JPH02247331A - Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density - Google Patents

Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density

Info

Publication number
JPH02247331A
JPH02247331A JP6908189A JP6908189A JPH02247331A JP H02247331 A JPH02247331 A JP H02247331A JP 6908189 A JP6908189 A JP 6908189A JP 6908189 A JP6908189 A JP 6908189A JP H02247331 A JPH02247331 A JP H02247331A
Authority
JP
Japan
Prior art keywords
steel
flux density
magnetic flux
steel sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6908189A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
尚 小林
Katsuro Kuroki
黒木 克郎
Toshizane Kawabata
川畑 敏実
Masayoshi Mizuguchi
水口 政義
Yasumitsu Kondo
泰光 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6908189A priority Critical patent/JPH02247331A/en
Publication of JPH02247331A publication Critical patent/JPH02247331A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the steel sheets of various grades after the primary recrystallization of steel sheet by a simplified process by forming a steel slab heated at low temp. into the final sheet thickness by means of hot rolling and cold rolling and subjecting the resulting sheet to specific nitriding treatment under the strip traveling conditions prior to finish annealing. CONSTITUTION:A slab of a silicon steel having a composition consisting of, by weight, 0.025-0.075% C, 2.5-4.5% Si, <=0.012% S, 0.010-0.060% acid soluble Al, <=0.010% N, 0.05-0.45% Mn, and the balance iron with inevitable impurities is heated up to <=1200 deg.C and formed into the final sheet thickness by means of hot rolling and cold rolling. The resulting steel sheet is subjected, after the conclusion of decarburizing annealing (primary recrystallization), to nitriding treatment so that the amount of nitriding (N) [nitrogen increment in steel] in the steel sheet is regulated to a range between 15 and 150ppm and also a range + or -10% of the amount of nitriding determined by B8(T) (1/1000).N+1.82 corresponding to the level of magnetic flux density (B8 value) provided to the final product under the strip tranveling conditions. Subsequently, a separation agent at annealing is applied to the above steel sheet, followed by high- temp. finish annealing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一方向性電磁鋼板の製造方法に関し、特に同
一素材から高い磁束密度(B11値)を有するものから
低い磁束密度を有する製品まで造り分けることができる
一方向性電磁鋼板の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing unidirectional electrical steel sheets, and in particular to products with high magnetic flux density (B11 value) to low magnetic flux density from the same material. The present invention relates to a method for manufacturing unidirectional electrical steel sheets that can be manufactured separately.

(従来の技術) 一方向性電磁鋼板は、主として変圧器、発電機その他の
電気機器の鉄芯材として用いられ、鉄芯材が有する磁気
特性として励磁特性と鉄損特性が良好であることの他、
良好な皮膜を有するものでなければならない。
(Prior art) Unidirectional electrical steel sheets are mainly used as iron core materials for transformers, generators, and other electrical equipment. other,
It must have a good film.

一方向性電磁鋼板は、二次再結晶現象を利用して圧延面
に(110)面、圧延方向に<001>軸をもつ所謂ゴ
ス方位を有する結晶粒を発達させることによって得られ
る。
A grain-oriented electrical steel sheet is obtained by utilizing a secondary recrystallization phenomenon to develop crystal grains having a so-called Goss orientation with a (110) plane on the rolling surface and a <001> axis in the rolling direction.

前記二次再結晶現象は、よ(知られているように、仕上
焼鈍過程で生じるが、二次再結晶の発現を十分なものと
するためには、仕上焼鈍過程における二次再結晶発現温
度域まで一次再結晶粒の成長を抑制する、jVN、 M
nS、 MnSe等の微細な析出物所謂インヒビターを
鋼中に存在させる必要がある。従って、電磁鋼スラブは
インヒビター形成元素、例えばjV、 Mn、  S、
 Se、 N等を完全に固溶させるために、1350〜
1400℃といった高温に加熱される。而して、電磁鋼
スラブ中に完全に固溶せしめられたインヒビター形成元
素は、熱延板或は最終冷間圧延前の中間板厚の段階で焼
鈍によって、A7N 、 Mn S 、 MnSeとし
て微細に析出せしめられる。
The secondary recrystallization phenomenon occurs during the final annealing process, but in order to ensure that secondary recrystallization occurs sufficiently, it is necessary to adjust the secondary recrystallization temperature during the final annealing process. jVN, which suppresses the growth of primary recrystallized grains up to
It is necessary to make so-called inhibitors, which are fine precipitates such as nS and MnSe, exist in the steel. Therefore, electrical steel slabs are made of inhibitor-forming elements such as jV, Mn, S,
1350~ to completely dissolve Se, N, etc.
It is heated to a high temperature of 1400°C. Therefore, the inhibitor-forming elements completely dissolved in the electromagnetic steel slab are finely divided into A7N, MnS, and MnSe by annealing at the intermediate thickness stage before the hot-rolled sheet or final cold rolling. It is allowed to precipitate.

