferable. Therefore, the upper limit of the amount of Mn is set to 0.8%.

【0020】Snを0.01〜0.15%添加すること
は、二次再結晶でのインヒビター強度を高めることによ
り磁気特性を高位安定化する上でさらに好ましい。0.
01%未満では、この効果が十分でなく、0.15%超
では、窒化処理が困難となり好ましくない。この他、イ
ンヒビター構成元素として公知なSb、Ti、Zr、B
i、Nb等を添加することはさしつかえない。
It is more preferable to add 0.01 to 0.15% of Sn in order to stabilize the magnetic properties at a high level by increasing the inhibitor strength in the secondary recrystallization. 0.
If it is less than 01%, this effect is not sufficient, and if it exceeds 0.15%, nitriding treatment becomes difficult, which is not preferable. In addition, Sb, Ti, Zr, B which are known as inhibitor constituent elements
It is possible to add i, Nb, etc.

【0021】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。この熱延板
に、必要に応じて熱延板焼鈍を施し、次いで圧下率80
%以上の最終冷延を含み、必要に応じて中間焼鈍をはさ
む1回以上の冷延を施す。最終冷延の圧下率を80%以
上としたのは、圧下率を上記範囲とすることによって、
脱炭板において尖鋭な{110}<001>方位粒と、
これに蚕食され易い対応方位粒({111}<112>
方位粒等)を適正量得ることができ、磁束密度を高める
上で好ましいためである。
The slab heating temperature was limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The heated slab is subsequently hot rolled to form a hot rolled plate. This hot-rolled sheet is subjected to hot-rolled sheet annealing if necessary, and then rolled at a reduction ratio of 80.
% Or more final cold rolling and, if necessary, one or more cold rollings with intermediate annealing. The rolling reduction of the final cold rolling is set to 80% or more because the rolling reduction is within the above range.
In the decarburizing plate, sharp {110} <001> oriented grains,
Corresponding grains ({111} <112>) that are easily eclipsed by silkworms
This is because an appropriate amount of oriented grains, etc.) can be obtained, which is preferable for increasing the magnetic flux density.

【0022】冷延後鋼板は順次、脱炭焼鈍、焼鈍分離剤
塗布、仕上焼鈍を施されて最終製品となる。ここで脱炭
焼鈍完了後、最終仕上焼鈍開始までの間の一次再結晶粒
の平均粒径を18〜35μmに制御することが良好な磁
気特性を得るために必要である。平均粒径が18μm未
満では、二次再結晶方位制御が困難となり、35μm超
では、二次再結晶が不安定となり、好ましくない。
After cold rolling, the steel sheet is sequentially subjected to decarburizing annealing, applying an annealing separator, and finishing annealing to obtain a final product. Here, in order to obtain good magnetic properties, it is necessary to control the average grain size of the primary recrystallized grains to 18 to 35 μm after the completion of decarburization annealing and before the start of final finish annealing. If the average particle size is less than 18 μm, it becomes difficult to control the secondary recrystallization orientation, and if it exceeds 35 μm, the secondary recrystallization becomes unstable, which is not preferable.

【0023】そして、熱延後、最終仕上焼鈍の二次再結
晶開始までの間に鋼板に窒化処理を施すと規定したの
は、本発明の如き低温スラブ加熱を前提とするプロセス
では、二次再結晶に必要なインヒビター強度が不足がち
になるからである。窒化の方法としては特に限定するも
のではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3
スを混入させ窒化する方法、プラズマを用いる方法、焼
鈍分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒
化物が分解してできた窒素を鋼板に吸収させる方法、最
終仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化
する方法等いずれの方法でもよい。窒化量については、
10ppm以上は必要である。
Further, it is defined that the steel sheet is subjected to the nitriding treatment after the hot rolling and before the start of the secondary recrystallization of the final finish annealing, in the process which is premised on the low temperature slab heating as in the present invention. This is because the inhibitor strength required for recrystallization tends to be insufficient. The method of nitriding is not particularly limited, and it is a method of mixing NH 3 gas into the annealing atmosphere after decarburization annealing to perform nitriding, a method of using plasma, a nitride is added to an annealing separating agent, and a final finishing annealing is performed. Any method may be used, such as a method of absorbing nitrogen formed by decomposition of nitrides in the temperature into the steel sheet, a method of nitriding the steel sheet by increasing the N 2 partial pressure in the atmosphere of the final annealing. For the amount of nitriding,
10 ppm or more is necessary.