このようなプロセスを採るとき、電磁鋼スラブは前述の
ように高温に加熱されるから、溶融スケール(ノロ)の
発生が多量なものとなり、加熱炉補修の頻度を高めてメ
インテナンスコストを高くするのみならず設備稼働率を
低下せしめさらに、燃料原単位を高くする等の問題があ
る。かかる問題を解決すべく、電磁鋼スラブの加熱温度
を低いものとし得る一方向性電磁鋼板の製造方法の研究
が進められている。例えば、特公昭61−60896号
公報には、Mn含有量を0.08〜0.45%、S含有
量を0. OO7%以下として[Mnl  [S]積を
低くしさらに、71J、  P、 Nを含有せしめた電
磁鋼スラブを素材とすることにより、スラブ加熱温度を
1280℃未満とし得る製造プロセスが提案されている
When such a process is adopted, the electromagnetic steel slab is heated to high temperatures as mentioned above, which results in a large amount of molten scale (slag), which only increases the frequency of heating furnace repairs and increases maintenance costs. However, there are problems such as lowering the equipment operating rate and increasing the fuel consumption rate. In order to solve this problem, research is underway on a method for producing grain-oriented electrical steel sheets that can lower the heating temperature of the electrical steel slab. For example, in Japanese Patent Publication No. 61-60896, the Mn content is 0.08 to 0.45% and the S content is 0.08%. A manufacturing process has been proposed in which the slab heating temperature can be lowered to less than 1280°C by lowering the [Mnl [S] product by setting OO to 7% or less, and using an electromagnetic steel slab containing 71J, P, and N as the material. .

現在、工業化されている一方向性電磁鋼板の製造プロセ
スは、成分とプロセッシングの組合せで幾通りかあり、
得られる製品特性もそれぞれ特徴を有している。
Currently, there are several industrialized manufacturing processes for grain-oriented electrical steel sheets based on combinations of ingredients and processing.
The resulting product properties also have their own characteristics.

例えば、MnSをインヒビターとして機能せしめる製造
プロセスは、2回冷延法であって、得られる製品の磁束
密度(B11値)は1.84〜1.86 T程度である
For example, the manufacturing process in which MnS functions as an inhibitor is a double cold rolling method, and the magnetic flux density (B11 value) of the obtained product is about 1.84 to 1.86 T.

A7Nを主インヒビターとして機能せしめる製造プロセ
スは1回冷延法であり、得られる製品の磁束密度(B1
1値)は1.89 T以上と高く鉄損特性も優れている
The manufacturing process that allows A7N to function as the main inhibitor is a one-time cold rolling method, and the magnetic flux density (B1
1 value) is high at 1.89 T or more, and the iron loss characteristics are also excellent.

製造者の理想としては、同一素材から低いレベルの鉄1
員を維持しながら需要家の要請に応じて種々の磁束密度
レベルの製品を供給できる簡潔な製造プロセスが望まし
い。
Manufacturers' ideal is to use the same material with a lower level of iron1.
A simple manufacturing process that can provide products with various flux density levels as required by customers while maintaining the same number of employees is desirable.

このような製造プロセスの1つとして、特開昭61−1
04025号公報に、最終冷間圧延における圧下率を変
えることによって種々の磁束密度レベルの製品を製造す
る技術が開示されている。最終板厚まで同一の条件で処
理し、最終製品において種々の磁束密度レベルのものと
することができれば、プロダクトミックスその他の点で
極めて有利である。
As one such manufacturing process, Japanese Patent Application Laid-Open No. 61-1
Japanese Patent No. 04025 discloses a technique for manufacturing products with various magnetic flux density levels by changing the reduction ratio in final cold rolling. It would be extremely advantageous in terms of product mix and other aspects if the final plate thickness could be processed under the same conditions and the final product could have various magnetic flux density levels.

(発明が解決しようとする課題) 本発明は、スラブの加熱温度を1200℃以下とする低
温スラブ加熱プロセスを前提とし、簡潔なプロセスで目
標とする磁束密度レベルの製品を得ることができる一方
向性電磁鋼板の製造方法を提供することを目的としてな
された。
(Problems to be Solved by the Invention) The present invention is based on a low-temperature slab heating process in which the heating temperature of the slab is 1200°C or less, and is a one-way process that allows a product with a target magnetic flux density level to be obtained with a simple process. The purpose of this research was to provide a method for manufacturing magnetic steel sheets.

(課題を解決するための手段) 本発明の要旨とする処は、重量で、C: 0.025〜
0.075%、Si:2.5〜4.5%、S≦0.01
2%、酸可溶性At : 0.010〜0.060%、
N≦0、010%、Mn: 0.05〜0.45%を含
有し、残部Feおよび不可避的不純物からなる電磁鋼ス
ラブを、1200℃以下の温度に加熱した後熱間圧延し
、1回或は中間焼鈍を介挿する2回以上の冷間圧延をし
て最終板厚とし、次いで脱炭焼鈍、焼鈍分離剤塗布を行
った後高温仕上焼鈍する一方向性電磁鋼板の製造方法に
おいて、一次再結晶完了後高温仕上焼鈍以前の段階でス
トリップを走行せしめる状態下に、鋼板の窒化量(N)
を最終製品に有せしめる磁束密度(Ba値)レベルに対
応して鋼板の窒化量(N)〔鋼中窒素増分]が、15〜
150ppmの範囲内でB、(T)’、(1/1000
)N+1.82で決まる窒化量の±lO%の範囲となる
如く鋼ストリップを窒化処理し、同一素材、同一工程で
磁束密度を目標の値に造り分けることを特徴とする任意
の磁束密度をもつ低鉄損一方向性電磁鋼板の製造方法に
ある。
(Means for Solving the Problems) The gist of the present invention is that C: 0.025 to 0.025 by weight.
0.075%, Si: 2.5-4.5%, S≦0.01
2%, acid-soluble At: 0.010-0.060%,
An electromagnetic steel slab containing N≦0,010%, Mn: 0.05 to 0.45%, and the balance consisting of Fe and unavoidable impurities is heated to a temperature of 1200°C or less, then hot rolled and rolled once. Alternatively, in a method for producing a grain-oriented electrical steel sheet, the final thickness is achieved by cold rolling two or more times with intervening intermediate annealing, followed by decarburization annealing, application of an annealing separator, and high-temperature finish annealing. After the completion of primary recrystallization and before high-temperature finish annealing, the amount of nitridation (N) in the steel sheet was determined while the strip was being run.
The nitriding amount (N) of the steel sheet [nitrogen increment in steel] corresponds to the magnetic flux density (Ba value) level that makes the final product have
B, (T)', (1/1000
) The steel strip is nitrided so that the amount of nitridation determined by N + 1.82 is within the range of ±10%, and the magnetic flux density is made to a target value using the same material and the same process.It has an arbitrary magnetic flux density. A method for producing a low iron loss unidirectional electrical steel sheet.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

発明者等は、電磁鋼スラブの加熱温度を1200゛C以
下の低いものとする製造プロセスを前捷として、任意の
磁束密度(B11値)を有する一方向性電磁鋼板を確実
に安定して製造し得るプロセスについて研究を重ねた。
The inventors have developed a manufacturing process in which the heating temperature of the electromagnetic steel slab is as low as 1200°C or less, to reliably and stably produce unidirectional electromagnetic steel sheets having any magnetic flux density (B11 value). We have conducted extensive research on possible processes.

その結果、スラブ加熱段階ではインヒビター形成元素た
とえばAj、 N、 Mn。
As a result, during the slab heating step, inhibitor-forming elements such as Aj, N, Mn.

Sを鋼中へ完全には固溶させることなく、脱炭焼鈍後つ
まり一次再結晶完了後、材料を強還元雰囲気中、ストリ
ップを走行させる状態下で窒化処理することによって、
(AJ、St) Nを主組成とするインヒビターを形成
させ、窒化量をコントロールすることによって目標とす
る磁束密度レベルの製品を得ることができることを見出
した。
By nitriding the material after decarburization annealing, that is, after completion of primary recrystallization, without completely dissolving S into the steel, while running the strip in a strongly reducing atmosphere,
(AJ, St) It has been found that by forming an inhibitor whose main composition is N and controlling the amount of nitridation, it is possible to obtain a product with a target magnetic flux density level.

本発明において、出発材料とする電磁鋼スラブの成分組
成の限定理由は、以下の通りである。
In the present invention, the reason for limiting the composition of the electromagnetic steel slab used as a starting material is as follows.

Cは、その含有量が0.025%未満になると二次再結
晶が不安定となりかつ、二次再結晶した場合でも製品の
磁束密度(B、値)が1.80 Tに満たない低いもの
となる。
When the C content is less than 0.025%, secondary recrystallization becomes unstable, and even if secondary recrystallization occurs, the magnetic flux density (B, value) of the product is low, less than 1.80 T. becomes.

一方、Cの含有量が0.075%を超えて多くなり過ぎ
ると、脱炭焼鈍時間が長大なものとなり、生産性を著し
く損なう。
On the other hand, if the C content is too large, exceeding 0.075%, the decarburization annealing time becomes long, which significantly impairs productivity.

Stは、その含有量が2,5%未満になると低鉄損の製
品を得難く、一方、Stの含有量が4.5%を超えて多
くなり過ぎると材料の冷間圧延時に、割れ、破断が多発
し、安定した冷間圧延作業を不可能にする。
When the St content is less than 2.5%, it is difficult to obtain a product with low core loss.On the other hand, when the St content is too high, exceeding 4.5%, the material may crack or crack during cold rolling. Fractures occur frequently, making stable cold rolling operations impossible.

本発明の出発材料の成分系における特徴の一つは、Sを
0.012%以下、好ましくはO,OO7%以下とする
点にある。従来、公知の技術、例えば特公昭40−15
644号公報或は特公昭47−25250号公報に開示
されいてる技術においては、Sは、二次再結晶を生起さ
せるに必要な析出物の一つであるMnSの形成元素とし
て必須であった。前記公知技術において、Sが最も効果
を発揮する含有量範囲があり、それは熱間圧延に先立っ
て行われるスラブの加熱段階でMnSを固溶できる量と
して規定されていた。しかしながら、インヒビターとし
て(Aj、5i)Nを用いる本発明においては、MnS
は特に必要としない。むしろ、MnSが増加することは
磁気特性上好ましくない、従って、本発明においては、
Sの含有量は0. OL 2%以下、好ましくは0、 
OO7%以下である。
One of the characteristics of the component system of the starting material of the present invention is that S is 0.012% or less, preferably O, OO 7% or less. Conventionally known technology, for example, Japanese Patent Publication No. 40-15
In the techniques disclosed in Japanese Patent Publication No. 644 or Japanese Patent Publication No. 47-25250, S is essential as an element forming MnS, which is one of the precipitates necessary to cause secondary recrystallization. In the above-mentioned known technology, there is a content range in which S exhibits the most effect, and this content range is defined as an amount that allows MnS to be dissolved as a solid solution in the slab heating step performed prior to hot rolling. However, in the present invention using (Aj,5i)N as an inhibitor, MnS
is not particularly required. Rather, an increase in MnS is unfavorable in terms of magnetic properties, so in the present invention,
The S content is 0. OL 2% or less, preferably 0,
OO is 7% or less.