【0024】さらに、最終仕上焼鈍の昇温過程における
鋼板の温度が900〜1150℃の範囲において、焼鈍
雰囲気の窒素分圧を30%以上にすることは優れた磁気
特性を得る上で、一層好ましい。900℃未満の温度範
囲の焼鈍雰囲気は特に規定しない。二次再結晶は通常9
00〜1150℃で生じるので、この温度範囲での焼鈍
雰囲気を制御すれば十分である。昇温は通常1100〜
1250℃まで行われ、昇温中に通常二次再結晶が完了
し、純化のための恒温保持に入る。この昇温に引き続く
恒温保持は、通常5〜50時間行われるが、この恒温保
持は、通常H2ガスまたはH2 ガスが主な焼鈍雰囲気中
で行われる。二次再結晶のために、例えば1000〜1
100℃で恒温保持し、次いでさらに昇温して純化のた
めの恒温保持に入る場合は、純化に入るまでの温度範囲
が昇温過程と解される。上記900〜1150℃の昇温
過程でのPN2の上限は特に規定するものではなく、10
0%まで許容される。
Further, it is more preferable to set the nitrogen partial pressure of the annealing atmosphere to 30% or more when the temperature of the steel sheet in the temperature rising process of the final annealing is in the range of 900 to 1150 ° C. in order to obtain excellent magnetic properties. .. The annealing atmosphere in the temperature range of less than 900 ° C. is not specified. Secondary recrystallization is usually 9
Since it occurs at 00 to 1150 ° C., it is sufficient to control the annealing atmosphere in this temperature range. The temperature rise is usually 1100-
It is carried out up to 1250 ° C., and usually the secondary recrystallization is completed during the temperature rise, and the isothermal holding for purification is started. The isothermal holding subsequent to this temperature rise is usually carried out for 5 to 50 hours, but this isothermal holding is usually carried out in an annealing atmosphere in which H 2 gas or H 2 gas is the main. For secondary recrystallization, for example, 1000 to 1
When the temperature is kept constant at 100 ° C. and then the temperature is further raised to start the constant temperature maintenance for purification, the temperature range up to the purification is understood as the temperature raising process. The upper limit of P N2 in the temperature rising process of 900 to 1150 ° C. is not particularly specified, and 10
Permissible up to 0%.

【0025】[0025]

【実施例】以下実施例を説明する。 実施例1 C:0.056重量%、Si:3.58重量%、Mn:
0.14重量%、S:0.005重量%、酸可溶性A
l:0.020重量%、0.031重量%、0.
036重量%、N:0.0078重量%を含有し、残部
Fe及び不可避的不純物からなる3種類の40mm厚の
スラブを1150℃の温度で加熱した後、1050℃で
熱延を開始し6パスで熱延して2.3mm厚の熱延板と
した。
EXAMPLES Examples will be described below. Example 1 C: 0.056% by weight, Si: 3.58% by weight, Mn:
0.14% by weight, S: 0.005% by weight, acid-soluble A
1: 0.020% by weight, 0.031% by weight, 0.
Three types of 40 mm thick slabs containing 036 wt% and N: 0.0078 wt% and the balance Fe and unavoidable impurities were heated at a temperature of 1150 ° C., and then hot rolling was started at 1050 ° C. for 6 passes. Was hot-rolled into a hot-rolled sheet having a thickness of 2.3 mm.