MはNと結合してIVNを形成するが、本発明において
は、後工程即ち一次再結晶完了後に鋼を窒化することに
より(AI、5i)Nを形成せしめることを必須として
いるから、フリーのMが一定量以上必要である。そのた
め、酸可溶性Mとして0.010〜0.060%添加す
る。
M combines with N to form IVN, but in the present invention, it is essential to form (AI, 5i) N by nitriding the steel after the completion of the post-process, that is, the primary recrystallization. A certain amount or more of M is required. Therefore, 0.010 to 0.060% of acid-soluble M is added.

Nは、0.0020%未満でも、0.0100%を超え
ても製品における磁束密度(B11値)を狙い通りに造
り分けることが困難となる。
Even if N is less than 0.0020% or more than 0.0100%, it becomes difficult to create the desired magnetic flux density (B11 value) in the product.

Mnは、その含有量が0.050%未満と少な過ぎると
二次再結晶が不安定となり、一方、0.45%を越えて
多く含有すると高い磁束密度をもつ製品を得難くなる。
If the content of Mn is too low (less than 0.050%), secondary recrystallization becomes unstable, while if the content exceeds 0.45%, it becomes difficult to obtain a product with a high magnetic flux density.

適正な含有量は、0.070〜0.45%である。The appropriate content is 0.070-0.45%.

なお、微量のCu、 Cr、  P、  B、 Tiを
鋼中に含有せしめることは、本発明の趣旨を損なうもの
ではない。
Note that the inclusion of trace amounts of Cu, Cr, P, B, and Ti in the steel does not impair the spirit of the present invention.

次に、本発明の製造プロセスについて説明する。Next, the manufacturing process of the present invention will be explained.

電磁鋼スラブは、転炉或は電気炉等の溶解炉で鋼を溶製
し、必要に応じて溶鋼を真空脱ガス処理し、次いで連続
鋳造によって或は造塊後分塊圧延することによって得ら
れる。
Electrical steel slabs are obtained by melting steel in a melting furnace such as a converter or electric furnace, subjecting the molten steel to vacuum degassing treatment as necessary, and then continuous casting or by blooming and rolling after ingot formation. It will be done.

然る後、熱間圧延に先立つスラブ加熱がなされる。本発
明のプロセスにおいては、スラブの加熱温度は1200
℃以下の低いものとして加熱エネルギの消費量を少なく
するとともに、鋼中の/VNを完全には固溶させずに不
完全固溶状態とする。
Thereafter, the slab is heated prior to hot rolling. In the process of the present invention, the heating temperature of the slab is 1200
The heating energy consumption is reduced by setting the temperature to be as low as 0.degree.

また、さらに固溶温度の高いMnSは、上記スラブ加熱
温度では当然のことながら不完全固溶状態となる。加熱
後、電磁鋼スラブは熱間圧延され、そのまま或は必要に
応じて焼鈍された後1回または中間焼鈍を介挿する2回
以上の冷間圧延を施され、最終板厚とされる。前記熱延
板焼鈍或は中間焼鈍は、それ自体公知の温度域で短時間
行われる。
Furthermore, MnS, which has a higher solid solution temperature, is naturally in an incomplete solid solution state at the above slab heating temperature. After heating, the electromagnetic steel slab is hot rolled and subjected to cold rolling as it is or after annealing if necessary, one time or two or more times with intervening intermediate annealing to obtain the final thickness. The hot-rolled sheet annealing or intermediate annealing is performed in a temperature range known per se for a short time.

然る後、脱炭焼鈍を800〜900℃の温度域で湿潤水
素・窒素混合雰囲気下に行う。
Thereafter, decarburization annealing is performed at a temperature range of 800 to 900° C. in a wet hydrogen/nitrogen mixed atmosphere.

処で、本発明においては、スラブ加熱温度は1200℃
以下と低いため、二次再結晶に必要なインヒビターを冷
間圧延以前の工程で造り込むことは不可能である。従っ
て、二次再結晶に必要なインヒビターは、脱炭焼鈍(−
次回結晶)完了以降から仕上焼鈍における二次再結晶発
現以前までに造り込む必要がある。その手段として、鋼
中にNを侵入させることによって、インヒビターとして
機能する(A7,5t)Nを形成させる。
However, in the present invention, the slab heating temperature is 1200°C.
It is impossible to build in the inhibitor necessary for secondary recrystallization in a process prior to cold rolling. Therefore, the inhibitor required for secondary recrystallization is
It is necessary to build it up after the completion of the next crystallization and before the appearance of secondary recrystallization in final annealing. As a means for this purpose, (A7,5t)N, which functions as an inhibitor, is formed by infiltrating N into the steel.

従来、鋼板の窒化は、占積率が90%程度のタイトなス
トリップコイルに対してなされていた。
Conventionally, nitriding of steel sheets has been performed on tight strip coils with a space factor of about 90%.

このようなタイトなストリップコイルの状態では、板間
の間隙はl101I以下と狭く、通気性が非常に悪い。
In such a tight strip coil state, the gap between the plates is as narrow as 1101I or less, resulting in very poor air permeability.

従って、板間の雰囲気をドライな雰囲気に置換するのに
長時間を要するのみならず、窒化源としてのN2が板間
に侵入、拡散するためにも長時間を必要とする。これを
改善する手段としてルーズなスリトップコイルとして鋼
の窒化処理を行うことが試みられているけれども、鋼の
窒化処理をストリップコイルの形態で行うときの問題で
ある、コイル内温度の不均一さに起因する窒化の不均一
さが存在するという問題は解決されず、十分とは言えな
い。
Therefore, not only does it take a long time to replace the atmosphere between the plates with a dry atmosphere, but it also takes a long time for N2 as a nitriding source to enter and diffuse between the plates. As a means to improve this, attempts have been made to nitriding the steel in the form of a loose strip-top coil, but the problem with nitriding steel in the form of a strip coil is the non-uniformity of the temperature inside the coil. The problem of non-uniformity of nitriding caused by this method is not solved, and it cannot be said to be sufficient.

かかる問題を解決するために、発明者等は先に特願昭6
3−100111号にて、脱炭焼鈍後に、N Hs雰囲
気中でストリップを走行させる状態下に鋼板を窒化処理
することによって、インヒビターとして機能する微細な
(AI、5t)Nを鋼中に形成させることを提案した。
In order to solve this problem, the inventors first filed a patent application in 1983.
In No. 3-100111, after decarburization annealing, fine (AI, 5t) N, which functions as an inhibitor, is formed in the steel by nitriding the steel plate while running the strip in an NHs atmosphere. I suggested that.

発明者等は、この技術をさらに詳細に検討した結果、鋼
板(ストリップ)の窒化量により、最終製品における磁
気特性が変化するという新しい知見を得た。本発明は、
この知見に基づいて完成された。
As a result of studying this technology in more detail, the inventors obtained new knowledge that the magnetic properties of the final product change depending on the amount of nitridation in the steel plate (strip). The present invention
It was completed based on this knowledge.

以下、本発明を実験結果に基づいてさらに詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail based on experimental results.

供試材として、C: 0.050%+Si:3−3%。As a sample material, C: 0.050% + Si: 3-3%.

Mn:0.14%+S:0.007%、Aj:0.03
0%。
Mn: 0.14% + S: 0.007%, Aj: 0.03
0%.

Cr : 0.12%を含み、残部が実質的にFeであ
ってNの含有量が(A):0.0080%と(B): 
0.050%の2通りの真空溶解材を1150’Cに加
熱し、熱間圧延を施して2.3 trm厚さの熱延板と
した。この熱延板に、1120℃×60秒間+900℃
×120秒間の2段階焼鈍を施した後、酸洗し、次いで
冷間圧延して0.29mn+厚さの冷延板(最終板厚)
とした。然る後、830℃X150秒間の脱炭焼鈍を行
った後、800℃×30秒間の窒化処理を、N2:15
%、Nz:25%のドライ雰囲気中でN H3の添加量
を変えて行った。その後、MgOとTiO2を主成分と
する焼鈍分離剤を塗布し、次いで1200℃X20hr
sの仕上焼鈍を行った。次いで、燐酸M、無水クロム酸
を主成分とする張力コーティング処理を行った。
Cr: 0.12%, the balance is substantially Fe, and the N content is (A): 0.0080% and (B):
Two types of 0.050% vacuum melted materials were heated to 1150'C and hot rolled into hot rolled sheets with a thickness of 2.3 trm. This hot-rolled plate was heated at 1120°C x 60 seconds +900°C.
× After two-step annealing for 120 seconds, pickling and then cold rolling to a cold rolled plate of 0.29mm+thickness (final plate thickness)
And so. After that, decarburization annealing was performed at 830°C for 150 seconds, followed by nitriding at 800°C for 30 seconds with N2:15.
%, Nz: 25% in a dry atmosphere while changing the amount of NH3 added. After that, an annealing separator mainly composed of MgO and TiO2 was applied, and then 1200°C x 20 hours was applied.
Finish annealing of s was performed. Next, a tension coating treatment containing phosphoric acid M and chromic anhydride as main components was performed.

仕上焼鈍後の鋼板の結晶粒度、磁束密度(Be値)およ
び鉄損値(W+、15゜)を測定した。
The grain size, magnetic flux density (Be value), and iron loss value (W+, 15°) of the steel plate after final annealing were measured.

その結果を、鋼板の窒化量と対応させて第1図、第2図
に示す。第1図から明らかなように、製品における結晶
粒度は窒化量が50ppm以下ではASTM  k(X
I)で5〜6番と小さく、窒化量が60ppmを超える
と徐々に大きくなり、1100pp以上では2〜3番と
なる。
The results are shown in FIGS. 1 and 2 in correspondence with the amount of nitridation of the steel plate. As is clear from Fig. 1, the grain size of the product is ASTM k(X
I) is as small as No. 5 or 6, gradually increases when the amount of nitridation exceeds 60 ppm, and becomes No. 2 or 3 when the amount of nitridation exceeds 1100 ppm.

また、第2図から明らかなように、磁束密度(B、値)
は窒化量の増大とともに略々直線的に高くなり、窒化量
が140ppm以上になると飽和する。これは、鋼中の
窒素量に関係なく、窒化量で整理できる。
Also, as is clear from Figure 2, the magnetic flux density (B, value)
increases almost linearly as the amount of nitridation increases, and becomes saturated when the amount of nitridation exceeds 140 ppm. This can be determined by the amount of nitridation, regardless of the amount of nitrogen in the steel.