【0026】この熱延板に、1120℃に30秒保持
し、900℃に30秒保持して急冷する熱延板焼鈍を施
し、次いで圧下率約90.4%で0.22mm厚の冷延
板とし、830℃で90秒保持する脱炭焼鈍を行い、し
かる後、750℃に30秒保持する焼鈍中にNH3 ガス
を焼鈍雰囲気に混入し、鋼板に窒化処理を施した。この
場合、窒化量(増窒素量)は0.0110〜0.013
2重量%であり、この窒化処理後の鋼板の平均結晶粒径
(円相当直径)は22〜25μmであった。この窒化処
理後の鋼板にMgOを主成分とする焼鈍分離剤を塗布
し、1200℃まで15℃/hrで昇温し、H2 中で1
200℃に20時間保持する最終仕上焼鈍を施した。こ
の最終仕上焼鈍の昇温過程の900℃までは、N2 :2
5%、H2 :75%の焼鈍雰囲気中で処理し、900℃
から1200℃までは、(a)N2 :15%、H2 :8
5%、(b)N2 :25%、H2 :75%、(c)
2 :50%、H2 :50%、(d)N2 :90%、H
2 :10%なる4水準の条件で処理した。
This hot-rolled sheet was annealed at 1120 ° C. for 30 seconds and at 900 ° C. for 30 seconds to quench it, and then cold-rolled to a thickness of 0.22 mm at a reduction rate of about 90.4%. As a plate, decarburization annealing was performed at 830 ° C. for 90 seconds, and then NH 3 gas was mixed into the annealing atmosphere during annealing at 750 ° C. for 30 seconds to subject the steel sheet to nitriding treatment. In this case, the nitriding amount (nitrogen increase amount) is 0.0110 to 0.013.
It was 2% by weight, and the average grain size (circle equivalent diameter) of the steel sheet after this nitriding treatment was 22 to 25 μm. An annealing separator containing MgO as a main component is applied to the steel sheet after the nitriding treatment, the temperature is raised to 1200 ° C. at 15 ° C./hr, and the temperature is set to 1 in H 2.
A final finish annealing was carried out at 200 ° C. for 20 hours. Up to 900 ° C. during the temperature rising process of this final finish annealing, N 2 : 2
5%, H 2: treated in 75% of the annealing atmosphere, 900 ° C.
From 1 to 1200 ° C, (a) N 2 : 15%, H 2 : 8
5%, (b) N 2 : 25%, H 2 : 75%, (c)
N 2 : 50%, H 2 : 50%, (d) N 2 : 90%, H
2 : Processed under 4 levels of 10%.

【0027】工程条件と磁気特性の関係を表1に示す。
表1から明らかなように、本発明の条件である、の
Al量の場合、B8 ≧1.92Tなる良好な磁気特性が
得られ、さらに本発明での最終仕上焼鈍の焼鈍雰囲気条
件である(c)、(d)の条件の場合、B8 ≧1.94
Tなるとりわけ良好な磁気特性が得られた。
Table 1 shows the relationship between process conditions and magnetic properties.
As is clear from Table 1, in the case of the Al amount of, which is the condition of the present invention, good magnetic properties of B 8 ≧ 1.92 T are obtained, and further, the annealing atmosphere condition of the final finish annealing in the present invention is obtained. Under the conditions of (c) and (d), B 8 ≧ 1.94
A particularly good magnetic property of T was obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 C:0.058重量%、Si:3.51重量%、Mn:
0.14重量%、S:0.006重量%、酸可溶性A
l:0.021重量%、0.034重量%、N:
0.0082重量%、Sn:0.05重量%を含有し、
残部Fe及び不可避的不純物からなる2種類の40mm
厚のスラブを1150℃の温度で加熱した後、熱延して
2.3mm厚の熱延板とした。
Example 2 C: 0.058% by weight, Si: 3.51% by weight, Mn:
0.14% by weight, S: 0.006% by weight, acid-soluble A
1: 0.021% by weight, 0.034% by weight, N:
0.0082 wt%, Sn: 0.05 wt%,
2 types of 40mm consisting of balance Fe and unavoidable impurities
After heating the thick slab at a temperature of 1150 ° C., it was hot rolled into a hot rolled sheet having a thickness of 2.3 mm.