このことから、窒化量15〜150ppmの範囲内で、 BS(T)#(1/1000)−N+1.82(N:窒
化量) なる関係があることが分る。
From this, it can be seen that within the range of nitriding amount from 15 to 150 ppm, there is a relationship as follows: BS(T)#(1/1000)-N+1.82 (N: nitriding amount).

この知見から、目標とする磁束密度(Be値)に応じて
、上記式で決まる窒化量の±10%の範囲で、脱炭焼鈍
後の鋼板の窒化処理を行う。
Based on this knowledge, the steel plate after decarburization annealing is nitrided within a range of ±10% of the nitriding amount determined by the above formula, depending on the target magnetic flux density (Be value).

製品の鉄損は、高い磁束密度(B、値)域では低ぃ値を
示し、一方、低い磁束密度(B a値)域においても、
二次再結晶粒が小粒化していることにより、従来の製品
と遜色ない値を示している。
The iron loss of the product shows a low value in the high magnetic flux density (B value) region, while even in the low magnetic flux density (B a value) region,
Because the secondary recrystallized grains have become smaller, it shows values comparable to those of conventional products.

次に、窒化の条件について述べる。Next, the conditions for nitriding will be described.

鋼板を窒化するための温度は、700〜900℃1好ま
しくは800℃前後である。900℃を超えると、鋼板
(ストリップ)の集合組織が変化するから二次再結晶不
良となる。
The temperature for nitriding the steel plate is 700 to 900°C, preferably around 800°C. If the temperature exceeds 900°C, the texture of the steel plate (strip) changes, resulting in poor secondary recrystallization.

窒化処理時間は、特にこだわらないがインラインで鋼板
を窒化することを考える場合、30〜60秒間程度が好
ましい。
The nitriding treatment time is not particularly limited, but when considering in-line nitriding of the steel plate, it is preferably about 30 to 60 seconds.

雰囲気は、N2或はHzとN2の混合ガスにNH,、ガ
スを添加したものとする。
The atmosphere is N2 or a mixed gas of Hz and N2 to which NH gas is added.

雰囲気の露点は低い(ドライな)方が好ましい。It is preferable that the dew point of the atmosphere is low (dry).

窒化処理後の鋼板に、MgOを主成分とする焼鈍分離剤
を塗布する。この焼鈍分離剤にTiO□等公知の添加物
を加えてもよい。
An annealing separator containing MgO as a main component is applied to the steel plate after the nitriding treatment. Known additives such as TiO□ may be added to this annealing separator.

仕上焼鈍は、1100℃以上の高温で行い、二次再結晶
粒を発現させ、良好な絶縁皮膜を鋼板に形成せしめる。
Finish annealing is performed at a high temperature of 1100° C. or higher to develop secondary recrystallized grains and form a good insulation film on the steel sheet.

(実施例) 実施例1 重量で、C: 0.052%、Si:3.2%、Mn:
0.14%、酸可溶性A7 : 0.028%、  S
 Fo、006%、N : 0.0075%、残部二F
eおよび不可避的不純物からなる電磁鋼スラブを、11
50℃に加熱した後熱間圧延し、2.3 mm厚さの熱
延板とした。この熱延板に1120℃X3分間の焼鈍を
施した後、冷間圧延し0.30m+++の最終板厚とし
た。この冷延板を、露点:60°c、Hz:’75%十
N、15%の混合ガス雰囲気中、850°cx120秒
間の条件で脱炭焼鈍し、次いで、2000〜tsooo
pp…([(N H1)/ (N2  : 75%十N
z:25%)]=体積比)のN H3を含むN2ニモ ガスのドライな雰囲気下で750°c×30秒間の条件
で窒化処理した。次いで、MgOとTi0zを含む焼鈍
分離剤を塗布した後、1200″CX20hrsの仕上
焼鈍を行った。NH3の添加量と窒化量(窒化後のN量
−出鋼時のN量)と磁気特性の関係は次の如くであった
(Example) Example 1 By weight, C: 0.052%, Si: 3.2%, Mn:
0.14%, acid soluble A7: 0.028%, S
Fo, 006%, N: 0.0075%, remaining 2F
A magnetic steel slab consisting of e and unavoidable impurities is heated to 11
After heating to 50° C., hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm. This hot-rolled plate was annealed at 1120° C. for 3 minutes, and then cold-rolled to a final thickness of 0.30 m++. This cold-rolled sheet was decarburized and annealed at 850°C for 120 seconds in a mixed gas atmosphere of 15% dew point: 60°C, Hz:
pp…([(NH1)/(N2: 75% 10N)
The nitriding process was carried out at 750°C for 30 seconds in a dry atmosphere of N2nimo gas containing N2H3 (volume ratio). Next, after applying an annealing separator containing MgO and Ti0z, final annealing was performed for 1200″CX20hrs. The relationship was as follows.

上表から明らかな如く、脱炭焼鈍後の材料に対する加窒
量を変化させる制御を行うことによって、最終製品の磁
気特性を制御できる。
As is clear from the above table, the magnetic properties of the final product can be controlled by controlling the amount of nitridation of the material after decarburization annealing.

実施例2 重量で、C: 0.048%、St:3.5%、Mn:
0.12%、Aj:0.030%、s:o、oos%、
N: 0.0(180%、残部1eおよび不可避的不純
物からなる電磁鋼スラブを、1200 ’Cに加熱した
後熱間圧延し1.6 mm厚さの熱延板とした。この熱
延板に、1120”CX2分間+900℃X2分間の焼
鈍(2段階焼鈍)を施した後、冷間圧延し、厚さ0.1
70 mmの最終板厚とした。次いで、露点:55’(
:、Hzニア5%十Nz:25%の混合ガス雰囲気中で
830℃×90秒間の脱炭焼鈍を施した後、実施例1に
おけると同じ条件で窒化処理した。然る後、MgOとT
i0zを含む焼鈍分離剤を塗布し、1200℃X20h
rsの仕上焼鈍を行った。
Example 2 By weight, C: 0.048%, St: 3.5%, Mn:
0.12%, Aj: 0.030%, s:o, oos%,
N: 0.0 (180%, remainder 1e and unavoidable impurities) A magnetic steel slab was heated to 1200'C and then hot rolled to obtain a hot rolled sheet with a thickness of 1.6 mm.This hot rolled sheet was annealed at 1120"C for 2 minutes + 900℃ for 2 minutes (two-stage annealing), then cold rolled to a thickness of 0.1
The final plate thickness was 70 mm. Then, dew point: 55' (
After performing decarburization annealing at 830° C. for 90 seconds in a mixed gas atmosphere of 5% near Hz and 25% Nz, nitriding treatment was performed under the same conditions as in Example 1. After that, MgO and T
Apply an annealing separator containing i0z and heat at 1200°C for 20h.
Final annealing of rs was performed.

NH,の添加量、窒化量および製品の磁気特性の関係は
次の如くであった。
The relationship between the amount of NH added, the amount of nitriding, and the magnetic properties of the product was as follows.

1200℃X20hrsの仕上焼鈍を行った。Finish annealing was performed at 1200°C for 20 hours.

鋼板の窒化量および製品の磁気特性の関係は次の如くで
あった。
The relationship between the amount of nitridation in the steel sheet and the magnetic properties of the product was as follows.

実施例3 重量で、C: 0.050%、Si:3.0%、’An
:0.15%、酸可溶性A7 F 0.032%、 S
 ? 0.007%、N:0.0082%、残部:Fe
および不可避的不純物からなる電磁鋼スラブを、115
0℃に加熱した後熱間圧延し2.3胴厚さの熱延板とし
た。
Example 3 By weight, C: 0.050%, Si: 3.0%, 'An
: 0.15%, acid soluble A7 F 0.032%, S
? 0.007%, N: 0.0082%, balance: Fe
and an electromagnetic steel slab consisting of unavoidable impurities.
After heating to 0° C., hot rolling was performed to obtain a hot rolled sheet having a body thickness of 2.3 mm.

この熱延板を酸洗し、次いで0.34mm厚さまで冷間
圧延した。次いで、露点:60℃,Hz:15%十NZ
:25%の混合ガス雰囲気中で830℃×150秒間の
脱炭焼鈍を施した後、NH3を含むH2、N2混合ガス
のドライな雰囲気下に800’CX 30秒間の条件で
窒化処理を施した。然る後、?IgOとTiO□を含む
焼鈍分離剤を塗布した後、実施例4 重量で、C: 0.060%、Si:3.3%、Mn:
0.12%、酸可溶性Al 70.032%、 s :
0.010%、N:0.0080%、残部二Feおよび
不可避的不純物からなる電磁鋼スラブを、1150℃に
加熱した後熱間圧延し2.0m厚さの熱延板とした。
This hot rolled sheet was pickled and then cold rolled to a thickness of 0.34 mm. Next, dew point: 60°C, Hz: 15% NZ
: After decarburizing annealing at 830°C for 150 seconds in a 25% mixed gas atmosphere, nitriding was performed at 800'CX for 30 seconds in a dry atmosphere of H2 and N2 mixed gas containing NH3. . After that? After applying an annealing separator containing IgO and TiO□, Example 4 by weight, C: 0.060%, Si: 3.3%, Mn:
0.12%, acid soluble Al 70.032%, s:
An electromagnetic steel slab consisting of 0.010% N, 0.0080% N, the balance diFe and inevitable impurities was heated to 1150°C and then hot rolled to form a hot rolled plate with a thickness of 2.0 m.

この熱延板を酸洗し、次いで1.30 mm厚さまで冷
間圧延した。次いで1100℃X120秒間+900℃
X120秒間の焼鈍(2段階焼鈍)を施した後、再び酸
洗し0.14mo+厚さまで冷間圧延した。
This hot rolled sheet was pickled and then cold rolled to a thickness of 1.30 mm. Then 1100℃ x 120 seconds +900℃
After annealing for 120 seconds (two-stage annealing), it was pickled again and cold rolled to a thickness of 0.14 mo+.