【0030】この熱延板に、1120℃に30秒保持
し、900℃に30秒保持して急冷する熱延板焼鈍を施
し、次いで圧下率約90.4%で0.22mm厚の冷延
板とし、835℃で90秒保持する脱炭焼鈍を行い、し
かる後、750℃に30秒保持する焼鈍中にNH3 ガス
を焼鈍雰囲気に混入し、鋼板に窒化処理を施した。この
場合、窒化量(増窒素量)は0.0114〜0.012
1重量%であり、この窒化処理後の鋼板の平均結晶粒径
(円相当直径)は23〜24μmであった。この窒化処
理後の鋼板にMgOを主成分とする焼鈍分離剤を塗布
し、1200℃まで10℃/hrで昇温し、H2 中で1
200℃に20時間保持する最終仕上焼鈍を施した。こ
の最終仕上焼鈍の昇温過程の850℃までは、N2 :1
5%、H2 :85%の焼鈍雰囲気中で処理し、850℃
から1200℃までは、(a)N2 :15%、H2 :8
5%、(b)N2 :90%、H2 :10%の2水準の条
件で処理した。
This hot-rolled sheet was annealed at 1120 ° C. for 30 seconds and at 900 ° C. for 30 seconds to quench it, and then cold-rolled to a thickness of 0.22 mm at a rolling reduction of about 90.4%. As a plate, decarburization annealing was performed at 835 ° C. for 90 seconds, and then NH 3 gas was mixed into the annealing atmosphere during annealing at 750 ° C. for 30 seconds to subject the steel sheet to nitriding treatment. In this case, the nitriding amount (nitrogen increase amount) is 0.0114 to 0.012.
It was 1% by weight, and the average crystal grain size (equivalent circle diameter) of the steel sheet after this nitriding treatment was 23 to 24 μm. An annealing separator containing MgO as a main component is applied to the steel sheet after the nitriding treatment, the temperature is raised to 1200 ° C. at 10 ° C./hr, and the temperature is set to 1 in H 2.
A final finish annealing was carried out at 200 ° C. for 20 hours. Up to 850 ° C. in the temperature rising process of this final finish annealing, N 2 : 1
Treated in 5%, H 2 : 85% annealing atmosphere, 850 ° C
From 1 to 1200 ° C, (a) N 2 : 15%, H 2 : 8
5%, (b) N 2 : 90%, H 2 : 10%.

【0031】工程条件と磁気特性の関係を表2に示す。
表2から明らかなように、本発明の実験条件であるの
Al量の場合、B8 ≧1.93Tなる良好な磁気特性が
得られ、さらに本発明での最終仕上焼鈍の焼鈍雰囲気条
件である(b)の条件の場合、B8 ≧1.95Tなると
りわけ良好な磁気特性が得られた
Table 2 shows the relationship between process conditions and magnetic properties.
As is clear from Table 2, in the case of the amount of Al which is the experimental condition of the present invention, good magnetic properties of B 8 ≧ 1.93T are obtained, and further, the annealing atmosphere condition of the final finish annealing in the present invention is the condition. In the case of the condition (b), particularly good magnetic characteristics of B 8 ≧ 1.95 T were obtained.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例3 C:0.060重量%、Si:4.01重量%、Mn:
0.14重量%、S:0.007重量%、酸可溶性A
l:0.039重量%、N:0.0086重量%、S
n:0.003重量%、0.07重量%、0.2
0重量%を含有し、残部Fe及び不可避的不純物からな
る3種類の40mm厚のスラブを1150℃の温度で加
熱した後、熱延して2.3mm厚の熱延板とした。この
場合、Al(%)/Si(%)=0.0097であっ
た。
Example 3 C: 0.060% by weight, Si: 4.01% by weight, Mn:
0.14% by weight, S: 0.007% by weight, acid-soluble A
1: 0.039% by weight, N: 0.0086% by weight, S
n: 0.003% by weight, 0.07% by weight, 0.2
Three 40 mm-thick slabs containing 0% by weight and the balance of Fe and unavoidable impurities were heated at a temperature of 1150 ° C., and then hot-rolled to a 2.3 mm-thick hot-rolled sheet. In this case, Al (%) / Si (%) = 0.0097.

【0034】この熱延板に、1100℃に30秒保持
し、900℃に30秒保持して急冷する熱延板焼鈍を施
し、次いで圧下率約90.4%で0.22mm厚の冷延
板とし、830℃で90秒保持する脱炭焼鈍を行い、し
かる後、750℃に30秒保持する焼鈍中にNH3 ガス
を焼鈍雰囲気に混入し、鋼板に窒化処理を施した。この
場合、窒化量(増窒素量)は0.0078〜0.012
9重量%であり、この窒化処理後の鋼板の平均結晶粒径
(円相当直径)は、21〜26μmであった。この窒化
処理後の鋼板にMgOを主成分とする焼鈍分離剤を塗布
し、N2 :25%、H2 :75%の焼鈍雰囲気中で12
00℃まで15℃/hrで昇温し、H2 中で1200℃
に20時間保持する最終仕上焼鈍を施した。
The hot-rolled sheet was annealed at 1100 ° C. for 30 seconds and at 900 ° C. for 30 seconds for rapid cooling, and then 0.22 mm thick cold-rolled at a reduction rate of about 90.4%. As a plate, decarburization annealing was performed at 830 ° C. for 90 seconds, and then NH 3 gas was mixed into the annealing atmosphere during annealing at 750 ° C. for 30 seconds to subject the steel sheet to nitriding treatment. In this case, the nitriding amount (nitrogen increasing amount) is 0.0078 to 0.012.
It was 9% by weight, and the average crystal grain size (circle equivalent diameter) of the steel sheet after this nitriding treatment was 21 to 26 μm. An annealing separator having MgO as a main component is applied to the steel sheet after the nitriding treatment, and the steel sheet is annealed in an annealing atmosphere of N 2 : 25% and H 2 : 75%.
Heat up to 00 ° C at 15 ° C / hr, 1200 ° C in H 2
Was subjected to final finishing annealing for 20 hours.

【0035】工程条件と磁気特性の関係を表3に示す。
本実験の条件はすべて本発明の条件に入っており、B8
≧1.92Tなる良好な磁気特性が得られ、さらに本発
明のSnの含有量範囲に入る条件の場合は、B8
1.95Tなるとりわけ良好な磁気特性が得られた。
Table 3 shows the relationship between process conditions and magnetic properties.
All the conditions of this experiment are included in the conditions of the present invention, and B 8
≧ 1.92 T, good magnetic properties are obtained, and in the case where the Sn content range of the present invention is satisfied, B 8
Particularly good magnetic characteristics of 1.95 T were obtained.

【0036】[0036]

【表3】 [Table 3]

【0037】実施例4 C:0.059重量%、Si:3.75重量%、Mn:
0.14重量%、S:0.005重量%、酸可溶性A
l:0.039重量%、N:0.0088重量%、S
n:0.06重量%を含有し、残部Fe及び不可避的不
純物からなる40mm厚のスラブを1150℃の温度で
加熱した後熱延して1.8mm厚の熱延板とした。この
場合Al(%)/Si(%)=0.0104であった。
Example 4 C: 0.059% by weight, Si: 3.75% by weight, Mn:
0.14% by weight, S: 0.005% by weight, acid-soluble A
1: 0.039% by weight, N: 0.0088% by weight, S
A 40 mm thick slab containing n: 0.06% by weight and consisting of the balance Fe and unavoidable impurities was heated at a temperature of 1150 ° C. and then hot rolled to obtain a hot rolled sheet having a thickness of 1.8 mm. In this case, Al (%) / Si (%) = 0.0104.

【0038】この熱延板を1.4mmまで冷延した後1
120℃に30秒保持し、900℃に30秒保持して急
冷する焼鈍を施し、次いで圧下率約89.6%で0.1
45mm厚の冷延板とし、830℃で70秒保持する脱
炭焼鈍を行い、しかる後、750℃に30秒保持する焼
鈍中にNH3 ガスを焼鈍雰囲気に混入し、鋼板に窒化処
理を施した。この場合、窒化量(増窒素量)は0.01
41〜0.0152重量%であり、この窒化処理後の鋼
板の平均結晶粒径(円相当直径)は23〜25μmであ
った。この窒化処理後の鋼板にMgOを主成分とする焼
鈍分離剤を塗布し、1200℃まで15℃/hrで昇温
し、H2 中で1200℃に20時間保持する最終仕上焼
鈍を施した。この最終仕上焼鈍の昇温過程の900℃ま
では、N 2 :25%、H2 :75%の焼鈍雰囲気中で処
理し、900℃から1200℃までは、(a)N2 :2
5%、H2 :75%、(b)N2 :75%、H2 :25
%、(c)N2 :90%、H2 :10%なる3水準の条
件で処理した。
After cold rolling the hot-rolled sheet to 1.4 mm, 1
Hold at 120 ° C for 30 seconds, then at 900 ° C for 30 seconds
It is annealed for cooling, and then rolled at a reduction rate of about 89.6% to 0.1.
A cold-rolled sheet with a thickness of 45 mm is kept at 830 ° C for 70 seconds.
Charcoal anneal and then hold at 750 ° C for 30 seconds
NH in the blunt3Gas is mixed into the annealing atmosphere and the steel sheet is nitrided.
Reasoned. In this case, the nitriding amount (nitrogen increasing amount) is 0.01
41 to 0.0152% by weight, the steel after this nitriding treatment
The average crystal grain size (circle equivalent diameter) of the plate is 23 to 25 μm.
It was. After the nitriding treatment, the steel sheet containing MgO as a main component is fired.
Apply a blunt separator and raise the temperature to 1200 ° C at 15 ° C / hr.
And H2Final baking at 1200 ° C for 20 hours
Blunted. During the temperature rising process of this final finish annealing,
Then N 2: 25%, H2: Treated in 75% annealing atmosphere
(A) N from 900 ° C to 1200 ° C2: 2
5%, H2: 75%, (b) N2: 75%, H2: 25
%, (C) N2: 90%, H2: 10% 3 level article
Processed in case.

【0039】工程条件と磁気特性の関係を表4に示す。
本実験条件は、すべて本発明の条件に入っており、B8
≧1.92Tなる良好な磁気特性が得られた。さらに本
発明の最終仕上焼鈍の条件となる(b)、(c)の場
合、B8 ≧1.94Tなるさらに良好な磁気特性が得ら
れた。
Table 4 shows the relationship between process conditions and magnetic properties.
All the experimental conditions are within the conditions of the present invention, and B 8
Good magnetic characteristics of ≧ 1.92 T were obtained. Further, in the case of the conditions (b) and (c) of the final finish annealing of the present invention, B 8 ≧ 1.94T, which is a better magnetic property, was obtained.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】以上説明したように、本発明に従い、A
l/Siの値の制御、さらには脱炭焼鈍完了後、最終仕
上焼鈍開始までの間での一次再結晶粒の平均粒径の制
御、熱延後最終仕上焼鈍の二次再結晶開始までの間の窒
化処理、さらに好ましくは、Sn添加、最終仕上焼鈍の
昇温過程での焼鈍雰囲気の窒素分圧制御を行うことによ
り磁気特性の優れた一方向性電磁鋼板を安定して製造す
ることができるので、その工業的意義は極めて大であ
る。
As described above, according to the present invention, A
Controlling the value of 1 / Si, and further controlling the average grain size of primary recrystallized grains between the completion of decarburization annealing and the start of final finish annealing, and the start of secondary recrystallization of final finish annealing after hot rolling. Nitriding treatment during this, more preferably, Sn addition, by controlling the nitrogen partial pressure of the annealing atmosphere in the temperature rising process of final finishing annealing, it is possible to stably produce a unidirectional electrical steel sheet having excellent magnetic properties. Since it can be done, its industrial significance is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al/Siの範囲と磁気特性の関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between the Al / Si range and magnetic characteristics.

【図2】最終仕上焼鈍の昇温過程における窒素分圧と磁
気特性の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between nitrogen partial pressure and magnetic characteristics in the temperature rising process of final finish annealing.

フロントページの続き (72)発明者 増井 浩昭 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 中村 吉男 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内Front page continuation (72) Inventor Hiroaki Masui 1-1 Tobahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Co., Ltd. Yawata Works (72) Inventor Yoshio Nakamura 20-1 Shintomi, Futtsu-shi, Chiba Japan Steel Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.025〜0.075%、
Si:3.4〜5.0%、酸可溶性Al:0.015〜
0.080%、N:0.0030〜0.0130%、S
+0.405Se:0.014%以下、Mn:0.05
〜0.8%を含有し、残部がFe及び不可避不純物から
なるスラブを1280℃未満の温度で加熱し、熱延を行
い、引き続き必要に応じて熱延板焼鈍を行い、次いで圧
下率80%以上の最終冷延を含み必要に応じて中間焼鈍
をはさむ1回以上の冷延を行い、次いで脱炭焼鈍、最終
仕上焼鈍を施して一方向性電磁鋼板を製造する方法にお
いて、酸可溶性Al、Siの含有量を重量%を単位とし
てAl(%)、Si(%)とした時、このAl、Siを
下記の範囲に制御し、 Al(%)/Si(%)≧0.0080 脱炭焼鈍完了後、最終仕上焼鈍開始までの一次再結晶粒
の平均粒径を18〜35μmとし、熱延後、最終仕上焼
鈍の二次再結晶開始までの間に鋼板に0.0010重量
%以上の窒素吸収を行わせる窒化処理を施すことを特徴
とする磁気特性の優れた一方向性電磁鋼板の製造方法。
1. C: 0.025 to 0.075% by weight,
Si: 3.4-5.0%, acid-soluble Al: 0.015-
0.080%, N: 0.0030 to 0.0130%, S
+0.405 Se: 0.014% or less, Mn: 0.05
A slab containing 0.8 to 0.8% of which the balance is Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot-rolled, and subsequently hot-rolled sheet annealed if necessary, and then a reduction rate of 80%. In the method for producing a unidirectional electrical steel sheet by performing cold rolling one or more times with intermediate annealing if necessary including the above final cold rolling, and then performing decarburizing annealing and final finishing annealing, acid-soluble Al, When the content of Si is defined as Al (%) and Si (%) with weight% as a unit, the Al and Si are controlled within the following range, and Al (%) / Si (%) ≧ 0.0080 decarburization After the completion of annealing, the average grain size of the primary recrystallized grains until the start of the final finish annealing is set to 18 to 35 μm, and after the hot rolling, before the start of the secondary recrystallization of the final finish annealing, 0.0010% by weight or more of the steel sheet is added. Magnetism characterized by nitriding treatment to absorb nitrogen A method for producing a grain-oriented electrical steel sheet having excellent characteristics.
【請求項2】 重量で0.01〜0.15%のSnをス
ラブに含有することを特徴とする請求項1記載の磁気特
性の優れた一方向性電磁鋼板の製造方法。
2. The method for producing a grain-oriented electrical steel sheet with excellent magnetic properties according to claim 1, wherein 0.01 to 0.15% by weight of Sn is contained in the slab.
【請求項3】 最終仕上焼鈍の昇温過程における鋼板の
温度が900〜1150℃の範囲において、焼鈍雰囲気
の窒素分圧を30%以上とすることを特徴とする請求項
1または2記載の磁気特性の優れた一方向性電磁鋼板の
製造方法。
3. The magnetic material according to claim 1, wherein the nitrogen partial pressure in the annealing atmosphere is 30% or more when the temperature of the steel sheet in the temperature rising process of final finish annealing is in the range of 900 to 1150 ° C. A method for producing a grain-oriented electrical steel sheet having excellent characteristics.
JP4096858A 1992-04-16 1992-04-16 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP2709549B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4096858A JP2709549B2 (en) 1992-04-16 1992-04-16 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR1019930006246A KR960010811B1 (en) 1992-04-16 1993-04-14 Process for production of grain oriented electrical steel sheet having excellent magnetic properties
DE69327884T DE69327884T2 (en) 1992-04-16 1993-04-15 Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties
EP93106124A EP0566986B1 (en) 1992-04-16 1993-04-15 Process for production of grain oriented electrical steel sheet having excellent magnetic properties
US08/466,866 US5512110A (en) 1992-04-16 1995-06-06 Process for production of grain oriented electrical steel sheet having excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4096858A JP2709549B2 (en) 1992-04-16 1992-04-16 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH05295438A true JPH05295438A (en) 1993-11-09
JP2709549B2 JP2709549B2 (en) 1998-02-04

Family

ID=14176173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096858A Expired - Lifetime JP2709549B2 (en) 1992-04-16 1992-04-16 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2709549B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726328A1 (en) * 1995-02-13 1996-08-14 Kawasaki Steel Corporation Method of manufacturing grain-oriented silicon steel sheet having excellent characteristics
CN1054885C (en) * 1995-07-26 2000-07-26 新日本制铁株式会社 Method for producing grain-oriented electrical steel sheet having mirror surface and improved core loss
JP2016505706A (en) * 2012-11-26 2016-02-25 バオシャン アイアン アンド スティール カンパニー リミテッド Directional silicon steel and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200732A (en) * 1989-01-31 1990-08-09 Nippon Steel Corp Manufacture of grain-oriented silicon steel sheet having excellent magnetic properties
JPH02247331A (en) * 1989-03-20 1990-10-03 Nippon Steel Corp Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density
JPH02259020A (en) * 1989-03-31 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH02258929A (en) * 1989-03-30 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200732A (en) * 1989-01-31 1990-08-09 Nippon Steel Corp Manufacture of grain-oriented silicon steel sheet having excellent magnetic properties
JPH02247331A (en) * 1989-03-20 1990-10-03 Nippon Steel Corp Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density
JPH02258929A (en) * 1989-03-30 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH02259020A (en) * 1989-03-31 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726328A1 (en) * 1995-02-13 1996-08-14 Kawasaki Steel Corporation Method of manufacturing grain-oriented silicon steel sheet having excellent characteristics
CN1054885C (en) * 1995-07-26 2000-07-26 新日本制铁株式会社 Method for producing grain-oriented electrical steel sheet having mirror surface and improved core loss
JP2016505706A (en) * 2012-11-26 2016-02-25 バオシャン アイアン アンド スティール カンパニー リミテッド Directional silicon steel and method for producing the same

Also Published As

Publication number Publication date
JP2709549B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH0730397B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH083125B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05295438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP4283533B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JPH08143962A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JPH07138641A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15