然る後、830℃×70秒間の脱炭焼鈍を、露点;50
℃,Hzニア5%十N2:25%の混合ガス雰囲気中で
行った後、NH,を含むH23N2混合ガスのドライな
雰囲気下に750”CX30秒間の窒化処理を鋼板(ス
トリップ)に施した。次いで、MgOとTtO□を含む
焼鈍分離剤を塗布した後、1200℃X20hrsの仕
上焼鈍を施した。
After that, decarburization annealing was performed at 830°C for 70 seconds at a dew point of 50
The steel plate (strip) was subjected to nitriding treatment at 750"C for 30 seconds in a dry atmosphere of H23N2 mixed gas containing NH. Next, after applying an annealing separator containing MgO and TtO□, finish annealing was performed at 1200°C for 20 hours.

鋼板(ストリップ)の窒化量と製品の磁束密度の関係を
次に示す。
The relationship between the amount of nitridation in the steel plate (strip) and the magnetic flux density of the product is shown below.

ば、鋼板の一次再結晶後に種々のグレードの製品に造り
分けることができるから、生産構造を簡潔化でき製造コ
ストを大幅に低減できる効果をも奏する。
For example, since it is possible to manufacture products of various grades after the primary recrystallization of a steel plate, the production structure can be simplified and manufacturing costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板(ストリップ)の窒化量と製品の結晶粒度
の関係を示す図、第2図は鋼板(スl−IJツブ)の窒
化量と製品の磁気特性の関係を示す図である。 100       1.93 (発明の効果)
FIG. 1 is a diagram showing the relationship between the amount of nitridation in a steel plate (strip) and the grain size of the product, and FIG. 2 is a diagram showing the relationship between the amount of nitridation in a steel plate (slid-IJ tube) and the magnetic properties of the product. 100 1.93 (Effect of invention)

Claims (1)

【特許請求の範囲】[Claims] (1)重量で、C:0.025〜0.075%、Si:
2.5〜4.5%、S≦0.012%、酸可溶性Al:
0.010〜0.060%、N≦0.010%、Mn:
0.05〜0.45%を含有し、残部Feおよび不可避
的不純物からなる電磁鋼スラブを、1200℃以下の温
度に加熱した後熱間圧延し、1回或は中間焼鈍を介挿す
る2回以上の冷間圧延をして最終板厚とし、次いで脱炭
焼鈍、焼鈍分離剤塗布を行った後、高温仕上焼鈍する一
方向性電磁鋼板の製造方法において、一次再結晶完了後
高温仕上焼鈍以前の段階でストリップを走行せしめる状
態下に、鋼板の窒化量(N)を最終製品に有せしめる磁
束密度(B_■値)レベルに対応して鋼板の窒化量(N
)[鋼中窒素増分]が、15〜150ppmの範囲内で
B_■(T)≒(1/1000)・N+1.82で決ま
る窒化量の±10%の範囲となる如く鋼ストリップを窒
化処理し、同一素材、同一工程で磁束密度を目標の値に
造り分けることを特徴とする任意の磁束密度をもつ低鉄
損一方向性電磁鋼板の製造方法。(2)電磁鋼スラブを
熱間圧延後、熱延板焼鈍する請求項1記載の任意の磁束
密度をもつ低鉄損一方向性電磁鋼板の製造方法。
(1) By weight, C: 0.025-0.075%, Si:
2.5-4.5%, S≦0.012%, acid-soluble Al:
0.010-0.060%, N≦0.010%, Mn:
An electromagnetic steel slab containing 0.05 to 0.45% and the balance consisting of Fe and unavoidable impurities is heated to a temperature of 1200°C or less and then hot rolled, with one or intermediate annealing 2 In a method for producing grain-oriented electrical steel sheets, the plate is cold-rolled several times or more to achieve the final thickness, then decarburized and annealed, coated with an annealing separator, and then high-temperature finish annealed. Under the conditions in which the strip is run in the previous stage, the nitriding amount (N) of the steel sheet corresponds to the magnetic flux density (B_■ value) level that makes the final product have the nitriding amount (N) of the steel sheet.
) The steel strip is nitrided so that the [nitrogen increment in the steel] is within the range of 15 to 150 ppm and within ±10% of the nitriding amount determined by B_■(T)≒(1/1000)・N+1.82. A method for manufacturing a low core loss unidirectional electrical steel sheet having an arbitrary magnetic flux density, characterized in that the magnetic flux density is manufactured to a target value using the same material and the same process. (2) The method for producing a low core loss unidirectional electrical steel sheet having an arbitrary magnetic flux density according to claim 1, wherein the electrical steel slab is hot-rolled and then the hot-rolled sheet is annealed.
JP6908189A 1989-03-20 1989-03-20 Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density Pending JPH02247331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6908189A JPH02247331A (en) 1989-03-20 1989-03-20 Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6908189A JPH02247331A (en) 1989-03-20 1989-03-20 Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density

Publications (1)

Publication Number Publication Date
JPH02247331A true JPH02247331A (en) 1990-10-03

Family

ID=13392282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6908189A Pending JPH02247331A (en) 1989-03-20 1989-03-20 Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density

Country Status (1)

Country Link
JP (1) JPH02247331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295438A (en) * 1992-04-16 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295438A (en) * 1992-04-16 1993-11-09 Nippon Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH02247331A (en) Production of grain-oriented silicon steel sheet with low iron loss having arbitrary magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH02259017A (en) Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH04329830A (en) Production of thin grain-oriented silicon steel sheet reduced in iron loss
JPH0730395B2 (en) Manufacturing method of grain-oriented electrical steel sheet without surface bulge defect
KR970007161B1 (en) Making method of oriented electrical steel sheet having low iron loss
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH0417618A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic